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Abstract: Non-Newtonian thermal processing in microchannel systems, is emerging as a 

major area of interest in modern thermal engineering. Motivated by these developments, in 

the current paper, a mathematical model is developed for laminar, steady state fully 

developed viscoelastic natural convection electro-magnetohydrodynamic (EMHD) flow in a 

microchannel containing a porous medium. Transverse magnetic field and axial electrical 

field are considered. A modified Darcy-Brinkman-Forchheimer model is deployed for porous 

media effects. Viscous dissipation and Joule heating effects are included. The primitive 

conservation equations are rendered into dimensionless coupled ordinary differential 

equations with associated boundary conditions. The nonlinear ordinary differential boundary 

value problem is then solved using He’s powerful homotopy perturbation method (HPM). 

Validation with the MATLAB bvp4c numerical scheme is included for Nusselt number. 

Graphical plots are presented for velocity, temperature and Nusselt number for the influence 

of emerging parameters. Increment in thermal Grashof number and electric field parameter 

enhance velocity. Increasing Brinkman number and magnetic interaction number boost 

temperatures and a weak elevation is also observed in temperatures with increment in third-

grade non-Newtonian parameter and Forchheimer number. Nusselt number is also elevated 

with thermal Grashof number, Forchheimer number, third-grade fluid parameter, Darcy 

parameter, Brinkman number and magnetic number. 
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1. Introduction 

 Natural convection is a significant process that plays an important role in a wide range 

of industrial applications, including heat exchangers, nuclear reactor transport phenomena, 

electronic devices, building insulation, solar collectors. Furthermore, natural convective 

flows arise in geothermal energy, metallurgy, semiconductor fabrication, coating flows and 

chemical engineering processes. As a result, natural convection has attracted a substantial 

amount of attention from various researchers in recent years. In particular, many theoretical 

and computational studies have been reported addressing both internal and external flows. 

Senapti et al. [1] discussed natural convection across an annular finned horizontal cylinder 

using numerical simulation. Shirvan et al. [2] focused on how a wavy surface interacts with 

natural convection in a corrugated square cavity filled with nanofluid. Rahimi et al. [3] 

conducted a comprehensive review on natural convection heat transfer in a diverse range of 

engineering geometries. Haghighi et al. [4] investigated the natural convection from a new 

plate-fin-based configuration with heat sinks. Mohebbi et al. [5] studied natural convection 

in a nanofluid within a Γ-Shaped geometry in the presence of a rectangular hot 

impediment. The solutions were obtained by the use of the lattice Boltzmann method. Roy et 

al. [6] presented a computational analysis on the natural convection and heat transfer over an 

inclined plate finned channel. Natural convection with entropy generation over a multiple 

structured heated cylinder in the presence of non-uniform temperature along the walls were 

investigated by Bhowmick et al. [7]. Recently, Ding et al. [8] investigated the natural 

convection heat transfer for three-dimensional extrinsic finned tubes using both experimental 

and numerical methods. These studies have all demonstrated the significant influence of 

thermal buoyancy force on transport phenomena in natural convection heat transfer. 

 

 Microfluidic channels also have technical significance in various fields such as fuel cells, 

heat exchangers [9-10], separation of physical particles and biomedical and biochemical 

processes. This is due to the higher ratio of surface to volume that exists in microfluidic 

channels and this feature can be used to improve heat transfer rates. The deployment of 

pressure gradients, electric field and /or magnetic field, porous media and other effects can 

all be used to efficiently mobilize fluid motion in microchannels. Electro-

magnetohydrodynamics micro-pumps have been addressed [11-12] in several pumping 

designs due to their potential applications in microfluidics systems. The working mechanism 

of electro-magnetohydrodynamic (EMHD) micropumps is based on Lorentz 

magnetohydrodynamic and electrical body forces generated by extrinsic imposed electric and 

magnetic fields between parallel plates containing electro-conductive fluids [13-14]. 

Additionally heat transfer in the presence of electrical and magnetic fields is significant in a 

variety of applications in the metallurgical industry [15] i.e., liquid metal flows. They also 

arise in thermal duct process control [16], smart lubrication [17, 18], energy generators [19] 

and smart micropumps in biomedicine [20, 21]. 

 

    Heat transfer through microchannels containing porous media also has a wide range of 

engineering applications, including heat pipes, thermal management in microelectronics, 

thermal ducts in process engineering, nuclear waste disposal and radiators [22]. Furthermore, 

porous media are also applicable in hydrogen storage system, membrane-based water 

desalination via converse osmosis, electrokinetic energy converting devices, shale reservoirs 

and biofilters. Microchannel systems are also useful for effective heat removal in cooling 
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systems in aerospace electronics devices with significant small dimensions [23, 24]. Micro-

radiators, which are employed in thermal control, assist in the reduction of temperature 

gradients and the absolute highest temperature on the surface of equipment that is subjected 

to a high heat flux [25]. Porous media may be simulated in a variety of ways including 

hierarchy models, spatially periodic models, tortuous geometric models among others. A 

simpler approach is to use drag force models of which the Darcy model and Darcy-Brinkman-

Forhchheimer model are popular. The Darcy model is valid for low velocity transport (i. e. 

pore Reynolds numbers less than 10) [26]. For higher velocity flows, the Darcy-Forchheimer 

and Darcy-Brinkman-Forchheimer model [27] are used which include a quadratic term for 

the inertial drag experienced at higher Reynolds numbers. The Brinkman model also accounts 

for vorticity diffusion and channeling effects near the boundary [28].  

 

Many studies have examined natural convection in porous media for both Newtonian 

and non-Newtonian fluids. Aksoy and Pakdemirili [29] proposed approximations for third- 

grade fluid flow between parallel plates with porous material. In particular, constant viscosity, 

Vogel's model viscosity, and Reynold's model viscosity were explored. Kairi et al. [30] 

investigated heat and mass transfer in a vertical cone using non-Newtonian fluid flow. They 

took into account the non-Darcy model with viscous dissipation implications and natural 

convection. Zhao et al. [31] studied unsteady natural convection with heat transmission 

through a porous medium saturated with Oldroyd-B fluid. The solutions were obtained using 

a finite difference approach with the L1-algorithm. Ahmed et al. [32] studied magnetized 

squeezed flow through a non-Darcy medium with joule heating and viscous dissipation 

implications. Dutta et al. [33] used a porous quadrantal cavity to study natural convection 

and entropy generation and reported a numerical result. Ewis [34] applied a novel differential 

transformation method to investigate magnetized non-Darcy flow using a Newtonian fluid 

model. Gopal et al. [35] analyzed the performance of magnetized nanofluid flow on high 

order chemical reactions and viscous dissipation using the Darcy-Brinkmann-Forchheimer 

model. Saha et al. [36] studied natural convection across a complex wavy wall reactor to a 

non-Darcy porous material. The combined effect of MHD, porosity, and viscous dissipation 

on periodic convective heat transport through a cone was addressed by Ashraf et al. [37]. 

This study's major contribution is composed of non-oscillating component solutions, which 

are then utilized to analyze periodic behavior of rate of heat transfer, shear stress, and rate of 

current density in the influence of viscous dissipation. Abbas et al. [38] addressed the 

chemical reaction with Lorentz force on fluid flow in the third grade across an exponentially 

stretched surface. They investigated the consequences of the modified Darcy model with 

mass and heat transport.  

 

Inspection of the literature has revealed that so far, no study has addressed the 

simultaneous electro-magnetohydrodynamic (EMHD) dissipative natural convection in a 

micro-channel containing a porous medium saturated with a viscoelastic fluid. This is the 

focus of the present study. The Reiner-Rivlin third grade viscoelastic model is utilized for 

non-Newtonian effects. Transverse magnetic field and axial electrical field are considered. 

The Darcy-Brinkman-Forchheimer model is deployed for porous media effects. Viscous 

dissipation and Joule heating effects are also included. The primitive conservation equations 

are rendered into dimensionless coupled ordinary differential equations with associated 

boundary conditions. The nonlinear ordinary differential boundary value problem is solved 

using He’s powerful HPM. Validation with the MATLAB bvp4c numerical scheme is 

included for Nusselt number. Graphical plots are presented for velocity, temperature and 

Nusselt number for the influence of emerging parameters including thermal Grashof number, 

electric field parameter, Brinkman number and magnetic parameter. The simulations are 
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relevant to smart electromagnetic non-Newtonian micro-duct flows in nuclear engineering 

and EMHD micropumps in bio-chemical engineering systems [39]. 

 

 

2. EMHD Non-Newtonian microchannel flow model  

Consider the third-grade viscoelastic fluid flow under the presence of electrical and 

magnetic body force and natural convection, propagating through a non-Darcian porous 

medium in a micro-channel. The fluid is electrically conducting, incompressible and 

irrotational. A Cartesian coordinate system ( ,X  ,Y  Z  ) is adopted. The physical model is 

depicted in Figure 1 where the X  − and Z  − axes are in the plane of the plates and the Y  −

axis is perpendicular to the plane of the plates. The space between the micro-parallel plates 

is filled with a Darcy-Brinkman-Forchheimer porous medium. The presence of homogenous 

magnetic field B  and externally imposed electric field E  in Y   and negative Z 

directions, respectively, produces a Lorentz force in X  −  direction which induces the fluid 

motion. The length of the micro-channel along the X  − axis is represented by  ; the height 

is represented by 2 (usually, the height 2  is 2 210 2 10 μm−  ); and width towards the 

Z  − axis is represented by  . 

 

 
Figure 1: Geometrical configuration of electro-magnetohydrodynamics (EMHD) third-grade fluid flow 

through micro-parallel plates (a) three-dimensional view (b) two-dimensional cross-section view.  

 

 It is assumed that with   and the height 2 of the channel is smaller than the length

of the channel i.e., [39]   and 2  . Hall current and magnetic induction effects are 

neglected. In view of the afore-mentioned assumptions, the two-dimensional rectangular 

flow reduces to one-dimensional fully developed steady flow through micro-parallel plates 

and the velocity will be independent of the Z  − axis. Therefore, the equation of continuity 

(mass conservation) may be defined in vectorial form as:  

V 0, =            (1) 

Deploying the Darcy-Brinkman-Forchheimer model for porous media and Ohm’s law, the 

momentum conservation equation takes the vectorial form [37, 40]:    

 

( ) ( )
V

V V J B , ,sp R T X T X Y g
t

  
 

     + = −  +  + − + −     
×    (2) 

 

Porous medium 

saturated with 

electro-

conductive 

viscoelastic fluid 
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Here the stress tensor is denoted by  , dynamic viscosity is denoted by  , pressure is 

denoted by p , R represents the Darcy resistance, g is gravity, thermal expansion 

coefficient is denoted by  , T  is the temperature, s in the subscript represents the surface 

(wall), density is denoted by  , time is denoted by t , magnetic field is denoted by B . The 

local current density vector is denoted by J and is defined following [41-42] as: 

( )J V B E ,= +×           (3) 

Here electrical conductivity is denoted by , and electrical field is denoted by E . 

The mathematical form of the third-grade viscoelastic fluid model is defined following [43]: 

 

( ) ( )2 2

1 1 2 2 1 1 3 2 1 2 2 1 3 1 1tr ,Ip      + + + + += − + +

   

(4) 

Where 1 2 1 2 3, , , ,     represent the material constants, and the kinematical tensors 1 2 3, ,

are expressed as follows: 

 
t

1

t1
1 1

,        gradV,

d
,        2,3,

d

n
n n n n

t

−
− −






=  +  =

= + +  =


      

(5) 

The energy equation with viscous dissipation and Joule heating effects takes the form: 

d J J
: grad ,

d
V Vh f

T
C R h

t
 




= + + −


       

(6) 

In the above equation hC denotes the specific heat, fh represents the heat flux vector, and the 

symbols “  ” and “ :” represents the single and double dot products.  

For the current microchannel electromagnetohydrodynamic viscoelastic fully developed flow 

configuration, the velocity along X  − axis and is expressed as:  

 

( )V ,0,0 .U Y  =  
          

(7) 

For non-Newtonian fluid flow through porous media [44], the Darcy term will be modified 

with the third-grade fluid model, and the Forchheimer term be left unchanged (since it is 

independent of the viscosity). They are defined following [41]:    

( )2 1/2

2

2
3

d
2 ,

d

FR
CU

U
Yk k

U


 
  

+ +   
+

 

=


    

  

(8) 

Where the permeability of the homogenous, isotropic porous medium is denoted by k , and 

Forchheimer coefficient is denoted by FC . 

Using equation (7) in the momentum conservation equation (2), leads to the following set of 

equations: 
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( ) ( )

( ) ( )

2 22 2
2

2 3 2 32 2

2

1/2

d d d 1 d
6 2

d dd d

          , ,F
s

p U U U U
B U BE U

X Y k YY Y

C
U T X T X Y g

k

       




     
= + + − + − + +             

   − + − 
  

(9) 

( )
2

1 2

d d
2 ,

d d

p U

Y Y Y
 

   
= +                  

(10) 

0.
p

Z


=
             

(11) 

It is evident from these equations that the pressure function is dependent on the Y  −

coordinate. It follows that:  

 

( ) ( )

( ) ( )

2 22 2
2

2 3 2 32 2

2

1/2

d d d 1 d
6 2

d dd d

          , 0,F
s

U U U U
B U BE U

Y k YY Y

C
U T X T X Y g

k

       




    
+ + − + − + +            

   − + − = 
  

(12) 

 

The boundary conditions are defined as follows, in accordance with the microchannel 

geometry: 

 

( ) 0,U  =

          

(13) 

 

The energy equation for the electroconductive fluid may be written as [45]: 

( )

( ) ( )

2 42 2

2 32 2

2

2 2 2 2 3

2 3 1/2

d d
2

d d

1 d
                   2 2 .

d

h T

F

T T T U U
C U k

X X Y Y Y

CU
B U E BEU U U

k Y k

   


   

       
= + + + +                

  
+ + − + + + +     

 (14) 

Here thermal conductivity of the electroconductive fluid is denoted by Tk . The Joule heating 

and volumetric heat generation owing to viscous dissipation are represented by the last terms 

in the preceding equation.  

The dimensionless form of the temperature is defined as: 

( ) ( )

( ) ( )

,
,

s

s m

T X T X Y
T

T X T X

  −
=

 −          

 (15) 

where mT  represents the mean temperature.  

 

The temperature profile, in the fully developed natural convection flow is solely dependent 

on the Y  −direction. As a result, we have the following condition:  

 

( ) ( )

( ) ( )

,
0.

s

s m

T X T X Y

X T X T X

   −
=     −         

 (16) 

The following expressions for the heat flux boundary conditions are applied: 
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2

2

d
Const., and 0.

d

mTT T

X X X

 
= = =
           

(17) 

 

According to the stated assumptions, the energy equation (13) and the associated boundary 

conditions effectively assume the form:   

( )

( ) ( )

2 42

2 32

2

2 2 2

1/2

2 3

2 3

d d
2

d d

d
                   2 2 .

1

d

m
h T

F

T T U U
C U k

X Y Y Y

CU
B U E BEU U U

k kY

   

 


 

     
= + + +           

  
+ + − + + +  

  

+



 

(18) 

( )2 or  ,
Y

h T s

Y

T
f k T T X

Y =
=


= =

        

 (19) 

 

Here the heat flux is denoted by hf (constant). Incorporating an overall energy balance into 

the design of an elemental control volume along the length of a duct dX  : 
 

( )

( ) ( )

2

2 2 2

0 0

4 2

3 2

2 3 2 31/2

0 0

d
d d d 2 d d d d

d

d 1 d
                     2 d d 2 d d .

d d

h m m h

F

U
C U T f X E X B U EBU Y X Y X

X

CU U
Y X U U Y X

Y k k Y

   


    

 
     = + + − +  

 

     
   + + + + + +             

 

 

 

 (20) 

 

The mean temperature is obtained in the following form: 

 

0d
Const., 

d

m

h

T c

X C
= =

         

 (21) 

Here 0c is defined as: 

( )

( )

22
2 3 432

0

1 1 1 1 1

2 2 3 6

51/2

1

2

21
     2 .

h

F

cf cB cE
c

c c c c c

c c C
c EB

c k k

 

   


+
= + + + +

+ +  + + −  

       (22) 

 

The coefficients in the above equation (22) take the following definitions: 

 
2

2

1 2 3

0 0 0

4 2

3 2

4 5 6

0 0 0

d
d , d , d ,

d

d d
d , d , d .

d d

U
c U Y c U Y c Y

Y

U U
c Y c U Y c U Y

Y Y

 
  = = =  

 

   
  = = =       

  

  

     (23) 

 

Next, the derived equations are rendered into dimensionless form by employing the following 

scaling variables and non-dimensional numbers:  
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( ) ( )

( )

( )
( ) ( )

2

2 2 2
0

1 2

3 23
2 3

2

2

4

2
,

, , , , ,

, , ,

.,
m

F
a

m s

h

r

s T m s TT m s

F a

r

CU Y
u

T T
E

c BE E
B

T

B

T

y D D

G

T

H

k T T kk

k

g BE

T

k



 

   








 
 

−

+
= = =

−−


= = = = =

+
= = =

−

     

(24) 

Using equations (15) & (24), the dimensionless form of equations (12) & (14) along with 

their associated boundary conditions emerge as: 

 

 
222 2

2 2

2 2
1 2

d d d d
6 0,

d dd d
a rFh a

u u u u
H u E u D u G T

y yy
D

y
 
   
   



 
 +

 
  

+ − + − − + =

   

(25) 

22 42
2 2 2 3

1 22

d d d
2 1 2 0,

d d d

d

d
r r r a r r Fa

T u u
B B B H u u B u B D u

y y y

u
D

y
   

     
+ + + − + + + + =     

       

 

(26) 

 

The boundary conditions are as follows: 

 

( ) ( )1 0,      1 0,    u T =  =

         

(27) 

 

Here kinematic viscosity is denoted by , magnetic interaction number is denoted by aH , 

dimensionless parameter related to electrical strength is denoted by hE , third-grade fluid 

parameter is denoted by , Darcy parameter is denoted by aD , Forchheimer (non-Darcian 

porous medium) number is denoted by FD , thermal Grashof number is denoted by rG , rB

represents the Brinkman number, which indicates the ratio of heat created by viscous 

dissipation to heat transferred by molecular conduction, the effects of heat generation owing 

to the interaction of magnetic and electric fields on heat conduction is denoted by 1  and the 

ratio of Joule heating to heat conduction is represented by 2 . We note that aD is inversely 

proportional to permeability and has values ranging from 0 (pure fluid i. e. infinite 

permeability) to infinity (pure solid i.e. zero permeability). It is also noteworthy that the 

present non-Darcy model features modified terms also in the energy equation (26). 

 

The Nusselt number provides an estimation of the convective heat transfer relative to 

conduction heat transfer at a boundary (microchannel plate inner surfaces) and also the 

temperature gradient at the wall. It is determined by the following expression: 

( )
,c h

u

T T s m

D h D f
N

k k T T
= =

−          

(28) 

Here the convective heat transfer coefficient is denoted by ch and ( ) .h s m cf T T h= − D is the 

hydraulic diameter and D = is the semi-height of the microchannel. The final definition 

required for Nusselt number at the upper plate is obtained by using Eqns. (19) and (28), which 

is emerges as: 
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1

d
.

d
u

y

T
N

y
=

= −
          

 (29) 

 

3. Solutions using homotopy perturbation method (HPM) 

To obtain the solution of the resulting nonlinear differential equations (25)-(26) with 

associated boundary conditions (27), we have used He’s HPM. This method is very accurate 

and exceptionally fast at converging compared with other perturbation methods [46] and uses 

higher order power series solutions. It has been utilized in many nonlinear non-Newtonian 

fluid dynamics problems including Jeffreys viscoelastic flows [47] and Maxwell rheological 

flows [48]. The HPM formulation for the coupled ordinary differential momentum and 

energy equations (25)-(26) are defined in the following form: 

 

( ) ( ) ( ) ( ) ( )
23

2 2
op op 0 op

d d
, 1 2 1 2 ,

d d

d

d
a h a F r

v
h v L v L v L v H v E D v D v G T

y y

v

y
    

    
    = − − + + − + − + − +           

 

 (29) 

( ) ( ) ( ) ( ) ( )
2 4

op op 0 op

2

2 2 2 3

1 2

d d
, 1 2

d d

              1 2 ,
d

d

r r

r a r r F

v v
h L L L B B

y y

B H v v B v B D v
v

y

       

  

    
 = − − + + +     

    

  
+ − + + + +  
    

   (30) 

In the above equations opL is the linear operator and 0 0,v  are the initial guesses, and they are 

defined as:  
2 2

op 0 02

d 1
, ,

2d

y
L v

y


−
= = =           (31) 

 

To proceed further, let us define series expansions for equations (29)-(30): 

 
2

0 1 2

2
0 1 2

,

,

v v v v 

    

= + + +

= + + +
          (32) 

 

Applying equation (32), in equations (29)-(30), we obtain a set of linear differential equations 

for each order, which are defined next. 

  

3.1 Zeroth other system 0  

At zeroth order we obtain the following set of differential equations with their boundary 

conditions: 

( ) ( )

( )

op 0 op 0

0

0,

1 0,

L v L v

v

− =

 =
           (33) 

( ) ( )
( )

op 0 op 0

0

0,

1 0,

L L 



− =

 =
          (34) 

 

The solution at the zeroth order is obtained as:  
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2

0

2

0

1
,

2

1
,

2

y
v

y


−
=

−
=

             (35) 

 

3.2 First order system 1  

The first order system is obtained in the following form: 

 

( ) ( )

( )

23

2 20
op 1 op 0 0 0 0 0

1

0

,

1 2
dd

2 ,
d d

1 0

d

d
a h a F r

v
L v L v H v E v D v G

y y

v

D
v

y
 

  
+ + − + − − +


 +
 
 

 
   

 =

  (36) 

( ) ( )

( )

2 4

2 20 0
op 1 op 0 0 1 0 2

2

2 3
0 0

1

0

d d
2

d d

,

1 0,

1 2
d

d

r r r a

r a r F

v v
L L B B B H v v

y y

B v B D vD
v

y

    





    
 + + +



+ − +   
    


 
+ + 



 
 +

 




 

=



   (37) 

 

The solution of the first order system is obtained as: 

( )
( ) ( )( )

( ) ( ) ( )( )

2 4 2 4

1
2

2 2 2 2

11 4 25 5 6 6 4
1

1
120 5 5 5 12 1

F a

r a h

v
D y y D y y

y
G y H y E y

  

 

 − + + − + − − +
 − +
 
− − + − − + +


=
+ + + 



    (38) 

( )

( ) ( )

( )

( ) ( ) ( )( )

( ) ( )( )

2 4 2 4 6

2 4 6

2

2 2 2 4 2 4

2
1 2

1

56 11 4 3 93 47 23 5

4
,

29 29 41 15
1

1
6720 56 10 1 11 4 8 1

280 5 12 1

a F

a

a

D y y D y y y

Br D y y y
y

y H y y y y

y






 

  − + + − + − +
  
  

+ + − +  
− − +   

+ + + − + + + +  
  

 − − + − +
 

=

 

   (39) 

 
 

3.3 Second order system 2  

The second order system is obtained as: 

( )

( )

22 2
20 0 01 1

op 2 1 12 2

2

0 01
1 0 1 0 1

2

d d dd d
6

d d dd d

d dd
2 2 2 ,

d d d

1 0,

2 aa

F r

v v vv v
L v H v v

y y yy y

v vv
v v D v v G

y

D

y y

v



 

  
 + + − − 
  

 



 
 
  

 
 



− + − +  

 

 =



       (40) 
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( )

( )

3

20 01 1
op 1 1 0 1 1 1 0

2

2 20 01
0 0 1 0 1

1

d dd d
2 8 2 2

d d d d

d dd
2 3 ,

d d d

1 0,

r r r a r a

r a r F

v vv v
L B B B H v v v B D v v

y y y y

v vv
B D v v v B D v v

y y y

  





  
+ + + − +  

  


  
 + + +     

 =

   (41) 

 

The solution of the second order system is obtained as: 

 2 4 6 8 10
1 1,0 1,1 1,2 1,3 1,4 1,5 ,v v v y v y v y v y v y= + + + + +       (38) 

2 4 6 8 10 12
1 1,0 1,1 1,2 1,3 1,4 1,5 1,6 ,y y y y y y       = + + + + + +      (39) 

 

The constants ( )1, 1,, ; 0,1 ,6n nv n = mentioned in the above equations are algebraically 

rigorous and are therefore omitted for brevity. They can, however, be easily determined 

through the use of regular computations in the symbolic software, Mathematica.  

 

Using the HPM property, we may derive the final form of the solutions as:  

 

0 1 2
1

lim ,u v v v v
→

= = + + +           (40) 

0 1 2
1

lim ,T


   
→

= = + + +          (41) 

 

Finally, they can be written as: 

 

( )
( ) ( )( )

( ) ( ) ( )( )2

2

2 4
2

2 4

6 8 10
1,0 1,1 1, 1,3 1,4 1,5

2 4

2

2 2 2

11 4 25 5 6 6 4
1

1
120 5 5 5 1

,

2 1

     +

1

2

F a

r a h

y
u

v v y v y v

y

y v y v

D y y D y
y

G y H y y

y

E

  

 

 − + + − + − − +
 − +
 
− −

−
= +

+ +

+ − − + + + + + 


+



+ +

    

 (42) 

( )

( ) ( )

( )

( ) ( ) ( )( )

( ) ( )( )2

2

2 4 6 8 10
1,0 1,1 1,2 1,3 1,4 1,5

2 4 2 4 6

2 2 4 6

2 2 2 4 2 4

2 11

56 11 4 3 93 47 23 5

1
1 4 29 29 41 15

6720

56 10 1 11 4 8 1

      280 5 12 1

1

2

a F

a

a

y

y

T

D y D y y y

y Br D y y

H

y y y

y

y

y

y y y y

y y     





 

  − + + − + − +
  
  

− − + + + − +  
  

+ + + − + + + + 
 

− − +

−
=

+ + +− + +


+ + +


12
,6 .y

  

    (43) 

 

4. HPM and numerical bvp4c results and discussion   

In this section, graphical results are presented based on the HPM solutions. Additionally, 

solutions have been obtained using the numerical shooting quadrature available in the bvp4c 

command in MATLAB. The following parametric values were chosen to carry out the 

computational formulation such as: 1.5;aD = 0.2; = 0.2;rB = 1;hE = 2;aH = 1;FD =

0.2;rG = 1 0.5; = 2 0.5. =  These values have been adopted from references [10], [14], [40], 



 12 of 28 

 

[39] and represent realistic scenarios in microchannel electromagnetic non-Newtonian heat 

transfer systems. A comparison between the proposed results and a numerical technique 

based on the built-in command bvp4c in Matlab to ensure that the results are valid (see Table 

1). According to this table, it is evident the HPM solutions correlate very closely with the 

MATLAB bvp4c numerical results, which verifies that the current results are correct.   

 

Table 1: Numerical comparison of the Nusselt number using numerical and perturbation 

solutions.  

 

aD    rB  hE  aH  FD  rG  1  2  

uN  uN  

MATLAB 

bvp4c 

numerical 

solutions 

HPM solutions 

0 0.2 0.2 1 2 1 0.2 1.5 0.5 1.46179 1.46179 

1.5         1.46835 1.46835 

3         1.47300 1.47300 
 0        1.46792 1.46792 
 2        1.47081 1.47081 
 4        1.47246 1.47246 
  2       1.70513 1.70513 
  3       1.84378 1.84378 
  4       1.98801 1.98801 
   0.5      1.47583 1.47583 
   1      1.46835 1.46835 
   1.5      1.47128 1.47128 
    0.5     1.44567 1.44567 
    1     1.45228 1.45228 
    1.5     1.46052 1.46052 
     0    1.46782 1.46782 
     3    1.46930 1.46930 
     6    1.47053 1.47053 
      3   1.52775 1.46912 
      3.5   1.54623 1.47079 
      4   1.56787 1.48619 
       0  1.60146 1.60146 
       0.5  1.48619 1.48619 
       1  1.38103 1.38103 
        0.5 0.46856 0.46856 
        0.7 0.67002 0.67002 
        0.9 0.87251 0.87251 

 

 

Figs. 2-16 illustrate the influence of key parameters on the velocity, temperature and 

Nusselt number distributions. 
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Figures 2–8 show the evolution in velocity profile in relation to several parameters 

such as the third-grade fluid parameter , the thermal Grashof number rG , the Darcy number

aD , the Forchheimer number FD , the magnetic number aH , the Brinkman number rB , and 

the electric strength hE .  

 
Figure 2: Behavior of   on velocity profile.  

 

Figure 3: Behavior of 
rG  on velocity profile. 
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Figure 4: Behavior of aD  on velocity profile. 

 

Figure 5: Behavior of 
FD  on velocity profile. 

 

Figure 6: Behavior of 
aH on velocity profile. 
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Figure 7: Behavior of rB  on velocity profile. 

 

Figure 8: Behavior of 
hE  on velocity profile. 

 
Figure 9: Behavior of   on temperature profile. 
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Figure 10: Behavior of rB  on temperature profile. 

 

Figure 11: Behavior of aD  on temperature profile. 

 

Figure 12: Behavior of 
FD  on temperature profile. 
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Figure 13: Behavior of 2  on temperature profile. 

 

Figure 14: Behavior of 1  on temperature profile. 

 

Figure 15: Behavior of 
aH  on temperature profile. 
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Figure 2 shows how increasing the third-grade fluid parameter ( ) causes significant 

reduction in the velocity magnitude. When the third-grade fluid parameter is set to zero, 

however, the case of a Newtonian fluid is retrieved, and this corresponds to the maximum 

velocity i. e. greatest flow acceleration in the micro-channel. The third-grade fluid parameter 

( ) arises in the momentum eqn. (25) in the term, 6𝜉 (
𝑑𝑢

𝑑𝑦
)

2 𝑑2𝑢

𝑑𝑦2
. Since 𝜉 =

𝜐2(𝜏̄2+𝜏̄3)

𝜇ƛ4  the 

parameter is dominated by viscosity and not elasticity of the non-Newtonian fluid. Higher 

values will therefore imply greater viscous resistance which will lead to a depletion in 

velocity across the micro-channel. Strongly viscoelastic fluids will therefore flow slower than 

the classical Newtonian case. There is no cross-over in velocity profiles and a consistent 

deceleration is induced across the micro-channel span with higher third-grade fluid parameter 

( ) values.  

 

Figure 3 demonstrates that the thermal Grashof number induces a considerable 

enhancement in the velocity profile. The buoyancy force, +𝐺𝑟𝑇 in eqn. (25) increases as the 

thermal Grashof number increases. This intensifies natural convection currents which 

amplifies the velocity magnitude. Again, this behaviour is maintained across the micro-

channel span. The case of forced convection is retrieved for Gr << 1 and this corresponds to 

the lowest velocity computed. The velocity profiles are symmetrical about the centreline of 

the micro-channel (y = 0). 

 

The effects of Darcy number on the velocity profile are depicted in Figure 4. In this 

illustration, it can be seen that increasing the Darcy number causes the velocity profile to 

decline drastically. The Darcy parameter, 𝐷𝑎 =
ƛ

2

𝑘
 and is inversely proportional to porous 

medium permeability, k. This is distinct from the classical Darcy number which is directly 

proportional to permeability. 𝐷𝑎 features in the Darcian drag force term i.e. −𝐷𝑎𝑢 in the 

momentum conservation eqn. (25). As 𝐷𝑎 is elevated, the permeability is reduced and this 

decelerates the flow since greater resistance is generated to the percolating viscoelastic fluid. 

The velocity is therefore maximized for 𝐷𝑎 = 0 which corresponds to vanishing permeability 

(infinite) implying there are no solid matrix fibers and the regime is purely viscoelastic fluid. 

The significant damping effect of small permeability of the porous medium is clearly 

demonstrated, confirming the excellent control mechanism offered in electromagnetic micro-

channel flows via the presence of a porous matrix.  

The effects of the Forchheimer number 𝐷𝐹 on velocity distribution across the micro-

channel span are depicted in Figure 5. 𝐷𝐹 =
𝐶𝐹ƛ

√𝑘
 and enables an assessment of non-Darcian 

inertial drag forces on the viscoelastic flow in the porous medium. A significant decrease in 

the velocity profile is observed with increment in Forchheimer number. As Forchheimer 

number increases, the second order (quadratic) inertial drag is boosted i. e. the term, −𝐷𝐹𝑢2 

is enhanced and this decelerates the flow across the micro-channel. For 𝐷𝐹 =0, Forchheimer 

effects are negated and the classical Darcian model is retrieved. Symmetric profiles are 

sustained at all values of 𝐷𝐹 across the microchannel. At the plate boundaries, in accordance 
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with the no-slip boundary conditions, velocities vanish. The strong damping achieved with 

inertial (Forchheimer) drag is clearly demonstrated. These findings concur with many other 

non-Darcy studies including Saha et al. [36] and Ashraf et al. [37]. 

Figure 6 shows that increasing values of the magnetic interaction parameter, 𝐻𝑎. 𝐻𝑎 =

𝐵ƛ√
𝜎

𝜌
 and an increment in this parameter enhances the Lorentzian magnetic drag force, 

−𝐻𝑎
2𝑢, in Eqn. (24). This damps the flow and reduces velocity across the micro-channel. The 

non-magnetic case is retrieved for 𝐻𝑎 = 0 and this achieves the maximum velocity. A 

significant deceleration in the flow is clearly achieved with greater magnetic parameter which 

corresponds to a stronger transverse magnetic field presence in the regime. Peak velocity is 

always computed at the centre line (𝑦 =  0) and again the profiles are symmetric. In all cases 

magnitudes of velocity are positive indicating that back flow is never induced in the regime, 

even at maximum magnetic parameter of 𝐻𝑎 = 2.5.  

It is seen in Figure 7 that there is a slight increase in velocity owing to an increment in 

Brinkman number, but the impacts are minimal. 𝐵𝑟 =
𝜇𝜐2

ƛ2𝑘𝑇(𝑇𝑚−𝑇𝑠)
 and describes the viscous 

dissipation effect. Ordinarily this parameter which features in the viscous heating term, 

+𝐵𝑟 (
𝑑𝑢

𝑑𝑦
)

2

 in eqn. (26) will convert kinetic energy into thermal energy. However in the 

present case, Br also appears in many other terms in the energy conservation eqn. (26), viz, 

a non-Newtonian term, +2𝐵𝑟𝜉 (
𝑑𝑢

𝑑𝑦
)

4

, the Joule heating term, +𝐵𝑟𝐻𝑎
2𝑢2, and additionally 

the modified non-Darcian dissipative terms, +𝐵𝑟𝐷𝑎𝑢2  and +𝐵𝑟𝐷𝐹𝑢3 . The collective 

contribution of these multiple terms however modifies the action of the Brinkman number 

and leads to a slight acceleration in the flow across the micro-channel.  

 

The impact of electric field parameter, 𝐸ℎ , on velocity evolution across the micro-

channel span is depicted in Figure 8. 𝐸ℎ =
𝜎𝐵𝐸ƛ3

𝜇𝜐
 is directly proportional to the electrical 

field strength, E. It arises in the single axial electrical body force term, +𝐸ℎu in Eqn. (25) 

which unlike the magnetic Lorentzian force, is an assistive body force. Increment in electrical 

field parameter therefore magnifies this electrohydrodynamic body force which assists the 

flow and induces strong acceleration in the regime. There is therefore a significant boost in 

axial velocity across the micro-channel span with stronger electrical field strength effect. The 

electrohydrodynamic body force therefore can be utilized to balance the magnetic Lorentzian 

drag effect and together these two body forces provide a dual mechanism for regulating the 

micro-channel flow distribution. The simultaneous presence of 

electromagnetohydrodynamic (EMHD) effects i. e. Ha >0 and Eh > 0, therefore offers 

improved control of the microchannel regime compared to only electrohydrodynamic (EHD) 

(for which Ha = 0) or magnetohydrodynamic (MHD) designs (for which Eh =0). 

Figure 9 depicts the third-grade fluid parameter ( ) impact on temperature profile. A 

very slight heating effect is induced with a large increment in 𝜉. The non-Newtonian third 

grade viscoelastic parameter,  𝜉 =
𝜐2(𝜏̄2+𝜏̄3)

𝜇ƛ4  . It features in both the momentum eqn. (25) in 
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the term, +6𝜉 (
𝑑𝑢

𝑑𝑦
)

2 𝑑2𝑢

𝑑𝑦2  and also in the energy eqn. (26) in the term, +2𝐵𝑟𝜉 (
𝑑𝑢

𝑑𝑦
)

4

. As 

observed earlier, higher values of 𝜉 lead to a deceleration in the flow. This enables a faster 

thermal diffusion rate in the viscoelastic liquid which increases temperature magnitudes. 

Also, the term, +2𝐵𝑟𝜉 (
𝑑𝑢

𝑑𝑦
)

4

is also increased with greater 𝜉 which also contributes to a 

heating effect. 

Figure 10 shows that as the Brinkman number rB  increases, the temperature profile is 

very strongly enhanced. Increment in Brinkman number greatly amplifies the viscous heating 

(and Joule heating) effect. It also magnifies the non-Darcy dissipation effects simulated in 

the supplementary terms in the energy eqn. (26). This contributes to an accentuation in the 

viscous heating relative to the heat conduction process. Temperatures are therefore strongly 

modified. It is noteworthy that inclusion of the viscous dissipation (and associated effects) is 

very important since it achieves significantly different temperature values (they are much 

higher) than when viscous heating is neglected (Br = 0). As with the velocity profiles 

computed earlier, there is symmetry in the temperature profiles across the micro-channel and 

the peak temperature always arises at the centre (y =0). At the plate boundaries, temperatures 

vanish in accordance with the boundary conditions prescribed in eqn. (27). 

Figure 11 illustrates that increasing the Darcy parameter, aD  increases the temperature 

profile, although the impacts are minimal. A slight elevation in temperature is induced with 

greater Darcy parameter, which is maximized at the centre of the micro-channel. As noted 

earlier, when 𝐷𝑎  is elevated, the permeability is reduced. There are therefore less solid 

matric fibers in the regime. However thermal conduction is still greater than for the case of  

𝐷𝑎 = 0 and the latter is associated with the lowest temperatures since there are no solid matrix 

fibers present for infinite permeability (purely viscoelastic fluid in the regime). Temperature 

is also influenced by the dissipative Darcian term in the energy conservation eqn. (26), 

+𝐵𝑟𝐷𝑎𝑢2 , which has been included in the modified formulation adopted, and is usually 

neglected in simpler models of porous media.  

The impact of Forchheimer number FD  i.e. non-Darcian effect on the temperature 

profile is depicted in Figure 12. Here, it should be noticed that the temperature profile is 

enhanced weakly with Forchheimer number. There is a direct contribution of Forchheimer 

number to the temperature field via the term, +𝐵𝑟𝐷𝐹𝑢3 in the energy eqn. (26). This induces 

a slight heating effect in the regime which is also associated with viscous dissipation. Clearly 

for the Darcian case (DF =0) temperature is minimized.  

Figure 13 shows the behavior of 2 on temperature profile. In terms of physics, this 

parameter describes the relationship between Joule heating and heat conduction. As can be 

seen in this graph, increasing this parameter results in a significant increase in the temperature 

profile along the entire channel length. 𝜉2 =
𝜎ƛ2𝐸2

(𝑇𝑚−𝑇𝑠)𝑘𝑇
 arises in the term, +𝜉2 in the energy 
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eqn. (26). This assists the thermal diffusion field and indicates that the transverse magnetic 

field (Joule dissipation) generates strong heating in the regime which dominates thermal 

conduction.  

 Figure 14 demonstrates that by increasing the value of 1 there is a decrement in the 

temperature profile. This parameter arises in the negative term, −𝜉1𝑢 in the energy eqn. (26) 

which inhibits thermal diffusion. Physically, 𝜉1 =
𝜐ƛ(𝑐0+2𝜎𝐵𝐸)

(𝑇𝑚−𝑇𝑠)𝑘𝑇
 represents the effects of heat 

generation on heat conduction due to the interaction of magnetic and electric fields. When 

this parameter is absent i. e. 1 = 0, the heat generation effect on thermal conduction due to 

the combined electromagnetohydrodynamic effect vanishes and temperatures are a 

maximum. The implication is that the parameter 1 has a cooling effect on the regime since 

when it is increased there is a suppression in the thermal conduction modification by dual 

electrical and magnetic field action.  
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Figure 16: Effect of multiple parameters on Nusselt number profile. 

 

Fig. 15 shows that with increment in the magnetic interaction parameter, aH  there is a 

strong elevation in temperatures across the micro-channel. This behaviour is primarily due 

to the term, +𝐵𝑟𝐻𝑎
2𝑢2 in the energy eqn. (25) i. e. Joule dissipation, also known as Ohmic 

heating. The supplementary work expended in dragging the viscoelastic fluid against the 

action of the transverse magnetic field is dissipated as thermal energy. This heats the fluid 

and elevates the temperature. Again, the maximum temperatures are observed at the centre-

line of the micro-channel and are inverse parabolic profiles, with symmetry.  

 

 Fig. 16 shows the Nusselt number magnitudes tabulated for selected parameters. The 

Nusselt number is the ratio of convective to conductive heat transfer at the upper plate of the 

micro-channel. It also quantifies the temperature gradient at the upper plate and is a measure 

of the rate of heat transfer from the inner viscoelastic EMHD fluid to the upper plate. 
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Diffusion (conduction) and advection (fluid motion) are both involved in convection. Due to 

an increase in the thermal Grashof number, Forchheimer number, third-grade fluid 

parameter, Darcy number, Brinkman number, and magnetic interaction number, the Nusselt 

number magnitude is observed to increase. Therefore, stronger thermal buoyancy, higher 

quadratic porous drag, stronger viscoelasticity, lower permeability, higher viscous heating 

and stronger magnetic field all enhance the rate of heat transfer to the upper plate boundary.   

 

5. Conclusions 

 

A theoretical study of laminar, steady state fully developed viscoelastic natural convection 

electro-magnetohydrodynamic (EMHD) flow in a microchannel containing a porous medium 

has been presented Transverse magnetic field and axial electrical field are considered. A 

modified Darcy-Brinkman-Forchheimer model is deployed for porous media effects. Viscous 

dissipation and Joule heating effects are included. The primitive conservation equations are 

rendered into dimensionless coupled ordinary differential equations with associated 

boundary conditions. The nonlinear ordinary differential boundary value problem has been 

solved using He’s powerful HPM. Validation with the MATLAB bvp4c numerical scheme 

has been included for Nusselt number. Graphical plots are presented for velocity, temperature 

and Nusselt number for the influence of emerging parameters. The computations show that: 

 

(i) Increment in thermal Grashof number and electric field parameter enhance velocity 

whereas increment in magnetic interaction parameter, third grade viscoelastic parameter, 

Darcy parameter and Forchheimer number inhibit the flow.  

 

(ii) Increasing Brinkman number and magnetic interaction number boost temperatures and a 

weak elevation is also observed in temperatures with increment in third-grade non-

Newtonian parameter and Forchheimer number.  

 

(iii) Increasing magnetic field slightly heats the regime as does an increase in electrical 

parameter relating the Joule heating and heat conduction. However, there is a reduction in 

temperatures across the micro-channel with the combined electromagnetic parameter relating 

heat generation to heat conduction due to the interaction of magnetic and electric fields.  

 

(iv) Nusselt number is also elevated with thermal Grashof number, Forchheimer number, 

third-grade fluid (viscoelastic) parameter, Darcy parameter, Brinkman number and magnetic 

number. 

 

(v) The simultaneous presence of electromagnetohydrodynamic (EMHD) effects i. e. Ha > 0 

and 𝐸ℎ  >  0 , enables improved control of the microchannel regime compared to only 

electrohydrodynamic (EHD) (for which Ha = 0) or magnetohydrodynamic (MHD) designs 

(for which Eh =0). 
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(vi) The fluid motion is significantly opposed by the strong influence of magnetic field, and 

the third-grade fluid.  

 

The present investigation has revealed some intriguing features of 

electromagnetohydrodynamic non-Newtonian microchannel flows of relevance to for 

example microscale thermal ducts. Future studies may consider alternative non-Newtonian 

models such as the upper convected Maxwell (UCM) viscoelastic model or Eringen 

micropolar model and will be communicated imminently.    
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