
Received April 13, 2022, accepted June 5, 2022, date of publication June 13, 2022, date of current version June 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182659

Methods for Pruning Deep Neural Networks
SUNIL VADERA AND SALEM AMEEN
School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, U.K.

Corresponding author: Sunil Vadera (s.vadera@salford.ac.uk)

ABSTRACT This paper presents a survey of methods for pruning deep neural networks. It begins by
categorising over 150 studies based on the underlying approach used and then focuses on three categories:
methods that use magnitude based pruning, methods that utilise clustering to identify redundancy, and
methods that use sensitivity analysis to assess the effect of pruning. Some of the key influencing studies
within these categories are presented to highlight the underlying approaches and results achieved. Most
studies present results which are distributed in the literature as new architectures, algorithms and data sets
have developedwith time, making comparison across different studied difficult. The paper therefore provides
a resource for the community that can be used to quickly compare the results from many different methods
on a variety of data sets, and a range of architectures, including AlexNet, ResNet, DenseNet and VGG. The
resource is illustrated by comparing the results published for pruning AlexNet and ResNet50 on ImageNet
and ResNet56 and VGG16 on the CIFAR10 data to reveal which pruning methods work well in terms
of retaining accuracy whilst achieving good compression rates. The paper concludes by identifying some
research gaps and promising directions for future research.

INDEX TERMS Deep learning, neural networks, pruning deep networks.

I. INTRODUCTION
Deep learning and its use in high profile applications such as
autonomous vehicles [1], predicting breast cancer [2], speech
recognition [3] and natural language processing [4] have
propelled interest in Artificial Intelligence to new heights,
with most countries making it central to their industrial and
commercial strategies for innovation.

Although there are different types of architectures [5],
deep networks typically consist of layers of neurons that are
connected to neurons in preceding layers via weighted links.
Another characteristic, which is considered central to their
predictive power [6], is that they have a large number of
parameters that need to be learned, with networks such as
ResNet50 [7] having more than 25 million parameters and
VGG16 [8] having more than 138 million weights. An obvi-
ous question, therefore, is to ask whether it is possible to
develop smaller, more efficient networks without compro-
mising accuracy? One direction of work aimed at addressing
this question has been to first train a large network and then
to prune and fine-tune a network. Although methods for
pruning shallow neural networks were proposed in the 1980s
and 90s [9]–[11], recent advances in deep learning and its
potential for applications in embedded systems has led to

The associate editor coordinating the review of this manuscript and
approving it for publication was Shenghong Li.

an increasing number and variety of algorithms for pruning
deep neural networks. Hence, this paper presents a survey of
recent work on pruning neural networks that can be used to
understand the types of algorithms developed, appreciate the
key ideas underpinning the algorithms and gain familiarity
with the major approaches and issues in the field. The paper
aims to achieve this goal by presenting the progressive path
from the earlier algorithms to the recent work, categorising
algorithms based on the approach used, contrasting the simi-
larities and differences between the algorithms and conclud-
ing with some directions for future research.

The studies on pruning methods all carry out empirical
evaluations that compare the performance of algorithms on
different architectures and benchmark data sets. These evalu-
ations have evolved as new deep learning architectures have
developed, as new data sets have become available and as
new pruning algorithms have been proposed. This paper also
provides a useful resource that brings together the reported
results in one place, allowing researchers to quickly compare
the reported results on different architectures and data sets.

The survey identified over 150 studies on pruning neu-
ral networks, which can be categorised into the fol-
lowing eight groups based on the underlying approach
used:

1) Magnitude based pruning methods [12]–[15], which
are based on the view that the saliency of weights and

63280 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6041-2646


S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

FIGURE 1. A selection of pruning methods grouped in terms of the approach adopted.

neurons can be determined by local measures such as
their magnitude.

2) Similarity and clustering methods [16]–[21], which
aim to identify duplicate or similar weights which
are redundant and can be pruned without impacting
accuracy.

3) Sensitivity analysis methods [9], [22]–[27], that
assess the effect of removing or perturbing weights on
the loss and then remove a proportion of the weights
that have least impact on accuracy.

4) Knowledge distillation methods [28]–[31], which
utilise the original model, termed the Teacher,
to learn a more compact new model called the
Student.

5) Low rank methods [27], [32], [33], that factor a
weight matrix into a product of two smaller matri-
ces which can then be used to perform an equivalent
function more efficiently than the single larger weight
matrix.

6) Quantization methods [34]–[39], which are based on
using quantization, hashing, low precision and binary
representations of the weights as a way of reducing the
computations.

7) Architectural design methods [40]–[46], that utilise
intelligent search and reinforcement learning methods
to generate neural network architectures.

8) Hybrid methods [47]–[49], which utilise a combi-
nation of methods aimed at taking advantage of the
cumulative compressing effects of the different types
of methods.

Table 1 classifies over 150 studies identified by the sur-
vey into the 8 categories, enabling researchers working on
a particular type of method to locate related studies. Given
the range of studies, and availability of surveys already cov-
ering some of the above categories, this paper focuses on
recent algorithms in the first three categories for pruning.
Reed [11] provides an excellent survey of pruning methods
prior to the deep learning era. Readers interested in the use
of quantization, low rank and knowledge distillation methods
are referred to the survey by Lebedev et al. [50] and read-
ers interested in architectural design methods are referred
to the comprehensive survey by Elsken et al. [51]. Pruning
networks is just one step in developing efficient models and
a recent survey by Menghan [52] summarises the full range
of methods, from use of quantization and learning, to the
available software and hardware infrastructure for efficient
deployment of models. Another important direction of work,
worthy of a survey in its own right, and not in the scope
of this paper, is the use of variational Bayesian methods for
regularization [53]–[59].

Fig. 1 shows a selection of the methods covered in greater
detail in this survey and includes a sub-categorization of

VOLUME 10, 2022 63281



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

TABLE 1. Categorisation of studies on pruning.

63282 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

magnitude and sensitivity analysis methods. The survey
found relatively few methods that utilise similarity and clus-
tering, and further sub-categorization is not useful. Mag-
nitude based methods can be sub-categorised into: (i) data
dependent methods that utilise a sample of examples to assess
the extent to which removing weights impacts the outputs
from the next layer; (ii) data independent methods, that utilise
measures such as the magnitude of a weight; and (iii) the use
of optimisation methods to reduce the number of weights in a
layer whilst approximating the function of the layer. Methods
that utilise sensitivity analysis can be sub-categorized into
those that: (i) adopt a Taylor series approximation of the loss
and (ii) use sampling to estimate the change in loss when
weights are removed.

The rest of this paper is organised as follows. Section II
presents the background. Sections III to V describe repre-
sentative methods in the three categories: magnitude based
pruning, clustering and similarity, and sensitivity analysis.
Section III also includes coverage of the Lottery Hypothesis,
an issue about the existence of smaller networks and fine-
tuning, that cuts across the different methods. Section VI
presents a comparison of the published results for pruning
AlexNet, ResNet and VGG to illustrate the resource pro-
vided for comparing the methods. Section VII concludes by
highlighting some key insights and suggesting directions for
future research.

II. BACKGROUND
This section introduces the background knowledge assumed
in the survey.1 Fig. 2 shows the structure of one of the earliest
convolutional neural networks (CNNs), LeNet-5 [60], which
recognises handwritten digits by applying convolutions and
pooling operations to identify features. These features then
provide the input to fully connected layers that classify the
images. The pooling operation takes feature maps as input
and reduces their size by applying an operation, such as the
maximum value within a neighbourhood while the convolu-
tion operation applies filters (or kernels) to the input channels
(or feature maps) to produce the output feature maps. The
filters are k × k matrices that slide over the input feature
maps and convolve with the corresponding elements of the
input feature maps to produce the output feature maps. The
elements of a filter correspond to the weights (or parameters)
that are used to transform regions in feature maps in one
layer to the next and need to be learned through training. The
weights (or parameters), either individually or collectively as
filters, are therefore the primary candidates for pruning.

The LeNet-5 model, with 60K parameters in 5 lay-
ers, achieved impressive results on a data set known as
MNIST [61].2 In a breakthrough in 2012, AlexNet built upon
the concepts in LeNet-5 and developed a deeper network
with over 60M parameters in 8 layers to win a competition

1Readers unfamiliar with deep neural networks are referred to tutorial
accounts such as by Goodfellow et al. [54] for further details

2Modified National Institute of Standards and Technology

known as ImageNet by a significant margin [62]. This success
was followed by the development of architectures like VGG,
ResNet, and ResNeXT that used an increasing number of
layers and parameters to gain further improvements in the
ImageNet competition [5]. The huge number of parame-
ters in these models does necessitate greater computational
resources and inhibits their use in embedded systems, which
has motivated the research on pruning that is surveyed in this
paper.

The pruning methods developed are evaluated on a range
of architectures (e.g., ResNet, VGG, DenseNet) and data sets
(e.g., ImageNet CIFAR, SVHN). Khan et al. [63] present
a tutorial on deep learning architectures and Appendix A
summarises the data sets. When evaluating pruning methods,
the surveyed papers use the followingmeasures to report their
results:

• The Top-1 and Top-5 accuracy, which report the pro-
portion of times the correct classification appears first
or in the top 5 list of ranked results. In the sections
below, unless we explicitly qualify a measure, the Top-1
accuracy should be assumed.

• The compression rate, which is the ratio of parameters
before and after a model is pruned.

• The computational efficiency in terms of the FLOPS
(Floating Point Operations) required to perform a
classification.

The notation used in the paper is defined where it is used
and also summarised in Appendix B.With this background in
place, Sections III to V describe and contrast key influential
studies that bring out the features of the categories of methods
surveyed in this paper.

III. MAGNITUDE BASED PRUNING
This section presents pruning methods that remove weights,
nodes, and filters based on a measure of magnitude or the
effect filters have on the next layer. Section III-A summa-
rizes an early influential method for pruning weights and
Section III-B presents a recent hot topic, termed the Lottery
Hypothesis, that reinvigorates research on the existence of
smaller networks and raises issues about fine-tuning a pruned
network. Section III-C describes the key ideas behind meth-
ods that prune filters and feature maps.

A. NETWORK PRUNING OF WEIGHTS
One of the first studies to utilise magnitude based pruning
for deep networks is due to Han et al. (2015) who adopt
a process in which weights below a given threshold are
pruned [64].3 Once pruned, the network is fine-tuned and the
process repeated until its accuracy begins to deteriorate.

Han et al. [64] carry out several experiments to compare
the merits of their magnitude based iterative pruning method.
First, they apply their method on a fully connected network

3We use a number citation style, but include the name(date) format to
highlight the date of the publication where we think it is relevant. The
corresponding reference number is provided at the end of the sentence

VOLUME 10, 2022 63283



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

FIGURE 2. The LeNet-5 network and how it processes an input image via convolutions (Conv.) and pooling
operations to produce features maps (FMs) and uses fully connected (FC) layers to perform classification.

known as LeNet-300-100 and then on Lenet-5 (Fig. 2), both
of which are trained on the MNIST data. Their results show
that it is possible to reduce the number of weights by a factor
of 12 without compromising accuracy. Second, they apply
iterative pruning to AlexNet and VGG16 trained on the Ima-
geNet data, and show that it is possible to reduce the number
of weights by a factor of 9 and 12 respectively. Thirdly, they
compare the merits of using regularisation to drive down
the magnitude of weights to aid subsequent pruning. They
explore regularisation with both the L1 and L2 norms and
conclude that L1 is better immediately after pruning (without
fine-tuning), but L2 is better if the weights of the pruned
model are fine-tuned. Their experiments also suggest that the
earlier layers (i.e., closer to the inputs) are the most sensitive
to pruning and that iterative pruning is better than pruning
the required proportion of weights in one cycle (i.e., one-shot
pruning).

The study by Han et al. [64] is notable in that (i) it demon-
strated that it was possible to reduce the size of deep networks
significantly without compromising accuracy, (ii) it high-
lighted the benefits of iterative pruning and (iii) it prompted
further research on questions such as whether retraining from
scratch or fine-tuning is better following pruning.

Guo et al. [65] note that magnitude pruning can lead to
premature removal of weights that can become important
given removal of other weights. To address this, they propose
a method known as Dynamic Network Surgery (Dyn Surg)
which maintains a mask that indicates which weights should
be removed and retained in each training cycle, thereby allow-
ing reinstatement of weights previously marked to be pruned
if they turn out to be important. They compare their method
with magnitude pruning, with the results showing that it is
reduces the number of weights by a factor of over 17 for
AlexNet on ImageNet.

B. THE LOTTERY TICKET HYPOTHESIS
One of the most interesting observations in Han et al. [64] is
that re-initialization of the weights does not lead to accurate
models and, based on their trials, it was better to fine-tune the
weights of the pruned model. Following on from this obser-
vation, Frankle and Carbin (2019) propose the Lottery Ticket
Hypothesis which states that: a trained network contains a
subnetwork, which can be trained to be at least as accurate as

the original network using nomore than the number of epochs
used for training the original network [66]. This subnetwork
is termed a winning lottery ticket, given that it was lucky to
be initialised with suitable weights.

To test this hypothesis, they propose two pruning methods.
First, in a one-shot method, they use magnitude pruning to
prune p% of the weights, reset the remaining weights to their
initial values and retrain. Second, they utilise an iterative
pruning method with n cycles, with each cycle pruning p1/n

of the weights.
They perform experiments on the fully connected

LeNet-300-100 network for the MNIST data, and variants of
VGG and ResNet for the CIFAR10 data. Their experiments
on the LeNet-300-100 network prune a percent of the weights
from each layer except the final layer, in which the percent
pruned is reduced by half. Their results with iterative pruning
show that: (i) a subnetwork that is only 3.6% of its original
size performs just as well, (ii) random initialization of the
pruned networks results in slower learning in comparison
to use of the original weight initializations, (iii) that the
subnetworks (termed winning tickets) found, learn faster than
the original network, (iv) there is continual improvement in
the rate of learning as the size of the network reduces, but
only up to a point, after which learning slows down and
begins to regress to the performance of the original network,
(v) iterative pruning tends to result in more accurate smaller
networks than one-shot pruning.

Their experiments on the larger networks, VGG and
ResNet, show that identification of winning lotteries depends
on the learning rate, with a lower rate successfully identifying
winning lottery subnets, and that pruning weights over all the
network, as opposed to layer by layer produces better results.

These results provide good empirical evidence for the
Lottery Hypothesis and the award of a best paper prize in
the 2019 International Conference on Learning Representa-
tions is indicative of the significance of the paper and the
attention it has attracted.

In their paper, ‘‘Rethinking the value of network pruning’’,
Liu et al. (2019) challenge the claim that it is better to utilise
the initial weights of a pruned model when compared with
random initialization [67]. To test this, they carry out exper-
iments on VGG, ResNet, and DenseNet using the CIFAR10,
CIFAR100, and ImageNet data. They define three types of

63284 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

pruning regime: structured pruning, where the proportion of
channels that are pruned per layer is predefined; automatic
pruning, where the proportion of channels pruned overall
is predefined but the per layer rate is determined by the
algorithm; and unstructured weight pruning, where only the
proportion of weights pruned is predefined. Their results
suggest that for structured and automatic pruning, random
initialization is equally (if not more) effective. However,
for unstructured networks, random initialization can achieve
similar results on small data sets but for large scale data such
as ImageNet, fine-tuning produces better results.

At first sight, their findings contradict the Lottery Hypoth-
esis. However, in a follow up study, Frankle et al. (2019)
acknowledge that setting the weights of pruned networks to
their initial values does not work well on larger networks
and suggest that methods for retraining from random initial-
izations do not work well either, except for moderate levels
of pruning (up to 30%) [68]. They therefore propose setting
the weights to those obtained in a later iteration of training,
which they then demonstrate to be beneficial in identifying
good initialization of weights for larger scale problems such
as ImageNet.

The above studies focus on empirical evaluations of net-
works trained and used on the same data sets, and primarily
on image processing classification tasks. Morcos et al. (2019)
explore a number of other interesting questions [69]:

• Are the lotteries found for one image classification task
transferable to other tasks?

• Are lotteries observable in other tasks (such as natural
language processing), and architectures?

• Are they transferable across different optimizers?

To explore these questions, they carry out experi-
ments with VGG19 and ResNet50 using six data sets
(Fashion-MNIST, SVHN, CIFAR10, CIFAR100, ImageNet,
Places365), in which the lotteries (i.e., subnetworks with ini-
tializations) identified for one task are used for another task.
Their experiments use iterative magnitude based pruning,
selecting 20% of the weights over all the layers, and with
late setting of weights (as proposed in Frankle et al. [66]).
The results are interesting: in general, winning initializations
carry across similar image processing tasks and winning
tickets from larger scale tasks were more transferable than
the tickets from the smaller scale tasks. In some cases, for
example, the use of VGG19 on the Fashion-MNIST data, the
winning tickets obtained from the use of VGG19 on the larger
data sets (CIFAR100, ImageNet) performed better than those
obtained directly from the Fashion-MNIST data.

Hubens et al. (2020) carry out empirical trials that confirm
similar results on the size of the pruned networks [70]. They
show that when a network is trained on a larger data set, such
as ImageNet, and transferred and fine-tuned for a different
task, pruning can result in a smaller network than if it was
trained from scratch on the new task.

Morcos et al. (2019) carry out experiments in which lottery
tickets are identified using one optimizer, ADAM (adaptive

FIGURE 3. Illustration of how the feature maps are computed, where Wj,i
are the k × k filters used on the input channels Xi to obtain output
feature maps Yj .

moment estimation), and then utilise a different optimizer,
SGD (Stochastic Gradient Descent) with momentum, and
vice versa on the CIFAR10 data. Their results suggest that,
in general, winning tickets are optimizer independent [69].

To test if the lottery hypothesis holds in other types of
problems, Yu et al. (2019) carry out experiments on natural
language processing (NLP) and control tasks in games [71].
For NLP, they utilise LSTMs for the Wikitext-2 data [72] and
Transformer models for translating news in English to Ger-
man [73]. The experiments were carried out with 20 rounds
of iterative pruning and with one-shot pruning. A pruning
rate of 20% was used and following pruning, weights were
reset to those learned during a later round of training. For
control tasks, they utilise Reinforcement Learning (RL) and
carry out experiments on fully connected networks used for 3
OpenAI Gym environments [74] and 9 Atari games that
utilise convolutional networks [75].

From their results on NLP and the RL control tasks,
they conclude that both iterative pruning and late setting of
weights are superior in comparison to random initialization
of pruned networks, with iterative pruning being essential
when a significant number of weights (i.e., more than two-
thirds) are pruned. For the Atari games, the results varied: in
one case, it led to improvements over the original network
(Berzerk game) while in another, an initial improvement was
followed by a significant drop in accuracy as the amount
of pruning increased (Space Invaders game). In other cases,
pruning resulted in a reduction in performance (e.g., Assault
game). Thus in summary, Yu et al. [71] provide some evi-
dence that the lottery hypothesis holds for NLP tasks and for
some control tasks that utilise RL.

C. PRUNING FEATURE MAPS AND FILTERS
Although the kind of methods described in Section III-A
result in fewer weights, they require specialist libraries or
hardware for processing the resulting sparse weight matri-
ces [76]–[78]. In contrast, pruning at higher levels of gran-
ularity, such as pruning filters and channels benefits from the
optimizations already available in many current toolkits. This
has led to a number of methods for pruning feature maps and
filters which are summarized in this section.

To appreciate the intuition and notation behind these meth-
ods, it is worth bearing in mind how filters are applied to
the input channels to produce the output feature maps. Fig. 3

VOLUME 10, 2022 63285



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

illustrates the process, showing how an image with 3 channels
is taken as input and convolved with the filters to produce
the 4 output feature maps. Given the visualisation offered by
Fig. 3, how can one best prune the filters and channels? The
survey revealed three main directions of research:

• Data dependent channel pruning methods, which are
based on the view that when different inputs are pre-
sented, the output channels (i.e., feature maps) should
vary given they are meant to detect discriminative
features.

• Data independent pruning methods, that use prop-
erties of the filters and output channels, such as the
proportion of zeros present, to decide which filters and
channels should be pruned.

• Optimization based channel approximation pruning
methods, that use optimization methods to recreate the
filters to approximate the output feature maps.

The following describes and contrasts methods that typify
these three directions.

1) PRUNING BASED ON VARIANCE OF CHANNELS AND
FILTERS
Polyak & Wolf (2015) propose two methods for pruning
channels: Inbound pruning, which aims to reduce the number
of channels incoming to a filter and Reduce and Reuse prun-
ing, which aims to reduce the number of output channels [79].

The idea behind Inbound pruning is to assess the extent to
which an input channel’s contribution to producing an output
feature map varies with different examples. This assessment
is done by applying the network to a sample of the images
and then using the variance in a feature map as a measure of
its contribution.

More formally, given Wj,i, the jth filter for the ith input
channel, and Xpi , the input from the ith channel for the pth

example, the contribution to the jth output feature map, Y pj,i is
defined by:

Y pj,i =
∥∥Wj,i · X

p
i

∥∥
F (1)

Given this definition, the measure used to assess the variation
in its contribution, σ 2

j,i from the N samples is:

σ 2
j,i = var

({
Y pj,i | p = 1 . . .N

})
(2)

Inbound pruning uses this measure to rank the filtersWj,i and
removes any that fall below a specified threshold.

The Reduce and Reuse pruning method focuses on assess-
ing the variations in the output feature maps when different
samples are presented. That is, the method first computes the
variations in the output feature maps σ 2

j using:

σ 2
j = var

(∥∥∥∥∥
m∑
i=1

Y pj,i

∥∥∥∥∥
F

| p = 1 . . .N

)
(3)

where m is the number of channels and N is the number of
samples. Reduce and Reuse then uses this measure to retain

a proportion of the output feature maps and corresponding
filters that results in the greatest variation.

Removal of an output feature map is problematic given it
is expected as an input channel in the next layer. To overcome
this, they approximate a removed channel using the other
channels. That is, if Yi, Y ′i are the outputs of a layer before and
after pruning a layer respectively, the aim is to find a matrix
A such that:

min
A

∑
i

∥∥Yi − AY ′i ∥∥22 (4)

The matrix A is then included as an additional convo-
lutional layer of 1 × 1 filters along the lines proposed by
Lin et al. [80].

Polyak & Wolf [79] evaluate the above approach on the
Scratch network, using the CASIA-WebFace and the Labeled
Faces in the Wild (LFW) data sets. They utilise layer by
layer pruning, where each layer is pruned, and the network
fine-tuned before moving on to the next layer. They exper-
iment with their two pruning methods individually and in
combination, and compare the results with the use of random
pruning, a low rank approximation method [81] and Fitnets,
a method that uses the Knowledge Distillation approach to
learn smaller networks [82]. In the experiments with the
Inbound pruning method, they prune channels where σ 2

j,i
is below a given threshold, selected such that the overall
accuracy is maintained above 84%. For the experiments with
the Reduce and Reuse method, they try different levels of
pruning: 50%, 75%, and 90% for the earlier layers followed
by 50% for the later layers. The adoption of a lower pruning
rate for the later layers follows an observation that heavy
pruning of the later layers results in a marked reduction in
accuracy.

The results from their experiments show that: (i) the vari-
ance based method is more effective than use of random
pruning, (ii) the use of fine-tuning does help in recovering
accuracy, especially in the later layers, (iii) their methods
result in greater compression than use of a low rank method
and the use of Fitnets when applied to the Scratch network.

2) ENTROPY-BASED CHANNEL PRUNING
Instead of the variance, Luo&Wu (2017) propose an entropy-
based metric to evaluate the importance of each filter [83].
In their filter pruning method, if a feature map contains
less information, its corresponding filter is considered less
important, and could be pruned. To compute the entropy of
a particular feature map, they first sample the data and obtain
a set of feature maps for each filter. Each feature map is
reduced to a point measure using a global average pooling
method, and the set of measures associated with each filter
are discretized into q groups. The entropy of a filter, Hj is
then used to assess the discriminative power of a filter [83]:

Hj =
q∑
i=1

Pi log (Pi) (5)

where Pi is the probability of an example being in group i.

63286 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

They explore both one-shot pruning followed by fine-
tuning and layer wise pruning in which they fine-tune with
just one or two epochs of learning immediately after pruning
a layer. Their layer wise strategy is an interesting compromise
between fully fine-tuning after pruning each layer, which can
be computationally expensive, and only fine-tuning at the
end, which can fail to take account of the knock-on effects
of pruning previous layers.

They evaluate the merits of the entropy-based method
by applying it to VGG16 and ResNet-50 on the ImageNet
data. For VGG16, they focus on the first 10 layers and, also
replace the fully connected layers by use of average pooling
to obtain further reductions. They compare their results on
VGG16 with those obtained by the magnitude based pruning
method and APoZ method (described below). Their results
suggest that: (i) the entropy-basedmethod achievesmore than
a 16 fold compression, though this is at the expense of a
1.56% reduction in accuracy, (ii) use of magnitude pruning
results in a 13 fold compression, and (iii) APoZ results in
a 2.7 fold compression. However, it should be noted that
the higher compression rate achieved by the use of entropy
includes the reduction due to the replacement of the fully
connected layers by average pooling, without which the use
of the entropy-based method leads to a lower compression
rate than APoZ (Table 3 in [83]).

3) APoZ: NETWORK TRIMMING BASED ON ZEROS IN A
CHANNEL
In contrast to the use of samples of data to compute the
variance of a feature map or its entropy, Hu et al. (2016),
suggest a direct method that is based on the view that the
number of zeros in an output feature map is indicative of its
redundancy [84]. Based on this view, they propose a method
that uses the average number of zero activations (APoZ) in
a feature map as a measure of the weakness of a filter that
generates the feature map.

Their experiments are with LeNet5 onMNIST andVGG16
on ImageNet and aimed at first finding the most appropriate
layers to prune and then to iteratively prune these layers in a
bespoke way that maintains or improves accuracy. Following
pruning, they experiment with both retraining from scratch
and fine-tuning the weights and prefer the latter given better
results.

For LeNet-5, they observe that most of the parameters
(over 90%) are in the 2nd convolution layer and the first fully
connected layer and hence they focus on pruning these two
layers in four iterations of pruning and fine-tuning, resulting
in the size of the convolutional layer reducing from 50 to
24 filters and the number of neurons in the fully connected
layer reducing from 500 to 252. Overall, this represents a
compression rate of 3.85.

For VGG16, they also focus on one convolutional layer that
has 512 filters and a fully connected layer with 4096 nodes.
After 6 iterations, they reduce these to 390 filters and
1513 nodes, achieving a compression rate of 2.59.

4) PRUNING SMALL FILTERS AND FILTER SKETCHING
Li et al. (2017) extend the idea of magnitude pruning of
weights to filters by proposing the removal of filters that have
the smallest absolute sum among the filters in a layer [76].
That is, if the filters for producing the jth feature map are
Wj,i ∈ Rk×k and m is the number of input feature maps, then
the magnitude of the jth filter is defined by:

sj =
m∑
i=1

∥∥Wj,i
∥∥
1 (6)

Once the sj are computed, a proportion of the smallest filters
together with their associated feature maps and filters in the
next layer are removed. After a layer is pruned, the network
is fine-tuned, and pruning is continued layer by layer.

To test this approach, they carry out experiments on
VGG16 and ResNet56 & 110 on CIFAR10 and ResNet34 on
ImageNet. By analyzing the sensitivity of the layers through
experimentation, they determine appropriate pruning ratios
for each layer that would not compromise accuracy signifi-
cantly. Overall, for VGG16, they are able to prune the param-
eters by 64%. A significant proportion of this pruning is in
layers 8 to 13 which consist of the smaller filters (2 × 2 and
4×4), which they notice can be pruned by 50%without reduc-
ing accuracy. The level of pruning for the other networks is
more modest, with the best pruning rate for ResNet-56 and
ResNet110 on CIFAR10 being 3.7% and 32.4% respectively,
and for ResNet-34 on ImageNet being 10.8%.

They also compare their approach with the variance-based
method described above and conclude that use of the above
measure over filters performs at least as well but without the
additional need to compute the feature maps via samples of
the data.

A more recent method, proposed by Lin et al. (2020),
known as filter sketch also aims to reduce the number of
filters without the need to sample examples [85]. The key
idea in filter sketching is to minimize the difference between
the co-variances of the original set of filters and the reduced
set. Although this can be done using optimization methods,
filter sketch utilises a greedy algorithm known as Frequent
Direction [86] which is more efficient.

Lin et al. [85] evaluate the filter sketch method on
GoogleNet, ResNet56 and ResNet110 using the CIFAR10
data, and on ResNet50 with the ImageNet data. The results
show that it performs well relative to the method for pruning
small filters and a method that uses optimization to prune
channels (described below in Section III-C7) in terms of
reducing the number of parameters without a significant loss
in accuracy.

5) PRUNING FILTERS BASED ON GEOMETRIC MEDIAN
He et al. (2019) point out that pruning based on themagnitude
of filters assumes that there are some small filters and that the
spread of magnitude is wide enough to adequately distinguish
those filters that contribute from those do not contribute [87].
So, for example, if most of the weights are small, one could

VOLUME 10, 2022 63287



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

end up removing a significant number of filters and if most of
the filters have large values, no filters would be removed, even
though there may be filters that are relatively small. Hence,
they propose a method based on the view that the geometric
median of the filters shares most of the information common
in the other filters and hence a filter that is close to it can be
covered by the other filters if deleted. Computing the geo-
metric median can be time-consuming, so they approximate
its computation by assuming that one of the filters will be the
geometric mean. Their pruning strategy is to prune and fine-
tune repeatedly using a fixed pruning factor for all layers.

They carry out an evaluation with respect to several meth-
ods including pruning small filters [76], ThiNet [88], Soft
filter pruning [89], and NISP [90]. These methods are evalu-
ated on ResNets trained on the CIFAR10 and ImageNet data,
with pruning rates of 30 and 40 percent. In general, the drop
in accuracy is similar across the different methods, though
there is a significant reduction in FLOPS when using the
geometric median method on ResNet-50 (53.5%) compared
to the other methods (e.g., ThiNet 36.7%, Soft filter pruning
41%, NISP 44%).

6) ThiNet AND AOFP
Luo et al. (2017) formulate the pruning task as an opti-
mization problem and propose a system ThiNet in which
the objective is to find a subset of input channels that can
best approximate the output feature maps [88]. The channels
not in the subset and their corresponding filters can then be
removed. Solving the optimization problem is computation-
ally challenging, so ThiNet uses a greedy algorithm that finds
a channel that contributes the least, adds it to the list to be
removed, and repeats the process with the remaining channels
until the number of channels selected equals the number to
be pruned. Once a subset of filters to be retained is identified,
their weights are obtained by using least squares to find the
filtersW that minimize [88]:

m∑
i=1

(
Yi −W T

· Xi
)2

(7)

where Yi are the m sampled points in the output channels and
Xi their corresponding input channels.

They evaluate their approach in two sets of experiments.
In the first, they adapt VGG16, replacing the fully connected
layers by global average pooling (GAP) layers, apply it to
the UCSD-Birds data and then prune it using ThiNet, APoZ
and the small filters method. Their results show there is less
degradation in accuracy with ThiNet than ApoZ, which in
turn, is better than the small filters method.

In their second set of experiments, they utilise VGG16 and
ResNet50 trained on the ImageNet data. For VGG16, their
procedure involves pruning a layer and thenminor fine-tuning
with one epoch of training with an additional epoch at the end
of each group of convolutional layers and a further 12 epochs
of fine-tuning after the final layer. With the use of GAP,
ThiNet, reduces the number of parameters by about 94% at

the expense of a 1% reduction in Top-1 accuracy. For ResNet,
ThiNet is applied on the first two convolutional layers of each
residual block, keeping the output dimensions of the blocks
the same. After pruning each layer, one epoch of fine-tuning
is performed, and 9 epochs are used for fine-tuning at the end.
The results show that ThiNet is able to halve the number of
parameters with a 1.87% loss in Top-1 accuracy.

Ding et al. (2019) propose a similar method to ThiNet,
called Approximated Oracle Filter Pruning (AOFP), which
aims to identify the subset of filters, which if removed, will
have the least effect on the feature maps in the next layer [91].
However, whereas, the search procedure adopted in ThiNet
uses a greedy bottom up approach, AOFP adopts a top-down
binary search in which half of the filters in a layer are ran-
domly selected and set to be pruned. The effect of removing
these filters on the feature map produced in the next layer is
measured and recorded against each filter that is set as pruned.
This process is repeated for different random selections, and
the average effect per filter used as an indication of the effect
of removing a filter. The top 50% of the filters that would
result in the worst effect if removed are retained and the
process repeated unless this would result in an unacceptable
reduction in accuracy. In comparison to ThiNet, and other
methods, AOFP does not require the rate of pruning to be
fixed in advance of pruning a layer.

AOFP is evaluated by pruning AlexNet, VGG and ResNet
trained on the CIFAR10 and ImageNet data. They com-
pare AOFP with several methods including: ThinNet, Net-
work Slimming [92], Pruning using Agents [93], Online
Filter Weakening [15], NISP [90], Optimizing Channel
Pruning [94], Structured Probabilistic Pruning [95], Auto-
pruner [96], and ISTA [97], with their results showing that
AOFP is capable of greater reductions in FLOPS without
compromising accuracy.

7) OPTIMIZING CHANNEL SELECTION WITH LASSO
REGRESSION
He et al. (2017) also formulate channel selection as an
optimization problem [94]. Given a channel Y obtained by
applying a filterWi to m input channels Xi:

Y =
m∑
i=1

XiW T
i (8)

They define the task as one to optimize:

argmin
β,W

1
2

∥∥∥∥∥Y −
c∑
i=1

βiXiW T
i

∥∥∥∥∥
2

F
subject to ‖β‖0 ≤ p (9)

where p indicates the number of channels retained and βi ∈
{0, 1} indicates the retention or removal of a channel.
In contrast to ThiNet, which adopts a greedy heuristic to

solve this optimization problem, He et al. (2017) relax the
problem from L0 to L1 regularization and utilise LASSO

63288 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

regression to solve [94]:

argmin
β,W

1
2

∥∥∥∥∥Y −
c∑
i=1

βiXiW T
i

∥∥∥∥∥
2

F

+ λ‖β‖1

subject to ‖β‖0 ≤ p (10)

Following the selection of the channels they utilise least
squares to obtain the revised weights in a manner similar to
the approach adopted in ThiNet.

They carry out empirical evaluations onVGG16, ResNet50
and a version of the Xception network, trained on the
CIFAR10 and ImageNet data. They also explore the extent
to which the pruned models can be used for transfer learning
by using them for the PASCAL VOC 2007 object detection
task.

In their first set of experiments, they evaluate their method
on single layers of VGG16 trained on CIFAR10 without any
fine-tuning, and show that their algorithm maintains Top-5
accuracy better than the method of pruning small filters. They
also include results from a naïve method that selects the first
k feature maps and show that, for some layers (e.g. conv3_3
in VGG16), this sometimes performs better than the method
of pruning small filters, highlighting a potential weakness of
magnitude-based pruning.

In a second set of experiments, with VGG16 on CIFAR10,
they apply their method on the full network, using bespoke
pruning ratios for the layers and fine-tuning to achieve 2,
4 and 5 fold improvements in run-time, but resulting in drops
of Top-5 accuracy of 0%,1%, and 1.7% respectively. In com-
parison, the method for pruning small filters results in larger
drops of 0.8%, 8.6% and 14.6%.

Their experiments on ResNet50 adopt bespoke pruning
rates per layer, retaining 70% of layers that are very sensitive
to pruning, and 30% of the less sensitive layers. The Top-5
accuracy results on ImageNet show a two-fold improvement
in run-time at the expense of a 1.4% drop in accuracy com-
pared to a baseline accuracy of 92.2%, while the results on
the Xception network show a drop of 1% in accuracy from a
baseline of 92.8%.

The experiment on using a pruned version of a VGG16
model on the PASCAL VOC 2007 object detection bench-
mark task results in a 2-fold increase in speed with a 0.4%
drop in average precision.

IV. PRUNING BASED ON SIMILARITY AND CLUSTERING
Given that neural networks can be over-parametrised, it is
plausible that there could be duplicate weights or filters
that perform similar functions and can be removed without
impacting accuracy [19], [20], [98]–[100].

RoyChoudry et al. (2017) explore this hypothesis by using
the inner product of two filters (or weight matrices) as a
measure of similarity [19]. Their pruning algorithm involves
grouping filters that are similar and then replacing each group
of filters by their mean filter. They carry out experiments
with both a multilayer perceptron (MLP) and a CNN for

the CIFAR10 data. The MLP has three layers: the first two
are fully connected layers and the third is a softmax layer
with 10 nodes representing the class for CIFAR10. The CNN
has two convolution layers, each followed by a ReLU, and
a 2 × 2 max pooling layer. The convolutional layers are
followed by two fully connected layers to perform the clas-
sification. In both cases, the first layer is varied with 100,
500 and 1000 units (nodes or filters) to explore the effects
of increasing over parametrisation. Their main finding is that
there is a much greater propensity for similar weights/filters
to occur in MLPs than in CNNs. As a consequence, there is a
greater opportunity for using similarity as a basis for pruning
MLPs than for pruning CNNs. Nevertheless, their results
suggest that a similarity based pruning algorithm is better at
retaining accuracy than using the small filters method.

Ayinde et al. (2019) also develop a method that uses clus-
tering to identify similar filters [78]. They too adopt the inner
product as a measure of similarity, but use an agglomerative
hierarchical clustering method to group similar filters and
replace the filters by randomly selecting one filter from each
cluster. They carry out various experiments with VGG16
on CIFAR10 and ResNet34 on ImageNet. For the trial on
VGG16 with the CIFAR10 data, they show that, once an opti-
mal value for the threshold for similarity is determined, their
method achieves both a better pruning rate and accuracy than
other methods, including pruning of small filters, Network
Slimming [92], a method that uses regularization to identify
weak channels, and try-and-learn [93], a method that uses
sensitivity analysis.

V. SENSITIVITY ANALYSIS METHODS
The primary goal of pruning is to remove weights, filters and
channels that have least effect on the accuracy of a model.
Themagnitude and similarity basedmethods described above
address this goal implicitly by using properties of weights,
filters and channels that can affect accuracy. In contrast,
this section presents methods that use sensitivity analysis to
model the effect of perturbing and removing weights, filters
and channels on the loss function.

Section V-A describes methods that assess the importance
of channels and Sections V-B to V-D present the development
of a line of research that approximates the effect of perturbing
the weights on the loss function using the Taylor Series, from
the earliest work which developed methods for MLPs to the
more recent research on methods for pruning CNNs.

A. PRUNING BY ASSESSING THE IMPORTANCE OF NODES
AND CHANNELS
Skeletonization, a method proposed by Mozer & Smolen-
sky(1988), was one of the earliest approaches to pruning
neural networks [9]. To calculate the effect of removing
nodes, Skeletonization introduced the notion of attentional
strength to denote the importance of nodes when computing
activations. Given the attentional strengths of the nodes, αi,

VOLUME 10, 2022 63289



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

the output yj from node j, is defined by:

yj = f

(∑
i

wjiαiyi

)
(11)

where f is assumed to be the sigmoid function. The impor-
tance of a node ρi is then defined in terms of the difference
in loss when αi is set to zero and when it is set to one and can
be approximated by the derivative of the loss with respect to
the attentional strength αi:

ρi = Lαi=0 − Lαi=1 ≈ −
∂L
∂αi

∣∣∣∣
αi=1

(12)

Through experimentation, they found that the linear loss
worked better a than the quadratic loss because the difference
between the outputs and targets was small following training.
In addition, they noticed that the ∂L(t)/∂αi were not stable
with time, so they used a weighted average measure to com-
pure the importance ρ̂i:

ρ̂i(t+ 1) = 0.8ρ̂i(t)+ 0.2
∂L(t)
∂αi

(13)

Mozer & Smolensky [9] present a number of small but very
interesting experiments. These include generating examples
where the output is correlated to four inputs, A,B,C, and D,
with full correlation on A and reducing to no correlation
with D. They provide this as input to a network with one hid-
den node and following training they observe that the weights
from the inputs to the hidden node follow the correlations,
although the relevance measure only shows input node A as
important, providing some reassurance that the measure is
different from the weights. In another example, they develop
a network to model a 4-bit multiplexor network, which has
4 bits as input and two bits to control which of the 4 bits is
output. They try two network configurations: in the first, they
utilise 4 hidden nodes and in the second they utilise 8 hidden
nodes and use skeletonization to reduce its size to 4 hidden
nodes. When limiting training to 1000 epochs, they find that
starting with 4 hidden nodes initially, results in failure to
converge in 17% of the cases, while beginning with 8 hidden
layer nodes followed by skeletonization converges in all the
cases and, also retains accuracy. This appears to be one of
the first demonstrations that, to begin, it may be necessary to
overparameterize a network in order to find winning lotteries.

This idea of assessing the importance of nodes has been
extended to channels by twomethods, namely Network Slim-
ming [92] and Sparse Structure Selection (SSS) [55], that
learn a measure of importance as part of the training process.
Both utilise a parameter γ for each channel (analogous to
the attentional strength) which scales the output of a channel.
Given a loss function L, the new loss L′ is defined with an
additional regularization term over the scaling factors γ :

L′ = L+ λ
∑
u

g(γ ) (14)

where the function g is selected as the L1 norm to reduce γ
towards zero (as in Lasso regression).

The two methods differ in the way they implement the
training process aimed at minimizing L′ with Network Slim-
ming taking advantage of the use of batch normalization
layers that are sometimes present following convolutional
layers while SSS implements a more general process that
does not assume the presence of batch layers, and allows use
of scaling factors for blocks (such as residual and inception
blocks) that can enable reduction of the depth of a network.

Huang and Wang(2018) experiment with SSS on the
CIFAR-10, CIFAR-100, and ImageNet data on VGG16, and
ResNet [55]. For CIFAR10, SSS is able to reduce the number
of parameters inVGG16 by 30%without loss of accuracy. For
ResNet-164, it is able to achieve a 2.5 times speedup at the
cost of a 2% loss in accuracy for CIFAR-10 and CIFAR-100.

For VGG16 on ImageNet, SSS is able to reduce the FLOPs
by about 75%, though parameter reduction is minimal, which
is consistent with other methods given the large number
of parameters in the fully connected layers in VGG16.
On ResNet50, SSS achieves a 15% reduction in FLOPs at
a cost of a 0.1% reduction in Top-1 accuracy.

B. PRUNING WEIGHTS WITH OBD AND OBS
Several studies utilise the Taylor series to approximate the
effect of weight perturbations on the loss function [22],
[23], [101]. Given the change in weights 1W , a Taylor
Series approximation of the change in loss 1L can be stated
as [102]:

1L =
∂LT

∂W
1W +

1
2
1W TH1W + O

(
‖δW‖3

)
(15)

where H is a Hessian matrix whose elements are the second
order derivatives of the loss with respect to the weights:

Hij =
∂2L
∂wi∂wj

(16)

Most methods that adopt this approximation assume that
the third order term is negligible. In Optimal Brain Damage
(OBD), LeCun et al. (1990), also assume that the first order
term can be ignored given that the network will have been
trained to achieve a local minima, resulting in a simplified
quadratic approximation [22]:

1L =
1
2
1W TH1W (17)

Given the large number of weights, computing the Hessian
is computationally expensive, so they also assume that the
change in loss can be approximated by the diagonal elements
of the Hessian, resulting in the following measure of the
saliency sk of a weight wk :

sk =
Hkkw2

k

2
(18)

where the second order derivatives, Hkk are computed in
a manner similar to the way the gradient is computed in
backpropagation.

Hassibi et al. (1993) argue that ignoring the non-diagonal
elements of a Hessian is a strong assumption, and propose

63290 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

an alternative pruning method, called Optimal Brain Surgeon
(OBS), that aims to take account of all the elements of a
Hessian [23], [24].

Using a unit vector, em, to denote the selection of the mth
weight as the one to be pruned, OBS reformulates pruning as
a constraint-based optimization task:

min
δw

{
1
2
δwT · H · δw

}
subject to eTm.δw+ δwm = 0 (19)

Formulating this with a Lagrangian multiplier, λ, the task is
to minimize:

1
2
δwT · H · δw+ λ

(
eTm · δw+ δwm

)
(20)

By taking derivatives and utilizing the above constraint, they
show the saliency, sk of weight wk can be computed using:

sk =
1
2

w2
k[

H−1
]
k,k

(21)

They show that on the XOR problem, modelled using a
MLP network with 2 inputs, 2 hidden layer nodes and one
output, OBS is better at detecting the correct weights to delete
than OBD or magnitude pruning. They also show that OBS
is able to significantly reduce the number of weights required
for neural networks trained on the Monk problems [103] and
for NetTalk [104], one of the classical applications of neural
networks, it is able to reduce the number of weights required
from 18000 to 1560.

C. PRUNING FEATURE MAPS WITH FIRST-ORDER TAYLOR
APPROXIMATIONS
The methods described in Section V-B focus on the effect of
removing weights in a fully connected network. Molchanov
et al. (2016) introduce a method that uses the Taylor series to
approximate what happens if a feature map is removed [105].
In contrast toOBD andOBS,which assume that the first order
term can be ignored, they adopt a first order approximation,
ignoring the higher order terms, primarily on grounds of
computational complexity. Using a first order approxima-
tion seems odd given the convincing argument for ignoring
these terms; however they argue that although the first order
gradient tends to zero, the expected value of the change in
loss is proportional to the variance, which is not zero and
is a measure of the stability as a local solution is reached.
Given a feature map with N elements Yi,j, the first order
approximation using the Taylor series leads to the following
measure of the absolute change in loss [105]:

1L(Y ) =

∣∣∣∣∣∣ 1N
∑
i,j

∂L
∂Yi,j

Yi,j

∣∣∣∣∣∣ (22)

The scale of this measure will vary in different layers, and
they therefore apply L2 normalization within each layer. The
pruning process they adopt involves selecting a feature map

using the measure, pruning it, and then fine-tuning the net-
work before repeating the process until a stopping condition,
that takes account of the need to reduce the number of FLOPs
while maintaining accuracy, is met. Their experiments reveal
several interesting findings:

1) From experiments on VGG16 and AlexNet on the
UCSD-Birds and Oxford-Flowers data, they show that
the features maps selected by their criteria correlate
significantlymore closely to those selected by an oracle
method than OBD and APoZ. On the ImageNet data,
they find that OBD correlates best when AlexNet is
used.

2) In experiments on transfer learning, where they fine-
tune VGG16 on the UCSD-Birds data, they present
results showing that their method performs better than
APoZ and OBD as the number of parameters pruned
increases. In an experiment in which AlexNet is fine-
tuned for the Oxford Flowers data, they show that both
their method and OBD perform better than APoZ.

3) In a striking example of the potential benefits of
pruning, they demonstrate their method on a network
for recognizing hand gestures that requires over 37
GFLOPs for a single inference but only requires 3
GFLOPs after pruning, all be it with a 2.6% reduction
in accuracy.

In a follow up publication, Molchanov et al. (2019)
acknowledge some limitations of the above approach, namely
that assuming that all layers have the same importance does
not work for skip connections (used in the ResNet architec-
ture) and that assessing the impact of changes in feature maps
leads to increases in memory requirements [106]. They there-
fore propose an alternative formulation, also using a Taylor
series approximation, but based on estimating the squared
loss due to the removal of the mth parameter:

(1Lm)2 =
(
gmwm +

1
2
wmHmW

)2

(23)

where gm is the first order gradient and Hm is the mth row
of the Hessian matrix. The measure of importance of a filter
is then obtained by summing the contributions due to each
parameter in a filter.

The pruning algorithm employed proceeds as follows.
In each epoch, they utilise a fixed number of mini-batches
to estimate the importance of each filter and then, based on
their importance, a predefined number of filters is removed.
The network is then fine-tuned, and the process repeated until
a pruning goal, such as the desired number of filters or a limit
for an acceptable drop in accuracy is reached.

They carry out initial experiments on versions of LeNet
and ResNet on the CIFAR10 data, using both the second and
first order approximations (in equation 23) and given that the
results from both correlate well with an oracle method, they
utilise the first-order measure which is significantly more
efficient to compute.

VOLUME 10, 2022 63291



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

In experiments with versions of ResNet, VGG, and
DenseNet on the ImageNet data, they consider the effect
of using the measure of importance at points before and
after the batch normalization layers, and conclude that the
latter option results in greater correlation with an oracle
method. The results from their method show that it works
especially well on pruning ResNet-50 and ResNet-34, out-
performing the results from ThiNet and NISP. The reported
results for other networks are also impressive, with their
method able to prune 76% of the parameters in VGG with
a 0.19% loss in accuracy and able to reduce the number of
parameters in DenseNet by 43% at the expense of a 0.29%
reduction in accuracy.

D. PRUNING FEATURE MAPS WITH SECOND-ORDER
TAYLOR APPROXIMATIONS
The first order methods described above assume minimal
interaction across channels and filters. This section summa-
rizes recent pruning methods that aim to take account of the
effect of the potential dependencies amongst the channels and
filters.

In a method called EigenDamage, that also utilises the
Taylor series approximation, Wang et al. (2019) revisit the
assumptions made by OBD and OBS when approximating
the Hessian [101]. To motivate their method, they begin
by illustrating that although OBS is better than OBD when
pruning one weight at a time, it is not necessarily superior
when pruning multiple weights at a time. This is primarily
because OBS does not correctly model the effect of remov-
ing multiple weights, especially when they are correlated.
To avoid this problem, they utilise a Fisher Information
Matrix to approximate the Hessian and then they utilise a
method, proposed by Grosse & Martens [107], to repre-
sent a Fisher Matrix by a Kronecker Factored Eigenbasis
(KFE). This reparameterization allows pruning to be done
in a new space in which the Fisher Matrix is approximately
diagonal. Pruning can thus be done by first mapping the
weights to a KFE space in which they are approximately
independent, and thenmapping back the results to the original
space.

EigenDamage is evaluated on VGG, and ResNet on the
CIFAR10, CIFAR100 and the Tiny-ImageNet data. Exper-
iments are carried out with one-shot pruning where fine-
tuning is performed at the end and with iterative prun-
ing in which fine-tuning is performed after each cycle.
In both cases, the results show that EigenDamage out-
performs adapted versions of OBD, OBS and Network
Slimming.

Peng et al. (2019) also utilise a Taylor series approximation
to develop a Collaborative Channel Pruning (CCP) method
that is based on a measure of the impact of a combination
of channels [108]. Given a mask β, where βi = 1, indicates
the retention of a channel and βi = 0, indicates a channel to
be pruned, they formulate the task as one to find the βi that

minimize the loss L:

L(β,W ) = L(W )+
co∑
i=1

(βi − 1) gTi wi

+
1
2

co∑
i=1,j=1

(βi − 1)
(
βj − 1

)
wTi Hi,jwj (24)

where gi are the first order derivatives of the loss with respect
to the weights in the ith output channel,Hi,j are Hessians, and
co denotes the number of output channels.

By setting ui = gTi wi and si,j =
1
2w

T
i Hi,jwj the above

equation can be written as the following 0-1 quadratic opti-
mization problem [108]:

min
βi

co∑
i=1

ui (βi − 1)+
co∑

i=1,j=1

si,j (βi − 1)
(
βj − 1

)
subject to: ‖β‖0 = p and βi ∈ {0, 1} (25)

where p denotes the number of channels to be retained in
a layer. They note that the gradients gi and hence ui can
be computed in linear time. However, given the complexity
of computing the Hessian matrices, they derive first order
approximations for the loss functions, which they adopt when
computing si,j. To solve the quadratic optimization problem,
they relax the constraint to βi ∈ [0, 1] and use a quadratic
programming method to find the βi which are used to select
the top p channels to retain. They apply the optimization
process on each layer to obtain the masks βi, use these to
prune and then perform fine-tuning at the end.

An empirical evaluation of CCP is carried out by pruning
the ResNet models trained on the CIFAR10 and ImageNet
data, and the results compared to several methods including:
pruning small filters, ThinNet, optimizing channel pruning,
Soft Filter pruning [89], NISP [90] and AutoML [109]. For
CIFAR10, the experiments are carried out with a pruning
rate of 35% and 40%, and in each case, CCP has a smaller
drop in accuracy (0.04% and 0.08% respectively) than the
other methods, with the exception of the method for pruning
small filters which results in a small improvement in accuracy
(0.02%). However, the pruning small filters method has a
much lower reduction in the FLOPS (27.6%) in comparison
to CCP (52.6%). The results for ImageNet show, that for
similar reductions in FLOPS, CCP has less of a drop in
accuracy than the other methods.

It’s worth noting, that like EigenDamage, CCP is able to
obtain good results without the need for an iterative process
that uses fine-tuning after pruning each layer.

VI. COMPARISON OF PUBLISHED RESULTS
As the above sections describe, previous studies of pruning
report results on varying data sets, architectures and methods
that have evolved with time, making comparison of results
across the different studies difficult. The survey provides a
resource in the form of a pivot table that can be used by
the community to explore the reported performance of over

63292 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

TABLE 2. Number of reported results for a given architecture and data set.

50 methods on different architectures and data.4 Table 2
shows how many times each combination of data and archi-
tecture has been used, indicating the wide variety of compar-
isons possible.

To illustrate the use of the resource, we use it to compare
the reported results on two combinations of architecture and
data for which there are a significant number of comparisons
across different pruning methods, namely: (i) AlexNet and
ResNet50 on ImageNet and (ii) ResNet56 and VGG16 on
CIFAR10. Fig. 4 show the results reported in terms of the
drop in Top-1 accuracy, and percent reduction in FLOPs or
parameters where the labels used for the pruning methods are
from the primary sources, with suffixes reflecting the varia-
tions in pruning methodology used. The main observations
are that:

1) For AlexNet on ImageNet, AOFP-B2 achieves a 41%
reduction in FLOPs with a 0.46% increase in accuracy
and Dyn Surg [65], SSR-L [56] and NeST [41] achieve
over 93% reduction in parameters without loss in accu-
racy. Other methods that compromise accuracy do not
necessarily result in a greater reduction in parameters.

2) In comparison to AlexNet, it is harder to prune
ResNet50 on ImageNet, although AOFP-C1 achieves
33% reduction in FLOPs without affecting accu-

4This resource is available from https://1drv.ms/x/s!ArCIJ6nceQY3-
BWxGMfJRbmhyUK_?e=WZUyhm

racy. As accuracy is compromised, there are methods
that show significant reductions in parameters. These
include KSE and ThinNet with reductions in param-
eters by 78% and 95%, with a decline of 0.64%, and
0.84% in accuracy, respectively.

3) When pruning ResNet56 on the CIFAR10 data, the
methods KSE and SFP-NFT show reductions in FLOPs
of 60% and 28% without compromising accuracy. For
VGG16 on CIFAR10, AOFP, PF_EC and NetSlimming
result in a 75%, 63%, and 51% reduction in flops
respectively without reductions in accuracy. For both
networks, it appears to be difficult to gain further reduc-
tions (beyond KSE and AOFP) even when compromis-
ing accuracy.

4) The charts show that several methods are able to
reduce FLOPs and parameters without compromising
accuracy and aid generalizability (e.g., AOFP, SFP,
NetSlimming), though compromising accuracy a little
can sometimes lead to more significant reductions in
FLOPs and parameters.

5) When looking at results within methods, it is pos-
sible to confirm our expectation that compromising
accuracy can result in greater reductions in parame-
ters and FLOPS (e.g, see results for Filter Sketch and
FPGM for ResNet50 in Fig. 4). However, this trade-off
is not evident when considering results across different
pruning methods.

VOLUME 10, 2022 63293



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

FIGURE 4. Results of pruning AlexNet and, ResNet50 on ImageNet (left column), and ResNet56 and VGG16
on the CIFAR10 data (right column). Charts show the percent reduction in parameters where available (blue
bars, left axis) and FLOPs (orange bars, left axis), and reduction in baseline Top-1 accuracy (grey line, right
axis). The labels used for the methods are from the primary sources, with suffixes reflecting the variations in
pruning rates.

6) Although AOFP does perform well in retaining accu-
racy for three of the four cases, in general, the per-
formance of the methods varies depending on the
architecture and the data set.

VII. CONCLUSION AND FUTURE WORK
This paper has presented a survey of methods for pruning
neural networks, focusing on methods based on magnitude
pruning, use of similarity and clustering, and methods based
on sensitivity analysis.

Magnitude based pruning methods have developed from
removal of small weights in MLPs to methods for pruning
filters and channels which lead to substantial reductions in
the size of deep networks. The range of methods developed
include: (i) those that are data dependent and use examples to
assess the relevance of output channels, (ii) methods that are
independent of data, which assess the contributions of filters
and channels directly, and (iii) methods that utilise optimiza-
tion algorithms to find filters that approximate channels.

Methods based on sensitivity analysis are the most trans-
parent in that they are based on approximating the loss due
to changes to a network. The development of methods based
on a Taylor series approximation represents the primary line
of research in this category of methods. Different studies
have adopted different assumptions in order to make the
computation of the Taylor approximation feasible. In one of
the first studies, theOBDmethod assumed a diagonal Hessian
matrix, ignoring both first order gradients and second order
non-diagonal gradients. This was followed by OBS, a method

that aimed to take account of non-diagonal elements of the
Hessian but has been shown to struggle when pruning mul-
tiple weights that are correlated. The EigenDamage method
aims to take better account of correlations by approximat-
ing the Hessian with a Fisher Information Matrix and using
a reparameterization to a new space in which the weights
are approximately independent. In an alternative approach,
the Collaborative Channel Pruning (CCP) method formu-
lates the pruning task as a quadratic programming problem.
Molchanov et al. [105] develop a method based on a first-
order approximation, arguing that the variance in the loss,
as training approaches a local solution, is an indicator of
stability and provides a good measure of the importance of
filters. In contrast to most of the other methods that adopt
layer by layer pruning with fine tuning after each layer, both
EigenDamage and CCP show that it is possible to obtain good
results with one-shot pruning followed by fine-tuning. These
three recent methods all show good results on large scale
networks and data sets, though direct empirical comparisons
between them have yet to be published. The survey also found
two alternatives to use of Taylor series approximations: a
method that aims to learn which filters to prune [93] and a
method based on the use ofmulti-armed bandits [118], both of
which have the potential to explore new avenues of research
on pruning methods.

The survey reveals a number of positive results about
the Lottery Hypothesis: Lotteries appear to perform well in
transfer learning, and lotteries exist for tasks such as NLP
and for architectures such as LSTMs. Lotteries even seem to

63294 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

be independent of the type of optimizer used during training.
Much of the current research on lotteries is based on deep
networks, but it is interesting that one of the earliest papers in
the field demonstrates the need to overparameterize a small
feedforward network for modelling a 4-bit multiplexor. Thus,
it might prove fruitful to explore the properties of lotteries
on smaller problems as well as the larger networks of today.
The existence of good lotteries does appear to depend on the
fine-tuning process adopted and an interesting observation,
that challenges some of the empirical studies reported, is that
even random pruning can achieve good results following fine-
tuning [119], so further studies of how the remaining weights
compensate for those that are removed, could results in
new insights. Although studies on lotteries provide valuable
insight, further research on specialist hardware and libraries is
needed for methods that prune individual weights to become
practical [120].

The survey found least research on methods that use sim-
ilarity and clustering to develop pruning methods. A method
that utilised a cosine similarity measure concluded that it was
more suitable for MLPs than CNNs, while a method that
utilises agglomerative clustering of filters results in up to a
3-fold reduction on ResNet when it is applied to ImageNet.
These results suggest there is merit in developing a more
theoretical understanding of the functional equivalence of
different classes of deep networks, analogous to the studies
on equivalence of MLPs [121].

Given the different approaches to pruning, some may be
complimentary, and there is some evidence that combining
them might result in further compression of networks. For
example,He et al. [94] present results showing that combin-
ing their method based on the use of Lasso regression with
factorization results in additional gains, and Han et al. [98]
use a pipeline of magnitude pruning, clustering and Huff-
man coding to increase the level of compression that can be
achieved.

One of the challenges in making sense of the empirical
evaluations reported in the papers surveyed is that, as new
deep learning architectures have developed and as new meth-
ods have been published, the comparisons carried out have
evolved. The survey has therefore collated the published
results of over 50 methods for a variety of data sets and archi-
tecture that is available as a resource for other researchers.
Section VI uses this resource to present the first comprehen-
sive comparison of published results across different prun-
ing methods for different architectures. The comparison of
published results shows that significant reductions can be
obtained for AlexNet, ResNet and VGG, though there is no
singlemethod that is best, and that it is harder to prune ResNet
than the other architectures. One can hypothesize that its use
of skip connections makes it more optimal, though this is
something that needs exploring. Likewise, given that different
methods seem best for different architectures, it is worth
studying and developing methods for specific architectures.
The data also reveals that there are limited evaluations on
other networks such as the InceptionNet, DenseNet, Seg-

Net, FCN32 and datasets such as CIFAR100, Flowers102,
CUB200-2011 (see Table 2). A comprehensive independent
evaluation of the methods that includes consideration of
the issues raised by the Lottery hypothesis across a wider
range of data and architectures would be a useful advance
in the field. In conclusion, this survey has presented the key
research directions in pruning neural networks by summariz-
ing how the field has progressed from the early algorithms
that focused on small fully connected networks to the much
larger deep neural networks of today. The survey has aimed to
highlight the motivations and insights identified in the papers,
and provides a resource for comparison of the reported
results, architectures and data sets used in several studies
which we hope will be useful to researchers in the field.

APPENDIX A
SUMMARY OF DATA SETS USED IN COMPARING
PRUNING METHODS
MNIST [61]: The MNIST (Modified National Institute of

Standards and Technology) data set consists of hand-
written 28×28 images of digits. It has 60,000 examples
of training data and 10,000 examples for the test set.

PASCAL VOC [198]: The PASCAL VOC data sets have
formed the basis of an annual competitions from 2005
to 2012. The VOC 2007 data annotates objects in
20 classes and consists of 9,963 images and 24,640
annotated objects. The VOC 2012 data, which consists
of 11530 images, are annotated with 27450 regions of
interest and 6929 segmentations.

CamVid [199]: CamVid (Cambridge-driving Labelled
Video Database) is a data set with videos captured from
an automobile. In total over 10mins of video is provided
together with over 700 images from the videos that have
been labelled. Each pixel of an image is labelled to
indicate if it is part of an objects in one of 32 semantic
classes.

Oxford-Flowers [200]: The Oxford-Flowers data consists
of 102 classes of common flowers in the UK. It provides
2040 training images and 6129 images for testing.

LFW [201]: The LFW (Labelled Faces in the Wild) is one
of the largest and widely used data sets to evaluate
face recognition algorithms. It includes 250× 250 pixel
images of over 5.7K individuals, with over 13K images
in total.

CIFAR-10 &100 [202]: The CIFAR-10 (Canadian Institute
for Advanced Research) data set is a collection of
32× 32 colour images in 10 different classes. The data
set splits into two sets: 50,000 images for training and
10,000 for testing. CIFAR-100 is similar to CIFAR-10
but has 100 classes, where each class has 500 training
images and 100 test images.

ImageNet [203]: ImageNet contains millions of images
organized using the WordNet hierarchy. It has over
14M images classified in over 21K groups and has pro-
vided the data sets for the ImageNet Large Scale Visual
Recognition Challenges (ILSVRC) held since 2010.

VOLUME 10, 2022 63295



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

It is one of the most widely used data sets in bench-
marking deep learning models and methods for prun-
ing. A smaller subset known as TinyImageNet is
sometimes used and is also available (https://tiny-
imagenet.herokuapp.com). It consists of 200 classes
with 500 training, 50 validation and 50 testing images
per class.

SVHN [204]: The SVHN (Street View House Number) data
set is a collection of 600K, 32×32 images of house num-
bers in Google Street View images. The data set provides
73,257 images for training and 26,032 for testing.

UCSD-Birds [205]: The UCSD-Birds data set provides
11788 images of birds, labelled as one of 200 different
types of species. The data is split into training and testing
sets of 5994 and 5794 respectively.

Places365 [206]: Places365 is a data set with 8 million
200 × 200 pixel images of scenes labeled with one of
434 categories, such as bridge, kitchen, boxing ring, etc.
It provides 50 images per class for validation and the test
set consist of 500 images per class.

CASIA-WebFace [207]: CASIA-WebFace is a data set that
was created for evaluating face recognition systems.
It provides over 494K images of over 10K individuals.

WMT’14 En2De [208]: WMT’14 En2De is one of the
benchmark language data sets provided for a task set for
the Workshop on Statistical Machine Translation held
in 2014. This data set consists of 4.5M English-German
pairs of sentences.

FashionMNIST [209]: FashionMNIST is an alternative to
the MNIST data set with 28 × 28 images of fashion
products classified in 10 categories. Like MNIST, there
are 60,000 images for training and 10,000 images for
testing,

APPENDIX B
SUMMARY OF NOTATION
• In general, we use X to denote input channels, W
to denote weights of filters and Y to denote output
channels.

• Yi j is used to denote the output feature map obtained by
applying a filterWj,i on input channels Xi

• wi, wj, wj,i are used to denote individual weights.
• β is used to denote a binary mask where βi = 1 indicates
that a feature map or filter should be retained and β =
0 indicates that it should be removed.

• L is used to denotes a loss function
• L0,L1,L2 denote norms, with L0 counting non-zero val-
ues, L1, being the sum of absolute. values, L2 being the
square root of the sum of squares (Euclidean distance).

• ‖W‖n will be used to indicate the use of a norm in
an equation with the an equation, with the subscript n
indicating the specific norm.

• ‖W‖F , known as the Frobenius norm is sometimes used
to denote the application of the Euclidean distance to the
elements of a matrix

REFERENCES
[1] S. Kuutti, R. Bowden, Y. C. Jin, P. Barber, and S. Fallah, ‘‘A survey of

deep learning applications to autonomous vehicle control,’’ IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 2, pp. 712–733, Feb. 2020.

[2] S. M. McKinney, M. Sieniek, V. Godbole, N. Antropova, H. Ashrafian,
T. Back, M. Chesus, C. GC, A. Darzi, M. Etemadi, F. Garcia-Vicente,
F. Gilbert, M. Halling-Brown, D. Hassabis, and S. Jansen, ‘‘International
evaluation of an AI system for breast cancer screening,’’ Nature, vol. 577,
no. 7788, pp. 89–94, Jan. 2020.

[3] G. Hinton, D. Y. Deng, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, ‘‘Deep neural
networks for acoustic modeling in speech recognition,’’ IEEE Signal
Process. Mag., vol. 29, pp. 82–97, 2012.

[4] D. W. Otter, J. R. Medina, and J. K. Kalita, ‘‘A survey of the usages of
deep learning for natural language processing,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.

[5] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, ‘‘A survey on deep learning: Algorithms,
techniques, and applications,’’ ACM Comput. Surv., vol. 51, no. 5, p. 36,
2019.

[6] T. J. Sejnowski, ‘‘The unreasonable effectiveness of deep learning in
artificial intelligence,’’ Proc. Nat. Acad. Sci. USA, vol. 117, no. 48,
pp. 30033–30038, Dec. 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[8] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[9] M. C. Mozer and P. Smolensky, ‘‘Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 1988, pp. 107–115.

[10] J. K. Kruschke, ‘‘Creating local and distributed bottlenecks in hidden
layers of back-propagation networks,’’ in Proc. Connectionist Models
Summer School, 1988, pp. 120–126.

[11] R. Reed, ‘‘Pruning algorithms—A survey,’’ IEEE Trans. Neural Netw.,
vol. 4, no. 5, pp. 740–747, 1993.

[12] Y. Chauvin, ‘‘A back-propagation algorithm with optimal use of hidden
units,’’ in Proc. Adv. Neural Inf. Process. Syst., 1988, pp. 519–526.

[13] D. E. Weigend, ‘‘Back-propagation, weight-elimination and time series
prediction,’’ in Proc. Connectionist Models Summer School, 1990,
pp. 105–116.

[14] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, ‘‘Generalization
by weight-elimination applied to currency exchange rate prediction,’’
in Proc. Seattle Int. Joint Conf. Neural Netw. (IJCNN), Nov. 1991,
pp. 837–841.

[15] Z. Zhou, W. Zhou, R. Hong, and H. Li, ‘‘Online filter weakening and
pruning for efficient convnets,’’ in Proc. IEEE Int. Conf. Multimedia
Expo. (ICME), Jul. 2018, pp. 1–6.

[16] A. M. Chen, H.-M. Lu, and R. Hecht-Nielsen, ‘‘On the geometry of
feedforward neural network error surfaces,’’Neural Comput., vol. 5, no. 6,
pp. 910–927, Nov. 1993.

[17] S. Han, X. Liu, H.Mao, J. Pu, A. Pedram,M.A.Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’
2016, arXiv:1602.01528.

[18] L. Li, J. Zhu, and M.-T. Sun, ‘‘Deep learning based method for pruning
deep neural networks,’’ in Proc. IEEE Int. Conf. Multimedia Expo. Work-
shops (ICMEW), Jul. 2019, pp. 312–317.

[19] A. RoyChowdhury, P. Sharma, E. Learned-Miller, and A. Roy, ‘‘Reducing
duplicate filters in deep neural networks,’’ in Proc. NIPS Workshop Deep
Learning: Bridging Theory Pract., 2017, pp. 1–7.

[20] H. J. Sussmann, ‘‘Uniqueness of the weights for minimal feedforward
nets with a given input-output map,’’ Neural Netw., vol. 5, no. 4,
pp. 589–593, Jul. 1992.

[21] Z. Zhou, W. Zhou, H. Li, and R. Hong, ‘‘Online filter clustering and
pruning for efficient convnets,’’ in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 11–15.

[22] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
‘‘Optimal brain damage,’’ in Proc. Neural Inf. Process. Syst.vol. 89,
D. S. Touretzky, Ed. San Mateo, CA, USA: Morgan Kaufmann, 1990,
pp. 506–598.

[23] B. Hassibi, D. G. Stork, and G. J. Wolff, ‘‘Optimal brain surgeon and gen-
eral network pruning,’’ in Proc. IEEE Int. Conf. Neural Netw., Mar. 1993,
pp. 293–299.

[24] B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe, ‘‘Optimal brain
surgeon: Extensions and performance comparison,’’ in Proc. Neural Inf.
Process. Syst., 1993, pp. 263–279.

63296 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

[25] J. P. Cohen, H. Z. Lo, and W. Ding, ‘‘RandomOut: Using a convolutional
gradient norm to rescue convolutional filters,’’ 2016, arXiv:1602.05931.

[26] N. Lee, T. Ajanthan, and P. H. S. Torr, ‘‘SNIP: Single-shot network
pruning based on connection sensitivity,’’ 2018, arXiv:1810.02340.

[27] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, ‘‘Accelerating
convolutional networks via global & dynamic filter pruning,’’ in Proc.
27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 2425–2432.

[28] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression,’’
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
pp. 535–541. ACM, 2006.

[29] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[30] G. Urban, J. K. Geras, S. E. Kahou, S. Aslan, R. C. Wang, A. Mohamed,
M. Philipose, and M. Richardson, ‘‘Do deep convolutional nets really
need to be deep and convolutional,’’ in Proc. Int. Conf. Learn. Represent.,
2017, pp. 1–13.

[31] L. Zhang, Z. Tan, J. Song, J. Chen, C. Bao, and K. Ma, ‘‘SCAN: A scal-
able neural networks framework towards compact and efficient models,’’
2019, arXiv:1906.03951.

[32] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, ‘‘Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., May 2013, pp. 6655–6659.

[33] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolutional
neural networks with low rank expansions,’’ 2014, arXiv:1405.3866.

[34] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, ‘‘Learning to quantize deep networks by optimizing quantization
intervals with task loss,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 4350–4359.

[35] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ 2017,
arXiv:1702.03044.

[36] Y. Zhao, X. Gao, D. Bates, R. Mullins, and C.-Z. Xu, ‘‘Focused quanti-
zation for sparse CNNs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5585–5594.

[37] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,’’ 2016, arXiv:1602.02830.

[38] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, ‘‘Com-
pressing neural networks with the hashing trick,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 2285–2294.

[39] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 2704–2713.

[40] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ in Proc. Int. Conf. Learn.
Represent., Nov. 2017, arXiv:1611.02167.

[41] X. Dai, H. Yin, and N. K. Jha, ‘‘NeST: A neural network synthesis tool
based on a grow-and-prune paradigm,’’ IEEE Trans. Comput., vol. 68,
no. 10, pp. 1487–1497, Oct. 2019.

[42] X. Li, Y. Zhou, Z. Pan, and J. Feng, ‘‘Partial order pruning: For
best speed/accuracy trade-off in neural architecture search,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 9145–9153.

[43] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,
‘‘MetaPruning:Meta learning for automatic neural network channel prun-
ing,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 3295–3304.

[44] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, ‘‘Channel pruning
via automatic structure search,’’ in Proc. 29th Int. Joint Conf. Artif. Intell.,
Jul. 2020, pp. 673–679.

[45] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, ‘‘Practical block-
wise neural network architecture generation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2423–2432.

[46] B. Zoph and V. Q. Le, ‘‘Neural architecture search with reinforcement
learning,’’ in Proc. Int. Conf. Learn. Represent., 2017.

[47] J. Chung and T. Shin, ‘‘Simplifying deep neural networks for neuromor-
phic architectures,’’ in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016,
pp. 1–6.

[48] K. Goetschalckx, B. Moons, P. Wambacq, and M. Verhelst, ‘‘Efficiently
combining SVD, pruning, clustering and retraining for enhanced neural
network compression,’’ in Proc. 2nd Int. Workshop Embedded Mobile
Deep Learn., Jun. 2018, pp. 1–6.

[49] P. K. Gadosey, Y. Li, and P. T. Yamak, ‘‘On pruned, quantized and
compact CNN architectures for vision applications: An empirical study,’’
in Proc. Int. Conf. Artif. Intell., Inf. Process. Cloud Comput. (AIIPCC),
2019, pp. 1–8.

[50] V. Lebedev and V. Lempitsky, ‘‘Speeding-up convolutional neural net-
works: A survey,’’ Bull. Polish Acad. Sci. Tech. Sci., vol. 66, no. 6,
pp. 799–810, 2018.

[51] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search: A
survey,’’ J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[52] G.Menghani, ‘‘Efficient deep learning: A survey onmaking deep learning
models smaller, faster, and better,’’ 2021, arXiv:2106.08962.

[53] M. A. Arbib, The Handbook of Brain Theory and Neural Networks.
Cambridge, MA, USA: MIT Press, 2003.

[54] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[55] Z. Huang and N. Wang, ‘‘Data-driven sparse structure selection for deep
neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 304–320.

[56] S. Lin, ‘‘Toward compact convnets via structure-sparsity regularized
filter pruning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 2,
pp. 574–588, Feb. 2019.

[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958,
2014.

[58] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, ‘‘Learning structured
sparsity in deep neural networks,’’ in Proc. 30th Int. Conf. Neural Inf.,
2016, pp. 2082–2090.

[59] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, ‘‘Variational
convolutional neural network pruning,’’ in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2780–2789.

[60] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, ‘‘Backpropagation applied to handwritten
zip code recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[63] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of the
recent architectures of deep convolutional neural networks,’’ Artif. Intell.
Rev., vol. 53, no. 8, pp. 5455–5516, 2019.

[64] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ 2015, arXiv:1506.02626.

[65] Y. Guo, A. Yao, and Y. Chen, ‘‘Dynamic network surgery for effi-
cient DNNs,’’ in Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016,
pp. 1387–1395.

[66] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding
sparse, trainable neural networks,’’ in Proc. Int. Conf. Learn. Represent.,
New Orleans, LA, USA, 2019, arXiv:1803.03635.

[67] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ‘‘Rethinking the value
of network pruning,’’ in Proc. 7th Int. Conf. Learn. Represent., (ICLR),
New Orleans, LA, USA, May 2019, arXiv:1810.05270.

[68] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, ‘‘Stabilizing the
lottery ticket hypothesis,’’ 2019, arXiv:1903.01611.

[69] S. Ari Morcos, H. Yu, M. Paganini, and Y. Tian, ‘‘One ticket to win
them all: Generalizing lottery ticket initializations across datasets and
optimizers,’’ in Proc. Neural Inf. Process. Syst. (NeuralPS), 2019, pp.
4932–4942.

[70] N. Hubens, M.Mancas, M. Decombas, M. Preda, T. Zaharia, B. Gosselin,
and T. Dutoit, ‘‘An experimental study of the impact of pre-training on the
pruning of a convolutional neural network,’’ in Proc. 3rd Int. Conf. Appl.
Intell. Syst., Jan. 2020, pp. 1–6.

[71] H. Yu, S. Edunov, Y. Tian, and A. S. Morcos, ‘‘Playing the lottery with
rewards and multiple languages: Lottery tickets in RL and NLP,’’ 2019,
arXiv:1906.02768.

[72] S.Merity, C. Xiong, J. Bradbury, and R. Socher, ‘‘Pointer sentinel mixture
models,’’ in Proc. Int. Conf. Learn. Represent., 2017, arXiv:1609.07843.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. Aidan
Gomez, U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc.
31st Int. Conf. Neural Inf. Process. Syst. (NIPS), Red Hook, NY, USA:
Curran Associates, 2017, pp. 6000–6010.

[74] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

VOLUME 10, 2022 63297



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

[75] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’
J. Artif. Intell. Res., vol. 47, pp. 253–279, Jun. 2015.

[76] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient convnets,’’ in Proc. 5th Int. Conf. Learn. Represent., (ICLR),
Toulon, France, Apr. 2017, arXiv:1608.08710.

[77] M. Denil, B. Shakibi, L. Dinh, and N. D. Freitas, ‘‘Predicting param-
eters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2148–2156.

[78] B. O. Ayinde, T. Inanc, and J. M. Zurada, ‘‘Redundant feature pruning for
accelerated inference in deep neural networks,’’ Neural Netw., vol. 118,
pp. 148–158, Oct. 2019.

[79] A. Polyak and L. Wolf, ‘‘Channel-level acceleration of deep face repre-
sentations,’’ IEEE Access, vol. 3, pp. 2163–2175, 2015.

[80] M. Lin, Q. Chen, and S. Yan, ‘‘Network in a network,’’ in Proc. 2nd Int.
Conf. Learn. Represent. (ICLR), 2014, arXiv:1312.4400.

[81] X. Zhang, J. Zou, K. He, and J. Sun, ‘‘Accelerating very deep
convolutional networks for classification and detection,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 1943–1955,
Oct. 2015.

[82] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
‘‘FitNets: Hints for thin deep nets,’’ 2014, arXiv:1412.6550.

[83] J.-H. Luo and J. Wu, ‘‘An entropy-based pruning method for CNN com-
pression,’’ 2017, arXiv:1706.05791.

[84] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,’’
2016, arXiv:1607.03250.

[85] M. Lin, L. Cao, S. Li, Q. Ye, Y. Tian, J. Liu, Q. Tian, and R. Ji, ‘‘Filter
sketch for network pruning,’’ 2020, arXiv:2001.08514.

[86] E. Liberty, ‘‘Simple and deterministic matrix sketching,’’ in Proc. 19th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2013,
pp. 581–588.

[87] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, ‘‘Filter pruning via geometric
median for deep convolutional neural networks acceleration,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4340–4349.

[88] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5058–5066.

[89] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, ‘‘Soft filter pruning for
accelerating deep convolutional neural networks,’’ in Proc. 27th Int. Joint
Conf. Artif. Intell., Jul. 2018, pp. 2234–2240.

[90] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron
importance score propagation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 9194–9203.

[91] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, ‘‘Approximated Ora-
cle filter pruning for destructive CNN width optimization,’’ 2019,
arXiv:1905.04748.

[92] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2755–2763.

[93] Q. Huang, K. Zhou, S. You, and U. Neumann, ‘‘Learning to prune filters
in convolutional neural networks,’’ in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Mar. 2018, pp. 709–718.

[94] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very
deep neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1398–1406.

[95] H. Wang, Q. Zhang, Y. Wang, and H. Hu, ‘‘Structured probabilis-
tic pruning for convolutional neural network acceleration,’’ 2017,
arXiv:1709.06994.

[96] J.-H. Luo and J. Wu, ‘‘AutoPruner: An end-to-end trainable filter pruning
method for efficient deep model inference,’’ 2018, arXiv:1805.08941.

[97] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, ‘‘Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers,’’ 2018,
arXiv:1802.00124.

[98] S. Han, H. Mao, and W. J. Dally, ‘‘A deep neural network compres-
sion pipeline: Pruning, quantization, Huffman encoding,’’ in Proc. ICLR,
2016, arXiv:1510.00149v5.

[99] S. Son, S. Nah, and K. Lee, ‘‘Clustering convolutional kernels to com-
press deep neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 225–240.

[100] Y. Li, S. Lin, B. Zhang, J. Liu, D. Doermann, Y. Wu, F. Huang, and
R. Ji, ‘‘Exploiting kernel sparsity and entropy for interpretable CNN
compression,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2800–2809.

[101] C. Wang, R. Grosse, S. Fidler, and G. Zhang, ‘‘EigenDamage: Structured
pruning in the kronecker-factored eigenbasis,’’ in Proc. 36th Int. Conf.
Mach. Learn., 2019, pp. 6566–6575.

[102] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). New York, NY, USA: Springer, 2006.

[103] S. Thrun, ‘‘The MONK’s problems—A performance comparison of dif-
ferent learning algorithms,’’ CarnegieMellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-91-197, 1991.

[104] T. J. Sejnowski and C. R. Rosenberg, ‘‘Parallel networks that learn
to pronounce English text,’’ Complex Syst., vol. 1, pp. 145–168,
Feb. 1987.

[105] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning
convolutional neural networks for resource efficient inference,’’ 2016,
arXiv:1611.06440.

[106] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, ‘‘Importance
estimation for neural network pruning,’’ in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11264–11272.

[107] R. Grosse and J. Martens, ‘‘A Kronecker-factored approximate Fisher
matrix for convolution layers,’’ in Proc. Int. Conf. Mach. Learn.,
Feb. 2016, pp. 573–582.

[108] H. Peng, J. Wu, S. Chen, and J. Huang, ‘‘Collaborative channel prun-
ing for deep networks,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 5113–5122.

[109] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, ‘‘AMC: Automl for
model compression and acceleration on mobile devices,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 784–800.

[110] C. Jiang, G. Li, C. Qian, and K. Tang, ‘‘Efficient DNN neuron pruning by
minimizing layer-wise nonlinear reconstruction error,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2298–2304.

[111] X. Dong, S. Chen, and S. J. Pan, ‘‘Learning to prune deep neural networks
via layer-wise optimal brain surgeon,’’ in Proc. 31st Int. Conf. Neural Inf.
Process. Syst. (NIPS), Red Hook, NY, USA: Curran Associates, 2017,
pp. 4860–4874.

[112] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, ‘‘Discrimination-aware channel pruning for deep neural net-
works,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 875–886.

[113] K. Xu, X. Wang, Q. Jia, J. An, and D. Wang, ‘‘Globally soft filter
pruning for efficient convolutional neural networks,’’ Tech. Rep., 2018.
[Online]. Available: https://paperswithcode.com/paper/globally-soft-
filter-pruning-for-efficient

[114] K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov, ‘‘Structured
Bayesian pruning via log-normal multiplicative noise,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. (NIPS), Red Hook, NY, USA: Curran
Associates, 2017, pp. 6778–6787.

[115] R. Bao, X. Yuan, Z. Chen, and R. Ma, ‘‘Cross-entropy pruning for
compressing convolutional neural networks,’’ Neural Comput., vol. 30,
no. 11, pp. 3128–3149, Nov. 2018.

[116] S. Srinivas and R. V. Babu, ‘‘Data-free parameter pruning for deep neural
networks,’’ 2015, arXiv:1507.06149.

[117] Y. Sun, X. Wang, and X. Tang, ‘‘Sparsifying neural network connections
for face recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 4856–4864.

[118] S. Ameen and S. Vadera, ‘‘Pruning neural networks using multi-armed
bandits,’’ Comput. J., vol. 63, no. 7, pp. 1099–1108, Jul. 2020.

[119] D. Mittal, S. Bhardwaj, M. M. Khapra, and B. Ravindran, ‘‘Studying the
plasticity in deep convolutional neural networks using random pruning,’’
Mach. Vis. Appl., vol. 30, no. 2, pp. 203–216, Mar. 2019.

[120] E. Elsen,M. Dukhan, T. Gale, and K. Simonyan, ‘‘Fast sparse ConvNets,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 14629–14638.

[121] V. Kårková and P. C. Kainen, ‘‘Functionally equivalent feedfor-
ward neural networks,’’ Neural Comput., vol. 6, no. 3, pp. 543–558,
May 1994.

[122] S. J. Hanson and L. Y. Pratt, ‘‘Comparing biases for minimal network
construction with back-propagation,’’ in Proc. Adv. Neural Inf. Process.
Syst., 1989, pp. 177–185.

[123] A. Graves, ‘‘Practical variational inference for neural networks,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2011, pp. 2348–2356.

[124] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, ‘‘Net-trim: Convex
pruning of deep neural networks with performance guarantee,’’ in Proc.
31st Int. Conf. Neural Inf. Process. Syst., Red Hook, NY, USA: Curran
Associates, 2017, pp. 3180–3189.

[125] M. Zhu and S. Gupta, ‘‘To prune, or not to prune: Exploring the efficacy
of pruning for model compression,’’ 2017, arXiv:1710.01878.

63298 VOLUME 10, 2022



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

[126] C. Chen, F. Tung, N. Vedula, and G. Mori, ‘‘Constraint-aware deep
neural network compression,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 400–415.

[127] D. Lee, S. Kang, and K. Choi, ‘‘ComPEND: Computation prun-
ing through early negative detection for ReLU in a deep neural
network accelerator,’’ in Proc. Int. Conf. Supercomput., Jun. 2018,
pp. 139–148.

[128] G. Li, C. Qian, C. Jiang, X. Lu, and K. Tang, ‘‘Optimization based layer-
wise magnitude-based pruning for DNN compression,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2383–2389.

[129] C. Liu and Q. Liu, ‘‘Improvement of pruning method for convolution neu-
ral network compression,’’ in Proc. 2nd Int. Conf. Deep Learn. Technol.
(ICDLT), 2018, pp. 57–60.

[130] Z. Qin, F. Yu, C. Liu, and X. Chen, ‘‘Demystifying neural network filter
pruning,’’ 2018, arXiv:1811.02639.

[131] R. Yazdani, M. Riera, J.-M. Arnau, and A. Gonzalez, ‘‘The dark side
of DNN pruning,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 790–801.

[132] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
‘‘A systematic DNN weight pruning framework using alternating direc-
tion method of multipliers,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 184–199.

[133] X. Ding, G. DIng, X. Zhou, Y. Guo, J. Han, and J. Liu, ‘‘Global sparse
momentum SGD for pruning very deep neural networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 6379–6391.

[134] T. Dettmers and L. Zettlemoyer, ‘‘Sparse networks from scratch: Faster
training without losing performance,’’ 2019, arXiv:1907.04840.

[135] S. Gui, H. N. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu, ‘‘Model com-
pression with adversarial robustness: A unified optimization framework,’’
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1283–1294.

[136] K. Helwegen, J. Widdicombe, L. Geiger, Z. Liu, K.-T. Cheng, and
R. Nusselder, ‘‘Latent weights do not exist: Rethinking binarized neural
network optimization,’’ 2019, arXiv:1906.02107.

[137] L. Hou, J. Zhu, J. Kwok, F. Gao, T. Qin, and T.-Y. Liu, ‘‘Normalization
helps training of quantized LSTM,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 7344–7354.

[138] K. Lee, H. Kim, H. Lee, and D. Shin, ‘‘Flexible group-level pruning
of deep neural networks for fast inference on mobile CPUs: Work-in-
progress,’’ in Proc. Int. Conf. Compliers, Archit. Synth. Embedded Syst.
Companion (CASES), 2019, pp. 1–2.

[139] J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, ‘‘OICSR: Out-
in-channel sparsity regularization for compact deep neural networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 7046–7055.

[140] Z. Liu, H. Tang, Y. Lin, and S. Han, ‘‘Point-voxel CNN for efficient
3D deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 963–973.

[141] J. Song, Y. Chen, X. Wang, C. Shen, and M. Song, ‘‘Deep model trans-
ferability from attribution maps,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 6179–6189.

[142] Y. Xu, Y. Wang, J. Zeng, K. Han, X. U. Chunjing, D. Tao, and C. Xu,
‘‘Positive-unlabeled compression on the cloud,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 2561–2570.

[143] H. Zhou, J. Lan, R. Liu, and J. Yosinski, ‘‘Deconstructing lottery tickets:
Zeros, signs, and the supermask,’’ 2019, arXiv:1905.01067.

[144] Y. Zhu, C. Li, B. Luo, J. Tang, and X. Wang, ‘‘Dense feature aggregation
and pruning for RGBT tracking,’’ in Proc. 27th ACM Int. Conf. Multime-
dia, Oct. 2019, pp. 465–472.

[145] T. Kim, D. Ahn, and J.-J. Kim, ‘‘V-LSTM: An efficient LSTM accelerator
using fixed nonzero-ratio viterbi-based pruning,’’ in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2020, p. 326.

[146] Q. Li, C. Li, and H. Chen, ‘‘Incremental filter pruning via random walk
for accelerating deep convolutional neural networks,’’ in Proc. 13th Int.
Conf. Web Search Data Mining, Jan. 2020, pp. 358–366.

[147] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
‘‘PatDNN: Achieving real-time DNN execution on mobile devices with
pattern-based weight pruning,’’ in Proc. 25th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Mar. 2020, pp. 907–922.

[148] A. Dubey, M. Chatterjee, and N. Ahuja, ‘‘Coreset-based neural network
compression,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 454–470.

[149] X. Ding, G. Ding, Y. Guo, and J. Han, ‘‘Centripetal SGD for pruning
very deep convolutional networks with complicated structure,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4943–4953.

[150] M. Lin, R. Ji, B. Chen, F. Chao, J. Liu, W. Zeng, Y. Tian, and Q. Tian,
‘‘Training compact CNNs for image classification using dynamic-coded
filter fusion,’’ 2021, arXiv:2107.06916.

[151] B. Hassibi and D. G. Stork, ‘‘Second order derivatives for net-
work pruning: Optimal brain surgeon,’’ in Proc. Adv. Neural Inf.
Process. Syst., San Mateo, CA, USA: Morgan Kaufmann, 1992,
pp. 164–171.

[152] J. Xu and W. C. Daniel Ho, ‘‘A node pruning algorithm based on optimal
brain surgeon for feedforward neural networks,’’ in Proc. 3rd Int. Conf.
Adv. Neural Netw. (ISNN), vol. 1. Berlin, Germany: Springer, 2006,
pp. 524–529.

[153] C. Endisch, C. Hackl, and D. Schröder, ‘‘Optimal brain surgeon for
general dynamic neural networks,’’ in Proc. Aritficial Intell. 13th Por-
tuguese Conf. Prog. Artif. Intell. (EPIA), Berlin, Germany: Springer,
2007, pp. 15–28.

[154] C. Endisch, P. Stolze, P. Endisch, C. Hackl, and R. Kennel, ‘‘Levenberg–
Marquardt-based OBS algorithm using adaptive pruning interval for sys-
tem identification with dynamic neural networks,’’ in Proc. IEEE Int.
Conf. Syst., Man Cybern., Oct. 2009, pp. 3402–3408.

[155] S. Ameen, ‘‘Optimizing deep learning networks using multi-armed ban-
dits,’’ Ph.D. thesis, School Comput., Sci. Eng., Univ. Salford, Greater
Manchester, U.K., 2017.

[156] S. Anwar, K. Hwang, andW. Sung, ‘‘Structured pruning of deep convolu-
tional neural networks,’’ J. Emerg. Technol. Comput. Syst., vol. 13, no. 3,
pp. 1–18, Feb. 2017.

[157] J. Guo and M. Potkonjak, ‘‘Pruning filters and classes: Towards on-
device customization of convolutional neural networks,’’ in Proc. 1st Int.
Workshop Deep Learn. Mobile Syst. Appl. (EMDL), 2017, pp. 13–17.

[158] M. A. Carreira-Perpinan and Y. Idelbayev, ‘‘‘Learning-compression’
algorithms for neural net pruning,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 8532–8541.

[159] L. N. Huynh, Y. Lee, and R. K. Balan, ‘‘D-pruner: Filter-based pruning
method for deep convolutional neural network,’’ in Proc. 2nd Int. Work-
shop Embedded Mobile Deep Learn., Jun. 2018, pp. 7–12.

[160] S. Chen, L. Lin, Z. Zhang, and M. Gen, ‘‘Evolutionary NetArchitecture
search for deep neural networks pruning,’’ in Proc. 2nd Int. Conf. Algo-
rithms, Comput. Artif. Intell., Dec. 2019, pp. 189–196.

[161] W. Deng, X. Zhang, F. Liang, and G. Lin, ‘‘An adaptive empirical
Bayesian method for sparse deep learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 5564–5574.

[162] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, ‘‘DeepSZ:
A novel framework to compress deep neural networks by using error-
bounded lossy compression,’’ in Proc. 28th Int. Symp. High-Perform.
Parallel Distrib. Comput., Jun. 2019, pp. 159–170.

[163] H. Li, N. Liu, X. Ma, S. Lin, S. Ye, T. Zhang, X. Lin,W. Xu, and Y. Wang,
‘‘ADMM-based weight pruning for real-time deep learning accelera-
tion on mobile devices,’’ in Proc. Great Lakes Symp. VLSI, May 2019,
pp. 501–506.

[164] Z. Qin, F. Yu, C. Liu, and X. Chen, ‘‘CAPTOR: A class adaptive filter
pruning framework for convolutional neural networks in mobile applica-
tions,’’ in Proc. 24th Asia South Pacific Design Autom. Conf., Jan. 2019,
pp. 444–449.

[165] X. Xiao, Z. Wang, and S. Rajasekaran, ‘‘AutoPrune: Automatic network
pruning by regularizing auxiliary parameters,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 13681–13691.

[166] Z. Bao, J. Liu, and W. Zhang, ‘‘Using distillation to improve network
performance after pruning and quantization,’’ in Proc. 2nd Int. Conf.
Mach. Learn. Mach. Intell., Sep. 2019, pp. 3–6.

[167] C. Lemaire, A. Achkar, and P.-M. Jodoin, ‘‘Structured pruning of neural
networks with budget-aware regularization,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 9108–9116.

[168] X. Dong and Y. Yang, ‘‘Network pruning via transformable architecture
search,’’ 2019, arXiv:1905.09717.

[169] S. Kundu and S. Sundaresan, ‘‘AttentionLite: Towards efficient self-
attention models for vision,’’ 2020, arXiv:2101.05216.

[170] P. Kaliamoorthi, A. Siddhant, E. Li, and M. Johnson, ‘‘Distilling large
language models into tiny and effective students using pQRNN,’’ 2021,
arXiv:2101.08890.

[171] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky,
‘‘Speeding-up convolutional neural networks using fine-tuned CP-
decomposition,’’ 2014, arXiv:1412.6553.

[172] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, ‘‘Holistic CNN com-
pression via low-rank decomposition with knowledge transfer,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 2889–2905,
Dec. 2019.

VOLUME 10, 2022 63299



S. Vadera, S. Ameen: Methods for Pruning Deep Neural Networks

[173] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
‘‘HRank: Filter pruning using high-rank feature map,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1526–1535.

[174] V. Vanhoucke, A. Senior, and Z. Mark Mao, ‘‘Improving the speed of
neural networks on cpus,’’ in Proc. Deep Learn. Unsupervised Feature
Learn. Workshop, Neural Inf. Process. Syst., 2011. [Online]. Available:
https://research.google/pubs/pub37631/

[175] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploit-
ing linear structure within convolutional networks for efficient evalua-
tion,’’ in Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[176] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘‘Compressing deep convolu-
tional networks using vector quantization,’’ 2014, arXiv:1412.6115.

[177] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks,’’ in Proc. 30th Int. Conf. Neural Inf. Process.
Syst., pp. 4114–4122, 2016.

[178] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’
2016, arXiv:1603.05279.

[179] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,’’ 2018, arXiv:1806.08342.

[180] Z. Liu, J. Xu, X. Peng, and R. Xiong, ‘‘Frequency-domain dynamic
pruning for convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 1043–1053.

[181] F. Tung and G. Mori, ‘‘CLIP-Q: Deep network compression learning by
in-parallel pruning-quantization,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7873–7882.

[182] R. Banner, Y. Nahshan, and D. Soudry, ‘‘Post training 4-bit quantization
of convolutional networks for rapid-deployment,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 7948–7956.

[183] S. Chen, W. Wang, and S. J. Pan, ‘‘MetaQuant: Learning to quantize by
learning to penetrate non-differentiable quantization,’’ in Adv. Neural Inf.
Process. Syst., 2019, pp. 3918–3928.

[184] P. Wang, Q. Chen, X. He, and J. Cheng, ‘‘Towards accurate post-training
network quantization via bit-split and stitching,’’ in Proc. Mach. Learn.
Res., vol. 119, 2020, pp. 9847–9856.

[185] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and
A. Joulin, ‘‘Training with quantization noise for extreme model compres-
sion,’’ in Proc. Int. Conf. Learn. Represent., 2021, arXiv:2004.07320.

[186] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[187] J. Lin, Y. Rao, J. Lu, and J. Zhou, ‘‘Runtime neural pruning,’’ in Proc.
31st Int. Conf. Neural Inf. Process. Syst., Red Hook, NY, USA: Curran
Associates, 2017, pp. 2178–2188.

[188] A. Gordon, E. Eban, O. Nachum, B. Chen, H.Wu, T.-J. Yang, and E. Choi,
‘‘MorphNet: Fast & simple resource-constrained structure learning of
deep networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 1586–1595.

[189] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C. Chang,
J.-Y. Pan, Y.-T. Chen, W. Wei, and D.-C. Juan, ‘‘MONAS: Multi-
objective neural architecture search using reinforcement learning,’’ 2018,
arXiv:1806.10332.

[190] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 19–34.

[191] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameters sharing,’’ in Proc. 35th Int. Conf.
Mach. Learn., J. D. A. Krause, Ed., Jul. 2018, pp. 4095–4104.

[192] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artrificial
Intgelligence, vol. 33, 2019, pp. 4780–4798.

[193] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search
for mobile,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2815–2823.

[194] J. Zhang, X. Chen, M. Song, and T. Li, ‘‘Eager pruning: Algorithm and
architecture support for fast training of deep neural networks,’’ in Proc.
46th Int. Symp. Comput. Archit., Jun. 2019, pp. 292–303.

[195] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, ‘‘Rigging the
lottery: Making all tickets winners,’’ in Proc. 37th Int. Conf. Mach.
Learn., 2020, pp. 2943–2952.

[196] J. Cheng, P.-S. Wang, G. Li, Q.-H. Hu, and H.-Q. Lu, ‘‘Recent
advances in efficient computation of deep convolutional neural net-
works,’’ Frontiers Inf. Technol. Electron. Eng., vol. 19, no. 1, pp. 64–77,
Jan. 2018.

[197] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, ‘‘Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,’’ IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126–136,
Jan. 2018.

[198] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J.Winn, andA. Zisserman, ‘‘The Pascal visual object classes challenge: A
retrospective,’’ Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, Jan. 2015.

[199] G. J. Brostow, J. Fauqueur, and R. Cipolla, ‘‘Semantic object classes in
video: A high-definition ground truth database,’’ Pattern Recognit. Lett.,
vol. 30, no. 2, pp. 88–97, Jan. 2009.

[200] M.-E. Nilsback and A. Zisserman, ‘‘Automated flower classification over
a large number of classes,’’ inProc. 6th Indian Conf. Comput. Vis., Graph.
Image Process., Dec. 2008, pp. 722–729.

[201] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, ‘‘Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,’’ in Proc. Workshop Faces Real-Life’Images,
Detection, Alignment, Recognit., 2008. [Online]. Available: http://vis-
www.cs.umass.edu/lfw/lfw.pdf

[202] A. Krizhevsky, V. Nair, and G. Hinton. (2009). The CIFAR-10
and CIFAR-100 Datasets. [Online]. Available: http://www.cs.toronto.
edu/kriz/cifar.html

[203] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[204] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
‘‘Reading digits in natural images with unsupervised feature learning,’’ in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011.
[Online]. Available: https://research.google/pubs/pub37648/

[205] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, The
CALTECH-UCSD Birds-200-2011 Dataset, document CNS-TR-201,
2011.

[206] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, andA. Oliva, ‘‘Learning deep
features for scene recognition using places database,’’ in Proc. 27th Int.
Conf. Neural Inf. Process. Syst., 2014, pp. 487–495.

[207] D. Yi, Z. Lei, S. Liao, and S. Z. Li, ‘‘Learning face representation from
scratch,’’ 2014, arXiv:1411.7923.

[208] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and
A. Tamchyna, ‘‘Findings of the 2014 workshop on statistical machine
translation,’’ in Proc. 9th Workshop Stat. Mach. Transl., 2014, pp. 12–58.

[209] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

SUNIL VADERA received the Ph.D. degree in
computer science from The University of Manch-
ester, in 1992. He is currently a Professor of
computer science at the University of Salford,
U.K., where he has served in many leadership
roles, including as the Dean and the Head of the
School of Computing, Science and Engineering,
from 2011 to 2019. He currently leads the AI
Foundry Project at the University of Salford which
supports SMEs to develop innovative products and

services using AI. His main research interests include pruning deep networks
and applications of AI. He is a fellow of the British Computer Society,
a Chartered Engineer (C.Eng.), and a Chartered IT Professional (CITP).
In 2014, he was awarded the U.K. BDO Best Indian Scientist and Engineer
in recognition of his contributions to computing, science, and engineering.

SALEM AMEEN received the B.Eng. degree
from the Department of Electrical and Electronic
Engineering, University of Seventh April, Libya,
in 1999, the M.Tech. degree in computer science
and engineering from the Jaypee Institute of Infor-
mation Technology, India, in 2009, and the Ph.D.
degree in computer science from the University
of Salford, in 2018. His main research interests
include machine learning, deep learning, multi-
armed bandits, image mining, and time series
forecasting.

63300 VOLUME 10, 2022


