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Abstract 

There are different subsets of T regulatory cells (Tregs), orchestrating critical roles in the regulation of anti‑tumor 
immunity in colorectal cancer (CRC). In this study, we report that a high frequency of circulating  CD4+FoxP3+ 
Tregs was associated with poorer disease‑free survival (DFS), while their higher frequencies in tumor‑infiltrating 
 CD4+ Tregs was associated with better DFS. We further investigated such associations with four Tregs/T cells 
expressing or lacking FoxP3 and Helios (FoxP3±Helios±). For the first time, we report that a high frequency of cir‑
culating  CD4+FoxP3+Helios+ Tregs was associated with poorer DFS, while a high frequency of tumor‑infiltrating 
 CD4+FoxP3−Helios− T cells was associated with poorer DFS. In the four  FoxP3±Helios± T cell subsets expressing any 
of the immune checkpoints (ICs) investigated, we found that a high frequency of  CD4+FoxP3+Helios−PD‑1+ Tregs 
in circulation was associated with worse DFS. We also found that high frequencies of  FoxP3+Helios+CTLA‑4+ Tregs, 
 FoxP3+Helios−CTLA‑4+ Tregs, and  FoxP3−Helios+CTLA‑4+  CD4+ T cells in circulation were associated with worse DFS. 
In contrast, high frequencies of  CD4+TIM‑3+ T cells,  FoxP3+Helios+TIM‑3+ Tregs, and  FoxP3−Helios+TIM‑3+  CD4+ T 
cells in circulation were associated with longer DFS. Our data show that certain  CD4+ Treg/T cell subsets could serve 
as independent predictive biomarkers in CRC patients. Identification of the exact subpopulations contributing to clini‑
cal outcomes is critical for prognoses and therapeutic targeting.
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Introduction
Colorectal cancer (CRC) is the second most deadly 
malignancy and the third most common cancer in the 
world [1]. A total of 1.8 million new cases of colon cancer 
were diagnosed in 2018, accounting for approximately 
10% of all new cancer cases and deaths globally [1, 2]. The 
gastrointestinal tract is susceptible to persistent immune 
responses, leading to chronic intestinal inflammation, 

which has a role in the development of cancer, particu-
larly via the secretion of inflammatory cytokines [3]. T 
regulatory cells (Tregs) are immunosuppressive cells that 
are found in many different subsets and serve key func-
tions in the maintenance of immunological homeosta-
sis and self-tolerance [4]. They also have critical roles in 
the regulation of cancer immunity [4]. In different types 
of cancer, high levels of Treg infiltration into tumors are 
usually correlated with poor clinical outcomes [5]. How-
ever, the role of Tregs is controversial in CRC. Certain 
studies have shown that tumor-infiltrating  FoxP3+ Tregs 
are associated with a better prognosis in CRC patients 
[6–9]. Conversely, Betts et  al., found that high levels of 
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Tregs contribute to disease progression in CRC patients 
[10]. Helios serves as a marker for T cell activation and 
proliferation and its expression is required for the main-
tenance of Treg inhibitory function [11]. In CRC, Helios 
mRNA level was shown to be higher in tumor tissue in 
advance stages, suggesting their potential effects in CRC 
progression [12]. Immune checkpoints (ICs) are critical 
for immune tolerance and for tissue protection during 
inflammatory responses [13]. Tumors could modulate the 
expression of certain ICs as a substantial mechanism of 
immunological resistance [8, 13].

We have recently reported that some inhibitory ICs, 
including programmed cell death-1 (PD-1), cytotoxic T 
lymphocyte-associated antigen (CTLA-4), T cell immu-
noglobulin and mucin domain-containing protein-3 
(TIM-3), and lymphocyte-activation gene-3 (LAG-3), are 
expressed on  CD4+ T cells and play roles in CRC pro-
gression [8].

This is the first study to insightfully investigate any 
potential associations between frequencies of different 
Treg and  CD4+ T cell subsets expressing ICs with DFS in 
CRC patients.

Materials and methods
Patients and samples
This study was carried out in accordance with ethi-
cal approvals (protocol no. MRC-02–18-012) from the 
Medical Research Center, Hamad Medical Corporation, 
Doha, Qatar. Peripheral blood samples were collected 
from thirty-four CRC patients with varying disease 
stages. Thirty-two patients were eligible and included 
in the DFS analyses reported in this study. Non-malig-
nant normal tissues (NT) and tumor tissues (TT) from 
colon were obtained from 22 out of these 32 patients, 
who underwent surgery at Hamad Medical Corporation, 
Doha, Qatar. All patients were treatment naive prior to 
surgery, and they gave written informed consent prior to 
sample collection.

Clinical and pathological characteristics of these 
patients are shown in Table  1. All DFS data for the 32 
patients were collected in January 2022. Four out of the 
32 patients had disease progression, in the form of tumor 
local recurrence or development of new lymph node and/
or distant metastasis. Disease progression was assessed 
by contrast enhanced chest-abdomen-pelvis computed 
tomography (CT) scan, that was performed for patients 
on their clinical follow-up.

Multi‑parametric flow cytometry
No extra experiments were performed in this study and 
flow cytometry data of different  CD4+ T cell subsets 
were collected. Immune staining and flow cytometry 

analyses have been done as per our previously published 
article [8].

Statistical analyses
Statistical analyses were performed using GraphPad 
Prism 9 software (GraphPad Software, California, USA). 
The Shapiro–Wilk test was used to analyze normality of 
datasets. All immune cell subsets were categorized into 
low and high groups as below/above mean for normally 
distributed data, and below/above median for non-
normally distributed data. DFS was estimated using the 
Kaplan–Meier curves, and log-rank test was used to cal-
culate P values. P value of ≤ 0.05 was considered to be 
significant.

Results
Association of Tregs with DFS
Tregs are a significant subgroup of  CD4+ T cells that 
are characterized by high levels of the interleukin-2 
receptor alpha chain (CD25) and the transcription 
factor forkhead box P3 (FoxP3) [14]. Helios is a tran-
scription factor that modulates  FoxP3+ Treg functional 
stability and is needed for their inhibitory action [11, 
15–17]. We have previously measured levels of differ-
ent  CD4+ T cell subsets in PBMCs, NILs, and TILs of 
CRC patients [8]. Representative flow cytometric plots 
and percentages of the different  CD4+ Treg subsets 
have already been shown in our previous study [8]. In 
this study, we further identified the specific Treg sub-
sets contributing to the worse DFS. We found that high 
frequencies of  CD4+CD25+ T cells were not associated 
with DFS in circulation or in tissues in this cohort of 
CRC patients (Fig. 1A). When Tregs were defined based 
on FoxP3 expression as a more Treg-specific marker, a 
high Treg frequency was significantly associated with 
shorter DFS in circulation. Interestingly, a high Treg 

Table1 Characteristic features of colorectal cancer patients

CRC  Colorectal cancer, MSI-H/dMMR High MicroSatellite Instability/ deficient 
MisMatch Repair
a Samples used for analyses of tumor‑infiltrating lymphocytes

CRC patients

Number 32  [22]a

Median age [range] 61 [31–96]

Gender [Male:Female] 23:9

TNM stage
 I 5  [1]a

 II 9  [8]a

 III 15  [11]a

 IV 3  [2]a

MSI‑H/dMMR 4  [3]a
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frequency in TILs, but not in NILs as controls, was 
associated with longer DFS (Fig.  1B).  CD4+Helios+ T 
cells showed similar findings like  CD4+FoxP3+ Tregs. 
More specifically, high frequencies of  CD4+Helios+ T 
cells showed a significant association with shorter DFS 
in circulation (Fig.  1C). There were no associations 
between frequencies of these cell subsets in normal tis-
sues, as controls, with DFS (Fig. 1A-C).

Association of  FoxP3±Helios± T cell subsets with DFS
We further identified the specific Treg sub-
sets contributing to the worse DFS. We report for 
the first time, that patients with high frequency 
of  CD4+FoxP3+Helios+ Treg subset in circula-
tion had significantly shorter DFS than patients 
with low frequency of this Treg subset (Fig.  2A). 
Additionally, there were no associations between 

Fig. 1 Kaplan–Meier curves of DFS based on frequencies of  CD25+,  FoxP3+, and  Helios+ in PBMCs, TILs, and NILs. Patients with high frequencies 
of  CD25+ (A),  FoxP3+ (B), and  Helios+ (C), in  CD3+CD4+ T cells, were compared with those with low frequencies of these subsets. Patient numbers 
investigated are indicated on the survival curves for each cell population in all figures
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frequencies of both  CD4+FoxP3+Helios− Treg sub-
set and  CD4+FoxP3−Helios+ T cells in PBMCs, TILs, 
and NILs with DFS (Fig.  2B, C). High frequencies of 
 CD4+FoxP3−Helios− T cells showed a significant 
association with worse DFS in TILs, while there was 

no association between frequencies of this T cell sub-
set with DFS in circulation (Fig.  2D). Interestingly, 
we found that  CD4+FoxP3+Helios+ Treg subset and 
 CD4+FoxP3−Helios− T cell subset in the tumor micro-
environment (TME) contributed differently to the DFS 
in CRC patients (Fig. 2A, D).

Fig. 2 Kaplan–Meier curves of DFS based on frequencies of  FoxP3±Helios± in PBMCs, TILs, and NILs. Patients with high frequencies of 
 FoxP3+Helios+ (A),  FoxP3+Helios− (B),  FoxP3−Helios+ (C), and  FoxP3−Helios− (D), in  CD3+CD4+ T cells, were compared with those with low 
frequencies of these subsets
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Association of immune checkpoints with DFS
During T-cell activation, the immune system uses dif-
ferent checkpoint pathways to maintain co-inhibitory 
and co-stimulatory signals [8, 18]. Immune checkpoints 
play critical roles in the inhibition of anti-tumor immune 
responses in a variety of malignancies, including 

colorectal cancer [18, 19]. We did not find any association 
between DFS and frequencies of  CD4+PD-1+ (Fig.  3A) 
and  CD4+CTLA-4+ T cells (Fig.  3B) in PBMCs, TILs, 
and NILs. Interestingly, patients with higher frequencies 
of  CD4+TIM-3+ T cells in circulation showed signifi-
cantly improved DFS (Fig. 3C). Otherwise, there were no 

Fig. 3 Kaplan–Meier curves of DFS based on frequencies of different immune checkpoints in PBMCs, TILs, and NILs. Patients with high frequencies 
of PD‑1+(A), CTLA‑4+ (B), TIM‑3+(C), and LAG‑3+ (D), in  CD3+CD4+ T cells, were compared with those with low frequencies of these subsets
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associations between frequencies of  CD4+TIM-3+ T cells 
with DFS in tumor and normal tissues (Fig.  3C). Addi-
tionally, there were no associations between frequencies 
of  CD4+LAG-3+ T cells in PBMCs and TILs with DFS 
(Fig.  3D). We did not see any associations between fre-
quencies of these subsets in normal tissues, as controls, 
with DFS. Overall,  CD4+TIM-3+ T cells seem to be the 
most critical IC-expressing  CD4+ T cell subset contribut-
ing to DFS in CRC patients.

Association of different  FoxP3±Helios± T cell subsets 
and ICs with DFS
We then went further and identified the specific IC-
expressing Treg and T cell subsets, based on the fre-
quency of FoxP3 and Helios  (FoxP3±Helios±), which 
contribute to worse DFS. We did not find any associa-
tion between frequencies of  CD4+FoxP3+Helios+PD-1+ 
Tregs in PBMCs, TILs, and NILs with DFS (Fig. 4A). We 
report, for the first time, that CRC patients with higher 

Fig. 4 Kaplan–Meier curves of DFS based on frequencies of  CD4+FoxP3+Helios+ cells expressing immune checkpoints in PBMCs, TILs, and NILs. 
Patients with high frequencies of PD‑1+ (A), CTLA‑4+ (B), and TIM‑3+ (C), in  CD3+CD4+FoxP3+Helios+ T cells, were compared with those with low 
frequencies of these subsets
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frequencies of  CD4+FoxP3+Helios+CTLA-4+ Treg sub-
set in circulation, but not in TILs or NILs, had signifi-
cantly shorter DFS than patients with lower frequencies 
of this Treg subset (Fig. 4B). Conversely, high frequencies 
of  CD4+FoxP3+Helios+TIM-3+ Treg subset in circula-
tion, but not in TILs or NILs, were associated with bet-
ter DFS (Fig. 4C). Moreover, we found that CRC patients 
with high frequencies of  CD4+FoxP3+Helios−PD-1+ and 
 CD4+FoxP3+Helios−CTLA-4+ Treg subsets in PBMCs, 

but not in TILs or NILs, had significantly shorter DFS 
than patients with lower frequencies of these Treg sub-
sets (Fig.  5A, B). Moreover, there were no associations 
between frequencies of  CD4+FoxP3+Helios−TIM-3+ 
Treg subset with DFS in PBMCs, NILs and TILs (Fig. 5C).

Furthermore, we investigated DFS associations with 
frequencies of IC-expressing  CD4+FoxP3− T cells 
(with or without Helios expression) (Figs.  6 and 7). 
We did not find any association between frequencies 

Fig. 5 Kaplan–Meier curves of DFS based on frequencies of  CD4+FoxP3+Helios− expressing immune checkpoints in PBMCs, TILs, and NILs. 
Patients with high frequencies of PD‑1+ (A), CTLA‑4+ (B), and TIM‑3+ (C), in  CD3+CD4+FoxP3+Helios− T cells, were compared with those with low 
frequencies of these subsets
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of  CD4+FoxP3−Helios+PD-1+ Tregs in PBMCs, TILs, 
and NILs with DFS (Fig.  6A). Indeed, patients with 
high frequencies of  CD4+FoxP3−Helios+CTLA-4+ T 
cell in circulation, but not in TILs or NILs, had sig-
nificantly shorter DFS (Fig.  6B). Moreover, a high fre-
quency of  CD4+FoxP3−Helios+TIM-3+ T cells in 
circulation showed a significant association with longer 

DFS (Fig.  6C). However, there were no associations 
between frequencies of this T cell subset with DFS in 
TILs and NILs (Fig.  6C). Of note, there were no asso-
ciations between frequencies of  CD4+FoxP3−Helios− T 
cells expressing PD1, or CTLA-4, or TIM-3 with DFS 
in PBMCs, TILs, and NILs (Fig. 7). Table 2 summarizes 
associations of high frequencies of any  CD4+ Treg/T 
cell subsets with DFS.

Fig. 6 Kaplan–Meier curves of DFS based on frequencies of  CD4+FoxP3−Helios+ expressing immune checkpoints in PBMCs, TILs, and NILs. 
Patients with high frequencies of PD‑1+ (A), CTLA‑4+ (B), and TIM‑3+ (C), in  CD3+CD4+FoxP3−Helios+ T cells, were compared with those with low 
frequencies of these subsets
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Discussion
Immune cells have the ability to recognize and destroy 
cancer cells.  CD4+ T cells may target cancer cells by 
modulating the tumor microenvironment [20, 21]. 
 CD4+ T lymphocytes are predominantly T regulatory 
cells in CRC tissues, and they express several IC mol-
ecules such as PD-1, CTLA-4, TIM-3, and LAG-3 [8]. 
High levels of Treg-related markers were observed in the 
TME in CRC patients, suggesting their potential effects 

in carcinogenesis [8, 22, 23]. In contrast to other solid 
tumors, high levels of tumor-infiltrating  FoxP3+ Tregs 
were related with increased survival in CRC patients 
[9, 24]. Recent studies reported that tumor-infiltrat-
ing  CD39+ Tregs in CRC patients expressed different 
markers such as OX-40, CTLA-4 and ICOS, implicat-
ing their high immunosuppressive abilities in inhibiting 
anti-tumor immune responses [25, 26]. Correale et  al., 
showed that a higher level of  FoxP3+ T-lymphocyte 

Fig. 7 Kaplan–Meier curves of DFS based on frequencies of  CD4+FoxP3−Helios− expressing immune checkpoints in PBMCs, TILs, and NILs. 
Patients with high frequencies of PD‑1+ (A), CTLA‑4+ (B), and TIM‑3+ (C) in  CD3+CD4+FoxP3−Helios− T cells, were compared with those with low 
frequencies of these cell subsets
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tumor infiltration in CRC patients receiving chemother-
apy or chemo-immunotherapy was a favorable prognos-
tic marker [27]. Moreover, a high frequency of  FoxP3+ 
Tregs within tumor lead to a promising outcome in CRC, 
suggesting that  FoxP3+ Tregs are one of the most useful 
indicators for predicting the prognosis of CRC [7, 28–
30]. Another study found that  CD8+:FoxP3+ cell ratios 
were significantly correlated with distant-recurrence-
free survival (DRFS) in the CRC TME [31]. Also, they 
reported that high numbers of  FoxP3+ cells were associ-
ated with longer overall survival (OS) and DFS, although 
non-significantly [31]. Interestingly,  FoxP3+ T cells only 
have a positive effect on survival in colon tumors that 
have low levels of  CD8+ T-cell infiltration [32]. Another 
study found that TGF-β, which is produced by tumors, 
has been linked to an increase in the number of intra-
tumoral  FoxP3+ Tregs [33]. Moreover, they found that 
intratumoral   CD8+ T cell:FoxP3+ Treg ratio positively 
correlated with longer DFS and OS [33]. Nevertheless, 
functionally different subgroups of tumor-infiltrating 
 FoxP3+ Tregs contribute in opposing ways to determin-
ing CRC disease prognosis [6].

Importantly, it has been demonstrated that circulating 
Tregs are effective in suppressing antitumor immunity, 
leading to an adverse outcome of CRC patients [10, 34]. 
We found that higher frequencies of  CD4+FoxP3+ Tregs 
in circulation were associated with shorter DFS, impli-
cating the harmful effect of these suppressive cells in 
inhibiting anti-tumor immune responses in circulation. 
However, high frequencies of this Treg subset in the TME 
were associated with longer DFS, indicating the benefi-
cial anti-inflammatory role of  CD4+FoxP3+ Tregs in the 
TME of CRC patients.

Expression of FoxP3 was highly and positively cor-
related with the expression of Helios on T cells within 
PBMCs and TILs in cancer patients [17]. In tumor 

tissues, the majority of Tregs co-expressed both FoxP3 
and Helios, suggesting higher immunosuppressive 
potentials than cells with single expressions of FoxP3 or 
Helios [17]. Classification of  FoxP3+ Tregs into subsets 
helps to investigate Treg cell differentiation in both nor-
mal and disease conditions, as well as to alter immune 
responses by modulating specific  FoxP3+ Treg subpopu-
lations [35]. Our group has also recently proposed that 
 FoxP3+Helios+ Tregs constitute a functional subset of 
Tregs with higher suppressive characteristics [36]. Tumor 
tissues in CRC patients were characterized by high lev-
els of  Helios+ Tregs compared to PBMCs and normal 
colon tissues [24, 37], suggesting their potential roles in 
CRC progression [12]. In this study, we found that a high 
frequency of  CD4+FoxP3+Helios+ Tregs in blood was 
associated with shorter DFS, suggesting the potential role 
of this highly immunosuppressive Treg subset in inhib-
iting anti-tumor immune responses, and consequently 
worsening clinical outcomes. Importantly, it is hypoth-
esized that the TME could enhance the induction of the 
 FoxP3+Helios+ Treg subset from the  FoxP3−Helios+ 
T cell subset [17]. Interestingly, we found that high fre-
quencies of  CD4+FoxP3−Helios− TILs were significantly 
associated with worse DFS, suggesting that these cells 
could induce inflammation in CRC TME.

In TME, certain tumor ligands bind to inhibitory mol-
ecules on T cells, such as CTLA-4, PD-1, TIM-3, and 
LAG-3 and others, which in turn produce immune-sup-
pressive mediators, leading to the failure of cancer elimi-
nation [18, 38].  CD4+PD-1+ T cells were predominantly 
detectable in tumor tissues of CRC patients [39], which 
may lead to T-cell exhaustion and cancer progression 
[40, 41]. Additionally, CRC patients with high expres-
sion of PD-1 had worse TNM staging and DFS, com-
pared with those with low expression [42]. In agreement 
with these studies, we found that high frequencies of 
 FoxP3+Helios−PD-1+ were associated with shorter DFS 
in circulation. More samples might be required to deter-
mine possible associations of these subsets with DFS in 
tumor tissues.

TIM-3 is frequently overexpressed on exhausted  CD4+ 
T cells in CRC patients, suggesting this could be associ-
ated with worse prognoses [43–45]. Moreover, TIM-3 
was correlated with CRC progression and might be a pos-
sible therapeutic target [46]. Arai et al., found that TIM-3 
expression on  CD4+ T cells was significantly increased 
after CRC operation [47]. Additionally, they found that 
the production of IFN-γ was linked to TIM-3 and PD-1 
expression on  CD4+ and  CD8+ T cells, suggesting that 
TIM-3+PD-1+CD4+ and  CD8+ T cells are highly dys-
functional [47]. On the other hand, Zhang et  al., found 
that TIM-3 expression either in the primary or meta-
static tumor was associated with better progression-free 

Table 2 Summary of the significant associations of high 
frequencies of different  CD4+ T cell subsets with DFS

CD4+ T cell subsets PBMCs TILs NILs

FoxP3+ Unfavorable Favorable None

Helios+ Unfavorable None None

FoxP3+Helios+ Unfavorable None None

FoxP3−Helios− None Unfavorable None

FoxP3+Helios−PD‑1+ Unfavorable None None

FoxP3+Helios+CTLA‑4+ Unfavorable None None

FoxP3+Helios−CTLA‑4+ Unfavorable None None

FoxP3−Helios+CTLA‑4+ Unfavorable None None

TIM‑3+ Favorable None None

FoxP3+Helios+TIM‑3+ Favorable None None

FoxP3−Helios+TIM‑3+ Favorable None None
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survival (PFS) in renal cell carcinoma [48]. We found that 
high frequencies of TIM-3+ and  FoxP3+Helios+TIM-3+ 
 CD4+ T cells were associated with longer DFS in circula-
tion. Of note, most studies investigated TIM-3 expression 
in bulk tumor tissues but not on specific T cell subsets. 
This is the first study to indicate that TIM-3 expression 
on T cells is associated with better DFS in CRC.

We have previously reported that mRNA level of 
CTLA-4 in tumor tissues was increased in advanced 
stages of CRC, suggesting their possible effects in CRC 
progression [12]. Moreover, we have shown that there 
was a significant elevation in levels of  CD4+CTLA-4+ 
T cells only in PBMCs of CRC patients with advanced 
stages, suggesting that there is a relationship between 
increased levels of CTLA-4+ Tregs and CRC progression 
[8]. In this study, high frequencies of CTLA-4 expressed 
in different Treg subsets were associated with worse DFS 
in circulation. Therefore, targeting CTLA-4 on these sub-
sets might have beneficial roles in CRC.

A recent study showed that overexpression of LAG-3 
on tumor tissues was associated with worse progno-
sis in patients with microsatellite instability high (MSI-
H) colon cancer [49]. In addition, we have previously 
reported that mRNA level of LAG-3 was higher in 
PBMCs of CRC patients than those of healthy controls 
[12]. Moreover, the frequency of LAG-3 in tumor tissues 
was associated with differentiation, lymph node metasta-
sis, and invasion in CRC patients [50]. In our study, we 
found that there were no associations between frequen-
cies of  CD4+LAG-3+ T cells with DFS. Due to weak over-
all LAG-3 expression in original study [8], more samples 
are needed to investigate the role of LAG-3 in DFS in 
CRC patients.

CRC patients with mismatch repair deficiency (dMMR) 
usually have worse prognosis than patients without 
dMMR [51]. Notably, over-expressions of FoxP3, IL1β, 
IL17, TGF-β and IL6 were associated with the microsat-
ellite stability MSS phenotype [52, 53]. It has been shown 
that a high frequency of tumor-infiltrating  FoxP3+ Tregs 
predicts improved survival in mismatch repair-proficient 
CRC patients [53]. Moreover, in stage II MSS CRC, it 
has been found that low frequencies of both  FoxP3+ and 
 CD3+  TILs were associated with the highest progres-
sion risk [54]. In this study, we were not able to investi-
gate such association because only 4 CRC patients had 
dMMR (12.5% of this study cohort, as shown in Table 1); 
the percentage of dMMR patients was low as expected in 
CRC patients [55].

Our study highlights the potential of some  CD4+ 
T cell subsets as predictive biomarkers associ-
ated with worse DFS in CRC patients. Overall, high 
frequency of tumor-infiltrating  FoxP3−Helios− T 

cells, and high frequencies of circulating  FoxP3+, 
 Helios+,  FoxP3+Helios+,  FoxP3+Helios−PD-1+, 
 FoxP3+Helios+CTLA-4+,  FoxP3+Helios−CTLA-4+ 
Tregs, and  FoxP3−Helios+CTLA-4+ T cells, are asso-
ciated with shorter DFS. Targeting these immune 
cell subsets in CRC patients could improve clini-
cal outcomes. On the other hand, high frequencies 
of  CD4+TIM-3+,  FoxP3+Helios+TIM-3+ Tregs and 
 FoxP3−Helios+TIM-3+ T cells in circulation are asso-
ciated with longer DFS in CRC patients, suggesting 
that T cells expressing TIM-3 could be activated cells 
with improved anti-tumor activities.

Most available studies investigated expression of ICs 
in bulk tumor tissues but not on specific  CD4+ and 
 CD8+ T cell subsets. To date, this is the first study to 
investigate the associations of different  CD4+ Treg 
subsets and immune checkpoints-expressing  CD4+ T 
cells with DFS in CRC patients. In addition to  CD4+ T 
cell subsets in this study, we have also investigated the 
association of  CD8+ T cell subsets with DFS in CRC 
patients (Alsalman et  al., submitted for publication). 
However, multi-center investigations are required to 
confirm these findings in larger cohorts of patients. 
Moreover, additional investigations are required to 
determine the exact function of these cell subsets in the 
TME and circulation of CRC patients. Our data suggest 
that different  CD4+ Treg/T cell subsets in circulation or 
in the TME play different roles in DFS of CRC patients. 
Clearly, identification of the exact subpopulations con-
tributing to clinical outcomes is critical for prognosis 
purposes and therapeutic approaches.
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