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Abstract

Pd and Pd-Ag have recently found application in hydrogen processing

technologies, both in terms of purification membranes and isotope-separation

systems. Direct measurement of the diffusion processes in these systems is

provided by quasi-elastic neutron scattering (QENS); the timescales that can

be observed are dependent on the energy range and resolution of the instru-

mentation. Historical QENS measurements of PdH have been interpreted in

terms of single process involving nearest-neighbour jumps between octahedral

sites in the fcc lattice. The observation of an additional QENS component

arising from motion on significantly more rapid timescale has recently been

reported (Steel, 2018), whereby a localised-type motion between tetrahedral

and octahedral sites has been suggested.

The work presented in this thesis involves the calculation of pair corre-

lation functions G(r, t) from Monte Carlo simulations of diffusion in lattice

gas systems. Fourier transforming G(r, t) in both time and space yields a

scatting function S(Q, ω), comparable to that which would be obtained from

QENS measurements from diffusion. S(Q, ω) comprises, in general, a num-

ber of Lorentzian functions whose widths are related to decay-constants of

exponential functions in the intermediate scattering function, I(Q, t). The

separation of components in I(Q, t) offers a route to interpreting diffusive

motions on different time-scales.

In PdH, only jumps between octahedral and tetrahedral sites are allowed

in the Monte Carlo simulations, with the relevant interstitial site energies and

barrier heights for diffusion being included in the model. It is shown that

I(Q, t) can be interpreted in terms of two decaying exponential functions.
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The decay constant, f(Q), from the more slowly decaying exponential com-

ponent has the form of the Chudley-Elliott model, an analytical expression

based on a differential equation describing long-range diffusive motion via a

series of uncorrelated jumps. These jumps in the Chudley-Elliott model are

interpreted as translational motion via octahedral sites, but given that these

jumps are excluded within in the simulation, the actual jump path could

instead be interpreted by jumps via a neighbouring tetrahedral site, referred

to here as a Octahedral-Tetrahedral-Octahedral (O-T-O) jump mechanism.

A more rapid process is suggested to be due to jumps between Octahedral

and tetrahedral sites, where there is a much smaller residence time in the

tetrahedral sites. Its form as a function of concentration and temperature

are discussed in terms of previous experimental spectra.

Whilst the main focus of the work is to examine the effect of jump dif-

fusion processes on the QENS signal from hydrogen in PdH, diffusion of

hydrogen in the C15 Laves phase alloy ZrV2 was also examined in some de-

tail. The rationale here is that this is a system where long-range translational

diffusion and localised diffusion have been shown to coexist, and acts as a

good test for the techniques developed and presented in this work.

The PdHx system has important practical applications in the filtering

and recycling of the exhaust gasses produced in fusion reactions, which is

implemented using an alloy of palladium and silver (PdAg) in particle beds

an example of which can be seen in the exhaust processing system in the

tritium recovery plant of ITER (Glugla et al., 2006b) in which tritiated waste

products are passed through palladium-sliver permiators in multiple stages

lowering the tritium content.
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Chapter 1

Introduction

1.1 Background

Since its discovery in 1805 (Wollaston, 1805) palladium has been the sub-

ject of a wide variety of research and applications. Recently interest has

been stimulated by palladium hydride’s mechanical properties; unlike most

metallic hydrides, it retains its bulk morphology upon repeated absorption

and desorption, making it ideal for membranes and particle beds for hydro-

gen purification (Bernardo et al., 2020; Botter et al., 1988; Fukada et al.,

1995; Hatlevik et al., 2010; Yun and Ted Oyama, 2011). In addition, it can

be used in isotope separation applications, where the risk of the dispersion

of fine powders containing tritium should be avoided. This is a pivotal ap-

plication in conducting sustained nuclear fusion where exhaust gas recovery

systems play a key role (Glugla et al., 2006a,b).

Whilst the palladium hydride system has been extensively researched,

being a relatively simple system, since its discovery in 1866 (Graham, 1866),

more is still being discovered about the behavior of hydrogen diffusion in

this material. In particular, motion of hydrogen taking place on a more
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rapid timescale than has previously been observed has been reported by two

research groups (Kofu et al., 2016; Steel, 2018).

The diffusion of hydrogen in palladium is generally interpreted as oc-

curring via jumps between neighbouring octahedral interstitial sites. One

interpretation of the two timescales is due to two activation energies, where

one corresponds to jumps from the ground state, and the other to jumps from

the first excited state (Kofu et al., 2016) and more recently in 2020 (Kofu

and Yamamuro, 2020). Indeed, the occupation of hydrogen in the 1st excited

state has been suggested on the basis of Franck-Condon states, which appear

as a shoulder on the standard inelastic neutron scattering data (Kemali et al.,

2000) (Krimmel et al., 1994). Here the Franck-Condon state is as a result

of a local lattice distortion casued by the presences of hydrogen, minimising

the total energy, refereed to as ’self trapping’. This allows for a transition

between the states in the fixed ground sate, a Franck-Condon transition, the

energy of which can be different to that of a transition to an excited state.

This Franck-Condon transition however has not yet been proven and is still

under debate. A second hypothesis, from our research group (Steel, 2018),

is that the more rapid process is, in fact, due to localised hopping motion

between octahedral and neighbouring tetrahedral sites.

It is this latter hypothesis that is the motivation for the present work.

Here, Monte-Carlo simulations of hydrogen diffusion in PdHx and the sub-

sequent calculation of the QENS broadening are presented. Another system

of interest here is the C15 Laves-Phase system used here as a prototype

system where it is known that hydrogen performs both translational and

localised motion in ZrV2Hx (Schönfeld et al., 1989), and TaV2Hx (Skripov

et al., 1996). This behaviour is attributed to the geometric structure of the

intersitital sites, which form inter-connecting hexagons. Here the two types

4



of motion can be easily separated and the effect of site blocking can be seen

which has been hypothesised to occur at higher hydrogen concentrations in

palladium.

1.2 Metallic-Hydrides

Metal-hydrides are formed when hydrogen readily reacts with a metal to form

a compound that is solid at ambient conditions. These fall into a range of

categories, ionic hydrides, covalent hydrides, complex hydrides and metallic

hydrides. Complex hydrides typically contain covalently bonded hydrogen

complexes, such as NH2 and AlH4, which are ionically bonded to metal ions.

Metallic hydrides, which are of principle interest in this work, typically com-

prising transition metal elements, contain hydrogen atoms interstitially as

bare protons, with their corresponding electrons contributing to the conduc-

tion band of the metal.

Metallic hydrides are able to store hydrogen in the bulk of the material

via gaseous molecular hydrogen being split at the surface of the material

(Broom, 2011), allowing the atomic hydrogen to diffuse via available inter-

stitial sites throughout the material. The occupation of these vacant spaces

in the material is dependent on the concentration and temperature of the

system. At low concentration the occupation is random, forming a lattice

gas, usually referred to as the α phase. At higher concentrations, an ordered

hydride phase is observed, labelled the β phase (Fukai, 2005). The ordering

of the interstitial atoms is driven by a long-range elastic interaction, but is

also dependent on a short range repulsive potential between protons. This

repulsive interaction arises from the Coulombic potential, which is heavily

screened by the conduction electron in the material. At lower temperatures,
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concentration dependent phase transitions in the underlying host lattice are

often observed. A number of metal hydrides are of interest for hydrogen

storage due to their ability for rapid reversible sorption of hydrogen and the

capability to absorb hydrogen at near room temperatures and atmospheric

pressure. The most widely encountered example is LaNi5 and its derivatives.

The thermodynamics of hydrogen in metals is most often depicted by

pressure-composition isotherms, an example of which is shown in Fig. 1.1,

accompanied by an Arrhenius plot from which the gradient is related to the

enthaply and entropy of hydride formation.

Figure 1.1: Pressure-composition isotherm and Arrhenius plot of
LaNi5.(Schlapbach and Züttel, 2011)

During the low-concentration α-phase, gaseous hydrogen is randomly dis-

tributed among the host metal’s interstitial sites. As the concentration of

hydrogen within the host metal increases, H-H pair interactions play a more

important role, leading to the formation of an ordered β-phase. The α + β

phase is seen as a plateau in Fig. 1.1, the length of which determines how
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much H can be stored reversibly with small pressure variations. Above a

critical temperature Tc only a single phase of hydrogen exists for the whole

concentration range resulting in no α+β phase being present. The thermody-

namic properties of metallic hayrides can be tailored by forming inter-metallic

compounds such as LaNi5, which was one of the first compounds allowing

for hydrogen absorption and desorption at ambient temperatures and pres-

sures as a result of the combination of stable and unstable hydride forming

elements; La and Ni, respectively. (Van Vucht et al., 1970). Lanthanum re-

quires high temperatures in order to reach a reasonable desorption pressure

of 2 bar, whereas when combined with nickle forming LaNi5 this plateau

pressure for desorption is reached at 20°C compared to that of 1300°C of

lanthanum (Dornheim, 2011).

1.2.1 Hydrogen diffusion in Palladium

In the following years after its discovery it was seen that palladium possesses

the property of absorbing many times its volume of hydrogen ”1 vol. palla-

dium held 526 vol. Hydrogen” (Graham, 1866) at a maximum temperature

of 245°C. Further temperature reduction to a range of 90− 97°C was shown

to yield a greater absorption of hydrogen, ”1 vol. palladium held 643.3 vol.

Hydrogen”. Unlike other metals this absorption process does not cause a

change in the bulk morphology. Palladium has become a popular material to

work with for use in isotope separation beds and the study of the behaviour

of hydrogen and its isotopes within a metal due partly to its very simple

structure.

Palladium hydride has been extensively researched in the past via differ-

ent experimental techniques, indicating that the occupancy of hydrogen in

octahedral sites (O-sites), for example from neutron diffraction experiments
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β-phase PdH (Worsham Jr et al., 1957). Although contrasting claims of

tetrahedral occupation have been suggested by some (Davis, 1954) and most

recently by Kofu et al (2016), who speculated tetrahedeal occupation in nano

particles of palladium hydride at layers close to the surface of the particle.

Here, the tetrahedral sites can be occupied due to them becoming stabilised

however not as stable as the octahedral sites producing a metastable state.

There have been a number of comprehensive literature reviews on the sub-

ject of hydrogen in palladium such as Flanagan and Oates (1991), Wicke

et al wicke1978hydrogen and F.A Lewis’s Book ’The Palladium Hydrogen

System’(1967; 1982; 1996).

Initial measurements of the diffusion of hydrogen in palladium were car-

ried out in 1966 by Skold and Nelin (1966) with Quasi Elastic Neutron Scat-

tering (QENS) on α− phase palladium hydride. Fig. 1.2 shows the results

of these measurements, where the half widths half maximums of lorentizians

resulting from QENS broadening of the elastic delta function (Fig 1.4) are

plotted, with curves predicted by an octahedral jump model.
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Figure 1.2: Observed widths from QENS data presented by Skold and Nelin
(1966) for hydrogen in palladium, where the solid lines are from an octahedral
jump model and the dashed line from a tetrahedral jump model

This stimulated further investigations in the behavior of hydrogen. Beg

and Ross (1970) shortly after produced work on the β − pahse palladium

hydride. Recent developments have caused a resurgence in the research of

the PdH system due to the hypothesis of the existence of multiple types

of motion being undertaken by absorbed hydrogen atoms in the palladium

lattice. Work produced by Kofu et al. (2020; 2016) regarding both hydrogen

dynamics in bulk of palladium has suggested that the motion taking place

on a more rapid time scale is a result of the hydrogen atom making a jump

from the first excited state via the octahedral-tetrahedral-octahedsral (O-T-

O) jump path to a nearest neighbour vacant octahedral site’s first excited

state, shown schematically in Fig. 1.3.
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Figure 1.3: A schematic representation of the two suggested diffusion pro-
cesses by Kofu et al (2016)

Steel (2018) reported results from QENS in PdH, both powdered and foil

samples. There was some evidence of a broad Lorentzian component in the

QENS data, although the experiments were inconclusive. This is attributed

to the fact that a broad Lorentzian component could appear as a flat back-

ground if the energy window is not sufficiently large. This effect is illustrated

schematically in Figs. 1.4 and 1.5, which show the same scattering functions

but over two energy transfer windows. In both figures, the blue dotted line

would originate from motion on a more rapid timescale than from the dashed

red line. In 1.4, the blue dashed line clearly has a Lorentzian form, whereas

in Fig. 1.5, it could be mistaken as a flat background contribution. Fig. 1.6

shows the jump mechanism in which a diffusing hydrogen moves between oc-

tahedral sites via a tetrahedral site along a direction of (1,1,1). This pathway
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is easier the hydrogen atom as the potential barrier and therefore activation

energy is much lower than that between neighbouring octahedral sites along

the vector (1,1,0).

Figure 1.4: Schematic representation of a quasi-elastic scattering arising from
motion on two distinct time-scales measured at fixed momentum transfer.
The solid line is a sum of the two Lorentzians, broad (dot) and narrow (dash).
The shaded area represents a smaller energy transfer window, related to Fig.
1.5.
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Figure 1.5: Schematic representation of a quasi-elastic scattering arising from
motion on two distinct time-scales measured at fixed momentum transfer.
The solid line is a sum of the two Lorentzians, broad (dot) and narrow
(dash). The energy transfer range corresponds to the shaded area of Fig.1.4.
Here, the broader Loerntzian component (dot) could be mistaken from a flat
background contribution

Figure 1.6: Representation of proposed possible jump paths (Steel, 2018).
where jumps are shown from the ground sate for both the octerhedral and
tetrahedral sites, the dashed line represents the proposed localised motion.
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Being the subject of many neutron scattering experiments, the octahe-

dral to octahedral jump that is consistently seen in results can be well rep-

resented by the Chudley-Elliott model for octahedral to octahedral jumps

on a face-centred cubic lattice (Chudley and Elliott, 1961) as such much

has already been learned about the nature of this jump. One of the pieces

of information gained from this is the diffusion coefficient D0, reported as

D = 6.1x10−3exp(−(5990cal./mol)/RT)cm2sec−1 (Simons and Flanagan, 1965),

where 5990cal/mol is the activation energy. A variety of other methods exist

for finding the diffusion coefficients, for example Nuclear Magnetic Resonance

on both α and β phase palladium and Palladium-silver alloys (Cornell and

Seymour, 1975)(Davis et al., 1976) and Molecular dynamics (MD) calcula-

tions using the Embedded Atom Model (EAM) (Li and Wahnström, 1992).

Here however, the interest of this work is on a larger time scale, with a

greater focus on the transitional probabilities of the diffusion of hydrogen

atoms, rather than the specifics of the jump mechanisms themselves, for

which molecular dynamics (MD) simulations are more suited. The Monte-

Carlo simulations are motivated by examining the possibility of the presence

of the rapid localised motion suggested in the experimental data (Steel, 2018)

and how this could be affected by the concentration of the system; it is

believed that at higher concentrations the localised motion would become

more pronounced due to site blocking of the octahedral sites.

With the increase in computing power using Monte-Carlo (MC) simula-

tions and ab-initio calculations has become increasingly common, with the

aim of the latter determining properties such as lattice constants and zero-

point energies of interstitial sites by using Density Functional theory. Work

produced by C. Elsasser, et al (1991) using pseudopotentials to calculate the

total energies for hydrogen in palladium gave a picture of the single crys-
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tal diffusion paths possible, along with the energies of the tetrahedral sites

relative to the octahedral sites and as a result the barrier height energies,

Fig. 1.7. Recent work by Hajime Kimizuka et al (2018) with palladium

hydride where site energies and barrier height energies were presented and

Erich Wimmer et al (2008) with hydrogen isotopes in nickel used transi-

tion state theory in order to locate the saddle point between interstitial sites

which all lie along a minimum energy pathway (MEP). The energy of these

saddle points determines how easily an atom in a interstitial site can jump

to a vacant site on the opposite side of the saddle point. Data for the barrier

heights calculated with this method is used in the Monte-Carlo calculations

to calculate the probability of atoms being able to jump between available

sites. However the finer details of these calculations will not be tackled in

this piece of work.
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Figure 1.7: Energy displacement curves showing the saddle points between
Octahedral and Tetrahedral sites for PdH and Pd4H (Elsässer et al., 1991)
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1.3 Research Aims and Objectives

The main aim of the current work is to apply an existing frame-work for

calculating neutron scattering functions via Monte-Carlo simulation (Bull

and Ross, 1999a, 2001) to diffusion among the octahedral and tetrahedral

sites in a face-centered cubic host lattice. One of the particular issues is

the comparison of simulated data with experimental data, which is generally

obtained for polycrystalline samples. In this case, directionally averaged

scattering functions are required.

The research objectives are:

1. Development of code to calculate the static scattering function, S(Q)

and the intermediate dynamic scattering function, I(Q, t), via Fourier

transform of the real-space pair-correlation functions obtained from

Monte-Carlo simulation, produced using the pre-existing code named

GRT (Bull, 2001; Bull et al., 2003), described in Section 3.2;

2. Development of the methodology for producing and interpreting spher-

ically averaged scattering functions

3. Examine the case of localised motion in the C15 system ZrV2H

4. Hypothesis testing of two-timescale diffusion models of Kofu et al.

kofu2016hydrogen and Steel SteelSA2018Sotp using extreme cases for

jump-rates;

5. Use of input parameters for interstitial site energies and diffusion bar-

riers from Density Functional Theory (DFT) work;
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1.4 Thesis Synopsis

Chapter 2: Diffusion in a Lattice Gas. An overview of the nature

of neutron scattering with a focus on quasi-elastic neutron scattering from a

lattice gas and corresponding analytical models is given.

Chapter 3: Monte-Carlo Simulations of a Lattice Gas. Details the

Monte-Carlo methods applied to diffusion in a lattice gas are given, along

with a description of the programme ’GRT’ and a guide to its operation.

Post-processing of the output of GRT is described, including the format of

the pair-correlation functions produced by the GRT programme and how

they are interpreted using a suite of developed python scripts to arrive at the

widths of S(Q, ω)

Chapter 4: The C15 Laves-phase System (ZrV2Hx). Details on the

structure and characteristics of the intermetallic compound ZrV2Hx are pre-

sented, followed by a series of results obtained from Monte-Carlo calculations

of the self pair correlation functions, demonstrating the presence of motion

on multiple time scales.

Chapter 5: The Palladium Hydride System (PdHx). As an exten-

sion from the data in Chapter 5, the details of the palladium hydride system

are outlined along with its structural characteristics, followed by significant

results suggesting that the motion of diffusing hydrogen can be interpreted

on two different time scales; rapid and slow types of motion in both the

polycrystaline and single crystal cases.

Chapter 6: Concluding Remarks and Further Work. The key

results found in the presented work for both PdHx and ZrV2Hx are reviewd

and outlined, with comparisons to previously reported results and possible

future extensions to further describe each system.
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Chapter 2

Diffusion in a Lattice Gas

The work presented in this thesis concerns Monte Carlo simulation of diffu-

sion in lattice gas systems. This chapter starts with an overview of diffusion

(Section 2.1) followed by a discussion of its interpretation in terms of time-

dependent pair correlation functions, G(r,t), and subsequent production of

scattering functions by Fourier transform (Section 2.2). In later chapters,

these scattering functions are interpreted in terms of equivalent results that

would be obtained from quasielastic neutron scattering (QENS) experiments;

Section 2.3 contains a description of neutron scattering to a level of detail

that is necessary to understand the interpretation of the simulation data,

a more detailed approach can be found in G.L. Squires book (1996 - 1978)

. Finally, Section 2.4 discusses various analytical models for interpreting

QENS in terms of quantites that can be compared to results obtained from

the Monte-Carlo simulations.
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2.1 Particle diffusion

In a lattice gas model, a diffusing species moves between spatially well-defined

positions. In a metallic hydride, the host lattice defines a potential through

which the diffusing species moves through via a series of jumps between in-

terstitial sites. Here, there are a number of possible diffusion mechanisms,

from quantum effects such as tunneling and phonon assisted tunneling in the

low temperature range to thermally activated diffusion at higher tempera-

tures. If the motion is thermally activated, the temperature dependence of

the diffusion rate can be described by an Arrhenius law,

D(T ) = D0 exp

(
−Ea
kBT

)
. (2.1)

There are essentially two ways of describing particle diffusion: chemical

diffusion and tracer diffusion.

Following Fick (1855), chemical diffusion, relies on a concentration gra-

dient, ∇c, and works by describing the local fluctuation in particle density

from an average value, whereby the flux of particles passing through an area

per second, J, is proportional to the concentration gradient, being related by

the chemical diffusion coefficient, Dchem,

J = −Dchem∇c. (2.2)

Tracer diffusion, or self-diffusion, (Einstein, 1905; Langevin, 1908; Smolu-

chowski, 1906) is where distinguishable particles are tagged and their dis-

placement is measured from their origin. Self-diffusion describes the mean

squared displacement of such particles, and can be quantified via the prob-

ability of finding a particle within a small volume element dr at a point

in space and time, P (r, t). The time evolution of the probability is then
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described by the following differential equation, (Squires, 1996 - 1978)

∂P (r, t)

∂t
= Dt∇2P (r, t). (2.3)

Here, Dt is the tracer diffusion coefficient. For the initial condition

P(r, 0) = δ(r), which is a delta function at the origin at t=0, the solution

takes the form of a Gaussian with a width related to the mean squared dis-

placement,

〈
r2(t)

〉
= 6Dtt. (2.4)

2.1.1 Random Walk

The process of particle diffusion can be described by means of a random walk

process (Markov, 1912), whereby the probability of a particular sequence of

N uncorrelated events moving the system from configuration xn to xn+1, e.g.

particle jumps in a stochastic process, is given by,

PN(x1, x2, ..., xN) = P1(x1)P1(x2)...P1(xN). (2.5)

The idea of a random walk can be used to produce a Markovian chain

that describes the evolution of the spatial probability distribution. In a

Markovian process, the probability of a transition from state x to a new

state x′ is considered. In relation to diffusion, the states x′ are determined

by the set of allowed jumps.

PN(x1, x2, ..., xN) = P1(x1)T (x1 → x2)T (x2 → x3)...T (xN−1 → xN). (2.6)
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When time is taken into consideration, the probability of configuration

becomes P (x, t), so for a continuous time scale we arrive at a differential

equation for the rate of change of the probability.

∂P (x, t)

∂t
= Σx′T (x→ x′)P (x, t) + ΣxT (x′ → x)P (x′, t). (2.7)

Note that, in a steady state, the rate-of-change of P(x,t) is zero, and so,

T (x→ x′)P (x, t) = T (x′ → x)P (x′, t). (2.8)

As an example, Gissler and Rother (1970) considered P (r, t) for a single

particle as an infinite series of n displacements, which is the self correlation

function Gs(r, t).

Gs(r, t) =
∞∑
n=1

Pn(r)Tn(t). (2.9)

The time dependent component Tn(t), which is the probability of the nth

jump occurring at a time t, is determined here by a Poisson distribution,

Tn(t) =
(λt)n

N !
exp(−λt). (2.10)

Here, λ is equal to the inverse of the jump rate, τ . In order to compare

with scattering experiments, it is necessary to take the Fourier transform

over both time and space to give a scattering function, S(Q, ω), via an in-

termediate scattering function.

IS(Q, t) = exp−[1− (F (Q))t/τ ] (2.11)

Here, following the convention in neutron scattering, we define Q = k′−k,

which is commonly referred to as the momentum transfer. The solution to
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Eqn. 2.9 from a spatial and temporal Fourier transform yields a Lorentzian

with a width [1− f(Q)]/τ .

S(Q, ω) =
1

π

(1− F (Q))τ

[(1− F (Q))]2 + τ 2ω2
. (2.12)

In the next section, time-dependent pair correlation functions, G(r,t)

and the corresponding scattering functions, S(Q, ω) will be considered in

detail. The subsequent section discusses the relation of S(Q, ω) to neutron

scattering.

2.2 Pair-Correlation Functions

Whilst the main focus of the work presented here concerns time-dependent

pair distribution functions, a useful starting point is to consider static pair

correlation functions, which are related directly to structure factors obtained

from diffraction measurements.

2.2.1 The Static Pair Correlation Function

The static pair correlation, g(r), defines the probability of finding a particle

at position r relative to a particle at the origin,

g(r) =
1

N

N∑
i

N∑
j 6=i

〈δ(r−Rij)〉. (2.13)

g(r) =
1

N

N∑
i

N∑
j 6=i

〈δ(r−Ri + Rj)〉. (2.14)

Here, summations run over atoms in a particular configuration, whilst

the triangular brackets indicate a thermal average over configuration space.
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It is often convenient to take the spherical average of Eqn. (2.14), giving

a radial distribution function, as commonly used in relation to liquid and

amorphous materials. Fig. 2.1 shows a schematic of the radial distribution

function from an ideal gas and a solid. For an ideal gas, where there is very

little spatial order, beyond a certain radius the pair correlation function will

be constant value. Conversely, for a crystalline lattice where atoms have well

defined positions and spacing, the pair correlation function comprises sharp

peaks corresponding to the correlation in position between pairs of atoms.

Figure 2.1: Schematic representation of pair correlation function (radial dis-
tribution function) for an ideal gas and an ordered solid. The latter is shown
convoluted with an experimental resolution function. (Liao, 2006)

In an ordered solid, g(r) has sharp peaks at radial distances from the

origin correlating with the nearest neighbours to the atom positioned at the

origin. The formation of a pair correlation function for a square lattice is

shown in Fig. 2.2. A r increases, peaks are associated with subsequent sets

of nearest neighbours, with the intensity relative to the number of nearest

neighbour atoms. The difference in intensity can be seen clearly between the

3rd and 4th nearest neighbour atoms, having 4 and 8 respectively.
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Figure 2.2: Formation of the radial distribution function from successive
neighbour shells in a square lattice. (Liao, 2006)

In Fig. 2.3, pair correlation functions are shown for a periodic lattice and

for an amorphous structure, where there is only short-range order present.

In a lattice gas, there is typically a superposition of short-range ordering on

top of an ordered lattice, shown schematically in Fig.2.4.

Figure 2.3: schematic of a radial pair correlation function for an ordered
structure and an amorphous structure. (Hu, 2015)
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(a) Non-interacting lattice gas (b) Lattice gas with inter-particle interactions

Figure 2.4: Schematic of the pair correlation function in a particular direction
from a lattice gas. Note that the value at the origin has been included here,
which is unity, by definition.

The Fourier transform of the pair correlation function yields the structure

factor S(Q). In terms of a lattice gas, one is generally concerned with the

deviation from the average concentration, so the structure factor is evaluated

as

S(Q) = 1 + A
∑
i,j 6=i

[g(ri,j)− c] exp [iQ · ri,j]. (2.15)

2.2.2 Time Dependent Pair Correlation Functions

In the classical regime, the time dependent pair correlation function, G(r, t),

often simply referred to as the pair correlation function, is as a natural ex-

tension of the static pair correlation function g(r) (Van Hove, 1954). Here

the spatial correlation of a given particle with itself becomes important. The

total pair correlation function is defined as the probability of finding a parti-

cle at position r at time, t from an origin that was populated by any particle

at t = 0. Equation 2.14 then becomes,
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G(r, t) =
1

N

N∑
i=1

N∑
j=1

〈δ(r−Ri(0) + Rj(t))〉. (2.16)

The total pair correlation function can be separated into a ’self’ and a

’distinct’ part,

G(r, t) = GS(r, t) +GD(r, t), (2.17)

such that

G(r, t) =
1

N

[
N∑
i=1

〈δ(r−Ri(0) + Ri(t))〉+
N∑
i 6=j

〈δ(r−Ri(0) + Rj(t))〉

]
.

(2.18)

The self correlation function represents the probability of finding particle

i at t given it was at the origin at t = 0. The distinct correlation function

is then the probability of finding a different particle j at t to that of particle

i that was at the origin at t = 0. Note that, at t = 0 the distinct pair

correlation function reduces to the static pair correlation function g(r).

As will be discussed in the next section, the correlation functions of in-

terest when comparing with quasi-elastic neutron scattering measurements

are the self correlation function, Gs(r, t) and the total correlation function,

G(r, t). The typical evolution of these two functions for a lattice gas on non-

interacting particles are shown in Fig. 2.5. For the self correlation function,

there is a delta function at the origin at zero time, which spreads out with

time. For the total correlation function, there is also a contribution equal to

the average concentration of the lattice gas, c, at every non-zero value of r.

The delta function at the origin at t=0 spreads out with time, such that the

evolution of G(r, t) as t >> 0 is towards the average concentration, c.
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Figure 2.5: Schematic of a Self pair correlation function (left hand column)
and the total pair correlation function (right hand column) at t = 0, t >0
and t >>0
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By analogy with Eqn. (2.15), a scattering function, S(Q, ω), can be

defined that is the spatial and temporal Fourier transform of the time-

dependent pair correlation function G(r, t).

S(Q, ω) = A

∫ ∞
−∞

∫
r

G(r, t) exp [i(Q · r− ωt)]drdt. (2.19)

It is convenient to define an intermediate scattering function, I(Q,t). This

can be obtained either from G(r,t) or S(Q, ω), respectively:

I(Q, t) = A

∫
r

G(r, t)eiQ·rdr, (2.20)

I(Q, t) = A

∫ ∞
−∞

S(Q, ω)e−iωtdt. (2.21)

In general, for particle diffusion, the intermediate scattering function is in

the form of an exponential decay, with the corresponding scattering function

S(Q, ω) in the form of a Lorentzian. The decay constant for the exponential

in I(Q, t) is directly related to the Lorentzian width. This provides a useful

point for comparison between Monte-Carlo data and QENS data. It is worth

considering here that a rapidly decaying exponential term, i.e. over a short

time scale, corresponds to a broad Lorentzian component, i.e. a large fre-

quency or energy. The relationship between the various functions is shown

schematically in Fig. 2.6.
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Figure 2.6: Schematic representation of the Fourier transform from interme-
diate scattering function to the scattering function, S(Q), ω), beginning at
G(r, t).
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2.3 Neutron Scattering

Neutrons are an ideal probe of dynamics in condensed matter, owing to them

having a wavelength comparable to atomic spacing and energies of the order

of atomic and molecular excitation. A moderator at T = 300 K produces

thermal neutrons with average energies kBT = 0.025 eV, corresponding to a

wavelength λ = 1.78 Å. This offers the possibility of examining spatial and

temporal characteristics simultaneously enabling, for example, measurement

of the spatial dependence of diffusion dynamics and of phonon dispersion.

Neutrons incident on a scattering system will have a wave vector k and

energy E. A scattered neutron can experience a change in both momentum

and energy, resulting in a detected wave vector k′ and an energy of E ′. It

then becomes convenient to define the change in wave vector, commonly

known as the momentum transfer, as Q = k′ − k and the energy transfer as

∆E = E ′ − E.

Figure 2.7: Geometry of a neutron scattering measurement
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2.3.1 Scattering Cross Sections and Scattering Lengths

The probability of a neutron interacting with a nucleus can be expressed in

terms of a cross-section, which can be thought of as an effective area presented

to the neutron, usually expressed in barns, 10−28 m2. The total cross-section

is a sum of the absorption cross-section and the scattering cross-section. In

this discussion, only the latter will be considered.

The scattering cross section is defined as the rate of reaction per nuclei

in a unit of incident neutron flux, Φ

σ =
[Total number of neutrons scattered per unit time]

Φ
. (2.22)

The differential scattering cross-section measures the angular dependence

of scattered neutrons, giving a measure of the number of neutrons scattered

by the system per second into a small solid angle, dθ in a given direction

dσ

dΩ
=

[Number of neutrons scattered per unit time into dΩ in direction θ, φ]

ΦdΩ
.

(2.23)

The double differential cross section extends the differential cross section

to measure the a final neutron energy between that of its original plus a small

amount of energy gain or loss divided by the incident neutron flux.

d2σ

dΩdE ′
=

[
Number of neutrons scattered per unit time into dΩ in

direction θ, φ with final energy between E ′ and E ′ + dE ′

]
ΦdΩdE ′

(2.24)
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The three cross-sections are related by integration:

dσ

dΩ
=

∫ ∞
0

( d2σ

dΩdE ′

)
dE ′ (2.25)

σ =

∫
all directions

( dσ
dΩ

)
dΩ (2.26)

A neutron will interact with a nucleus via both nuclear and magnetic

forces. The latter is not considered in this work, whilst the former has a very

short range compared to the typical neutron wavelength. The important con-

sequence of this difference in length scales, some five orders of magnitude,

means that the scattering can be considered as isotropic and can be charac-

terised by a single parameter, b, the scattering length. The scattering length

is, in general, complex, with the imaginary part corresponding to adsorption

and the real part to scattering. The real part can be positive or negative,

depending on the attractive or repulsive nature of the interaction.

Figure 2.8: Incident plane wave scattering isotropically from a scattering
center (Pynn, 2009)
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If the nucleus is at a position Ri and the neutron at r, the Fermi pseu-

dopotential is defined

V (r) =
2π~2

m
biδ(r−Ri). (2.27)

Far from the nucleus, the Fermi pseudopotential causes the same scatter-

ing as the actual interaction.

Unlike X-rays, which scatter from the electrons in atoms, neutrons inter-

act with the nucleus, meaning that different isotopes and nuclear spin states

can have different scattering lengths. The interaction depends not only on the

nature of the nucleus, but also on the total spin state of the nucleus-neutron

system.

The average over all the isotopes and spin states is called the coherent

scattering length,

bcohi = 〈bi〉 . (2.28)

The incoherent scattering length is defined as the root mean square de-

viation of bi from the average value,

binci =
[〈
b2
i

〉
− 〈bi〉2

]1/2
(2.29)

The bound cross sections are then defined as

σcoh = 4π 〈b〉2 , (2.30)

and

σinc = 4π
[〈
b2
i

〉
− 〈bi〉2

]
. (2.31)
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The coherent scattering is just the average value, and gives information

about the correlation between different atoms. It is the coherent cross section

that is used to describe interference effects such as diffraction. The incoherent

scattering is that due to the randomness of the system and has no equivalence

in X-ray scattering. It only shows interference effects between the same atom

at different times. The scattering from different atoms has random phases

and cancels out.

Mainly in this work the scattering nuclei of interest are hydrogen, which

have a significantly larger incoherent scattering cross section than its cor-

responding coherent cross section. Furthermore, it is generally significantly

larger than the cross sections of other elements. This means that neutron

scattering is an ideal tool to observe the motion of hydrogen in a scattering

system.

Nucleus σinc σcoh

H 80.2 1.8

D 2.0 5.6

Pd 0.093 4.39

V 0.018 5.08

Zr 0.02 6.44

Table 2.1: Coherent and incoherent scattering cross sections for the elements
of interest in this work

Deuterium’s (D) cross sections are also shown in Table 2.1. D has has

uses in structural studies, due to the fact that hydrogen has a particularly

large incoherent scattering cross section, and thus produces a background

that makes analysis difficult.
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2.3.2 Elastic Scattering

If there is no energy transferred between a neutron and the scattering system

the resulting scattering is known as elastic. For neutrons, which have ener-

gies similar to atomic and molecular transitions, elastic scattering is often

approximated by effectively integrating over all energies for a given angle,

as per Eqn. (2.25). If the scattering system is an ordered structure, elastic

scattering would result in a strong, well defined Bragg peaks.

In order to describe the scattering process, it is necessary to consider the

initial, k and final, k′, states of the neutron. Here, if both the incident and

the scattered neutrons can be considered as plane waves, the differential cross

section is the absolute square of the Fourier transform of the potential. For

a single nucleus, this gives

dσ

dΩ
=
( m

2π~2

)2

|〈k′|V |k〉|2 =
( m

2π~2

)2
∣∣∣∣∫ V (r)eiQ·rdr

∣∣∣∣2 . (2.32)

For a collection of nuclei, and inserting the Fermi pseudopotential,

dσ

dΩ
=
∑
i,j

bibje
i(Q·(Ri−Rj)). (2.33)

Under the assumption that there is no coupling between the scattering

length of each nucleus and its position, the average can be performed inde-

pendently of the spin states and on the nuclear locations, and we can seperate

into coherent and incoherent terms

dσ

dΩ
=
N

4π

[
σinc + σcoh

∑
i,j

ei(Q·(Ri−Rj))

]
. (2.34)
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The coherent cross section is then related to S(Q).

(
∂σ

∂Ω

)
coh

=
σcoh
4π

NS(Q). (2.35)

2.3.3 Inelastic Scattering

Inelastic neutron scattering (INS) can occur from a range of processes across

several orders of magnitude in energy, as shown schematically in Fig. 2.9.

Figure 2.9: The types of scattering associated with Inelastic neutron scatter-
ing with their respective time and energy ranges (Parker and Collier, 2016)

INS from molecular vibrartions, both optical and acoustic, occurs when

’thermal neutrons’, typically in the energy range of 10-100 meV, are used

(Giustino, 2014). Here, quanta of energy are transferred between the incident

neutron and system; the scattered neutron will have either a gain or loss in

energy. This type of scattering is used to for vibrational spectroscopy.

The double differential cross section, by analogy with Eqn. (2.32), can

be written (Van Hove, 1954).
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∂2σ

∂Ω∂ω
=
k′

k

1

2π

∑
i

∑
j

∫ ∞
−∞
〈bibj exp (iQ ·Ri(t))

exp (−iQ ·Rj(0))〉 exp (−iωt) dt (2.36)

A derivation is not given here, but a good account is given by Bée (1988).

Again, assuming no coupling between scattering length and position, the

expression can be broken down into a coherent and an incoherent part

∂2σ

∂Ω∂ω
=

(
∂2σ

∂Ω∂ω

)
coh

+

(
∂2σ

∂Ω∂ω

)
inc

. (2.37)

In the case of a single isotope, the double differential cross section can be

written

∂2σ

∂Ω∂ω
=

1

4πN

k′

k
[σcohS(Q, ω) + σincS(Q, ω)] . (2.38)

The scattering functions are the temporal Fourier transforms,

S(Q, ω) =
1

2π

∫ ∞
−∞

I(Q, t) exp(−iωt)dt, (2.39)

and

Sinc(Q, ω) =
1

2π

∫ ∞
−∞

Iinc(Q, t) exp(−iωt)dt. (2.40)

The corresponding intermediate scattering functions are

I(Q, t) =
1

N

∑
i

∑
j

〈exp (iQ ·Ri(t)) exp (−iQ ·Rj(0))〉 , (2.41)
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and

Iinc(Q, t) =
1

N

∑
i

〈exp (iQ ·Ri(t)) exp (−iQ ·Ri(0))〉 . (2.42)

Finally, we can take a further Fourier transform in space, to give the time

dependent pair correlation functions

G(r, t) =
1

(2π)3

∫
I(Q, t) exp(−iQ · r)dQ (2.43)

G(r, t) =
1

N

∑
i

∑
j

∫
〈δ (r′ −Ri(0)) δ(r′ + r−Rj(t))〉 dr′ (2.44)

GS(r, t) =
1

(2π)3

∫
Iinc(Q, t) exp(−iQ · r)dQ (2.45)

GS(r, t) =
1

N

∑
i

∫
〈δ (r′ −Ri(0)) δ(r′ + r−Ri(t))〉 dr′ (2.46)

The expression given here for the pair correlation functions involve posi-

tional operators, which in general do not commute, except for t = 0. However,

under the assumption that we can treat the system classically, the expressions

in Eqn. 2.18 are recovered.

Both the total and self correlations functions considered in the previous

section can be related to two forms of scattering function produced from

QENS, the coherent scattering function and incoherent scattering function

respectively.
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When considering the total pair correlation function G(r, t) the Fourier

transform in both space and time yields the coherent scattering function,

Scoh(Q, ω) = A

∫ ∞
−∞

∫
r

G(r, t)ei(Q·r−ωt)drdt. (2.47)

On the other hand the self correlation function Gs(r, t) is related to the

incoherent scattering function,

Sinc(Q, ω) = A

∫ ∞
−∞

∫
r

Gs(r, t)e
i(Q·r−ωt)drdt. (2.48)

2.3.4 Quasi-Elastic Neutron scattering

Quasi elastic neutron scattering originates from interactions with particles

diffusing over a time scale of about 10−10 to 10−12s. This corresponds to

energy transfer ranges in the range ±2meV , producing a broadening of the

elastic line.

Fig. 2.10 is a (highly) schematic representation of scattering from differ-

ent processes in a simple interstitial metallic hydride, such as PdHx. In a real

system, the features would be convolved with the instrumental resolution.

The top figure is over the larger energy-transfer range, where optical vibra-

tional peaks can be seen at ±58meV . At lower energy transfers, an intensity

arriving from the acoustic phonon modes of the host lattice is shown. This

will typically be much weaker than the signal from the hydrogen. Finally,

one can see the elastic peak at zero energy transfer. Quasi-elastic broadening

is also shown in red, but is barely discernible from the elastic peak. The bot-

tom plot in Fig. 2.10 is zoomed-in, and clearly quasi-elastically broadened

signal, which is Lorentzian in form.
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Figure 2.10: Schematic of neutron scattering from an interstitial metallic
hydride. Energy values are representative of PdHx
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When the motion of particles is unrestricted and purely long range i.e.

the absence of trapping sites, such as in hydrogen in metals, only the quasi-

elastic broadening will be observable with no elastic peak from hydrogen.

However, if this motion is spatially confined by geometry, i.e. by site block-

ing effects or for hydrogen rotation in a molecular complex, the resulting

scattering function will be a combination of the elastic δ-function and the

quasi-elastic components. The scattering functions and corresponding in-

termediate scattering functions arising from translational and from localised

diffusion are shown schematically in Fig. 2.11.

Figure 2.11: Schematic of the long range and restricted diffusion scattering
functions with the intermediate function, from a Fourier transform in time.
(Demmel, 2013)

QENS is sensitive to the instrumental energy resolution, related to the

time scale in which the motion is taking place by the Heisenberg uncertainty

principle. As a result, the slower the motion of diffusing atoms, the higher a

resolution is required. If motion occurs within the available energy-transfer

window, typically 10−3−10−8 m−1, the δ-function (elastic peak) will become
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quasi-elastically broadened. This would correspond to particle motion on a

time scale between 10−8 − 10−13 seconds.

2.4 Analytical Models for QENS

The first analytical model of QENS was given by Chudley and Elliott (1961),

which relates to self diffusion in the low concentration limit. This was gener-

alised to non-Bravais lattices by Rowe et al. (1972). Ross and Wilson (1978)

considered the expression for the coherent scattering function from collective

diffusion, the main result being that the quasi-elastic broadening, f(Q) is in-

dependent of concentration. Sinhar and Ross (1988) extended this to include

the effects of inter-particle interactions in the mean-field limit using linear

response theory. Barnes (1973) provided a generalised model describing the

case of a particles diffusing amongst sites on a circle, producing a correspond-

ing spatially bound scattering function including both a quasielastic and an

elastic contribution.

2.4.1 QENS from Translational Diffusion

An expression for the time evolution of the probability of site occupancy was

presented by Chudley and Elliott via a differential equation. If the diffusion

occurs on a Bravais lattice, the rate of change of occupational probability,

P (r, t), between site r and the neighbour site r + l can be written

∂P (r, t)

∂t
=

1

nτ
Σl [P (r + l, t)− P (r, t)] , (2.49)

where τ is the mean residency time, which is assumed the same for all

sites, and the summation is over the set of vectors linking a site to its nearest
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neighbours. In the model, the initial condition is such that P (r, 0) is a δ-

function at r = 0

P (r, 0) = δ(r). (2.50)

Note that, in this case, P (r, t) is equivalent to the self pair-correlation

function Gs(r, t).

Solution of Eqn. (2.49) is best approached by Fourier transform. This

can be performed in two steps, firstly to obtain the intermediate scattering

function,

Iinc(Q, t) =

∫
r

Gs(r, t)e
iQ·rdr, (2.51)

which when applied to Eqn. (2.49) gives

∂Iinc(Q, t)

∂t
=

1

nτ

∑
l

[
e−iQ·lIinc(Q + l, t)− Iinc(Q, t)

]
. (2.52)

The solution is

Iinc(Q, t) = e−f(Q)t, (2.53)

where f(Q) is the decay constant.

f(Q) =
1

nτ
Σl

(
1− e−iQ·l

)
. (2.54)

A further Fourier transform in time yields the scattering function, which

has the form of a Lorentzian with a half width half maximum (HWHM) that

is given by the decay constant in Eqn. (2.54).

Sinc(Q, ω) =
1

π

f(Q)

f 2(Q) + ω2
(2.55)
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Eqn. 2.55 is equivalent to Eqn. 2.12 with f(Q) = [1− F(Q)]/τ .

For jump diffusion on an fcc lattice, the expression for f(Q) becomes

(Appendix C):

f(Q) = 1− 1

3
(cos(πQx) cos(πQy)

+ cos(πQx) cos(πQz)

+ cos(πQy) cos(πQx)) (2.56)

Where,

Q =
2π

a
(Qx, Qy, Qz) (2.57)

For the most part, however, samples used in scattering experiments are

not single crystals, but are in fact polycrystalline. The scattering arrising

from a polycrystalline sample can be represented by taking the spherical

average of f(Q) from Eqn. 2.55.

f(Q) =
1

4πτ

∫ 2π

0

∫ π

0

[1− exp(−iQ · l)] sin θdθdφ, (2.58)

with the solution,

f(Q) =
1

τ

[
1− sin(Ql)

Ql

]
. (2.59)

Eqn. 2.56 is plotted in Fig. 2.12 in various high symmetry directions,

along with the corresponding spherical averaged version.
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Figure 2.12: f(Q) for nearest neighbour jumps on an fcc lattice along three
high symmetry paths compared with the Chudley and Elliot model and the
spherically averaged (polycrystalline) version

Fig. 2.12 shows f(Q) for nearest neighbour jumps on an fcc lattice along

three directions in reciprocal space for a single crystal Eqn. (2.56) and for

the spherically averaged case. Eqn. (2.59). It is important to note that Eqns.

(2.54) and (2.59) are only valid in the limit of zero particle concentration.

At finite concentrations, f(Q) will be reduced by a factor of (1 − c) due to

site-blocking of neighbouring sites; this factor is the probability of a given

neighbouring site being vacant. In addition to this there is a correlation effect

due to the probability of a particle performing a jump back to the same site

that it just left, known as the tracer correlation function, ft(c).
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2.4.2 QENS from Spatially Restricted Diffusion

Spatially restricted motion can be present in systems where the number of

available sites to diffuse over is reduced to a finite amount via either the

presence of trapping sites or concentration related site blocking for example.

A case of this can be seen in C15 Laves phase systems such as ZrV2,

which shall be detailed in a proceeding chapter. A diffusing species i.e. Hy-

drogen can perform a combination of translational (long-range) and spatially

restricted (short-range) motion due to variations in barrier heights along its

diffusion path (Skripov et al., 1996).

If the diffusion occurring is indeed spatially restricted, this will result

in an elastic contribution to the incoherent scattering function Sinc(Q, ω).

Barnes (1973) gave a formalisation of this spatially restricted motion with the

circular random walk model describing the probability of finding a particle at

a site after n steps on a circle of N sites around which the particle is allowed

to preform a random walk.

Sinc(Q,ω) = A0(Q)δ(ω) +
N∑
l=1

Al(Q)
1

π

τl
1 + ω2τ 2

l

(2.60)

For the case of two sites, this reduces to

Sinc(Q,ω) = A0(Q)δ(ω) + A1(Q)
1

π

τ

1 + ω2τ 2
(2.61)

with

A0 =
1

2
[1 + j0(2Qd)] (2.62)

A1 =
1

2
[1− j0(2Qd)] (2.63)
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Here, j0(x) is a spherical Bessel function of zero order and d is the jump

distance between the two sites. A0(Q) and A1(Q) represent the elastic and

quasi-elastic amplitudes, respectively. Note that the quasi-elastic broadening

is independent of Q, even though its amplitude depends on Q.

For 4 sites and above, there is more than one Lorentzian contribution.

Whilst each of these components is independent of Q, the amplitudes are Q

dependent, and so the effective width of the composite quasi-elastic scattering

function shows a Q dependence at higher values of Q, but tends to a constant,

non-zero value at low Q. This contrasts with long-range diffusion, for which

the Q dependent with goes to zero at low Q. Fig. 2.13 shows the quasi-elastic

widths for jumps amongst N sites.

Figure 2.13: Quasi-elastic broadening resulting from localised diffusion over
a number of restricted sites (Bée, 1988)
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Considering the form of the intermediate scattering function, if the par-

ticle is allowed to diffuse freely the intermediate scattering function would

decay to 0 in the limit of t =∞. However, if there are only a finite number of

sites available to the diffusing particle then Iinc(Q,∞) will be a finite value

as a result of the elastic contribution.

The spatially restricted incoherent intermediate scattering function then

takes the form,

Iinc(Q, t) = A0(Q) + A1

N∑
l=1

Al(Q) exp (2t/τl) (2.64)

Figure 2.14: Form of the localised and long-ranged intermediate scattering
functions

The the term A0(Q) is the elastic incoherent structure factor (EISF),

which can yield information about the nature of the jumps in spatial re-

stricted diffusion via its Q dependence. Fig. 2.15 shows the EISF for jumps

among N sites. Of interest in this work is the two-site model, in relation to
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PdHx, and the six-site model, in relation to hydrogen diffusion among sites

in a hexagon in Laves-phase intermetallic compounds, the EISF of which is

EISF =
1

6
[1 + 2j0(Qr) + 2j0(Qr) + 2j0(Qr

√
3) + j0(2Qr)] (2.65)

Figure 2.15: EISF for jump models over N sites spaced equally on a circle.
(Bée, 1988). The number of sites on each respective circle is given on the the
corresponding curve.
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Chapter 3

Monte-Carlo Simulation of

Diffusion In a Lattice Gas

The idea of the Monte-Carlo simulation was first proposed as a possible

statistical approach to solving the problem of neutron diffusion in fission-

able material during the Manhattan Project (Metropolis, 1989). In its most

general sense, a Monte-Carlo simulation uses computer-generated pseudo-

random numbers in order to simulate stochastic processes in physical systems.

A particularly powerful application of the Monte-Carlo method provides a

means of approaching multi-dimensional integrals that are not practically

solvable by conventional methods; this method can be employed to approxi-

mate the partition function of multi-particle systems, and hence to calculate

thermodynamic observables.
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3.1 Performing Monte-Carlo Simulations

In order to produce a pair correlation function for a lattice gas, the system

is labelled in terms of occupation numbers,

σα(p) =

1, if site p is occupied by a particle of type α

0, otherwise.

(3.1)

If there is only one type of particle present in the lattice gas, in the present

case hydrogen, the subscript α can be dropped. The sum of the occupation

numbers over all sites is equal to the number of particles in the system. The

concentration of particles, c, is thus

c =
1

N

∑
p

σ(p) (3.2)

It is often useful to distinguish between different types of site. For exam-

ple, in the case of hydrogen in palladium, a distinction can be made between

the octahedral sites and the tetrahedral sites. In addition, one might wish to

distinguish between different geometrically nonequivalent sites, for example

in PdH there is an O site and two T sites per primitive cell in the Fm3m

space group. Here, the index β is used to label different site types, or sub

lattices.

It is useful to define the fraction of particles on each sublattice

fβ =
natoms,β
natoms

, (3.3)

as well as the concentration of site type β,
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cβ =
fβc

fsites,β
. (3.4)

Here the term fsites,β represents the fraction of the total sites that are of

the same type, β.

3.1.1 The Metropolis Algorithm

For the canonical ensemble (fixed N, V and T), the general idea behind the

Monte-Carlo method in statistical mechanics is that partition functions, and

hence observable thermodynamic quantities, are estimated by sampling a

representative set of configurations, rather than explicitly performing inte-

gration. The obvious approach to doing this would be to generate multiple

configurations at random along with their associated Boltzmann weights,

e−E/kBT , in an attempt to approximate the desired observable quantity. This

algorithm, however, can be very inefficient, as it includes numerous configu-

rations that have a very low statistical weight. A more efficient way, known

as importance sampling, is to generate random configurations according to

the probability distribution Ae−E/kBT itself and assign an even weighting to

each. The practical implementation of this approach has become known as

the Metropolis Algorithm (Metropolis et al., 1953):

1. An atom is selected at random;

2. A vacant target site is chosen at random from an allowed subset of

sites;

3. The transition probability associated with moving the atom is calcu-

lated, T (x→ x′) = min{1, e−∆E/kBT};
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4. The trial configuration is accepted if a random number selected in the

range {0, 1} is less than the calculated transitional probability.

3.1.2 Ballistic and Jump Diffusion

In terms of the selection of a vacant site, there are two principle methods:

1. Ballistic Diffusion: A particle can move to any vacant site in that lattice

even if this jump is unphysical in its nature, this is only of interest if

we wish to generate a set of successive un-correlated configurations of

a system with a minimum of pair exchanges.

2. Jump Diffusion: The purpose of jump diffusion is to actually simulate

a physically meaningful diffusion process. Here the selection of allowed

sites are smaller and normally corresponds to allowed diffusion paths,

made up by nearest neighbour sites, giving a physical meaning to the

system being simulated.

3.1.3 Monte-Carlo Cycles: Attempted and Successful

Jumps

A unit often used in Monte Carlo simulations is the Monte Carlo Cycle

(MCC), in which the number of generated configurations is counted relative

to the number of atoms. Here, successive configurations can either be defined

in terms of attempted or successful transitions, depending on the type of

system being simulated:

If diffusion is being simulated, then attempted transitions (particle jumps)

are used. If a particle tries to jump but is unable to do so successfully due to

either site blocking effects or the jump probabilities, the original configuration

53



is counted as a step in the MCC. In other words, the MCC is defined as

when each particle has attempted to jump once. Thus, over many MCC’s,

on average, each atom will have attempted to jump once. This allows a link

to timescales in real systems, whereby the MCC can be mapped onto attempt

frequencies, which is essentially the pre-exponential factor in an Arrhenius

expression for the temperature dependent jump rate.

If one is only interested in the thermodynamic properties, then successful

jumps are more appropriate. Here, a new configuration is only counted if the

particle has moved from its origin sites from the previous configuration. For

successful jumps, the MCC is not associated with a real timescale. In this

scheme, the MCC is defined such that the number of new configurations per

cycle is equal to the number of atoms.

3.1.4 Populating the Lattice and Reaching Equilibrium

Generally, at the beginning of a Monte-Carlo simulation, a number of cycles

are performed in order to reach an equilibrium state, or a steady-state; this

is especially important if the lattice is populated at random initially. This

is referred to in this work as the ‘burn-in’ period. Here, care needs to be

taken. A particular case in hand is when jump diffusion occurs over barriers.

An example used in this work is H diffusion in Pd, where there a different

transition probability from T to O sites than for O to T sites. Fig. 3.1

shows the effects of the various combinations of jump / ballistic diffusion

and attempted / successful jumps, starting from random occupancy.
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(a) Jump Diffusion Successful Jumps (b) Jump Diffusion Attempted Jumps

(c) Ballistic Successful Jumps (d) Ballistic Attempted Jumps

Figure 3.1: Occupation of Octahedral and Tetrahedral sites in an face cen-
tered cubic lattice for the Jump and Ballistic diffusion

The solid lines in each plot of Fig. 3.1 show the average occupation for

each of the two sites between 20 and 100 Monte-Carlo cycles (per atom) to

be executed in the static Canonical Ensemble simulation after the lattice has

been filled, used for the simulation to be in a steady state before the main

simulation is carried out. The method of jump diffusion where a particle

movement is only counted if the jump is successful can be seen to give the

best approximation of equilibrium site occupation after a 100 cycle ’burn in’

time.

55



3.2 The GRT Code

Pre-existing code for the extraction of pair-correlation functions from Metropo-

lis Monte-Carlo simulations of particle diffusion in lattice gas systems (Bull,

2001) has been used and extended in this work. In section 3.2.1 the working

of the code, at the time of writing, is described. In section 3.2.2, details are

given of the various extensions to the code made by the present author.

3.2.1 Description of the Code

The name GRT is intended to represent the function G(r,t), being inspired by

the QENS data analysis software SQW formerly in use at the Institute Laue

Langevin neutron facility in Grenoble, France. The GRT code was extended

from the DEVIL code, originally developed at Harwell, UK, to perform static

relaxation of crystals containing defects (Thetford, 1989). The GRT code is

used to preform simulations of dynamic and static processes in a lattice

gas system, resulting in the calculation of correlation functions for a given

system of interacting particles. The main function of this code is represented

schematically in Fig. 3.2.

The code has been further extended in this work to allow for the calcula-

tions of the pair correlation functions by considering the allowed jump paths

used with either jump probabilities specified or probabilities determined by

the barrier heights between sites.
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Figure 3.2: Diagram showing the basic function of the GRT-program

The structure of the code can be broken down into three main sections.

Firstly, the positions of the lattice sites, jump vectors and the vectors for

the pair-correlation function are determined, including the effects of periodic

boundary conditions. Secondly, the lattice is populated to the required con-

centration, and burn-in simulation is performed to take the system to equi-

librium. Finally, the main simulation is run, either to calculate the static or

dynamic pair correlation function. All the parameters for each of these pro-

cesses are passed to the code via an input file. A more detailed description of

each step in the code will be given below with the relative part of the input
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file used.

Setting Up a Lattice
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Figure 3.3: Section of the input file to the FORTRAN code GRT that deals
with setting up the lattice

The first part of program (actually the last part of the input file) relates to

setting up the lattice, the structure of which is shown in Fig. 3.3. The first

three lines, XLAT(I,J), are the lattice vectors defining the unit cell. This is

followed by the number of basis sites, NBAS, and a list of the relative posi-

tions in the unit cell, XBAS, YBAS and ZBAS, and an integer denoting the

type of site, LBAS. The next three lines, XMI(I,J), are the lattice block axes.

The final values, NFX etc., represent the size of the lattice in terms of the

number of unit cells; negative values result in periodic boundary conditions

in that particular direction.
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Populating the Lattice and Reaching Equilibrium

The part of the input file relating to populating the lattice and performing

the burn-in simulation is shown in Fig. 3.5. The first three lines are: the

name of the output file, the lattice parameter in Å and the temperature in

K. This is followed by details of the number of site types and their respective

energies. The inter-particle interactions are handled either by a stepped

potential chosen by the key word ’SHELLS’ or a Thomas-Fermi screened

Coulombic interaction.

The next set of parameters deal with populating the lattice, either via

a previous configuration (FILLPREV), a random configuration of atoms up

to the required concentration ‘c’ (FILLRAN), or using a grand canonical

ensemble with a specified chemical potential and number of attempted parti-

cle exchanges (FILLGCE). The latter option is generally used for simulating

pressure-composition absorption isotherms, where an external gas-pressure

can be related to the chemical potential. This option is not used in this

work.

The next step is to calculate the average configurational energy of the

system and the site occupancy fractions - both the fraction of atoms in each

crystallographic basis and the fraction of atoms on each site type, according

to Eqns. 3.3 and 3.4. This process is carried out by selecting ’CE’ in the

input file and the results are written to a dedicated output file. The original

method was to use ballistic diffusion and successful jumps. However, it was

necessary in the present work to have the flexibility to change this to allow

jump diffusion. At the time of writing, this was hard coded into the GRT

program, but will be incorporated into the input file in due course.
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Figure 3.4: Section of the input file to the FORTRAN code GRT that deals
with populating the lattice and running an initial simulation to approach
equilibrium
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Simulation of Diffusion
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Figure 3.5: Section of the input file to the FORTRAN code GRT that deals
running the main simulation

The main process of the program is the calculation of a pair correlation

function, which is only performed with the flag ’GRT’; using ‘NOGRT’ will

skip the pair correlation calculation and the program will end and write an

output file. When ‘GRT’ is selected a ‘STATIC’ or ‘DYNAMIC’ simulation

can be performed, the type of simulation selected depends on the type of

diffusion process used;

1. The flag ‘STATIC’ invokes ballistic diffusion. Here, the transition prob-

ability between configurations is determined by the respective difference

in energies, which includes the interstitial site energy and the interac-

tion with neighbouring particles. A Monte-Carlo cycle (MCC) is de-

fined in terms of successful jumps.
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2. The flag ‘DYNAMIC’ invokes jump diffusion, over the defined subset

of sites. During this, one Monte-Carlo cycle (MCC) is defined in terms

of attempted jumps. The number of time samples to be calculated and

the time sample frequency, in units of MCC is specified. The number

of allowed jump types is given by njt. Each jump type is specified

by giving the origin basis type, the target basis type, a pair of values

bracketing the jump length. The last two values allow the user to either

explicitly give the jump probability (a value for r tor is given and r en

is set to zero), or to specify an activation energy for diffusion (r en is

assigned a value and r tor is set to one). For the latter option, the jump

probability will have a temperature dependence based on a Boltzmann

factor.

The last key part of the main simulation is whether the ‘TOTAL’ or

‘SELF’ correlation functions are calculated. The generated output file con-

tains the jump vectors and their associated pair correlation functions required

for further analysis.

3.2.2 Extensions to the Code in this Work

To utilise the pre-existing code for the purposes of this work, some modifi-

cations and extensions were needed to simulate the desired characteristics of

the specific systems considered here.

1. To change calls to the random number generator; the original code used

routines from the NAG library, which were not open source. Here, the

FORTRAN 90 function, RANDOM NUMBER(), is used to produce

pseudo-random numbers. These are used both for selecting atoms and

vacant sites for determining the transition probabilities in the Metropo-
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lis algorithm in addition to determining whether a particular transition

is accepted.

2. Extending the processes by which the burn-in simulation can be per-

formed. Originally, this could be done via ballistic diffusion only; this

was extended to allow jump diffusion and also to specify whether suc-

cessful or attempted jumps were used, via the flags ’jtype’ and ’jdiff’

in Fig. 3.4.

3. Extending the definitions of the site occupancies to be calculated during

the burn in process, as per Eqns. (3.3) and (3.4). Due to the code

being used with multiple site types it was necessary to determine if

the system was in equilibrium prior to the main calculation of the pair

correlation function being simulated. This meant that the fraction of

particles on each site type could be seen and was a good indicator of

the Monte-Carlo calculation working correctly.

4. Allowing for specific jump probabilities between different site types.

This was necessary to module the jump diffusion between different site

types in palladium hydride. Here, either the explicit jump probabilities

or the barrier heights can be are specified, as described in the previous

section and shown in Fig. 3.5.
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3.3 Interpretation of the Output of the GRT

Code

The output file from GRT contains values for the pair-correlation function,

either static or dynamic. A suite of post-processing python scripts have been

developed by the author in order to produce respective scattering functions,

either S(Q), or the intermediate scattering function I(Q, t). In addition, code

has been developed to determine the directional averages of these quantities

for comparison with experimental data on polycrystalline samples.

Once values for I(Q, t) have been obtained, rather than performing the

temporal Fourier transform to give S(Q, ω) numerically, analytical functions,

specifically a sum of decaying exponentals, were fitted to I(Q, t) in order to

determine values for the decay constants, f(Q) (Bull and Ross, 1999b). The

justification for this approach is that experimental QENS data are gener-

ally interpreted by fitting a sum of Lorentzian functions and extracting the

corresponding widths, which are directly related to the decay constants. In

addition, the sampling frequency used when calculating I(Q, t) is a limit-

ing factor in determining the range over which S(Q, ω) can be calculated.

Fig. 3.6 shows the generic form of f(Q) obtained either from I(Q, t) via

simulation or from S(Q, ω) measured experimentally.
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Figure 3.6: Schematic representation of the process used to arrive at the half
widths half maxima (HWHM) from Monte-carlo simulations of G(r,t).
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3.3.1 Calculation of the Intermediate Scattering Func-

tion

In general, the intermediate scattering function is obtained from a spatial

Fourier transform of the time-dependent pair-correlation function. As the

system considered is a lattice gas, the Fourier transform can be performed

as a summation over a discrete set of vectors. Considering firstly the Fourier

transform of the self-correlation function, GS(r, t), the corresponding inco-

herent intermediate scattering function, Iinc(Q, t) can be obtained via:

Iinc(Q,t) =
∑
r

Gs(r, t) exp(iQ · r) (3.5)

Equivalently, the coherent intermediate scattering function, Icoh(Q, t) can

be obtained from the total pair correlation function, G(r, t), although here a

value related to the concentration should be subtracted. This represents the

contribution from the underlying host lattice. In practice, this value can be

determined by taking the average of G(r 6= 0, 0), the pair correlation function

excluding the value at the origin at t = 0. This ensures that G(r, t) tends

to zero at large distance. If this were not the case, then a truncation error

would arise; the Fourier transform would effectively be a convolution with

a step-function, producing spurious components in the Fourier transform at

low Q, varying as a sinc function centred on Q=0.

I(Q, t) =
∑
r

(G(r, t)−G0) exp(iQ · r), (3.6)

where G0 is

G0 =
1

N

∑
r6=0

G(r, t = 0). (3.7)
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However, Gs(r, t) can only be evaluated properly if it is calculated over

a finite region of real-space. If the pair-correlation function is not calculated

sufficiently far enough out in real space then the summation over r would

not be exact. This volume of space of radius rmax is examined up to a given

maximum in the unit of time (M.C.C) tmax, this is the maximum time up to

which Iinc(Q, t) can be calculated. At this point, G(r, t) should have decayed

sufficiently to zero for the system in question. The values for the radius and

time must be selected carefully as to ensure that all the data available for the

system is captured fully. Due to this now being carried out within a sphere of

a given radius the r from Eqn. (3.5) becomes a sub-set of real space vectors

within the sphere.

The effect that the maximum radius of the sphere effects the intermediate

scattering function can be seen in Fig. (3.7) where Iinc(Q, t) is calculated at

a Q-vector of (0, 0, 0) with different values of rmax in a Face-Cantered Cubic

lattice with the lattice size being 20x20x20 unit cells.
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Figure 3.7: Incoherent intermediate scattering function at Q=0 from a
Fourier transform of Gs(r, t) for an fcc lattice at C=0.1 at different radii
of real-space spheres, r=1,2,3,4,5.

A test for convergence is that I(Q = 0, t) should be equal to 1 for all

times. When the radius is set to small values of rmax such as 1 (represented

by the blue x) it can be seen that Iinc(Q = 0, t) decays rapidly towards

zero. This decay is due to the fact that a particle initially at the origin

has a probability of diffusing outside the sphere in real space that is being

sampled within the limit of tmax. As rmax is increased the decay becomes

much slower until effectively a flat line is seen within the allowed time frame.

For this system an rmax = 5 is ideal for the evaluation of the Iinc(Q, t).

This however will very for concentration as site blocking effects can occur

causing the scattering function to decay much slower. Proceeding from here

with a suitable volume of real-space being sampled the Iinc(Q, t) can now
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be calculated at a given Q-vector for example in the (1, 1, 1) high symmetry

direction of a FCC lattice, Fig. 3.8

Figure 3.8: Iinc(Q, t) for a range of Q-values in the (1,1,1) for an fcc lattice.
(Qx, Qy, Qz) = 0.0, 0.1, 0.2, 0.4 and 0.5.

When a system involving a number of non-geometrically equivalent sub-

lattices, GRT produces a set of G(r, t) values for each sub-lattice. Here,

an intermediate scattering function is associated with each sub-lattice, β,

creating a set of partial Iβ(Q, t), where the full I(Q, t) is the sum over the

sub-lattices. It is therefore possible to see the contributions of each site type

to the overall intermediate scattering function.
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Figure 3.9: Intermediate scattering functions calculated from for a fcc with
a 3 sub-lattices from a octahedral site and two tetrahedral sites.

The Fourier transform of Gs(r, t) decays more rapidly as Q moves away

from a reciprocal lattice point up to a maximum about which it is symmet-

rical or the Brillouin zone boundary, in the case of the (1, 1, 1) direction the

reciprocal lattice points are located at are Q = (0, 0, 0) and (1, 1, 1). The

accuracy of the Iinc(Q, t) and the exponential fits to the data can also be

effected by the thermal average of the correlation function this is formed

by a number of samples of the function and the result is the average over

these samples. The Iinc(Q, t)’s in Fig. 3.8 are averaged over 500 samples. In

figure(3.10) a comparison for sampling rates is shown.
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Figure 3.10: Sample rates of 1 (top), 50 (middle) and 500 (bottom) for a
Q-vector in an fcc lattice
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3.3.2 Calculation of f(Q)

Single Crystal

Beginning with the intermediate scattering function, where the pair correla-

tion function undergoes a partial Fourier transform, as outlined in a previous

chapter. This can either be done by means of a total I(Q, t) where this is a

sum over the sub-lattices in the system. At this point, one could, in principle,

perform a subsequent Fourier transform to obtain the scattering function. As

discussed previously, this requires G(r, t) to be calculated at many different

times. Instead, the intermediate scattering function is fitted by an analytical

function. In particular, as sum of decaying exponentials can be used, from

which f(Q) can be extracted directly. This is done, in practice by fitting a

weighted sum of exponentials to the data sets for each Q,

I(Q, t) =
∑
β

Aβ(Q) exp(−fβ(Q)t) (3.8)

These exponential fits are shown in Fig. 3.11, where a single exponential if

fitted to the intermediate scattering function at specific Q points,(Qx, Qy, Qz).
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Figure 3.11: I(Q, t)’s calculated at (Qx, Qy, Qz) = 0.0, 0.1, 0.2, 0.4 and 0.5
(x) with a single exponential fitted (−−).

The decay constants f(Q), from each of the fits at Q vectors along the

(1, 1, 1) direction are plotted and compared to the Chudley-Elliott model in

Fig.3.12.
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Figure 3.12: Fit of the Chudley-Elliott model to fitted HWHMs of the inter-
mediate scattering functions.

There is a slight deviation of the fitted f(Q)s towards the peak from the

curve created by Chudley-Elliott (CE) model (Fig.3.12). This is most likely

due to the tracer correlation factor. But at Q values close to the reciprocal

lattice points the CE model and the fitted values are seen to be equivalent.
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Polycrystalline

In quasi-elastic neutron scattering experiments often a powder sample is

used. As a result it is more relevant to calculate the polycrystaline form of

the scattering function. To do this from a Monte-Carlo calculated G(r, t) the

directionally averaged intermediate scattering function is needed, where the

I(Q, t) is calculated at different points throughout the sphere of radius r.

The most straightforward way of doing this is using an inbuilt function,

such as dblequad in python. However, this can become very computationally

inefficient. For example, the spherical average of f(Q) from the Chudley-

Elliot model calculated via dblequad is shown in Fig. 3.13, along with the

cumulative time taken to calculate each width at Q Fig. 3.14.

Figure 3.13: spherical average of f(Q) from the Chudley-Elliott model cal-
culated via dblequad.
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Figure 3.14: Cumulative time for the calculation of f(Q) using the dblequad
method with respect to the magnitude of Q used.

An alternative method is to use Lebedev quadrature (Lebedev, 1975),

implemented in the quadpy package (pyp).

I[f ] = 4π
N∑
i=1

wif(θi, φi), (3.9)

Fitting a single exponential to the directionally averaged forms of I(Q,t)

will only accurately reproduce the form of the polycrystalline CE model

at low values of Q as the Fourier transform is less sensitive to individual

jump steps at low Q. At larger values, fitting a single exponential becomes a

poor approximation for the polycrystalline causing a divergence from the the

analytical form, Fig.3.15, here the fitted vales of the decay constants f(Q)

themselves need to be directionally averaged.
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Figure 3.15: Comparison between the Chudley-Elliott model and the widths
gained directionally averaged I(Q), t) and directionally averaged widths f(Q).

An issue with Lebedev quadrature is ensuring a sufficiently high order

is used, which has been achieved here by convergence testing, illustrated in

figure 3.16. It should be noted that higher orders can become rather com-

putationally expensive which is why convergence testing can be beneficial.

Another advantage of using this package is that for each order of quadrature

used the Q-vectors used to calculate I(Q, t) are predetermined for each mag-

nitude of Q used. Therefore, it makes it ideal for comparing results and in

the event of multiple time scales, ensuring that the points used are the same

between runs.
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Figure 3.16: f(Q) calculated for a polycrystalline FCC lattice from fitting a
single exponential to I(Q,t) against the Chudley-Elliott model. Where the
data points are for each increasing Lebadev order. The left hand side panel
shows orders 3(+), 5(×), 7(*), 9(solid �) and 11(�). The right hand side
shows orders 13 and above which show good agreement to the Chudley-Elliott
model.
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3.4 Pairing experiment with simulation

Experimental measurements of the quasi-elastic broadening from neutron

scattering are represented as Lorentzians which have an associated half width

half maximum (HWHM), Γ.

Γ(Q) =
1

τ

(
1− sin (Ql)

Ql

)
(3.10)

The widths from the experimental readings can be compared to those

extracted from the simulated pair correlations functions G(r, t), as the inter-

mediate scattering function is,

I(Q, t) = e−f(Q)t, (3.11)

where f(Q) is equivalent to Γ. From these widths for given Q values.

These widths in both cases can be used to determine jump length, l, and

the mean residency time, τ . This is achieved by fitting Eqn.(3.10) to a set

of HWHM’s from either the Lorentz component of QENS spectra or widths

calculated from Eqn.(3.11). Quasi-elastic neutron scattering from a target

results in a continuous spread of energy best represented as a lorentzian

whose half width half maximum at a selected Q vector,

~Q = (k′ − k) (3.12)

In simulation these Q values are defined in terms of a position vector

(rx, ry, rz), in the polycrystaline case (powder sample). These are sampled

from a sphere of radius, r and on the single crystal (foil) these are sampled

points along a high symmetry direction such as face-centred cubic’s’(h/2, h/2, h/2).
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3.4.1 Multiple Time-scales

With the GRT-program, measuring the desired contributions to the broad-

ening is done by allowing specific jumps to occur. Mainly the octahedral to

octahedral and the tetrahedral to octahedral jumps. It is now possible within

the GRT-program to ”turn off” the long range motion of the hydrogen to ex-

amine solely the short range component by specifying the jump probabilities

between the sites.

In neutron scattering experiments the observable time scales are dictated

by the accessible range of energy available ∆E done by selecting the inci-

dent wavelength of neutrons. For localised motion, the change in energy

needs to be sufficiently broad enough to mask the long range motion aris-

ing from translational diffusion. The simulated pair correlation functions

are presented in terms of change in time, ∆t, where t is defined in terms of

Monte-Carlo cycles (section 3.1.3). Selecting the range of ∆t has the same

effect on the pair correlation function as selecting the energy range dose for

the scattering function. If this time range is sufficiently short the long range

type motion will be missed out in the spatial transform to I(Q, t) leaving

only the short ranged localised type motion observable if present, with a

longer change in time required to examine the long range diffuse motion.

Given that energy is given by E = ~ω where ω has the unit of inverse time

(t−1) which can be equivalent to an inverse Monte-Carlo cycle (MCC−1). So

the selection of the number of Monte-Carlo cycles sampled over gives access

to different ranges of the intermediate scattering function, demonstrated in

Fig.3.17, from a rapidly decaying exponential expected from short range type

motion to a more slowly decaying exponential or a combination of both.
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Figure 3.17: Representation of the two time scale components masked within
the total intermediate scattering function.
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Chapter 4

Monte-Carlo Simulations of

Hydrogen Diffusion in a C15

Laves Phase System

4.1 Introduction

The motivation for the work in this thesis is the experimental observation

of hydrogen diffusion on two distinct time-scales in palladium hydride. One

hypothesis is that this is due to a long-range translational component cou-

pled with a localised, spatially restricted, motion on a more rapid timescale

(Kofu and Yamamuro, 2020; Kofu et al., 2016; Steel, 2018). Such motion is

observed in C15 Laves-phases hydrides, cubic AB2 compounds such as TaV2

(Skripov et al., 1996) and ZrV2 (Schönfeld et al., 1989). Interstitial sites

available to hydrogen include a network of interconnected hexagons, where

localised motion around particular hexagons is coupled with motion between

the hexagons. A particularly intriguing feature is the apparent change in

the average jump length with temperature (Campbell et al., 1999; Skripov
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et al., 1999). Monte Carlo simulations of hydrogen diffusion in these com-

pounds has been reported previously (Bull and Ross, 2001). Here, this work

is extended.

4.2 The C15 Laves-phase System

The cubic C15 Laves phase structure belongs to a group of inter-metallic

compounds with the space group Fd3m among which is the compound ZrV2

which is of interest in this body of work due to its ability to hold hydrogen

within the host lattice in the α phase across the complete range of concen-

trations above 340K. Diffusion of hydrogen in this compound and other AB2

compounds has been previously been studied both experimentally, via quasi-

elastic neutron scattering (Schönfeld et al., 1989; Skripov et al., 1996), and

with Monte Carlo simulations (Bull and Ross, 1999a; Bull et al., 2003) and

Nuclear Magnetic Resonance study on TaV2Hx (Skripov et al., 1990). More

recently it is suggested (Skripov et al., 2000) that rapid jumps are made by

hydrogen atoms within hexagons made by neighbouring g-sites.

83



Figure 4.1: A typical C15 unit cell structure (Schönfeld et al., 1989)

There are three types of tetrahedral site available for hydrogen to occupy

within the unit cell, which has a hydrogen-free lattice parameter of 7.44Å

(Didisheim et al., 1979). In the disordered (α-phase, Fig(4.2)) hydrogen

occupation causes no noticeable change to the structure of the compound,

but a lattice expansion is observed to 7.44Å at H4.8 (Schönfeld et al., 1989).

The main sites of interest here is the g sites formed by 2 Zr and 2 V atoms,

creating a total of 96 available g-sites. In addition, there are 32 e-sites and

8 b-sites, this possible occupancy of three types of site has also suggested by

Hempelmann et al (Hempelmann et al., 1989). The ways in which hydrogen

is able to diffuse around theses sites are of particular interest along with

the effect of possible site blocking due to the hydrogen concentration of the

system. Since the C15 laves-phase has can radially dissolve hydrogen in large

quantities in a range of ZrV2 to ZrV2H6 without structural change to the

host lattice (Didisheim et al., 1980) except a lattice expansion with increasing
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hydrogen concentration changing the lattice parameter to 7.29 angstroms for

H4.8 (Schönfeld et al., 1989) making it a very interesting structure for the

study of hydrogen sorption. At relatively low hydrogen concentrations x <

1.5 the hydrogen protons occupy the g-site and as hydrogen concentration

tends towards a upper limit of x = 4.8 the e-sites formed by one Zr atom and

three v atoms begin to become occupied (Shaltiel, 1980) and at the high end

of the concentration range b site occupation has been inferred from neutron

scattering measurements.

Figure 4.2: ZrV2Hx Phase diagram produced from a combination of data
(Schönfeld et al., 1989)

By considering the pair interactions between neighbouring hydrogen atoms

and energies of each of the three site types the occupation as a function of

concentration can be better understood, given that theoretically the maxi-

mum occupancy is x = 17 per formula unit due to 12 g-sites, 4 e-sites and
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one b-site, however there has only been a maximum occupancy of 6 observed

experimentally leading to the conclusion that the H-H pair interactions play

a greater role.

Figure 4.3: Hexagons formed by neighbouring g-sites around a Zr atom (g),
g’ is the nearest neighbour site on another hexagon and e site is shown.

The g-sites within ZrV2 form a network of hexagons containing 3 of the

same energetically equivalent neighbour sites, two of which are on the same

hexagons and one on an adjacent hexagon, Fig.4.3, and although while having

the equivalent energy the diffusion barriers between hexagons differ. To help

distinguish between theses intra and inter hexagon sites and corresponding

jump paths, sites on the same hexagon with be denoted as g-sites and those on

an adjacent hexagon denoted as g′-sites as well as having a nearest neighbour

e-site which will have three nearest neighbour g-sites. This gives two available

jump paths for the hydrogen protons to diffuse via, g − g and g − g′. These

multiple hexagons formed by the g sites around Zr atoms are shown in a more

complete structure in Fig. 4.4. The ”ideal” nearest neighbour distances of
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a C15 compound for the g and g’ sites are given as rg−g = 0.1531a and

rg−g′ = 0.1768a giving a ratio of 1.225, ZrV2 is close to this ideal ratio with

a value of 1.19 from neutron scattering experiments,(Didisheim et al., 1980;

Fischer et al., 1997). Nuclear Magnetic Resonance has also been used as a

means of finding the activation energies for these jumps at 0.16ev (Shinar

et al., 1984; Skripov et al., 1991).

Figure 4.4: A more complete structure of ZrV2H with the hexagons created
by g-sites around a Zr atom.

The hypothesis of two distinct time scales has been suggested by skirpov

et al (Skripov et al., 2000) in the C15 compound HfMo2 where the ratio of

jump lengths is related to the relative distances between sites on the same

and adjacent hexagons, after earlier work on TaV2Hx displayed proton move-

ments in the form of rapid localised motion with long-range diffusion on a
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slower time scale (Skripov et al., 1990, 1996). By the use of both QENS

and Monte-Carlo Simulations D.J.Bull (1999a) suggested similler types of

motion to those seen by Skripov on ZrV2 and C.Schonfeld, R.Schatzler and

R.Hempelmann in 1989 (Schönfeld et al., 1989) where they presented an ex-

ample of broad and narrow components of ZrV2H4.8 scattering functions at

a temperature of 340K along with the associated weights,

Figure 4.5: first demonstration of the hypothesis of multiple types of motion
in ZrV2H (Schönfeld et al., 1989)

This presence of two distinct jump times is a useful demonstration for

the possibility of multiple jump times being present within other hydrides as

the hydrogen concentration in the bulk increases. It is expected in QENS

results that if scattering from motion occurring on multiple time scales is

occurring the scattering will be the combination of two Lorentz components.

By selecting a broad resolution function the narrow component associated

with the long range type diffusion occurring on the longer time scale can not

be resolved, thus the scattering from the localised motion can be isolated and

is represented by the sum of an elastic an Lorentzian component (Skripov

et al., 1996) Eqn.4.1 where B + Cω is a small background component,

S(Q, ω) = A0(Q)δ(ω) + [1− A0(Q)]L(ω) +B + Cω (4.1)
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If the widths of the broad loretnzian component display discernible Q

dependence at low Q, this can be seen as a quality indicative to localised

motion. A good demonstration of this has been presented by Schonfeld et al

(Schönfeld et al., 1989), Fig. 4.5, where the the Half Width Half Maximums

(HWHM) are shown along with the associated weights for both lorentzian

components. Where the widths of the narrow components appear to follow a

Chudley-Elliot type behaviour. Whilst the widths from the broad component

show no obvious Q dependence, and the weights go to zero at low Q and

increase with Q which is another feature associated with localised motion.

4.3 Monte-Carlo Simulations of Incoherent QENS

from Hydrogen Diffusion in ZrV2Hx

4.3.1 Multiple time scales

Evidence of motion occurring on multiple time scales has previously been

seen from temperature dependent spin relaxation times of hydrogen from

NMR measurements. Which showed a deviation from the Arrhenius-type

behaviour of hydrogen. Sets of data given by Bowman R C et al (Bow-

man Jr et al., 1983) and Skripov A V et al (Stepanov et al., 1989) seem

to imply the presence of two types of motion taking place on different fre-

quency scales. Following these results direct evidence of this was presented

by Skripov in 1990 where the spin lattice relaxation rates for TaV2Hx were

studied over a range of temperatures and concentrations. An additional low

temperature maximum in the spin-lattice relaxation rate was found, indicat-

ing the existence of hydrogen undergoing localised motion on a rapid time

scale. It was also observed that as the concentration increased the amplitude
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of the motion increased along with the decreases of the motion’s frequency.

In order to obtain the geometric details of this localised diffusion process,

quasielastic neutron scattering needs to be carried out using a high resolution

spectrometer. Skripov et al carried out such experiments on TaV2H0.6 and

confirmed that the localised motion of hydrogen takes place with a hopping

rate in the order of 109s−1 where the suggested model for this motion was

that of a 3 equally spaced sites on a circle of radius 1.1 angstroms with the

caveat that six site model for the motion may be appropriate.

The scattering function for a system where two types of motion is oc-

curring is expected to consist of two Lorentzian components attributed to

both the localised and long-range diffusive processes respectively. This can

be related to the results seen below here in terms of time scales on which the

motions are occurring. By selecting a broad resolution function, the narrow

Lorentzian component caused by the diffuse process happening on a slower,

larger time scale will not be resolved. Meaning that the Lorentz component

resolved will be that belonging to the localised motion taking place on a more

rapid, much shorter time scale than that of the long-range diffusion.
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4.3.2 Choice Of Sampling rates

As neutron scattering experiments are carried out in terms of an energy

resolution window in which the scattering function is to be evaluated over,

however this is obviously not the case when carrying out Monte-Carlo sim-

ulations of the pair correlation functions. In these calculations the choice of

energy resolution window can be analogous to the choice of sampling rate

used in terms of Monte Carlo Cycles (MCC). In attempt to examine the

two-time scales hypothesised in the C15 system two time windows are to be

selected such that each has a single exponential component is seen in the

intermediate scattering function produced.

Figure 4.6: I(Q, t) for a large number of M.C.C samples

Fig. 4.6 represents motion on a larger time scale seen by the slow decay

towards zero. This however does not appear to be a single exponential due

to the very rapid decay between the first two points at which the Monte-

Carlo simulations was sampled (a Monte Carlo Cycle). We can confirm
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this existence of multiple exponentials by taking the log of the intermediate

scattering function,

Figure 4.7: The log of I(Q, t) fig.(4.6), showing a non exponential decay
component

The straight line portion of the ln(I(Q, t)), Fig. 4.7 indicates a single

exponential, as can be seen at the lower number of Monte-Carlo cycles this

is not the case, there for a second simulation of the pair correlation function

is carried out within the lower time window.
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Figure 4.8: I(Q, t) for the range of M.C.C samples that are not logarithmic

There an exponential can be seen. So in order to fully evaluate the

Intermediate scattering function for the C15 system two time windows are

needed, one for a larger and slow decaying time scale and one for a much

shorted and rapidly decaying time scale. This results in the overall fit to the

data being a sum of two exponetials;

Iinc(Q, t) = Aste
−f(Qst)t + Alte

−f(Qlt)t (4.2)

Taking the f(Q) for each of the respective exponential functions gives the

scattering function for the short time scale and the long time scale.

When there is evidence of diffusion taking place on multiple time scales

within the system the procedure described in the previous chapter is varied

slightly due to the sum of exponentials Eqn. (4.2). It is best to begin with the

more slowly decaying time scale, here a number of points are removed from

the intermediate scattering functions data, the number of points removed is
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based on the results from ln(I(Q, t)) where the linear set of points represents

the long time (LT) single exponential function in Eqn. (4.2). When fitted

to the new range of points the fitted variables need to be retained but will

also be the weightings and the HWHM’s for the diffusion occurring on the

longer time scale. Once carried out for a given Q-vector the rapidly decaying

(higher sampling frequency) I(Q, t) needs to be evaluated, this set of data

replaces the few points removed from the slowly decaying I(Q,t) (lower sam-

pling frequency). Here a double exponential is now fitted to this set of data

but only two of the variables in Eqn. (4.2) are allowed to change freely, the

values acquired from the previous lower sampling rate fit are used as con-

stants. As a result, the weights and HWHM’s extracted from here are those

of the shorter time scale diffusion taking place in the system By plotting both

the single fit and the double fit onto the same time scale it is possible to see

the effect that the double exponential has on the fit of I(Q,t).

Figure 4.9: The divergence between the single fit (dashed line) and the double
exponetial fit and short time scale data
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The fits here are represented by the black and blue dashed lines along with

the points from the short time scale I(Q,t) as red x’s. The single exponential

it therefore only shows agreement with the data points above 20 M.C.C,s

where it begins to diverge off intersecting the y axis at 0.988. Whereas the

double exponential fit using the weight and the decay constant of the single

exponential fit, shows good agreement over the full range of points, giving

support to the hypothesis that there is a double exponential and thus two

types of diffuse motion occurring in the C15 system.

4.3.3 Jump ratios

Within the Monte-Carlo’s input file is the ability to artificially set the prob-

abilities of a specific jump occurring successfully given the absence of barrier

heights and site energies, this is referred to as a jump rate,

τ2

τ1

(4.3)

where τ1 is defined as the jump probability among sites in the same hexagon

and τ2 is defined as the jump probability between sites on different hexagons.In

more general terms the probabilities of jumps between pairs of the same site

types and pairs of different site types.

When run in this state the system is effectively at an infinite temperature

and therefore all temperature dependence is removed and no interactions are

included in order to determine weather the quasi-elastic scattering function

can be interpreted in terms of a long raged and localised types of motion.
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Elastic Component

Localised motion can occur in a spatially restricted system such as that found

in C15 type structures, where there is the presence of diffusion paths which

have different activation energies. Here in the C15 system using Monte-Carlo

simulations of the time dependent correlation function G(r, t) and selecting

the correct jump ratio such that τ2
τ1

= 0, it is possible to look at this localised

motion in the form of an intermediate scattering function that has an elastic

contribution.

Figure 4.10: Example of the elastic component displayed as an I(Q, t)

here we can see that due to the bound nature of the system as a result

of the jump ratio the I(Q, t) decays down to a finite value Fig. 4.10, which

can be seen at any given Q value with a variation in the value at which the

I(Q, t) becomes finite, Fig. 4.11.
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Figure 4.11: The effect of chosen Q value on the elastic component of the
intermediate scattering function

The incoherent intermediate scattering function I(Q, t) for spatially re-

stricted motion is given by,

Iinc(Q, t) = A0(Q) +
N∑
i=1

Ai(Q) exp (−t/τi) (4.4)

When the Q-dependence of the term A0(Q) is calculated the elastic inco-

herent structure factor, EISF is produced. Using the Monte-carlo simulated

pair correlation functions, the spherically averaged Iinc(Q, t) are calculated

to represent a polycrystalline sample, shown in Fig. 4.12.
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Figure 4.12: Spherically averaged I(Q,t) for a spatially restricted C15 com-
pound containing hydrogen

The solid line on each data set represents the fit of Eqn. 4.4. As demon-

strated earlier the I(Q,t)’s decay to a finite value which varies with the Q

value used for the radius of sphere over which the I(Q,t) is spherically aver-

aged. From these fits the HWHMs of the incoherent scattering function can

be obtained from the exponential term along with the EISF from the first

term A0(Q).
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Figure 4.13: The Elastic Incoherent Scattering function and the localised
motion as a result of turning off long ranged motion

The EISF gives information on the geometry of the motion taking place in

the system, it can be seen that the six-site Barne’s model Eqn. 2.65 (Skripov

et al., 1996) represented by the solid red line fits the calculated EISF well.
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As the jump ratio is increased away from zero the elastic component of

the intermediate scattering function becomes a combination of the elastic

component and the lorentzian as a result the form of I(Q,t) decaying to a

finite value is reduced and begins to decay to zero or near zero with time.

Figure 4.14: Purely localised motion compared to a combination of both
localised and long range motion
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Fig. 4.14 demonstrates the difference in I(Q,t) when only inter hexagon

g-sites are included and when all g-sites are included from inter and intra

hexagon jumps.

4.3.4 Equal Jump Probabilities

A logical starting point to determine the nature of the multiple time scales

present within the C15 system is to examine the scattering widths when the

jump probabilities are equal to each other and therefore the system has a

jump ratio of 1. As the jump probabilities are being fixed the system the

G(r, t) is calculated at effectively an infinite temperatures and is not effected

by the site energies or the barrier heights.

Polycrystalline

At low Q values the widths calculated from the MC simulations are in agree-

ment with the polycrystalline Chudley-Elliott model however as the Q-value

increases past one they begin to diverge. At this point the scattering func-

tion becomes more sensitive to the small motions made by diffusing particles

which is useful for information regarding localised motion in the system. An-

other contributing factor to the divergence could be the need for the widths

themselves to be directionally averaged rather than just the intermediate

scattering functions.
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Figure 4.15: Polycrystalline widths τ2/τ1 = 1 and Chudley-Elliott model fit.

The data above shows the HWHMs from the directionally averaged in-

termediate scattering functions Fig. 4.15 with the solid red line showing

the fit of the CE model. A comparison between the directionally averaged

widths and intermediate scattering decay constants over a larger range of

Q values is shown in Fig. 4.16. Displaying how directionally averaging the

decay constants over intermediate scattering functions themselves improves

the resulting broadening.
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Figure 4.16: Comparison of the averaged decay constants f(Q)) and the
averaged I(Q, t).

By continuing with the hypothesis that the I(Q, t) is a sum of two expo-

nentials, when the single exponential is fitted to the slowly decaying compo-

nent at low Q values this is not a good approximation of the process occurring

in the system as it diverges from the rapidly decaying time scale I(Q, t). This

is demonstrated in Fig. 4.17 at four different Q values. In each case a single

exponential is fitted to the data at large times (t > 4 MCC), represented by

the black dashed line.
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A second exponential component is then added to represent the more

rapidly decaying component, resulting in a double exponential fit, where the

parameters are retained from the single exponential fit represented by the

blue dashed lines. This can be seen to give a satisfactory fit to the data.

(a) Q=0.2 Å−1 (b) Q=0.8 Å−1

(c) Q=1.8 Å−1 (d) Q=2.6 Å−1

Figure 4.17: Iinc(Q, t) at various values of Q. Data points are from the sim-
ulations. The black dashed line results from a single fitted exponential at
t > 4 MCC (not shown here). The blue dashed line represents a double expo-
nential fit, where the parameters from the more slowly decaying component
are retained from the single exponential fit (compare with Fig. 4.9).

As the jump ratio here is set to 1.0, it could be expected that there would

be no localised diffusion so the broadening would purely follow Chudley-

Elliott type behaviour seen in Fig. 4.15. However in this case the diffus-
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ing proton is twice as likely to undergo jumps between g sites on the same

hexagon as the origin site as there are two neighbouring g sites but only one

neighbouring g’-site, rather than move to an adjacent hexagon when a jump

is attempted. This suggest that the widths shown in Fig. 4.18 below from

the short time scale I(Q, t) displaying the characteristics of localised motion

are influenced by some degree by the geometry of the jump paths in ZrV2H.

Figure 4.18: Widths from the short time scale component of I(Q, t), for equal
jump probabilities.

The weights of both component of the intermediate scattering fiction are

also calculated during this process along with the elastic incoherent structure

factor, Fig. 4.19 and Fig. 4.20.
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Figure 4.19: Associated widths for both the long and short time scale com-
ponents of jump ratio = 1 I(Q, t).

Supporting the evidence of localised motion taking place is the weights

for the rapid localised motion in Fig. 4.19 they tend towards zero at low

Q but increases as Q increases which is indicative to localised motion. The

same behaviour is displayed in work by Schonfeld (Schönfeld et al., 1989) in

Fig. 4.5. The Elastic incoherent structure factor produced below resembles

that modelled by motion between two sites in Fig. 2.15.
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Figure 4.20: The Elastic Incoherent Structure factor for an equal jump ratio.
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Single Crystal

The single crystal widths for the long time scale have also been examined to

see what behaviour can be seen from given Q vectors through the unit cell;

(1,1,1), (1,1,0) and (1,0,0).

Figure 4.21: Fitted widths along the three Q-vectors (1,1,1), (1,1,0) and
(1,0,0) when the jumpratio = 1.

It was expected that Chudley-Elliott type behaviour would be seen similar

to that shown in the same directions in a face centered cubic lattice, however

this dose not appear to be the case for the (1,1,0),(1,0.0) directions. In the

(1,1,1) direction some similarity is shown to predictions from that of the

Chudley and Elliott model.

108



4.4 Forced Jump Probabilities

Following on from the previous section it is now useful to see the effect of

exaggerating the jump ratios such that the probabilities of jumps on each time

scale occurring are significantly different. By varying the jump ratios from

unity to 0.01 the effect of this can be seen in the long time scale polycrystalline

directionally averaged widths, Fig. ??.

Figure 4.22: Comparison of the polycrystalline broadening when the jump
ratios are varied from 1.0 to 0.01, where the lines are the predicted Chudley-
Elliott model for each jump ratio

For both the jump ratios 0.1 and 0.01 the polycrystalline widths have been

calculated for both the long and short time scales with associated weights. By

fitting the polycrystalline form of the Chudley-Elliott model to the scattering
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function of the large time scale the jump length l can be extracted for each

of the jump ratios, giving 2.232 ± 0.044 Å and 2.661 ± 0.049 Å respectively

Fig. 4.23

(a) Jump Ratio = 0.1 widths (b) Jump Ratio = 0.1 weights

(c) Jump Ratio = 0.01 widths (d) Jump Ratio = 0.01 weights

Figure 4.23: Both the polycrystalline broadening and the associated weights
for jump ratios 0.1 and 0.01.

Again, a comparison between the methodology of approaching the calcu-

lation of the polycrystalline widths has been made as a means of testing the

accuracy of each method for moving forward. Fig. 4.24.

110



Figure 4.24: Comparison between the averaged decay constants of I(,t) and
the decay constants of averaged I(Q,t)’s. 0.1(top), 0.01(bottom).
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The comparisons between the directionally averaged I(Q,t)s and the di-

rectionally averaged f(Q)s in Fig.4.24 shows that the widths calculated a the

first peak and at lower Q values are in good agreement. As the Q values

increase the directionally averaged I(Q,t)s display an over estimation of the

polycrystalline widths, resulting in a second peak of higher intensity, whereas

the directionally averaged widths produce data points at higher Q vales to be

expected in line with the Chudley-Elliott model for a polycrystalline struc-

ture.

The localised component (Fig. 4.25) of the scattering function has been

calculated following the same procedure as used when calculating the com-

ponents for the equal jump rates.
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Figure 4.25: The widths extracted from the rapidly decaying exponential on
the shorter time scale for both 0.1 (top) and 0.01 (bottom) jump rate ratios.
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Here the presence of localised motion is confirmed by the widths tending

towards a finite value at low Q values (Fig. 4.25), if there was no localised

component to the intermediate scattering function then it would be expected

that this would go to zero at low Q values. The elastic incoherent structure

factors for each of the jump rate ratios have also been compared.

Figure 4.26: Elastic Incoherent Structure factor for both the 0.1 and 0.01
jump ratios.
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4.5 Temperature Dependence

In order to investigate the effect of temperature on the Quasi-elastic broad-

ening calculated from Monte-Carlo simulations values for barrier height’s in

eV were introduced to give a more realistic jump rate ratio. The barrier

heights used here have been taken from previous work carried out by Bhatia

and Sholl (2005) utilising transition state theory for high and low tempera-

ture limits in ZrV2 given as 0.165eV and 0.063eV. In the Monte-Carlo runs

preformed here for varying temperatures, the low temperature value being

used for intra-hexagon jump length (g-g) and the high temperature value

used for inter-hexagon jump length (g-g’) the jump ratio has been set to 1

in the following calculations such that the barrier heights and temperature

are the only governing factors in the resulting jumps.

Initially the single crystal case was looked at along three specific Q vec-

tors; (1,1,1), (1,1,0) and (1,0,0). Carried out over a temperature range of

250K-500K with a concentration of 0.0417 and lattice parameter of 7.44 Å.
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(a) All temperatures along (1,0,0) (b) Low temperature range along (1,0,0)

(c) All temperatures along (1,1,0) (d) Low temperature range along (1,1,0)

(e) All temperatures along (1,1,1) (f) Low temperature range along (1,1,1)

Figure 4.27: Single crystal broadening separated for low and high tempera-
tures along vectors (1,1,1), (1,0,0) and (1,0,0).
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The widths from the long time scale do not appear to follow Chuddly-

Elliot type diffusion, this could be due to the multiple diffusion processes

occurring in the C15 system. The double peak seen in the (1,1,1) that appears

to be more pronounced at higher temperatures could be a result of thermally

activated jumps from both the g-g sites and the g-g’ sites.

4.5.1 Polycrystalline

Long time Scale

To gain a more complete picture of the movement of particles in ZrV2 the

polycrystalline case can be examined. This will give a more direct compar-

ison to the results seen from QENS experiments as it is often due to the

nature of the samples that the polycrystalline case is investigated. All the

parameters are kept the same as for in the single crystal case. Working along

the hypothesis that there is two types of motion occurring two time scales

for each temperature are evaluated. The importance here is if from this

longer time scale, the Chudley-Elliott model for long range diffusion can be

extracted.
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Figure 4.28: Polycrystaline widths f(Q) from a single exponential fit of re-
duced set of points at high and low temperatures.
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The polycrystalline HWHMs for multiple temperatures calculated from

a single exponential fit Fig.4.28 to the slowly decaying component of the

directionally averaged I(Q,t). By fitting the polycrystalline Chudley-Elliott

model eqn.4.5 to the long-time scale scattering function the jump lengths (l)

can be extracted

f(Q) = A

[
1− sin(Ql)

Ql

]
(4.5)

(a) 200K widths (b) 300K widths

(c) 400K widths (d) 500K widths

Figure 4.29: Polycrystalline broadening with Chudley Elliott model fits in-
cluded at 200K, 300K, 400K and 500K.
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At a lower temperature such as 200K Fig.4.29(a) there is good agreement

at low Q-values with the Chudley Elliott model, as the Q increases there

is a slight divergence from the Chudley Elliott model, this divergence can

also be seen to increases as the temperature increases seen in fig.4.29(b)(c)

but still in close agreement at Q < 1Å−1. By fitting the Chudley-Elliott

polycrystalline model an estimate of the jump length can be made, due to

the large divergence at higher temperatures the errors associated with this

fit become significantly larger as seen in Table.4.1. This divergence could be

due to the need to directionally average the fitted widths.

Temperature(K) Amplitude l(Å) (MC) l(Å) (exp)

200 2.6402e-05 2.6766 ± 0.0433

250 0.0002 2.7237 ± 0.0531

300 0.0006 2.8477 ± 0.1068

350 0.0012 2.9739 ± 0.1820 2.6

400 0.0023 3.0010 ± 0.2287 3.0

425 0.0032 2.9005 ± 0.1225

450 0.0040 2.9661 ± 0.1498 3.4

500 0.0059 2.9685 ± 0.1135 4.3

Table 4.1: Comparison of fitted jump lengths via the Chudley-Elliott model
model with amplitudes and experimental jump length values (Bull and Ross,
1999a)
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Directionally averaged Widths

Instead of passing the calculated total I(Q,t) from the 24 bases to the Lebedev

function the fitted width f(Q) is passed to the Lebedev function for each of

the generated Q-vectors. The comparison between both the directionally

averaged intermediate scattering functions and the directionally averaged

HWHMs can be seen below. A selection of temperatures from the range have

been shown (Fig.4.30,4.31,4.32) win which it can be seen that the HWHMs

for the directionally averaged widths deviate less from the Chudley-Elliott

model.

Figure 4.30: Comparison between the directionaly averaged decay constants
of I(Q,t) and the decay constants of I(Q,t)s at 300K.
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Figure 4.31: Comparison between the directionaly averaged decay constants
of I(Q,t) and the decay constants of I(Q,t)s at 400K.

Figure 4.32: Comparison between the directionaly averaged decay constants
of I(Q,t) and the decay constants of I(Q,t)s at 500K.
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Comparing now the estimated jump lengths from the both methods (Table.4.2)

at temperatures that showed a large deviation from the Chudley Elliot model,

an increase in jump length with temperature can still be seen however the

large error in the Chudley Elliot fit still persists all be it slightly smaller,

raising doubt if this is indeed the best way to approach extracting the jump

length from the Monte-Carlo simulated data.

Temperature(K) Ave I(Q, t) l(Å) Error(±Å) Ave f(Q) l(Å) Error(±Å)

300 2.848 0.107 2.931 0.098

400 3.001 0.229 2.978 0.105

500 2.969 0.113 2.963 0.108

Table 4.2: Table comparing the fitted jump lengths of the directionally aver-
aged widths and the directionally averaged intermediate scattering functions

An alternative method was derived in order to estimate the jump length

from the MC calculated incoherent scattering function. By fitting a 2nd

order polynomial to the first peak over the scattering function to determine

the turning point of the curve Qmax, this can then be related back to the

jump length by,

l =
3π

2Qmax

(4.6)

With this method for extracting the jump lengths the non-interacting

polycrystalline jump lengths have been calculated, table.4.3 again these are

compared to experimental QENS results,
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Temperature (K) Jump length l(Å) Jump length Exp l(Å)

200 2.81

250 2.83

275 2.88

300 2.92

350 2.97 2.6

400 2.99 3.0

450 3.00 3.4

500 3.02 4.3

Table 4.3: Directionally averaged f(Q) jump lengths compared to experi-
mentally calculated jump lengths.

Localised Motion

By using the example shown earlier in the chapter where solely localised

motion is taking place, it can be seen that the fitted width at small Q does not

go to zero as would be expected if there was no localised motion occurring,

We can then apply this same reasoning when looking at the HWHM’s for

the double exponential fit to the rapidly decaying time scale. As Q → 0

the widths tend towards a finite value which can be indicative of localised

motion Fig.4.33. The weights for the rapidly decaying component of the

intermediate scattering functions decreases with decreasing Q and goes to

zero at Q=0.
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Figure 4.33: Widths from the double exponential fit over a range of temper-
atures.
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Figure 4.34: Associated weights of the rapid time scale for both low and high
temperatures.
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The behaviour of the data presented here displays similarities to the be-

haviour described in data presented by C.Schonfeld, R.Schatzler and R.Hempelmann

in 1989 (Schönfeld et al., 1989) from QENS experiments. These results also

add credence to experimental QENS results measured on the time-of-fight

spectrometer IN5 Fig. 4.35.

Figure 4.35: Experimental Quasi elastic broadening results from both time
scales carried from IN5 spectrometer.

The form of the rapidly decaying component of the MC simulated inter-

mediate scattering functions shows similarities with the form given by the

widths of the broad Lorentzian component from QENS. Further information

about the motion of the diffusing hydrogen can be gleaned from the EISFs

for given temperatures.
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Figure 4.36: Elastic incoherent structure factor for a range of temperatures
compared with the six site barans model.

The elastic incoherent structure factors appear to show similarities with

six site Barnes model show by the solid red line in Fig. 4.36 with an l =

0.13906a which is the ideal jump length for jumps between g-sites on the

same hexagon. The results of the EISF can be seen to suggest that there is

indeed localised motion around neighbouring g sites on the same hexagon.
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4.5.2 Hydrogen pair interactions

A reasonable next step in building up a more comprehensive picture of the

system with the introduction of hydrogen-hydrogen interactions. Lee (1993)

obtained parameters for repulsive H-H interaction estimated by calculating

hydrogen uptake as a function of chemical potential using the grand canon-

ical ensemble Monte-Carlo simulation, implemented by means of a stepped

potentials involving a hard sphere blocking radius of 0.2a and a stepped

potential out to a radius of 0.38a, further out the potential drops to zero.

VH−H(r) =


0.2eV, 0.2 < r ≤ 0.27a

0.05eV, 0.27 < r ≤ 0.38a

0eV, r > 0.38a

(4.7)

Following the same process as the non-interacting polycrystalline case the

HWHMs for the rapidly decaying and slowly decaying time scale have been

calculated for the same range of temperatures so that the effect of the H-H

interactions can be seen.
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Figure 4.37: Directionally averaged polycrystalline Decay constants f(Q)
from a single exponential fit with hydrogen pair interactions included.
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Following the method used to estimate the jump lengths from the long-

time scale in the non-interacting case, the jump lengths can be estimated for

the H-H interactions polycrystalline case.

Temperature(K) Non Interacting l(Å) Interacting l(Å)

200 2.8127 1.7991

250 2.8339 2.3383

300 2.9226 2.5817

350 2.9766 2.6625

400 2.9923 2.7675

450 3.0026 2.8157

500 3.0206 2.8385

Table 4.4: Comparison of fitted jump lengths from the interacting and non-
interacting hydrogen cases.

An effective increase in jump lengths can be seen in both instances, how-

ever when interactions are included an overall decrease in the magnitude of

the jump length is observed. Although displaying the same trend as the ex-

perimental results the magnitude of the jump lengths at higher temperatures

deviates from this data.

Localised motion

With the inclusion of Hydrogen pair interactions the widths can be seen to

again tend towards a finite value as the value of Q decreases as displayed in

the non-interacting case. In the lower temperature range this is more defined

further out in Q but at higher temperatures this appears to only be the case

at Q < 1Å−1.
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Figure 4.38: Directionally averaged polycrystalline decay constants f(Q) from
a double exponential fit with hydrogen pair interactions included in the short
time scale.
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The interactions brings the EISF into good agreement with the six site

model for the temperatures used when compared to the non-interacting case

where the Barnes model appeared to be an over estimate of the elastic inco-

herent scattering function.

Figure 4.39: Elastic incoherent structure factor for temperatures when hy-
drogen pair interactions are included, showing agreement with the Barnes
six site model.

Looking at a system such as ZrV2H where localised motion is expected

to be seen and has been suggested in previous experimental work stands as

a good example of the behaviour of the widths produced from the rapidly

decaying component when localised motion is present. Because of this it is

helpfully to compare the results from other systems such as the PdH system

discussed in the preceding chapter to give an insight into the behaviour of

hydrogen among interstial sites where localised motions is hypothesised or

believed to not exist from the results of experimental quasie-elastic neutron

scattering.
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Chapter 5

Monte-Carlo Simulations of

Palladium Hydrides

5.1 The Pd-H system

Pd has a face centred cubic crystal structure with two available interstitial

sites for hydrogen occupation. The relative geometrical simplicity of the hy-

dride makes it an attractive material for hydrogen studies. One key property

is its ability to retain a face-centred cubic (fcc) structure, Fig. 5.2, suffering

very little macroscopic deformation after a series of loading and unloading

cycles. In other metals and intermetallic compounds, internal stresses on

hydrogen loading causes brittle fracture to occur, causing the host lattice to

turn into a powder.
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Figure 5.1: Pressure vs composition isotherms for the Pd-H system. Com-
piled data by (Manchester et al., 1994).

Palladium in its equilibrium state has a lattice constant of 3.88Å with

only a very small expansion at low concentrations during the α-phase (the

dilute disordered hydrogen phase). According to Density Functional The-

ory calculations, this increases to 4.07Å for full octahedral-site occupation

(Elsässer et al., 1991), as a result of local lattice deformation around occu-

pied octahedral sites in both the α and β (the ordered hydride) phases. A

small average expansion of the lattice is attributed to α-phase, whereas as H

concentrations increases in the β-phase there is a larger increase in the lattice

parameter. Fig 5.1 shows pressure-composition isotherms for the equilibrium

thermodynamics of these two phases along with the mixed phases for given
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temperatures collated from previous works (Manchester et al., 1994). Dur-

ing the absorption of hydrogen into palladium, molecular hydrogen readily

dissociates at the palladium’s surface. It has been suggested from palladium

nano-particles that up to a few layers deep (subsurface) the tetrahedral site

can become occupied due to them being stabilised, however the octahedral

sites are still energetically favorable. (Akiba et al., 2016).
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Figure 5.2: The octahedral site highlighted in a palladium fcc lattice with
an occupying hydrogen atom.
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Hydrogen is widely accepted to occupy octahedral sites in the bulk of

Pd in both the α and β phases. The first results published in regrades to

the site occupancy in the system were produced from a neutron diffraction

(Worsham Jr et al., 1957) on both β-phase Pd-H and β-phase Pd-D. The

diffraction patterns were reported to be ”representative of the NaCl-type

structure, in which the hydrogen and deuterium atoms have entered the oc-

tahedral positions about the palladium atoms”, shown in Fig. 5.2. Skold

and Neil (1966; 1967) reported, on the basis of QENS measurements, a jump

length of 2.75Å, which corresponds to the distance between two neighbour-

ing octahedral sites (
√

2a
2

) of which each has 4 nearest neighbour sites, with a

further 8 nearest neighbour tetrahedral sites at a distance of (
√

3a
4

). Inelastic

scattering of hydrogen in palladium is indicative of the transition between the

ground and excited states in the ocathedral sites (Kemali et al., 2000). Octa-

hedral occupancy is also indicated from density functional theory calcualtions

of the ground state energies (Elsässer et al., 1991) and from Molecular Dy-

namics (MD) simulations (Gillan, 1986; Salomons, 1990). However in recent

years there has been suggested that hydrogen atoms can occupy tetrahedral

sites (Caputo and Alavi, 2003).

In addition to the site occupancy, the diffusion of protons between sites is

of interest, which can be investigated with Quasi-Elastic Neutron Scattering

(QENS). The majority of QENS measurements have been interpreted on the

basis of jumps between ocatahedral sites (Rowe et al., 1972; Sköld and Nelin,

1966, 1967), although it is known that the barrier height between octahedral

sites is too large to allow thermally activated diffusion at room temperature,

and it is generally accepted that diffusion occurs via tetrahedral sites. This

was discussed originally by Beg and Ross (1970), who tentatively interpreted

their data in terms of two activation energies. More recently, clearer evidence
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of motion on two time scales has been reported (Kofu et al., 2016; Steel,

2018). Kofu et al (2016) attributed this to jumps from the ground state

and the first excited state, citing previous observations of a shoulder in the

inelastic neutron scattering data (Kemali et al., 2000), who attributed this to

the Franck–Condon process. Steel (2018) has suggested a possible localised-

type motion via O-T-O jumps. The residency time for the tetrahedral site

is small and therefore it is difficult to see due to the available energy range

of most spectrometers, in addition to being a rather small feature in the

background noise. The use of Monte-Carlo calculations of a lattice gas have

also been carried out as a means of calculation for both the incoherent and

coherent scattering functions to evaluate the behavior of hydrogen in metallic

and inter-metallic compounds (Barlag et al., 2002) (Bull and Ross, 2001).
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Figure 5.3: PdH1 potentials between octahedral and tetrahedral sites along
high symmetry diffusion paths. (Elsässer et al., 1991).

Diffusion from O sites occurs via tetrahedral sites along paths in the

(1,1,1) direction, due to the absence of a tetrahedral site along the remaining

two possible diffusion paths (1,1,0) and (1,0,0). Hydrogen occupying an

octahedral site has 4 nearest neighbour O sites with the barrier heights,

denoted by S110, of 1.4eV in Fig. 5.3, or 8 neighbouring T sites who’s barrier

height is significantly lower, 200meV, denoted by S111. This lower barrier

height means less thermal energy is required for the hydrogen atom to make

a jump. In addition, the zero point energy in the tetrahedral site is close

to the saddle point energy. Thus, it is likely that the residency time within

the tetrahedral site will be short. From each T site there are 4 neighbouring
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octahedral sites. This process has not been widely reported experimentally,

presumably as its jump-rate would lie outside the energy / frequency window

of the spectrometers in the majority of reported measurements.

5.2 Hydrogen Diffusion between Octahedral

Sites

Initial Monte Carlo simulations were performed for diffusion amongst octahe-

dral sites in a palladium host lattice. Here, site energies and barrier heights

were not included in the model, so that the jump probability to a vacant

site is equal to 1. At low hydrogen concentration, this model is equivalent to

the Chudley-Elliott model for jumps on an fcc lattice. At higher concentra-

tions, both site blocking and tracer correlation effects should act to reduce

the diffusion rate, and hence the values of f(Q). The effects of particle con-

centration on both incoherent and coherent QENS, arising from the self and

total correlation functions, respectively, for the polycrystalline average were

examined.

141



Figure 5.4: Polycrystalline f(Q) obtained from Iinc(Q, t) extracted from
Monte-Carlo simulations of particle diffusion on a fcc lattice as a function
of concentration from c=0.1 to 0.9 in steps of 0.1. The solid lines are the
equivalent expressions from the Chudley-Elliot model multiplied by a factor
of (1-c) to account for site-blocking effects.

Fig. 5.4 shows values of f(Q) obtained from Monte-Carlo simulations

at different particle concentrations. Also shown are equivalent values from

the Chudley-Elliott model, which have been multiplied by a factor of (1-

c) to account for concentration-dependent site-blocking effects. This factor

accounts for the reduction in jump probability due to neighbouring sites

being ’blocked’.

The discrepancy between the curves for each concentration is due to a

further factor known as tracer correlation, which is related to the enhanced

probability of a particle jumping back to the site it has just vacated when it

next attempts to move. Here, we make the assumption that values for f(Q)

based on the Chudley-Elliott model including both site-blocking and tracer
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correlation effects can be expressed as

f(Q) = (1− c)ft(c)
1

τ

[
1− sin(Ql)

Ql

]
. (5.1)

This offers a direct way of obtaining values for the tracer-correlation fac-

tor from values of f(Q), determined from the difference between the ’site-

blocking corrected’ Chudley-Elliott model and the corresponding Monte-

Carlo values. A comparison of these results with previous work, which deter-

mined values for the tracer-correlation factor directly from diffusion rates in

Monte-Carlo simulations (Kelly and Sholl, 1987) is shown in the Table 5.1.

c (1− c)ft ft f(Kelly and Sholl, 1987)

0.1 0.890 0.989 0.986

0.2 0.784 0.980 0.972

0.3 0.671 0.959 0.956

0.4 0.572 0.954 0.938

0.5 0.467 0.934 0.917

0.6 0.365 0.913 0.896

0.7 0.268 0.894 0.870

0.8 0.173 0.864 0.843

0.9 0.084 0.839 0.814

Table 5.1: Comparison of calculated correlation factors to those previously
presented by S W Kelly and C A Sholl (Kelly and Sholl, 1987).
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Figure 5.5: Plot of tracer correlation data in Table 5.1

The results presented so far were calculated for the self pair-correlation

function, it is also of interest to calculate the broadening for the total pair-

correlation function. When dealing with the coherent broadening, both the

effect of the site blocking and the tracer correlation factors are not appar-

ent. This is because both these effects are cancelled out on average when

the correlation between pairs of diffusing atoms is considered. So when the

broadening is calculated for different finite concentrations there is no vari-

ation in the amplitude, as is seen in the case of incoherent scattering, Fig.

5.6
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Figure 5.6: Polycrystalline f(Q) obtained from Icoh(Q, t) calculated from
G(r, t) from Monte-Carlo simulations of particle diffusion on a fcc lattice for
c=0.1, 0.3, 0.5, 0.7, 0.9. The concentration independence of f(Q) is apparent.

5.3 Hydrogen Diffusion including Tetrahedral

Sites

Simulations were performed including both octahedral and tetrahedral sites.

The initial objective was to determine whether, only allowing O-T and T-O

site jumps, it is possible to recover the form of f(Q) seen experimentally.

Initially, rather than explicitly using site energies and barrier heights, the

jump probabilities were defined, allowing direct control of the ratio of the

jump probabilities / rates. In particular, the limit where the jump rates are

significantly different from each other can be investigated.

Initially, the effect of the jump rate ratio on the average site occupancies
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was investigated. One would expect the relative occupancy of the octahedral

sites to increase as the jump rate from T to O is increased. Filling the lattice

at random would give an concentration, c, of 1/3. Calculation of the fraction

of atoms distributed over the available O sites during the initial phase of

the Monte-Carlo calculations using jump diffusion, shows an increase in O

site occupation from the random initial distribution, Fig. 5.7. This effect

becomes greater as the relative jump probability from T to O increases.
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Figure 5.7: Fraction of particles in the O and T sites as a function of time
for the O-T site transition probability of 1.0, 0.1 and 0.01

It is, perhaps, worth highlighting the effects of not including a burn-in

with jump diffusion. One of the consequences of including the tetrahedral

sites is that the ’standard’ burn-in method of using ballistic diffusion does not

result in a steady state. This is because the site occupancies are determined

by the jump probabilities.
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Figure 5.8: Intermediate scattering functions before (top) and after (bottom)
equilibrium has been reached using ’Burn-in’.
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Equilibrium is approached in the original GRT code using ballistic dif-

fusion with the site energies used to determine the transition probabilities.

This means that, where the site energies are equal, the particles will be ran-

domly distributed over all the sites in the lattice, and then when the main

simulation commences, it can take several MCC for the O sites to become

preferentially occupied due to the jump transition probabilities. The effects

of not doing this become evident when the intermediate scattering function

is plotted, as shown in Fig. 5.8.
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5.3.1 Diffusion in a Single Crystal

With the palladium hydride having some diffusion paths of key interest due

to them containing both tetrahedral and octahedral sites, it is first useful

to look at these in a single crystal case. Based on the data in Fig. 5.7, the

jump ratio was set to τT
τO

= 0.01. Widths are calculated via fitting a single

exponential to the intermediate scattering function, I(Q, t) at t > 0, Fig.

5.9.

Figure 5.9: Example of an intermediate scattering function in a single crystal
PdH sample at Q=(0.8,0.8,0.8) with low t points not included in the fitting.
Where the dashed line is the single exponential fit to t > 150M.C.C
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Figure 5.10: The single exponential fit from Fig. 5.9 (black dashed line),
when plotted over the low t range (t,150 M.C.C) excluded from the data set
of Fig. 5.9, compared with a double-exponential fit (dot-dash). where the
parameters of the slowly decaying component is the same as in Fig. 5.9

The dashed line in figure 5.10 represents the single exponential fit from

the slowly decaying component of I(Q,t) which can be seen to diverge from

the fit of the double exponential where one exponential is held constant using

the fitted parameters from the single exponential fit in Fig. 5.9.

The results of this fitting processes at Q vectors along high-symmetry

directions in reciprocal space is shown in Fig. 5.11.
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Figure 5.11: f(Q) from the slowly decaying component of I(Q,t) fits along
the (1,1,1), (1,1,0) and (1,0,0) directions in reciprocal space.

For each of the plots along the three high-symmetry directions, Fig. 5.11,

the Chudley Elliott model for an fcc can be fitted; these functions are given

below.

f100(Q) = 1− 1

3
(2 cos(πQx) + 1) (5.2)

f110(Q) = 1− 1

3
(cos2(πQx) + cos(πQx)) (5.3)

f111(Q) = 1− cos2(πQx) (5.4)

It can be seen that the Chudley Elliott model can be retrieved from the

long time scale intermediate scattering function by fitting a single exponen-
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tial over an appropriate range. This is an significant result, as it means

the intermediate scattering function can be interpreted as a combination of

different types of diffusive motion.

The widths of the rapidly decaying component, an example of which

is shown in Fig. 5.12, do not follow the form of the CE model, perhaps

indicating the presence of localised motion occurring in the PdH system.

[The ratio of T to O sites is 2:1, so an overall concentration c=0.33 over

the whole system would give CO = 1.0 if all of the hydrogen atoms were in

the O sites.]

Figure 5.12: Long and short time scales along the (1,1,1) for a single crystal,
with Chudley-Elliott fit possible on the longer time scale.

Calculations of the f(Q) from the decaying exponential component of a

double exponential fit show that they do not go to zero at low Q values. This

could be indicative of localised motion, similar to that seen in C15 Laves-

phase systems. In addition, f(Q) from the rapidly decaying component is

significantly larger than for the component attributed here to translational

motion.
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5.3.2 PolyCrystalline PdHx

MC simulations of diffution in Pd-H were initially carried out at low concen-

tration, c = 0.0033 or c0 = 0.01).

Figure 5.13: Polycrystalline widths of low concentration (C=0.0033) with
jump ratio = 0.01 along with the Chudley-Elliott model fit.

Fig. 5.13 shows the spherically-averaged (polycrystalline) broadening

from the longer time-scale. Here at low Q the f(Q) show strong agreement

with the CE model shown by the solid red line but begins to deviate at

the higher Q values. Note that experimental measurements are typically re-

ported up to 2− 3Å−1. The f(Q) from the double exponential fit over the

short time scale are shown in Fig. 5.14
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Figure 5.14: Widths extracted from the rapidly decaying exponential com-
ponent for low concentration (C=0.0033) with jump ratio = 0.01

The next step is to examine f(Q) at higher concentrations, from c =

0.033 up to c = 0.33, which would correspond to all the octahedral sites be-

ing fully occupied. The effect of concentration on the localised component of

the scattering function can be determined. The widths associated with the

slowly decaying exponential behave as expected for the intermediate scatter-

ing function, with the increase in concentration demonstrated in Fig. 5.15

along with the widths belonging to the rapidly decaying exponential, Fig.

5.16 .
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Figure 5.15: f(Q) from the slowly decaying exponential component as a func-
tion of concentration, up to the equivalent of full O site occupancy.

Figure 5.16: f(Q) from the rapidly decaying exponential component as a
function of concentration, up to the equivalent of full O site occupancy.

Evidence of localised motion can be seen here in the rapidly decaying

component of the intermediate scattering function seen in the spherically

averaged values of f(Q). In the long time-scale, where the intermediate scat-

tering function decays much more slowly, the Chudley-Elliot model agrees
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well with the calculated values of f(Q) (Fig. 5.17a, 5.17b). However, the im-

portant result here is that in the poly crystalline case the CE model for O-O

jumps can be extracted from the slowly decaying exponential. There is also

some indication of of localised motion in the rapidly decaying component of

the double exponential fit, Fig. 5.18a, 5.18b.

(a) (b)

Figure 5.17: Long time scale widths with Chudley-Elliott fits for PdH β-
phase c=0.23 and c=0.33

(a) (b)

Figure 5.18: Short time scale widths for PdH β-phase c=0.23 and c=0.33
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As the concentration of hydrogen on the O sites increases into the region

that corresponds to the β-phase, the contribution of site blocking on the

localised motion becomes more pronounced. As the concentration of atoms

on the O sites increases, the chance of an atom jumping back from a T site

to the O site it has just vacated would be expected to increase, resulting in

a greater contribution to localised motion. This is, in effect, a sub-lattice

dependent tracer correlation effect.

5.3.3 Temperature Dependence

Introducing barrier heights to the calculation of G(r,t) allows for a more

realistic idea on the motion of the diffusing hydrogen in the system. By us-

ing values for the zero point energy corrected barrier heights of 0.11eV and

0.16eV between tetrahedral and octahedral sites from ab-initio Density Func-

tional Theory (DFT) calculations presented in work by Hajime Kimizuka et

al(2016; 2018; 2019). Using these barrier from T-S as 0.11eV and S-O as

0.16eV, where S is the saddle point, to investigate the temperature depen-

dence of the slow and rapidly decaying motions to be examined. The low

concentration case and the full octahedral occupation have been calculated

over a temperature range 200K-500K for a polycrystalline sample. The long

time scale is firstly examined to determine if the Chudley Elliott model of

diffusion between octahedral sites is extractable from the intermediate scat-

tering function.
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α-phase

Figure 5.19: Polycrystalline f(Q)s from the long time scale over a range of
temperature in α-phase (c=0.033).

The amplitude of the widths for each temperature increases as the tempera-

ture increases as these are all at the same concentration seen in figure 5.19.

By fitting the polycrystalline Chudley-Elliott model to the widths at each

temperature the confirmation of the Chudley-Elliott model being extracted

from the slowly decaying component of the I(Q,t). There are slight deviations

from the Chudley-Elliott model shown by the solid red line in figure 5.20 as

the Q values become larger, this could be explainable by the higher Q values

being more sensitive to localised motion than lower Q values (Q < 0.15Å−1).
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.20: Chudley-Elliott fits to each individual broadening from, 200K,
300K, 400K and 500K. C=0.033

Temperature(K) Amplitude (MCC−1) l(Å) (MC)

200 8.49e-05 2.4783

300 0.001445 2.7491

400 0.006515 2.7548

500 0.016079 2.7492

Table 5.2: Fitted jump lengths from directionally averaged widths via the
Chudley-Elliott model with amplitudes when barrier heights are included at
C=0.033
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From these data given in Table. 5.4 a linear behaviour can be seen in

the Arrhenius plot in Fig. 6.12b, which mirrors X.W.Zhou et al. (2018)

suggesting the presences of just one diffusion barrier in operation at low

hydrogen concentrations.

(a) (b)

Figure 5.21: Extracted jump lengths from Chudley Elliott fits with an Ar-
rhenius plot at a low hydrogen concentration (C=0.033).

The widths from the rapidly decaying component extracted from the short

time scale I(Q,t), Fig. 5.22, show widths that tend towards a finite value at

low Q at temperatures below 500K. At 500K the widths decrease to 0 as the

Q values tend towards zero. At higher temperatures it could be assumed

that there is enough thermal energy available to the occupying hydrogen

atom that it is possible to jump from O-O site as a result instead of via

a O-T-O jump mechanism. Site blocking should be less of a factor in this

instance as C=0.033 resulting in there being a number of vacant octahedral

sites.
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Figure 5.22: Polycrystalline widths from the short time scale over a range of
temperature, here a spine has been added to the points for ease of showing
the trend of the data sets.

At temperatures below 500K it appears that, from Fig. 5.23 the widths

from the short more rapid time scale suggest a second type of motion is

occurring within the total time. The form of these widths suggest a localised

type of motion as at low Q they do not go to zero.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.23: Short time scale half widths from a double exponential fit at
200K, 300K, 400K and 500K when concentration is C = 0.033.

β-Phase

In the results presented here the fitted parameters for each intermediate

scattering function are passed to the Lebedev quadrature generated Q vectors

for a given magnitude of Q. The resulting HWHM for a given magnitude

of Q are then a sum of the directionally averaged widths of each of the

contributing Q-vectors. Carrying this out on a Lebadev order of 25 results

in 230 individual Q-vectors being used for each magnitude of Q. Due to

the relatively simple nature of the PdH system in comparison to the C15
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system in the previous chapter the calculations are relatively computationally

inexpensive.

The effect of concentration with the inclusion of barrier heights is consid-

ered here in β-phase palladium hydride, concentration equal to 0.33, where

nearly all the octahedral sites should be occupied. The widths of the slowly

decaying intermediate scattering function reproduce the form of the Chudley

Elliott model, Fig. 5.25 which is exact at low Q as would be expected with

an increase in amplitude as the temperature is increased shown in figure 5.24.

Figure 5.24: Polycrystalline widths at expected concentration of full octahe-
dral ocupation (C=0.33).

From fitting the polycrystalline Chudley Elliott model (solid lines) in

Fig. 5.25 the jump lengths can also be extracted from the long time scale.

However as Q values increase above 3Å−1 the fit begins to diverge a small

amount, this could be as a result of the localised component as at high Q

the broadening becomes more sensitive to rapid motion.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.25: Chudley-Elliott fits to each individual broadening from direc-
tionally averaged half widths at 200K, 300K, 400K and 500K when concen-
tration is C = 0.33.

It should be noted that the approach for calculating the polycrystalline

widths used here, where the fitted values for f(Q) are averaged, yields an

accurate set of results compared to the width calculated by averaging the

I(Q,t) itself (Table 5.3) as demonstrated in the previous chapter for C15.

For all temperatures as the Chudley Elliott model is in good agreement out

to a higher Q value. This also gives a good estimate of the jump lengths at

each temperature.
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Temperature (K) Jump length(Å) HWHM Jump length(Å) Ave HWHM

200 1.67± 0.008 1.76± 0.019

300 1.76± 0.05 2.37± 0.06

400 1.75± 0.05 2.45± 0.05

500 1.97± 0.08 2.55± 0.04

Table 5.3: Comparison of jump lengths calculated from Chudley Elliott fits
to data produced from both directionally averaged half widths f(Q) and
half widths produced from the directionally averaged I(Q, t)and the effect
on their respective jump lengths.

Temperature(K) Amplitude l(Å) (MC)

200 8.60e-07 1.75875

250 0.00036 2.00989

275 0.00063 2.23670

300 0.00107 2.36756

325 0.00170 2.40356

350 0.00254 2.41337

375 0.00357 2.42622

400 0.00476 2.45003

425 0.00604 2.48068

450 0.00758 2.49820

475 0.00917 2.53013

500 0.01093 2.54946

Table 5.4: Fitted jump lengths from directionally averaged widths via the
CE model with amplitudes when barrier heights are included, C=0.33
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From the data in Table.(5.4) an Arrhenius plot can taken, Fig. 5.26b

(a) (b)

Figure 5.26: Extracted jump lengths from Chudley Elliott fits (Table.5.4)
with an Arrhenius plot

Given the nearest neighbour distance between octahedral sites is 0.7071a

where a is the lattice parameter. Giving a jump length of 2.8779Å given a

suggested lattice parameter of 4.07Å from DFT calculations with full octa-

hedral site occupation (Elsässer et al., 1991). The jump lengths extracted

from the Long time scale intermediate scattering function calculated from

the pair correlation function generated from Monte-Carlo simulations where

only octahedral to tetrahedral jumps are allowed show a reduction in jump

length from that of the suggested predicted jump length.
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Figure 5.27: Directionally averaged decay constants from a double exponen-
tial fit over a range of temperatures.

The double exponential fitted to the rapidly decaying I(Q,t) over a short

time scale compared to the time scale used to extract the CE model, shows

evidence of there being motion. If there was purely O-O type motion one

would expect to see the widths in Fig. 5.27 to go to Zero at low Q, these are

shown on independent axis for each temperature in figure 5.36. This can be

seen as evidence of an O-T-O jump mechanism.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.28: Short time scale directionally averaged half widths from a double
ecponential fit at 200K, 300K, 400K and 500K when concentration is C =
0.33.

The plot of both the single fit and double fit exponentials on the short

time scale at higher Q values demonstrates a divergence, Fig. 5.29 between

the two suggesting that a double exponential is necessary to fully evaluate

the Intermediate scattering function when both Octahedral and Tetrahedral

sites are included in allowed jumps.
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Figure 5.29: Short time scale I(Q, t) with single exponetial fit (dashed line)
and Double exponential fit (dot-dash line) at Q=1.2Å, 500K.

If there is localised motion there should exist some elastic component in

the intermediate scattering function in the short time scale, this is the elastic

incoherent structure factor (EISF) Fig. 5.30.

Figure 5.30: The Elastic Incoherent Structure Factor for 200K, 300K, 400K
and 500K.
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The fit to the Arrhenius plot in Fig.5.26b gives the activation energy

0.149eV . This is in close agreement to the activation energy calculated for β-

phase by Beg and Ross (1970) over a temperature range 293–473 K, 0.146eV ,

however over similar temperature ranges Seymour et al. (1975) and Davis et

al. (1976) reported activation energies of 0.229 and 0.228eV respectively.

This also agrees with work carried out by X.W. Zhou et al. (2018) who

noted that at lower hydrogen concentrations there is just one diffusion bar-

rier, shown by the linear behaviour of the Arrhenius plots, however at higher

concentrations the barrier is no longer linear and becomes a continuous func-

tion meaning a single barrier activation energy could no longer being be

determined which has yet to be displayed here as for beta-phase PdH with

barrier heights included the Arrhenius plot still behaved in a linear fashion.

5.3.4 Including Site Energies

All the previous calculations have been carried out with both the octahedral

and tetrahedral sites having no energy attributed to each of them respectively,

we know this not to be the case however. In Palladium the tetrahedral site has

a higher energy that the octahedral sites resulting in preferential octahedral

occupation as reported in previous studies on the PdH systems. Here the

octahedral site will be given a value of 0.0eV and all other sites will then be

scaled relatively to that. From Hajime Kimizuka et al (2019) and Kimizuka

Hajime et al (2018) the difference in energies between the O and T sites is

given as 0.05eV therefore, the tetrahedral site here will hold an energy of

0.05 eV. Which is also of the same order of magnitude the delta E calculated

by the Nudge Elastic Band DFT result presented in Fig. 6.14.
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α-Phase

Beginning in the alpha phase as with barrier heights the polycrystalline

widths have been calculated and extracted from the long time scale com-

ponent of the intermediate scattering function and a Chudley-Elliott model

was fitted to extract the amplitude and estimated jump lengths (Fig. 5.31),

(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.31: Chudley-Elliott fits to each individual broadening from direc-
tionally averaged half widths at 200K, 300K, 400K and 500K when concen-
tration is C = 0.033. Site energies set to O=0.00eV and T = 0.05eV.
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From the fitted CE model the jump lengths can be extracted along with

the factor A from Eqn. 3.16 referred to as amplitude in the table below

(Table. 5.7).

Temperature(K) Amplitude l(Å) (MC)

200 5.27e-06 2.4496

250 4.23e-05 2.7635

300 0.00021 2.79304

350 0.00067 2.77106

400 0.00158 2.78851

450 0.00309 2.76929

500 0.00527 2.78830

Table 5.5: Fitted jump lengths via the Chudley Elliott model with amplitudes
when tetrahedral site energies and barrier heights are included in α-phase
PdH.

Using these jump rates and amplitudes an Arrhenius plot can be produced

which can give an in-site into the barrier in operation for the diffusing atom.

(a) (b)

Figure 5.32: Extracted jump lengths from Chudley Elliott fits with an Ar-
rhenius plot.
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As the Arrhenius plot in Fig. 5.32 behaves linearly it could be expected

that there is only the O-O jump barrier in operation. When looking at

the Short time scale component of the intermediate scattering functions the

widths extracted from the double exponential fit, Fig. 5.33, give some in-

dications of a type of motion occurring on the shorter time scale while the

Chudley Elliott type diffuse motion is still retrievable from the long time

scale.

(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.33: Short time scale directionally averaged half widths from a double
exponential fit at 200K, 300K, 400K and 500K when concentration is C =
0.033. Site energies set to O=0.00eV and T = 0.05eV.
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β-Phase

Two concentrations have been considered here, 1.0 and 0.7 when scalled in

relation to the fraction of occupation of the octahedral sites these are 0.33

and 0.23 respectively. Beginning with the latter where there should still

exist octahedral site vacancies, the extracted widths from the long time scale

component agree well with the Chudley Elliot model, Fig. 5.34.

(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.34: Chudley-Elliott fits to each individual broadening from direc-
tionally averaged half widths at 200K, 300K, 400K and 500K when concen-
tration is C = 0.23. Site energies set to O=0.00eV and T = 0.05eV.
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Temperature(K) Amplitude l(Å) (MC)

200 5.55e-06 1.79353

250 3.10e-05 2.65445

300 0.000134 2.73250

350 0.000419 2.74731

400 0.001026 2.74548

500 0.003641 2.73740

Table 5.6: Fitted jump lengths via the Chudley-Elliott model with am-
plitudes when tetrahedral site energies and barrier hights are included at
C=0.23

(a) (b)

Figure 5.35: Extracted jump lengths from Chudley Elliott fits with an Ar-
rhenius plot.

The fact that the Arrhenius plot in Fig. 5.35b appears to deviate from

the linear nature seen when only one type of diffusion barrier is in operation

indicates that as the hydrogen concentrations increase into the β-phase range

that there is more than one type of diffusion mechanism being used by the

diffusing hydrogen atoms.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.36: Short time scale directionally averaged half widths from a double
exponential fit at 200K, 300K, 400K and 500K when concentration is C =
0.23. Site energies set to O=0.00eV and T = 0.05eV.

In Fig. 5.37 the hydrogen concentration is increased to 1.0, which is scaled

such that all octahedral sites should be filled, despite this being unphysical

in experiment terms.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.37: Chudley Elliott fits to each individual broadening from direc-
tionally averaged half widths at 200K, 300K, 400K and 500K when concen-
tration is C = 0.33. Site energies set to O=0.00eV and T = 0.05eV.

The directionally averaged widths for the slowly decaying component on

the long time scale are well represented by the Chudley Elliott polycrystalline

model for diffusion with the inclusion of both barrier heights and the site

energy of the tetrahedral sites, with the concentration equal to 0.33 equivalent

to octahedral occupation.
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Temperature(K) Amplitude l(Å) (MC)

200 5.48e-06 1.7407

250 2.97e-05 1.8440

275 6.17e-05 1.9751

300 0.00012 2.22131

325 0.00021 2.43749

350 0.00036 2.59236

375 0.00057 2.62188

400 0.00087 2.64044

425 0.00129 2.64160

450 0.00179 2.65209

475 0.00243 2.66343

500 0.00317 2.67412

Table 5.7: Fitted jump lengths via the Chudley-Elliott model with ampli-
tudes when tetrahedral site energies and barrier heights are included

From these data an Arrhenius plot can be made again to find out the

activation energy, Fig. 5.38b.
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(a) (b)

Figure 5.38: Extracted jump lengths from Chudley Elliott fits with an Ar-
rhenius plot.

With the inclusion of a tetrahedral site energy at a concentration c = 0.33

it can be seen from Fig. 5.38b that the Arrhenius plot is no longer behaving

linearly as would be expected if there was only one diffusion barrier avail-

able for the diffusing hydrogen atom. Because of this non linear behaviour

it is not the case of simply extracting one activation energy as for alpha-

phase concentrations. This then further supports the existence of multiple

types of diffuse motion occurring via different path ways mainly the O-T-O

mechanism.

The Rapidly decaying component extracted from the double exponential

fit is shown in Fig. 5.36 as well supports the idea of a second type of diffuse

motion occurring on a different time scale.
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(a) T=200K (b) T=300K

(c) T=400K (d) T=500K

Figure 5.39: Short time scale directionally averaged half widths from a double
exponential fit at 200K, 300K, 400K and 500K when concentration is C =
0.33. Site energies set to O=0.00eV and T = 0.05eV.

Widths indicative of localised motion occurring in the system can be

seen at all four temperatures, these have been calculated using Monte-Carlo

simulated pair-correlation functions using concentrations of 0.33 and 0.23

distributed over a lattice size 20x20x20 with a g(r) radius = 5.0, tetrahedral

site energy = 0.05 and barrier heights from DFT transition state searches

and NEB calculations. The presence of a localised type of motion can also

be seen when the EISF is examined for the inclusion of site energies, Fig.

5.42 and 5.43.
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Figure 5.40: The Elastic Incoherent Structure Factor for 200K,300K and
400K with both barrier heights and site energies. c=0.23

Figure 5.41: The Elastic Incoherent Structure Factor for 200K,300K and
400K with both barrier heights and site energies. c=0.33
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The EISF’s for both β-phase concentrations 0.7 and 1.0, shows resem-

blance to that of the form of two site Barnes model Fig.2.15. However,

here the octerhedral and tetrahedral sites here are energetically in-equivalent.

Knowing this it is possible to fit the 2 site model for energetically different

sites using the following terms for A0 and A2 in Eqn.(2.63),

A0(Q) =
1

1 + ρ

[
1 + ρ2 + 2ρj0(Qd)] (5.5)

A1(Q) =
2ρ

1 + ρ2
[1− j0(Qd)] (5.6)

where ρ if the ratio of attempt frequencies, ρ = τ1/τ2 (Bée, 1988), to the

EISF data presented in figure 5.42 and 5.43 which can be seen to be in good

agreement with the two site Barnes model.

Figure 5.42: EISF for c=0.7 fitted with jump model between two sites with
different transition rates.

182



Figure 5.43: EISF for c=1.0 fitted with jump model between two sites with
different transition rates.

These results presented here are significant as they display motion be-

tween the octahedral and tetrahedral sites as well as the recovery of the

CE model for diffusion between octahedral and octahedral sites when there

are more physically meaningful values used in the calculation of the pair-

correlation function G(r,t), along with the EISF displaying behavior to that

of diffusion among two energetically different sites. Interactions however,

have yet to be included, this ideally would be in the form of an embedded

atom potential, but is possible with the current code to include inter particle

interactions via hard sphere blocking that was used in section 4.5.2 for the

C15 test case.

The results from the double exponential fit over the shorter time scale in

Fig. 5.33, 5.36 and 5.39 display some indication that there is not a strong Q

dependence particularly at higher Q values. In some cases the widths appear
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to decrease towards zero at low Q. However, in this rage the contribution

from long range diffusion is likely to dominate, as low Q corresponds to

large distances and is sensitive to long range motion. Here, the amplitudes

of the quasi elastic contribution associated with localised motion tend to

zero at low Q. The EISF Fig.5.42 and 5.43 provideds stronger evidance to

suggest that there is some form of localised motion taking place. At the

higher concentrations there is some evidence of Q dependence that could

arise from Chudley-Elliott type behaviour. Attempts to parameterise the

Chudley Elliott model did not result in any satisfactory fit.
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Chapter 6

Concluding Remarks and

Further Work

Results from Monte-Carlo simulations of PdH have been interpreted by fol-

lowing the example of localised motion seen in systems such as the C15 Laves

phase system of ZrV2Hx in which it is accepted that multiple types of mo-

tion are occurring both due to site blocking effects and the geometry of the

system. The results presented here for PdHx display behaviour indicative of

different types of motion taking place, this can be seen as motion occurring on

two distinct time scales: a long time scale Chudley-Elliott type motion and a

short time scale more rapid localised motion. This localised motion becomes

apparent when a double exponential is fitted to the shorter time scale, defined

in terms of Monte-Carlo cycles, using the decay constant and amplitude from

the fit of a reduced set of data points associated with the longer time scale.

A significant part of these results occurs in regards to the motion occurring

on the long time scale, as in the calculation of the pair correlation function

there are only two allowed jumps octahedral to tetrahedral (O-T) and vice

versa. As Chudley Elliott type motion would be expected for only the oc-
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tahedral to octahedral jump type which in the Monte-Carlo calculations are

not present. However when the widths from the single exponential fits of the

long time scale I(Q, t)s are plotted a clear Chudley-Elliott type behavior can

be seen, along with a behavior that is indicative of localised motion from the

short time scale widths from the double exponential fit. Although a model

has yet to be produced to characterise the decay constants from the short

time scale like the Chudley Elliot model, there is a clear indication of a more

localised type of motion occurring from these decay constants. This localised

motion is believed to be as a result of rapid jumps between an octahedral

site and any of its neighbouring tetrahedral sites with a low residency time

or an immediate jump back to either the original octahedral site or a free

neighbouring octahedral site, producing the typically seen O-O jump behav-

ior but via a O-T-O jump mechanism. Jumps occurring via the O-T-O path

have been previously suggested by Kofu et al (2020) and are schematically

represented in Fig. 1.3, the two time scales suggested there were as a result of

the diffusing atom being in its first excited and its ground state rather than

localised jumps Fig. 1.6. This could be possible to model with slight modifi-

cation to the current code however due to the introduction of another jump

type, it would already be expected to produce jumps on multiple time scales.

Here however, it is suggested that the motions are not mutually exclusive

and are occurring along side each other such is supported by experimental

QENS measurements schematically represented in figure 1.5 where the broad

and narrow components can seen to be parts of the total lorentzian produced

from the scattering. Primarily only the incoherent scattering function has

been presented.
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However, in the development of the methodology for calculating the

widths the coherent broadening was considered and calculated for a face

centered cubic lattice. The ’TOTAL’ pair correlation function would be of

interest to calculate going forward with the same parameters used in the

results presented above.

6.0.1 Long Time Scale Component

The behavior of these calculated widths for PdH can be compared to those

calculated experimentaly by QENS from previous works (Steel, 2018) and

(Kofu et al., 2016) by using the Chudley Elliott model for a powder sample

Eqn. 5.13. For this the the residency times are required, these can be gained

from the Arrhenius equation,

τ = τ0 exp (−E/kBT ) (6.1)

Where E is the activation energy. If a Q value is selected for widths to be

calculated at, they can be compared directly. Using the jump length 2.85Å

and 1.2Å−1, the residency times from the ground state and activation energies

of the ground state reported in Kofu and steel can be used at temperatures

used for QENS experiments carried out by Steel et al widths can be calculated

and compared between the two bodies of work in Table. 6.1 and Fig. 6.1,6.2.
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Temperature(K) Γkofu(meV ) ΓSteel(meV )

230 0.0437 0.0252

360 0.1744 0.1073

300 0.7184 0.4714

340 2.1209 1.4625

433 12.1302 9.0597

453 16.0736 12.1606

468 19.5406 14.9164

483 23.4691 18.0660

498 27.8780 21.6297

Table 6.1: Comparison of widths calculated from data presented by Kofu et
al (2020) and Steel (2018).

Figure 6.1: Widths from Table 6.1.
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Figure 6.2: inverse temperature against against the log of residency time
(log(τ)).

These two sets of results show strong similarities to each other following

the same pattern with an increase in half width half maximum as the tem-

perature is increased. This feature of the data is also seen with the widths

presented here for the Monte-Carlo simulations of PdH. The widths presented

in the table above were calculated just using the residency time and the acti-

vation energies. Steel presented fitted results from Eqn.5.13 at higher end of

the temperature range, if these values are used to calculate widths at again

Q = 1.2Å−1 the simulated results and experimental results can be better

compared.
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Figure 6.3: Comparison of widths calculated from (Steel, 2018) fitted param-
eters and Monte-Carlo simulated widths including barrier heights and barrier
heights plus tetrahedral site energy

The widths calculated (Steel, 2018) although greater in magnitude show

an increase in width as temperature increases, this same pattern can be

seen in the simulated results from Monte-Carlo. This gives confidence that

the narrow component of QENS broadening results behaves the same as

the broadening of the motion of particles occurring on the long time scale

calculated with MC.

6.0.2 Short Time Scale Component

The motion presented here occurring on the shorter time scale here supports

previously findings presented by Steel (2018) where in the powder sample of

PdH a broad component, Fig. 6.4 and 6.5, was identified presenting similar

behaviour to that presented in results here,
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Figure 6.4: Broad component widths for high temperature range presented
by Steel (2018)
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Figure 6.5: Broad component amplitudes as a fraction of the the total QENS
for high temperature range presented by Steel (2018)

It was suggested that there is little discernible temperature dependence

in the wide component, represented as the broad lorentzian (blue dot), Fig.

1.4 and Fig 1.5.

However, this motion becomes more apparent at higher temperatures, this

could be seen as being analogous with the short time scale widths presented

here as the amplitude of the fitted decay constants appears to increases with

higher temperatures but appears relatively consistent ant low temperatures,

Fig. 6.6, 6.7, 6.6
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Figure 6.6: Directionally averaged decay constants from a double exponential
fit over a range of temperatures for C=0.1

Figure 6.7: Directionally averaged decay constants from a double exponential
fit over a range of temperatures for C=0.7
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Figure 6.8: Directionally averaged decay constants from a double exponential
fit over a range of temperatures for C=1.0

6.0.3 Site occupancy

It can be seen in the calculated jump lengths that as temperature increases

there is also an initial increase in the jump lengths shown in Fig. 5.32, 5.35,

5.38. This apparent increase in jump lengths could be down to the average

site occupancies Fig. 6.9 and Fig. 6.10 from which each of the Monte-

Carlo simulations were started. These occupancies display an increase with

temperature,
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(a) C=0.033

(b) C=0.23

Figure 6.9: Average octahedral site occupancy with increasing temperature
for concentrations C = 0.033,0.23. Site energies set to O =0.00eV and T =
0.05eV
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(a) C=0.33

(b) Comparison of C

Figure 6.10: Average octahedral site occupancy with increasing temperature
for concentrations C = 0.33 and a comparisons of C = 0.033,0.23 and 0.33.
Site energies set to O=0.00eV and T = 0.05eV
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When the individual burn in periods are considered for both α and β

phase Palladium Hydride, Fig. 6.11, 6.12.

(a)

(b)

Figure 6.11: Examples of the ’Burn in’ period over 1000 cycles for 200K and
400K at 0.1 concentration
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(a)

(b)

Figure 6.12: Examples of the ’Burn in’ period over 1000 cycles for 200K and
400K at 0.7 concentration

It is clear that the system is not yet in a steady state at lower temperatures

(200K) and appears to take a long time to approach a point where the atoms
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are evenly distributed over available sites. More so at 200K the occupation

initially is preferential to atoms in the tetrahedral site and a cross over occurs

after a number of cycles and the octahedral sites begin to be preferentially

occupied. It could be possible that there is some correlation between this

cross over at the lower temperatures and the reduction in calculated jump

lengths which could further be explored.

6.0.4 The Rowe Model

It was considered that due to the multiple basis created with the inclusion of

tetrahedral sites that the Chudley Elliott model may not accurately describe

the half width half maxima of the scattering function and instead the model

produced by Rowe for Vanadium hydride would be better suited (Rowe et al.,

1972), where an expression for the incoherent scattering function was given

for a non-bravis lattice of energetically equivalent sites. Here the lattice is

split up into m bases, with each basis having a different jump associated with

it, where the probability of finding a particle on any of the m sub-latices at

r for a given time becomes a weighted sum over all the sub-lattices (basis).

6.0.5 Particle Interactions

During the development of the methodology used to extract the widths asso-

ciated with the more rapid motion multiple avenue’s were explored but not

fully pursued in regards to the parameters used in the calculation of the Pair-

Correlation functions G(r, t). The natural extension of the work resented in

the previous section would be to introduce hydrogen pair interactions in the

form of an embedded atom potential (Zhou et al., 2008b) for hydrogen in

palladium, Fig. 6.13
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qa

Figure 6.13: Example of the embedded atom potential for PdH. H-H, Pd-H
and Pd-Pd potentials, calculated using ASE in Python and potentials from
Zhou et al (2008a).

Another way of introducing hydrogen interactions into the PdH system

is by hard sphere potentials which were tested on a simple cubic system and

used in the C15 work in the previous chapter. In the simple cubic case a

reduction in the amplitude of the calculated widths is seen from the non

interacting to the interacting case, as well as a reduction in the jump lengths

seen in ZrV2H. For the case of the fcc lattice such as Palladium hydride,

there are a number of points in reciprocal space where the maxima in S(Q),

the static structure factor, can occur depending on the relative strength of

the inter-particle interactions over first and second nearest-neighbours; it is

not immediately obvious how this will affect the spherically averaged forms.

Before progressing to the case of the fcc lattice, simulations were run for a

sc lattice, where there should by a single peak at Q = 2π
a

(
1
2
, 1

2
, 1

2

)
in order to
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test the methodology. This could be taken further and applied and refined

for the fcc case as for the simple cubic case this was successfully was done

for a range of reduced temperatures up to the transition temperature where

as expected there was a large peak observed corresponding to the known

location of a Bragg reflection from the ordered superstructure.

6.0.6 First principles calculations

Further work is needed to utilise the DFT calculator CASTEP with the

Nudged Elastic Band model to be able to produce a more precise picture

of the minimum energy pathway between sites in both the PdH and ZrV2H

system as a means of acquiring barrier heights and site data from first prin-

ciples for use in the Monte-Carlo calculations. An attempt has been made

using python to marry the two together with varying results (Fig. 6.14). The

results of which for PdH showed dependence on which optimizer was used

to optimise each image in the chain of configurations between the initial and

final configuration, for which more work and a comparison is needed, as well

as the determination of the thresholds required for the optimizer not to be-

come trapped along the path when finding the saddle point. The phonons

for both the octahedral and tetrahedral sites were calculated along with the

phonons for the the possible saddle point found from the Nudged Elastic

Band calculations, these have not yet been used but it was discussed that

these can be used to calculate the zero point energies for each site respec-

tively which would give activation energies for use in the calculation of the

pair correlation function.

Similar calculations have been attempted in this work using a combination

of Nudged Elastic Band calculations in partnership with DFT calculator

CASTEP (Clark et al., 2005), to calculate a minimum energy path between
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the octahedral and tetrahedral sites via a saddle point, Fig.6.14.

Figure 6.14: Miniumum Energy Pathway from a Nudge Elastic Band calcu-
lation

These calculations were carried out with a combination of both python

and CASTEP using ASE (Atomic Simulation Environment) which is a set

of Python tools and modules used for carrying out atomistic simulations

(Larsen and Jørgen, 2017)
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Appendix A

Example input files

A sample input file for both C15 and PdH Monte-Carlo runs are given below

in sections such that is can be mapped onto the outline shown in Chapter

3 Section 3.2. For the C15 input file a hard sphere potential is included to

model repulsive interactions, where as these were not included for the PdH

Monte-Carlo simulations.
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A.1 C15 ZrV2Hx

Figure A.1: First section of an example input file ZrV2Hx whose outline is
shown in Fig. 3.4 for populating the lattice.

204



Figure A.2: Second section of an example input file ZrV2Hx whose outline is
shown in Fig. 3.5 for the parameters of the simulation of diffusion.
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Figure A.3: Final section of an example input file for ZrV2Hx whose outline
is shown in Fig. 3.3 for setting up the lattice.
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A.2 Palladium Hydride

Figure A.4: First section of an example input file for PdH whose outline is
shown in Fig. 3.4 for populating the lattice.

Figure A.5: Second section of an example input file for PdH whose outline
is shown in Fig. 3.5 for the parameters of the simulation of diffusion.
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Figure A.6: Final section of an example input file for PdH whose outline is
shown in Fig. 3.3 for setting up the lattice.
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Appendix B

Post Processing Python Scripts

On top of the FORTRAN code GRT outlined in chapter 3 a set of python

scripts have been developed in order to effectively process the GRT results.

First of which is grt2iqt.py this carries out the first Fourier transform

in space to generate the intermediate scattering function (I(Q, t)) for a given

Q-vector (hkl). Also generates an output file containing data points of the

calculates I(Q, t).

Following this is iqt2fq.py which from the GRT output file carries out the

the spatial Fourier transform generating I(Q, t) to which a single exponential

is fitted for the given Q vector and widths extracted. The process is repeated

for a given interval along the chosen Q-vector i.e (0,0,0), (0.5,0.5,0.5) and

(1,1,1) which would calculate 3 decay constants relating to the widths in the

Quasi-elastic broadening. It should be noted that both theses scripts have

Coherent and incoherent variants.

The above script was then modified to calculate the polycrystalline width

grt2fq poly.py. This uses a Lebedev quadrature which requires a Q value

from a range of Q vales to be passed to a quadpy.shphere.Lebedev function

as well as a Lebedev order relating to the number of points to be used in the
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spherical averaging.

Figure B.1: Example of how the Quadpy Lebadev function is used in grt2fq
poly.py

B.1 Multiple time scale scripts

GRT output from systems where there are multiple types of motion occurring

requires a different set of post processing scripts.

grt2iqt 0.1.py to grt2iqt 1.0.py are a set of scripts that deals extracts

the intermediate scattering functions and widths associated with two different

time scales of GRT, requiring two different GRT output files for input files.

grt2iqt 1.0.py carries out automated fitting of I(Q, t) for both time scales

for a range of given Q values. Produces output files of fitting parameters and

plots of both time scales and one combined on the shorter time scale.

grt2iqt poly 0 1 4.py is structured the same as the above mentioned

scripts however deals with the polycrystalline (spherically averaged) inter-

mediate scattering function. This script however fits a single or double ex-

210



ponential to the averaged intermediate scattering function, which is a less

accurate way of calculating the polycrystalline equivalent widths.

Improvements were made with a set of scripts where the fitted widths

themselves are spherically averaged, grt2fq poly 0 4 4tot.py and grt2fq

poly 0 4 4tot shortT.py. These were split into two separate scripts to be

run in succession for ease of programming. grt2fq poly 0 4 4tot shortT.py

uses the output files generated from grt2fq poly 0 4 4tot.py to calculated

the short time scale widths.

The Elastic Incoherent Structure Factor was then calculated by using

grt2iqt poly 0 1 5.py a modified version of the initial polycrystalline script.
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Appendix C

Quasi-elastic Broadening from

the Chudley-Elliott Model for

an fcc Lattice

In this section, the expressions in Eqn. (2.56) and Eqns. (5.2, 5.3 and 5.4)

are derived for the particular case of an fcc lattice.

The quasi-elastic broadening from the Chudley-Elliott Model is

f(Q) =
1

n

∑
l

1− e−iQ·l (C.1)

where l are the set of vectors to the nearest neighbour sites in the fcc

lattice.

A a general momentum transfer vector, Q , can be written as

Q =
2π

a
(Qx, Qy, Qz) (C.2)

For the jump vector l1 = a(1/2, 1/2, 0), the dot product with Q is then
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Q · l1 =
a

2
(1, 1, 0) · 2π

a
(Qx, Qy, Qz) = πQx + πQy (C.3)

The dot products for the 12 jump vectors are then

Q · l1 = πQx + πQy (C.4)

Q · l2 = −(πQx + πQy) (C.5)

Q · l3 = πQx − πQy (C.6)

Q · l4 = −(πQx + πQy) (C.7)

Q · l5 = πQx + πQz (C.8)

Q · l6 = −(πQx + πQz) (C.9)

Q · l7 = πQx − πQz (C.10)

Q · l8 = −(πQx − πQz) (C.11)

Q · l9 = πQy + πQz (C.12)

Q · l10 = −(πQy + πQz) (C.13)

Q · l11 = πQy − πQz (C.14)

Q · l12 = −(πQy − πQz) (C.15)

Inserting into Eqn. C.2,

f(Q) =
1

12
[12− (2 cos(πQx + πQy) + 2 cos(πQx − πQy)

+ 2 cos(πQx + πQz) + 2 cos(πQx − πQy)

+ 2 cos(πQy + πQz) + 2 cos(πQy − πQz)] (C.16)
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f(Q) = 1− 1

3
(cos(πQx) cos(πQy)

+ cos(πQx) cos(πQz)

+ cos(πQy) cos(πQz)) (C.17)

For the high symmetry directions, this expression can be simplified.

(100) direction

cos(πQy) = 1 (C.18)

cos(πQz) = 1 (C.19)

So that

f100(Q) = 1− 1

3
(2 cos(πQx) + 1) (C.20)

(110) direction

cos(πQy) = cos(πQx) (C.21)

cos(πQz) = 1 (C.22)

so that

f110(Q) = 1− 1

3
(cos2(πQx) + cos(πQx)) (C.23)
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(111) direction

cos(πQy) = cos(πQx) (C.24)

cos(πQz) = cos(πQx) (C.25)

so that

f111(Q) = 1− cos2(πQx) (C.26)
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geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.

Annalen der physik, 4, 1905.
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K. Sköld and G. Nelin. Neutron study of the diffusion of hydrogen in palla-

dium. Solid State Communications, 4(6):303–306, 1966.
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