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Over a century after Wallace’s proposition of the riverine barrier hypothesis, the role
of rivers in the diversification of species remains a matter of interest in Amazon
biogeography. Amazonian rivers, in particular those large and fast flowing rivers, are
widely recognized to act as barriers to the dispersal of some organisms. However, the
extent to which primate species changes across interfluves (β-diversity) in response
to river features remains to be explicitly tested. In this study, we examine how river
characteristics affect the variation in taxonomic and phylogenetic β-diversity to elucidate
the ecological processes behind the differences in primate assemblages between
neighboring interfluves in the Brazilian Amazonia. We compiled International Union for
Conservation of Nature (IUCN) distribution maps of 80 river-bounded primate species
in 10 interfluves separated by major rivers throughout the Brazilian Amazonia. We
assessed both the taxonomic (disregarding phylogenetic relationships between species)
and phylogenetic β-diversities. We applied multiple linear models to evaluate whether
annual discharge, sinuosity, and reflectance (as a proxy for amount of sediments) in each
river or river section that separates neighboring interfluves make rivers effective barriers
to primates. We found that mean discharge has a positive effect, while both sinuosity
and amount of sediments have negative effects on primate β-diversity. These variables
have significant effects on total taxonomic and phylogenetic β-diversity between
neighboring interfluves, and their species turnover components. River features, however,
have no effect on species richness differences. Genera are capable of traversing almost
all interfluves, but species are replaced by others in opposite interfluves. Discharge
affected both small- and large-sized primate total β-diversity, but sinuosity only affected
large-sized primate assemblages in neighboring interfluves. Our results indicate that
although Amazonian rivers act as barriers for many primate species, this barrier effect
seems limited to the short/medium time scales, as primate lineages are able to cross
them over long-time scales.

Keywords: Amazonian rivers, biogeography, dispersal, macroecology, species turnover, vicariance, Wallace’s
riverine barrier hypothesis, β-diversity
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INTRODUCTION

Vicariant events such as the emergence of large rivers or uplift
of mountain chains can favor allopatric speciation (Hoorn et al.,
2010; Dal Vechio et al., 2019; Mendez-Camacho et al., 2021).
In particular, large Amazonian rivers have been considered the
most important engines of speciation by vicariance in this biome.
Wallace (1852) was the first to notice that large Amazonian rivers
delimit the distribution of species and in particular of primates,
thus acting as barriers to dispersal in an otherwise featureless
landscape. More recently, several authors refined this idea, which
became known as the riverine barrier hypothesis (Patton et al.,
1994; Gascon et al., 2000). The main prediction of this hypothesis
is that congeneric species are separated by large rivers and their
evolution was a result of the formation of said river which severed
the original population in two which with time, speciate by
vicariance (Patton et al., 1994). The riverine barrier hypothesis,
which has been extensively tested in the last decades, is currently
accepted as an important mechanism of speciation in Amazonia.
It was confirmed in several taxonomic groups, including birds,
mammals, and some reptiles (Ayres and Clutton-Brock, 1992;
Peres et al., 1996; Vallinoto et al., 2006; Naka, 2011; Ribas et al.,
2012; Boubli et al., 2015; Lynch Alfaro et al., 2015; Dal Vechio
et al., 2019; Fordham et al., 2020). Although the diversification
of Amazonian primates has been largely attributed to allopatric
speciation by vicariance produced by rivers (Hershkovitz, 1977;
Peres et al., 1996; van Roosmalen et al., 2002; Vallinoto et al., 2006;
Boubli et al., 2015; Lynch Alfaro et al., 2015), some studies have
shown that rivers historically considered as geographic barriers
do not isolate primate populations living in their opposite banks
(Craul et al., 2008; Link et al., 2015). In addition, little attention
is taken on the physical and chemical characteristics of rivers that
do act as barriers promoting primate diversification (e.g., Ayres
and Clutton-Brock, 1992; Fordham et al., 2020).

The Amazon basin is a transcontinental drainage that holds
some of the largest and highest-discharge rivers in the world
(Latrubesse et al., 2005; Wohl, 2007). Amazonian rivers are
quite distinct and dynamic, showing distinct features, namely
river size (i.e., discharge and width), sinuosity, and sediment
load (Ayres and Clutton-Brock, 1992; Latrubesse et al., 2005,
2010; Boubli et al., 2015), which can influence species dispersal
chances. However, while river size is frequently evaluated as
a driver for primate diversification (Ayres and Clutton-Brock,
1992; Fordham et al., 2020), the effects of other variables such as
sinuosity and amount of sediments remain elusive. Consequently,
additional factors responsible for the differential filtering of
species by rivers are still poorly known. For instance, the
continuous accumulation of sediments in some river stretches
over time can create islands, that even temporarily, act as stepping
stones, narrowing river width and ultimately facilitating animal
crossing between riverbanks, mainly by those species with lesser
swimming abilities (Ayres and Clutton-Brock, 1992; Peres et al.,
1996; Sillero et al., 2018). Riverbank erosion can also promote
sediment transport between riverbanks causing changes in river
form and width, and in the location of islands (Hooke, 2003;
Peixoto et al., 2009; Constantine et al., 2014). Sinuosity grows
rapidly in sediment-rich rivers, making them more susceptible

to such changes (Constantine et al., 2014; Ahmed et al., 2019).
Sinuosity may also facilitate the dispersal of individuals between
riverbanks given that meander cutoffs can physically transfer
masses of land between opposite riverbanks, including their
associated fauna and flora (Ayres and Clutton-Brock, 1992;
Gascon et al., 2000). Recent accumulating evidences on the
formation of paleo-channels throughout Amazonia indicate
changes in direction and form of many rivers over time (Cremon
et al., 2016; Ruokolainen et al., 2019; Rossetti et al., 2021).
All these aforementioned processes can increase opportunities
for passive lateral dispersal of individuals between riverbanks
(Rabelo et al., 2014; Lynch Alfaro et al., 2015).

Several analytic tools that were recently developed can be
used to investigate how large rivers can promote changes in
β-diversity on a macrogeographic scale. One of these tools is
the partitioning of β-diversity in two components: turnover
and nestedness (Baselga, 2010; Carvalho et al., 2012). Turnover
represents the replacement of species between communities,
while nestedness represents the loss or gain of species between
communities (Baselga, 2010; Carvalho et al., 2012). β-diversity
partitioning allows the incorporation of phylogenetic trees,
which improves our interpretation of the effects of different
drivers on biodiversity (Graham and Fine, 2008; Cardoso et al.,
2014). Taken together, those approaches that take into account
more than one dimension of diversity allow us to generate
more robust conclusions about how different biogeographic
issues (e.g., barriers to dispersal) act on different processes
(e.g., speciation, changes in species composition) or patterns
(e.g., species distribution) (Graham and Fine, 2008; Miller
et al., 2018). For example, disentangling the nestedness and
turnover components of the β-diversity allows us to verify if
the barriers completely preclude movements of some lineages,
or if they are somewhat permeable in the geologic time scale.
The comparison of the taxonomic and phylogenetic β-diversity
may also give insights about the timescale in which the barriers
preclude dispersal. For instance, while taxonomic β-diversity can
inform about changes occurring at short timescales (changes in
species occupying different riverbanks), phylogenetic β-diversity
can provide information at long timescales (changes at higher
taxonomic levels, with greater barriers separating more distant
lineages within the genera, and smaller barriers separating
closely related species). Barriers that impede movement at longer
timescales cause higher effects on the phylogenetic β-diversity,
thus generating more contrasting assemblages. Such analytic
approaches are still uncommon in biogeographic analysis in
Amazonia (e.g., Fluck et al., 2020; Carvalho et al., 2021). Most
studies so far have focused only on the taxonomic component
of β-diversity, without considering the phylogenetic component
or the partitioning of β-diversity (e.g., Ayres and Clutton-Brock,
1992; Dambros et al., 2017, 2020; Fordham et al., 2020).

In this study, we investigated the role of large Amazonian
rivers as effective physical barriers to primates, which have
limited dispersal abilities (Schloss et al., 2012; Sales et al.,
2019). Specifically, we investigated the characteristics of rivers
(i.e., discharge, load of sediments, and sinuosity) as drivers of
isolation for primate communities distributed among 10 major
Amazonian interfluves. To do that, we estimated both taxonomic
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and phylogenetic β-diversity and their partitioning, turnover and
nestedness, between pairs of neighboring interfluves, relating
them with the characteristics of the rivers that separate these
interfluves. If the hypothesis of rivers as barriers for primates
is correct, we expect less similarity (great taxonomic and
phylogenetic β-diversity) across riverbanks (Ayres and Clutton-
Brock, 1992). Thus, we expect to find a positive relationship
between the dissimilarity of primate communities and river
discharge (Ayres and Clutton-Brock, 1992; Fordham et al.,
2020), and negative relationships with sediment load and
river sinuosity (Ayres and Clutton-Brock, 1992; Gascon et al.,
2000). Furthermore, considering the phylogenetic dimension,
we expect that rivers that act as strong geographic barriers,
preclude the crossing of some lineages (i.e., genera), leading
to a stronger effect of lineage loss (nestedness) than lineage
sharing (turnover). Additionally, assuming the lower chances
and lower frequency of crossing in rivers that act as stronger
geographic barriers, we expect that lineages on opposite banks
of larger rivers will diverge more, and consequently, that the
effect of large rivers as geographic barriers will be stronger for
phylogenetic β-diversity than for taxonomic β-diversity. Finally,
considering the swimming ability of large-sized primates, we
expect a lower effect of rivers on them, implying they are less
limited by rivers and, consequently, more widely distributed (i.e.,
occupying more interfluves) than small- and mid-sized species
(Ayres and Clutton-Brock, 1992).

MATERIALS AND METHODS

Study Area
The Amazonia is divided by several large rivers that delimit large
interfluvial areas (i.e., landmasses between major rivers) which
are often considered as areas of endemism for birds and primates
(Cracraft, 1985; da Silva and Oren, 1996; da Silva et al., 2005;
Naka, 2011; Ribas et al., 2012). The composition of species within
these interfluves have provided interesting opportunities to study
spatial patterns of species distribution. Here, we used interfluves
to investigate the effects of large rivers on the patterns of primate
β-diversity in Brazilian Amazonia. We restricted our study to
the Brazilian Amazonia because both its primate fauna and river
characteristics are well known and freely available (Ayres and
Clutton-Brock, 1992; Paglia et al., 2012). Although limited in
geographical scope, the Brazilian Amazonia covers over 60% of
the entire Amazon basin and all interfluves but Napo have most
of their extensions within Brazil (Juen and De Marco, 2012).
Additionally, our study area encompasses the mid and lower
parts of all major rivers that form this basin, presumably the
region where we would expect to see the greatest effect of rivers
as barriers for primate dispersal. In contrast, their headwaters
are known to have a limited role in isolating species (Ayres and
Clutton-Brock, 1992; Peres et al., 1996; Fordham et al., 2020).

We selected interfluves based on previous studies with
terrestrial vertebrates, which identified 10 large biogeographic
regions separated by major rivers in Amazonia (da Silva et al.,
2005; Naka, 2011; Borges and Da Silva, 2012; Ribas et al.,
2012; Silva et al., 2019), as follows (Figure 1): Guiana (between

the Amazon, lower Negro, and Branco rivers), Pantepui-Duida
(between Branco and mid and upper Negro rivers), Imeri
(between Negro and Uaupés rivers), Napo (between Uaupés,
Negro, Uneiuxi, Pucabi, Juami, Içá, Japurá, and Napo rivers),
Jaú (between Napo/Solimões, Negro, Uneiuxi, Pucabi, Juami, and
Içá rivers), Inambari (between Napo/Solimões, Amazonas, and
Madeira rivers), Rondônia (between Madeira and Tapajós rivers),
Tapajós (between Tapajós and Xingu rivers), Xingu (between
Xingu and Tocantins rivers), and Belém (between Tocantins and
Amazon rivers). Our sample units were the pairs of neighboring
interfluves distributed along the study area (N = 17, Table 1).

Data Collection
We included only primate species occurring in the Brazilian
Amazonia. Their taxonomy followed Paglia et al. (2012), which
was based on previous taxonomic studies of Neotropical primates
(Rylands et al., 2000; Rylands and Mittermeier, 2009). However,
we also consider recent species descriptions and taxonomic
changes (Ferrari et al., 2010, 2014; Boubli et al., 2012; Gualda-
Barros et al., 2012; Lynch Alfaro et al., 2012; Dalponte et al.,
2014; Byrne et al., 2016; Rylands et al., 2016; Silva et al., 2018;
Serrano-Villavicencio et al., 2019). Our database included 80
(65%) out of the 124 primates with confirmed occurrence in the
Amazonia (Primate Specialist Group website, 2021) and available
in the updated International Union for Conservation of Nature’s
(IUCN) red list1 (Supplementary Table 1). Although distribution
maps such as those obtained by IUCN are not reliable to infer
about the presence/absence of species in specific points (Herkt
et al., 2017; Fluck et al., 2020), we used them only to obtain species
occurrence within a given interfluve, and not to assume their
occurrence in specific sites within the interfluves or to run species
distribution models. Then, we are confident that their use in this
study was appropriate, minimizing possible distribution errors.

Water is considered to pose high resistance to primate
dispersal (Rabelo et al., 2019). However, although uncommon,
primates occasionally swim to cross rivers (Chaves and Stoner,
2010; Gonzalez-Socoloske and Snarr, 2010; Nunes, 2014). Body
size should be a key characteristic influencing the ability of
primates to disperse across rivers (Ayres and Clutton-Brock,
1992). In fact, all the available reports come from large-sized
atelids, and we are not aware of any report on small- or
mid-sized species swimming in the wild. We thus considered
primate dispersal ability across rivers as limited and species-
specific (Ayres and Clutton-Brock, 1992; Schloss et al., 2012;
Rabelo et al., 2019). We thus compiled the average body mass
(kg) of the species from Smith and Jungers (1997), classifying
them according to their body masses as small- (<1.5 kg), mid-
(1.5–4.99 kg), or large-sized species (≥5.0 kg).

River Characteristics
We estimated mean annual river discharge by averaging
the values recorded in all measuring stations for a given
river obtained from the Global Runoff Data Centre (GRDC,
Germany2) (Fordham et al., 2020), which provides in situ annual

1www.iucnredlist.org/
2https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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FIGURE 1 | Major interfluves of the Brazilian Amazonia, recognized as different biogeographic provinces.

river discharge times series data for several rivers worldwide.
Since the GRDC does not have data for all sections of the Amazon
River, the discharge of missing sections were estimated through a
simple linear regression between the discharge and the distance
from the river beginning (bifurcation between Solimões and
Negro rivers) and its estuary (Fordham et al., 2020). Relatively
small rivers such as Uneiuxi, Pucabi, and Juami (that separate
Napo and Jaú interfluves) have no annual discharge data available
were arbitrarily set to 1000 m3/s.

We established a river sinuosity index (SI) by measuring the
straight distance between river headwaters and mouths (D1),
and the total length of the rivers (D2) using the length function
in the QGIS 3.16 software (QGIS Development Team, 2022).
Then, we calculated the SI through the following formula:
SI = 1 − (D1/D2). The SI values ranged from 0.064 to 0.306,
with higher values representing rivers that are more sinuous. We
obtained the sediment load of the rivers based on the empirical
correlation between the red light reflectance and the sediment
load in sampling stations, provided by Fassoni-Andrade and
Paiva (2019) as a high resolution raster file with reflectance
values in 250-m pixels. Then, we averaged the sediment load
of five points along each river (or river section), following
Laranjeiras et al. (2021). River characteristics are described in
Supplementary Table 2.

Analysis
Based on the species distribution overlaid on a map of the
major Amazonian rivers, we built a matrix of primate occurrence
(presence/absence) in each interfluve (Supplementary Table 1).
Since our goal was to evaluate the effect of large rivers on
the pattern of β-diversity among Amazonian primates, we
disregarded those species that occurred only in the central
portion of the interfluve, i.e., those species whose distribution was
not limited by any river. Our reasoning was that factors other
than rivers, such as vegetation and edaphic variation (habitat
type), relief, and/or distance per se must limit these species
(Emmons, 1984; Gascon et al., 2000). From the occurrence
matrix, we calculated the total taxonomic β-diversity (βtotal.tax)
for each pair of interfluves, and their components, turnover (i.e.,
replacement of one species by another – βturn.tax) and nestedness
(i.e., richness difference due to gain or loss of species – βrich.tax)
(Carvalho et al., 2012). We also calculated the total phylogenetic
β-diversity (βtotal.phy) and its components, turnover (i.e., lineage
replacement – βturn.phy) and nestedness (i.e., gain or loss of
lineages – βrich.phy). To calculate phylogenetic β-diversity, we
built a phylogenetic tree with all the species included in our
analysis from recent phylogenies of all the genus with more
than two species (Supplementary Table 3 and Supplementary
Figure 1). For Pithecia, for which we could not find any
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TABLE 1 | Primate β-diversity in the 10 major biogeographic provinces along the Amazonia.

Interfluves
separated by
riversa

River ID βtotal.tax βturn.tax βrich.tax βtotal.phy βturn.phy βrich.phy βtax.small βtax.mid βtax.large

IME-PAN Negro 0.8125 0.7500 0.0625 0.4660 0.4338 0.0322 0.600 1.000 0.750

PAN-NAP Negro 0.9630 0.6667 0.2963 0.6472 0.3794 0.2677 0.917 1.000 1.000

PAN-JAU Negro 0.9630 0.6667 0.2963 0.6166 0.3381 0.2785 0.909 1.000 1.000

NAP-JAU Uneiuxi-Pucabi-Juami 0.3636 0.3636 0.0000 0.1697 0.1632 0.0065 0.273 0.500 0.250

GUI-JAU Negro 1.0000 0.8387 0.1613 0.6706 0.4817 0.1889 1.000 0.875 1.000

GUI-PAN Branco 0.8500 0.7000 0.1500 0.5712 0.4841 0.0871 0.875 0.875 0.667

NAP-IME Uaupés 0.6500 0.2000 0.4500 0.4101 0.1277 0.2824 0.727 0.600 0.500

INA-JAU Solimões 0.8372 0.5116 0.3256 0.4656 0.3112 0.1544 0.909 0.714 0.200

NAP-INA Solimões 0.8636 0.5455 0.3182 0.4989 0.3425 0.1564 0.913 0.750 0.400

GUI-INA Amazonas 1.0000 0.5778 0.4222 0.7184 0.4117 0.3067 1.000 0.889 1.000

RO-GUI Amazonas 0.9500 0.5500 0.4000 0.6741 0.4269 0.2472 0.947 0.875 1.000

TAP-GUI Amazonas 0.9259 0.8148 0.1111 0.6410 0.5765 0.0645 0.929 0.857 1.000

GUI-XIN Amazonas 0.9000 0.7000 0.2000 0.6137 0.5170 0.0967 0.900 0.833 1.000

INA-RO Madeira 0.8269 0.7692 0.0577 0.5422 0.4615 0.0806 0.926 0.500 0.200

RO-TAP Tapajós 0.8462 0.5128 0.3333 0.5172 0.3093 0.2079 0.905 0.250 0.857

XIN-TAP Xingu 0.6111 0.2222 0.3889 0.3691 0.1785 0.1906 0.600 0.750 0.500

BEL-XIN Tocantins 0.6667 0.5000 0.1667 0.3635 0.2023 0.1612 0.667 0.750 0.500

a IME, Imeri; PAN, Pantepui-Duida; NAP, Napo; JAU, Jaú; GUI, Guiana; INA, Inambari; RO, Rondônia; TAP, Tapajós; XIN, Xingu; BEL, Belém. βtotal.tax , total taxonomic beta
diversity; βturn.tax , turnover component of the taxonomic beta diversity; βrich.tax , richness difference component of the taxonomic beta diversity; βtotal.phy , total phylogenetic
beta diversity; βturn.phy , turnover component of the phylogenetic beta diversity; βrich.phy , richness difference component of the phylogenetic beta diversity; βtax.small ,
taxonomic beta diversity of the small-sized primates (<1.5 kg); βtax.mid , taxonomic beta diversity of the mid-sized primates (1.5–4.99 kg); βtax.large, taxonomic beta diversity
of the large-sized primates (≥5 kg).

phylogeny, and for those genera for which we found two or
more inconsistent phylogenies, we used a conservative approach,
disregarding any hierarchy for the species/clades involved in
the inconsistencies. The phylogenetic relationships of the genera
was based on molecular data provided by Perelman et al.
(2011). For both dimensions of the β-diversity (taxonomic and
phylogenetic) we used the Jaccard distances with 100 resamples.
β-diversity was calculated through the function beta using the
package BAT (Cardoso et al., 2021), in R 3.6.3 (R Core Team,
2020).

The β-diversity (both taxonomic and phylogenetic) and
its components (βtotal.tax, βturn.tax, βrich.tax, βtotal.phy, βturn.phy,
βrich.phy, βtax.small, βtax.mid, βtax.large) between neighboring
interfluves were used as response variables to infer which river
characteristics made them effective biogeographic barriers
using multiple linear regressions. We used mean discharge,
sinuosity and sediment load as predictor variables. River
discharge was log-transformed for normality. We standardized
all predictor variables to zero mean and unit variance. We
selected the most parsimonious models based on their Akaike
Information Criterion corrected for small samples (AICc).
We checked model residuals for spatial autocorrelation using
Moran’s I. Since our sampling units in the linear models were
pairs of interfluves, we built a “distance class connectivity
matrix” (Fortin and Dale, 2005) by accessing the shorter
connections between pairs of interfluves, considering the
number of rivers between them +1. We discarded only one
model for which the residuals showed spatial autocorrelation
(βtax.large). We checked the residuals of the models for

normality through Shapiro–Wilk’s test. Significance level
was set at 0.05.

RESULTS

Over half of the 80 Amazonian primate species evaluated (N = 46;
58%) were restricted to only 1 of the 10 interfluves defined in
this study (Table 2). Conversely, eight species (10%) were widely
distributed (≥4 interfluves), with Sapajus apella occupying nine
interfluves (Table 2 and Supplementary Table 1). Contrary to
our expectations, only three of the eight species with wider
distributions were large-sized (Alouatta seniculus, Ateles chamek,
Lagothrix lagotricha, Supplementary Table 1).

The Inambari interfluve presented the greatest primate
species richness in the Brazilian Amazonia (N = 26 species),

TABLE 2 | Frequency of occurrence of primate species in the major interfluves of
the Brazilian Amazonia.

Number of interfluves
occupied

Number of species %

1 46 57

2 19 24

3 8 10

4 5 6

5 2 2

9 1 1

Total 81 100
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FIGURE 2 | Cluster analysis of the major interfluves in the Brazilian Amazonia
based on the primate species composition.

followed by the Rondônia interfluve (N = 23). The other
interfluves presented from 7 to 18 species (Supplementary
Table 1). The average dissimilarity between interfluves in
the study area was 0.821 (range: 0.333–1.000). We identified
three distinct groups of interfluves sharing species among
themselves. They can be roughly divided between the northern
and southern (plus Imeri) interfluves, with the southern group
divided in western and eastern groups (Figure 2). Napo
and Jaú interfluves presented the lowest dissimilarity (0.333),
while the highest dissimilarity was observed between Pantepui-
Duida and all southern interfluves (Belém, Xingu, Tapajós,
Rondônia, Inambari). Indeed, given the high endemism, most
of the interfluve pairs presented high dissimilarity among
them (>0.7, Supplementary Table 4). Rondônia (N = 13)
and Inambari (N = 9) interfluves presented the highest
number of endemic species, followed by Guiana (N = 7).
Other interfluves presented from zero to three endemic species
(Supplementary Table 1).

Primate communities were more similar in interfluves
separated by sinuous rivers. Conversely, rivers with greater
discharge resulted in less similar communities across their banks.
The effect of the sediment load in the role of rivers as barriers was
observed only for βtotal.tax and rivers with lower sediment load
separated more dissimilar assemblages (Table 3).

As expected, phylogenetic β-diversity (R2 = 0.794) was better
explained by river characteristics than taxonomic β-diversity
(R2 = 0.762), although the difference was relatively small. Mean
discharge had the strongest effect on both taxonomic and
phylogenetic components of primate β-diversity in the Brazilian
Amazon basin, followed by sinuosity (Table 3). Moreover, we
found that river characteristics explained better the β-diversity of
small-sized (R2 = 0.601) than large-sized primates (R2 = 0.542),
although we did not detect any effect for mid-sized primates.
Furthermore, river characteristics had an effect on the turnover
component of the β-diversity, but they were not good predictors
of the nestedness component of the β-diversity at all, a pattern
that was consistent for both the taxonomic and phylogenetic
β-diversity (Table 3).

DISCUSSION

The diversification of Amazonian species is complex (Hoorn
et al., 2010; Mendez-Camacho et al., 2021), resulting from
multiple mechanisms of vicariance (e.g., Andes uplift, emergence
or redirection of large rivers, changes in the vegetation caused
by climate change) and non-vicariance (e.g., expansion of
species distribution, habitat gradients, human-driven barrier
transposition), acting independently or interactively (da Rocha
and Kaefer, 2019). Our results support the role of rivers as
key agents in spatially structuring Amazonian primate diversity.
Confirming our hypothesis, we found significant evidence for a
positive effect of mean annual discharge and a negative effect
of sinuosity on primate β-diversity. While previous studies have
already showed the role of rivers as barriers for Amazonian
primates (mainly because of annual discharge: Ayres and
Clutton-Brock, 1992; Fordham et al., 2020), our study goes
beyond, showing both discharge and sinuosity as the main drivers
of changes in primate β-diversity in Amazonia.

Rivers with higher annual discharge have a greater positive
effect on primate composition changes between opposite
riverbanks, meaning that higher discharge leads to less similar
primate communities. It makes sense that discharge act more
effectively to prevent primate flux across opposite riverbanks. On
one hand, wide, low discharge rivers favor animals crossing using
rocks (i.e., stepping stones), islands and/or fallen trees, especially
during drier periods (Mamalis et al., 2018). In fact, the resistance
caused by discharge to the dispersal of animals is lower during
the dry season (Prevedello and Vieira, 2009; Rabelo et al., 2019).
On the other hand, high discharge rivers tend to keep higher
volumes of water in their main channel even during the driest
periods, thus inhibiting primates and other terrestrial animals
to cross between riverbanks. Other studies have used width as a
measure of river size (Ayres and Clutton-Brock, 1992; Fordham
et al., 2020). However, river discharge is probably stronger than
river width as a feature promoting the isolation of primates in
the Amazonia because width is highly variable (Fordham et al.,
2020). Moreover, there are so far many dams built along several
Amazonian rivers (Lees et al., 2016), which can artificially input
biases on the measurement of river width and, consequently, on
the influence of this variable on primate speciation.

Previous studies did not investigate (Ayres and Clutton-
Brock, 1992) or find significant results on the role of sinuosity
in primate diversification (Fordham et al., 2020). However, we
claim that a simple comparison of rivers draining different
watersheds, as tested by Fordham et al. (2020), is not appropriate
to test this issue because rivers within different watersheds
may show similar dynamics (Supplementary Table 5 and
Supplementary Figure 2). In fact, mean sinuosity among black
water (mean ± SD = 0.819 ± 0.09) and white water rivers
(0.817 ± 0.07) are quite similar. For instance, river stretches
within the Negro River watershed, which have predominantly
black water, are as sinuous as those draining the predominantly
white water rivers of the Solimões watershed (see Supplementary
Table 2). Nevertheless, our results indicate that, independently
of basin, sinuous rivers seem to be less effective barriers for
primates than straight rivers. The main explanation for the
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TABLE 3 | Results of the multiple regression models.

Response variable R2 Predictors in the most
parsimonious model

Standardized
coefficient

SE p

βtotal.tax 0.762 Intercept 0.8253 0.0219 <0.001

Sediment load −0.0826 0.0352 0.035

Mean discharge 0.1674 0.0367 <0.001

Sinuosity −0.0519 0.0244 0.053

βturn.tax 0.392 Intercept 0.5817 0.0368 <0.001

Sinuosity −0.1179 0.0379 0.007

βrich.tax* – – – – –

βtotal.phy 0.794 Intercept 0.5267 0.0171 <0.001

Sediment load −0.0556 0.0279 0.067

Mean discharge 0.1271 0.0291 <0.001

Sinuosity −0.0594 0.0193 0.009

βturn.phy 0.415 Intercept 0.3615 0.0254 <0.001

Mean discharge 0.0854 0.0261 0.005

βrich.phy* – – – – –

βtax.small 0.601 Intercept 0.8233 0.0327 <0.001

Mean discharge 0.1391 0.0337 <0.001

βtax.medium* – – – – –

βtax.large 0.542 Intercept 0.6955 0.0550 <0.001

Mean discharge 0.0832 0.0592 0.182

Sinuosity −0.1924 0.0592 0.006

*The null model was the most parsimonious model.

greater permeability of sinuous rivers is the meandric dynamic.
Meandering rivers can show relatively frequent cutoffs (Hooke,
2003; Constantine et al., 2014), that increase opportunities
for lateral passive dispersal of individuals between opposed
riverbanks (Peres et al., 1996). Additionally, recent reports of
paleo-channels in Amazonia indicate they were produced by
changes in the direction of some large rivers (Ruokolainen et al.,
2019; Rossetti et al., 2021). These changes transferred large
landmasses from one riverbank to the opposite side together
with all animals and plants living there. Moreover, the dynamics
of sedimentation and erosion in islands are also greater in
sinuous rivers (Peixoto et al., 2009; Ahmed et al., 2019), partly
contributing to their filtering effect on primates.

The effects of sediment load on the diversification of primate
communities is somewhat controversial and limited to the (total)
taxonomic β-diversity (Table 3). Although the general idea that
sediment load can be related to the sedimentation and erosion
dynamics (mainly in islands and riverbanks), thus creating
stepping stones that can facilitate species crossing over rivers
(Rabelo et al., 2014; Lynch Alfaro et al., 2015), this dynamic
can also be related to river sinuosity (Constantine et al., 2014;
Ahmed et al., 2019). However, in some cases, sediment load is
stronger than river sinuosity per se (see Table 3). For instance,
the high sediment load associated with the long-term dynamic
of island formation can be important in the Amazonas River
mouth, where some mid- and large-sized species such as Aotus
azarae and Alouatta belzebul, occur in both riverbanks. The
Amazon River mouth is characterized by multiple, non-shifting
channels with high sediment load, subjected to high and complex
sedimentation and erosion dynamics in its islands and banks,
thus promoting permeability (Ayres and Clutton-Brock, 1992;

Gensac et al., 2016). Although there are no evidence that the
Madeira River, which have the second higher sediment load
among the large Amazonian rivers, act as an effective barrier for
many taxa (Santorelli et al., 2018), it split out several primate
species occupying the Inambari and Rondônia interfluves,
including Callibella humilis, Cebuella pygmaea, Mico rondoni,
Saguinus labiatus, Sapajus apella, Cebus unicolor, and several
species of Plecturocebus (P. baptista, P. bernhardi, P. caligatus,
P. cinerascens, P. dubius).

Confirming our prediction, rivers characteristics affected
more the phylogenetic β-diversity than the taxonomic
β-diversity, indicating that the taxa separated by the bulkier
and less sinuous rivers are more phylogenetically distant
than taxa separated by small and more sinuous rivers. The
small difference in the explanatory power of the models can
be explained by a possible mismatch in the temporal scale.
Rivers act as barriers for primates species or even for divergent
populations of some species (e.g., Vallinoto et al., 2006) at
shorter temporal scales, while a considerable part of phylogenetic
β-diversity occurs at longer temporal scales (i.e., changes at
higher taxonomic levels, with greater barriers separating more
distant lineages within the genera, and smaller barriers separating
closely related species).

The temporal scale can also explain why we do not observe
differences in the nestedness component of the β-diversity.
In fact, many primate genera are widely distributed across
several Amazonian interfluves, indicating that rivers are rarely
an insurmountable barrier for some lineages. Although the
low, wide river stretches located next to river mouths can be
considered as barriers to primate dispersal (but see the case of
the Amazon River mouth discussed above), it is unlikely that
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river headwaters (i.e., high, narrow stretches) fulfill the same
role. For instance, some primates occur in both riverbanks, and
there is a low genetic divergence between populations living
in riverheads, as compared to those located near river mouths
(Peres et al., 1996; Vallinoto et al., 2006). Stretches considerably
narrow and shallow can allow river crossings, thus increasing
dispersal chances. This can be the case of Mico emiliae, which
appears to have crossed the headwaters of the Iriri River, thus
allowing the extension of its distribution as far to the western
bank of the Xingu River (Andrade et al., 2018). Considering that
most Platyrrhini genera had their origin estimated to at least 6
million years ago (Schneider et al., 2001; Lynch Alfaro et al.,
2012; Byrne et al., 2018), there was enough time for them to
cross through river waterheads, thus expanding across several
Amazonian interfluves in some cases.

Considering that the species of primates are not
homogeneously distributed across the Amazonia, the role
of rivers as barriers has implications for the conservation of
species. The Amazonia, which has the highest primate diversity
in the world (Rylands et al., 2000; Rylands and Mittermeier,
2009), also suffers a spatially biased pressure from deforestation.
For instance, while the Belém, Xingu, Tapajós, and Rondônia
are located at the arc of deforestation, where forest clearance
advances at an accelerated pace, other interfluves, such as Guiana,
Imeri and Napo are still kept relatively well preserved (da Silva
et al., 2005; Fearnside, 2005; Soares-Filho et al., 2006; Broadbent
et al., 2008; Alves, 2010; Kalamandeen et al., 2018). Considering
the high endemism level in some interfluves (e.g., Rondônia), the
loss of forests cannot be compensated by forest maintenance in
other interfluves, under penalty of loss of unique endemics. Even
in areas with low endemism there is a real risk of loss of the few
endemic species present in some highly deforested interfluves,
such as Belém and Xingu.

Our results point out to the existence of at least three
distinct primate groups in the Brazilian Amazonia, based on the
similarity among the communities occurring in each interfluve.
The dissimilarity between the northern and southern groups can
be explained by the clear geomorphological differences between
the Guiana (nutrient-poor sandy soils drained by black water)
and Brazilian (rich-nutrient alluvial soils drained by white and
clear waters) shields, divided by the Amazon River. On the
other hand, the dissimilarity between the western and eastern
groups is expected due to marked differences in past geological
and climatic events in the Old Amazon basin (da Silva and
Oren, 1996; Hoorn et al., 2010; Wesselingh et al., 2010; Mendez-
Camacho et al., 2021), coupled with present differences in
ecological conditions where the west (west of the Madeira river,
is characterized by high rainfall rain, high habitat diversity,
eutrophic soils from the Andes runoff (Archer, 2005; Ferrari,
2005; Hoorn et al., 2010; Wesselingh et al., 2010; Juen and De
Marco, 2012). In summary, the reconfiguration of the Amazonian
landscape in the Neogene, associated with spatial heterogeneity
in current ecological conditions across the Amazonian basin may
explain the observed differences across these three regions (Ribas
et al., 2012; Lynch Alfaro et al., 2015; Lima et al., 2017; Byrne et al.,
2018).

Although there is no evidence to accept the generality of
the riverine barrier hypothesis to other taxa (Gascon et al.,

2000; Santorelli et al., 2018), rivers are important biogeographic
barriers for species with limited dispersal ability, such as primates
(Ayres and Clutton-Brock, 1992; Boubli et al., 2015; Lynch
Alfaro et al., 2015; Santorelli et al., 2018; Fordham et al.,
2020; this study). The patterns of β-diversity described here
are partly driven by the ability of primates to actively or
passively cross rivers. While some primates have limited mobility
across rivers, the large atelids, for example, are fully able to
cross rivers swimming (Chaves and Stoner, 2010; Gonzalez-
Socoloske and Snarr, 2010; Benchimol and Venticinque, 2014;
Nunes, 2014). This may partly explain why rivers affected the
large-sized primates less than small-sized ones. Rivers can limit
primate dispersal, favoring speciation over longer timescales
(Ayres and Clutton-Brock, 1992), with several accumulating
evidences of rivers acting as effective barriers that promote
population isolation and diversification in primates (Peres
et al., 1996; Vallinoto et al., 2006; Boubli et al., 2015; Lynch
Alfaro et al., 2015). In fact, populations separated by large
rivers tend to be divergent. For instance, previous studies
showed genetically divergent populations of Saguinus niger
occurring in opposite banks of Tocantins River, between Belém
and Xingu interfluves (Vallinoto et al., 2006), and Saguinus
fuscicollis occurring in opposite banks of Juruá River (Peres
et al., 1996). The isolation promoted by rivers favors the
emergence of clades divergent to the original, ultimately favoring
speciation. More genetic studies are necessary to disclose the
role of rivers as effective barriers for primates and other
animals (Vallinoto et al., 2006; Boubli et al., 2015; Lynch
Alfaro et al., 2015; Dal Vechio et al., 2019; Naka and Pil,
2020).
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