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We present a unified theory that posits three fundamental models as necessary and sufficient for mod- 

elling the bivariate scores in possessive ball-sports. These models provide the basis for perhaps more 

complicated models that can be used for prediction, experimentation, and explanation. First is the 

Poisson-match, for when goals are rare, or when goals are frequent but the restart after a goal is con- 

tested. Second is the binomial-match, for when goals are frequent and the restart uses the alternating 

rule. Third is the Markov-match, for when the restart uses the catch-up rule. We describe in detail the 

new model amongst these, the Markov-match, which is complementary to rather than competing with 

the binomial-match. The Markov-match is a bivariate generalisation of the Markov-binomial distribution. 

Its structure (catch-up restart) induces a larger correlation between the scores of competitors than does 

the binomial-match (alternating restart) but slightly more tied outcomes. The Markov-match is illustrated 

using handball, a high-scoring sport. In our analysis the time-varying strengths of 45 international hand- 

ball teams are estimated. This poses some mathematical and computational problems, and in particular 

we describe how to shrink the strength-estimates of teams that play fewer games in tournaments be- 

cause they are weaker. For the handball results, the Markov-match gives a better fit to data than the 

Poisson-match. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The characteristics of possessive ball-sports are that a match 

r contest is a sequence of possessions and possession terminates 

ith either a score or loss of possession. Possessive ball-sports in- 

lude the codes of football (soccer, rugby union, rugby league, Aus- 

ralian rules football, American football, Gaelic football), although 

ost of these are played with both ball in hand and at feet, the 

handball” sports (netball, basketball, handball itself, water polo), 

nd “stick and ball” sports (hockey, hurling, lacrosse, ice hockey). 

athematically, it is natural to assign a probability, q say, to the 

vent that a possession terminates with a score and to regard a 

atch as a sequence of possessions in which the competitors each 

have their own q ”. These simplifications are the basis for build- 

ng stochastic models of the bivariate score that is the match out- 

ome. Thus, if q is small and the outcomes of successive posses- 

ions are independent, then the Poisson distribution is a reason- 
∗ Corresponding author. 

E-mail addresses: scarfp@cardiff.ac.uk (P. Scarf), r.d.baker@salford.ac.uk (R. 

aker) . 

s

o

r

r

ttps://doi.org/10.1016/j.ejor.2022.05.010 

377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
ble model for the number of scores by a competitor in the match 

Maher, 1982; Heuer, Müller & Rubner, 2010 ; Martín-González, de 

aá Guerra, García-Manso, Arriaza & Valverde-Estévez, 2016 ), lead- 

ng to the bivariate Poisson as a model for the match outcome 

 Dixon & Coles, 1997 ; Karlis & Ntzoufras, 2003 ; Koopman & Lit, 

015 ). 

When q is large, and hence the scoring-rate is large, other 

odels are desirable because the Poisson approximation is no 

onger justifiable. Nonetheless, a match can still be simplified as a 

ernoulli sequence, but the nature of the sequence depends on the 

estart rule. The restart rule determines which competitor starts 

ith possession following a score. Baker, Chadwick, Parma and 

carf (2021) discuss the case of an alternating restart and a model 

hey call the binomial-match. The alternating restart ignores which 

ompetitor scores, and possession simply alternates, ABABA… Net- 

all uses this rule. Under the catch-up rule (see e.g. Brams, Ismail, 

ilgour & Stromquist, 2018 ), the conceding competitor has posses- 

ion at the restart. Crucially, the restart rule impacts the match 

utcome if the probability that a competitor scores when they 

estart is different to when their opponent restarts. The catch-up 

ule gives the conceding competitor a temporary advantage, an op- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ortunity to catch up, even though they may be leading. Basketball 

nd handball use this rule. The restart can also be contested (e.g. 

ollowing a goal in Australian rules football). Then, modelling the 

estart is no longer relevant, because the competitor with posses- 

ion following a goal is unknown (unless micro-possession data are 

vailable), and the Poisson-match applies. Finally, the suite of mod- 

ls might include a model for a “trailing” restart rule, in which the 

ompetitor with the lower score restarts. However, to our knowl- 

dge, no possession ball-sport uses this rule, although its potential 

se in penalty shoot-outs has been studied ( Anbarcı, Sun & Unver, 

021 ; Csató, 2021a ,b; Csató & Petróczy, 2022 ). 

In this paper, we discuss the catch-up restart rule and present 

 new model for the bivariate match outcome. We call this new 

odel a Markov-match. In this way, we complete the suite of 

odels for modelling the bivariate score in possessive ball-sports: 

he Poisson-match; the binomial-match; and the Markov-match. 

n this framework, the binomial-match and the Markov-match are 

ot competing models. Instead, they are complementary models 

hose applicability depends on the restart rule. Nonetheless, these 

odels, in their appropriate setting, compete with the Poisson- 

atch, because we have argued above that the Poisson-match ap- 

lies when the scoring-rate is low, but not otherwise. 

Before we continue with our exposition, for clarity, we note the 

ollowing. Firstly, when we write “A restarts” we specifically mean 

hat A restarts the match with possession following a score. Sec- 

ndly, we do not model possession at a micro-level. Thus, when A 

estarts, we suppose simply that next either A scores or B scores, 

gnoring the fact that any number of “turnovers” may have oc- 

urred in the meantime. This is because typically data are pre- 

ented as scores. Nonetheless, the models we discuss are extend- 

ble when micro-possession data are available. Thirdly, we use the 

erm “goal” for a score, although not all the sports above use this 

erm, and the term “bivariate score” or more simply “the score”

or the bivariate quantity that is the outcome of the match. Mul- 

iple scoring modes complicate matters (in e.g. American football, 

ustralian rules, and rugby), but we set this aside for now. 

The models we discuss are useful for: i) prediction, e.g. in gam- 

ling scenarios ( Baker & McHale, 2013 ; Crowder, Dixon, Ledford & 

obinson, 2002 ; Forrest & McHale, 2019 ; Karlis & Ntzoufras, 2011 ;

hrín, Šourek, Hubáček & Železný, 2021 ); ii) experimentation, e.g. 

or testing new rules and tournament formats ( Kendall & Lenten, 

017 ; Scarf, Yusof & Bilbao, 20 09 ; Szymanski, 20 03 ; Wright, 2014 ;

sató, 2021a ; 2021b ; 2021c ; 2022 ; Lenten & Kendall, 2021 ); and

ii) understanding, e.g. in studies of competitive balance ( Koning, 

0 0 0 ; Manasis, Ntzoufras & Reade, 2022 ; Scarf, Parma & McHale,

019 ) or competitor rating (Baker and McHale, 2017; Baker, 2020a ; 

aker & Scarf, 2021 ). When using models to do these things, it is

mportant that a suite of models, from which to select the “best”

odel, is available. It is useful to understand the possibilities for 

odels. The Poisson-match and binomial-match are known possi- 

ilities. The Markov-match, which we develop here, completes the 

et. Of course, these models can be refined, for example, to con- 

ider multiple scoring modes ( Baker & McHale, 2013 ; Scarf, Khare 

 Alotaibi, 2022 ), and covariates (e.g. Groll, Heiner, Schauberger & 

hrmeister, 2020 ; Hubáček, Šourek & Železný, 2022 ) but the same 

rinciples apply, and to maintain focus we only study the case of a 

ingle scoring mode. Nonetheless, in so doing, we present a unified 

heory for bivariate scores in possessive ball-sports. 

Related works fall under four themes: theory on generalisations 

f the binomial distribution; modelling in handball; Markov mod- 

lling in sport; and potential application of the Markov-match. On 

he first, a binary sequence in which the probability of “success”

t the n + 1 - th trial depends on the outcome of the n- th was de-

cribed by Markov himself in 1924 ( Dekking & Kong, 2011 ), and 

he term Markov-binomial distribution was used in later works. 

iveros, Balasubramanian and Balakrishnan (1994) used this binary 
1100
equence to model brand-switching. Recently, Baker (2020b) used 

t to generate a family of under or over-dispersed Poisson distribu- 

ions. The bivariate extension that we describe is novel, however. 

n the second, Groll et al. (2020) modelled handball scores using 

he Poisson-match with covariates. Their purpose was to compare 

he predictive performance of this model with others that allowed 

ver- and under-dispersion. They do not attempt to model depen- 

ence between scores. In the Markov-match, aside from the de- 

enerate case (when q = 0.5 for both competitors), we will show 

hat scores are dependant. The work most closely related to ours is 

umangane et al. (2009) because it studies possession sequences. 

owever, they do not model match outcomes. Other published 

orks on handball (e.g. Bilge, 2012 ; Csató, 2020 ; Meletakos & 

ayios, 2010 ) have not modelled scores. Works on the third theme 

re more numerous, although the majority of these relate to mod- 

ls for either sequences of points in service sports (e.g. Klaassen 

 Magnus, 2001 ; Sim & Choi, 2020 ; Štrumbelj & Vra ̌car, P., 2012 )

r the actions of competitors (e.g. Hirotsu, 2022 ; Hirotsu & Bickel, 

016 ; Ötting, 2021 ; Sandholtz & Bornn, 2020 ). To our knowledge 

one relate directly to match outcomes. Finally, the Markov-match 

ould model basketball (the major code of “handball”). Basketball 

ses the catch-up rule and modelling studies exist (e.g. Kvam & 

okol, 2006 ; Song & Shi, 2020 ; Wolfers, 2006 ), some of which use

he Poisson-match ( Martín-González et al., 2016 ; Merritt & Clauset, 

014 ; Ruiz & Perez-Cruz, 2015 ). However, the existence of multiple 

coring modes (penalty shots, and two- and three-point baskets) 

akes modelling challenging because, while basketball results (fi- 

al scores) are widely available, the numbers of each type of score 

n matches are not. 

We motivate the Markov-model using handball. This is because, 

n handball, scoring is vanilla (one point for a goal), scores are high 

30–26 is a typical result), the conceder restarts (catch-up rule), 

nd restarting confers a significant advantage (the restarter scores 

ext typically with probability 0.7). We derive the model and some 

f its properties theoretically. In the Markov-match framework, 

ompetitor strengths are parameterised parsimoniously. We esti- 

ate parameters using the method of maximum likelihood. When 

e want to study mathematically intractable quantities, we use 

imulation. Results are validated by comparing theoretical and sim- 

lated values and by confirming results in earlier studies. 

Finally, an interesting challenge is discussed that relates to the 

carcity of data for some competitors because they are weak and 

ail to qualify for some of the tournaments for which we have data. 

uch selection bias (e.g. Vilkkumaa & Liesiö, 2022 ) may be a com- 

on problem in the analysis of elite sports because by definition 

lite sport is selective. We model this problem in a novel way. 

The structure of the paper is as follows. We present the 

arkov-match first, and discuss its relationship to the Poisson- 

atch and binomial-match, and the parameterisation of competi- 

ors strengths. Then, in Section 3 , we present handball, its rules, 

he source of the data, and an exploratory analysis of the data. 

ection 4 discusses maximum likelihood estimation and presents 

he results of fitting the model to handball, including validation 

nd fit comparisons. This section also discusses our novel solution 

o the selection bias problem. Then, we return to our thesis, the 

nified theory, in the conclusion, and discuss the limitations and 

atural extensions of the theory. 

. The Markov-match 

Two competitors, A and B, play a “catch-up” contest. Let the to- 

al number of goals be N. Then, the match is a sequence of plays 

umbered 1,…, N. A play is a sequence of possessions between one 

oal and the next goal. Implicitly we assume that every play ends 

ith a goal, so that unfinished plays (e.g. at the end of the match) 

re ignored. If A starts a play with possession, we say that “A 
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lays” and likewise for B. The competitor who plays first (at the 

tart of the match) we label A, without loss of generality. At play k 

 k = 2,…,N), either A or B plays. Crucially, if A scores on play k then

 plays next, and vice versa. This is the catch-up rule. 

If A plays, let A score with probability q 1 , so that B scores with

robability 1 − q 1 , since either A or B must score . If B plays, then

et B score with probability q 2 , so that A scores with probability 

 − q 2 . At play k, if A scores then a 1 is recorded and if B scores

hen a 0 is recorded. The match is then a binary sequence of length

. This sequence is a Markov-Bernoulli sequence and the number 

f 1 s has a Markov-binomial distribution ( Dekking & Kong, 2011 ). 

hus, the score for A in the match, X 1 , is the number of 1 s in

his Markov-Bernoulli sequence, and that of B, X 2 = N − X 1 , is the 

umber of 0 s. The same idea was used by Klaassen and Magnus 

2003) in tennis. 

We call the score ( X 1 , X 2 ) a Markov-match. 

In aside, in this setting, if we regard the match-state as the cur- 

ent score, then the state transition probabilities depend on which 

eam scored last, so that the score is a Markov chain. In a more 

omplicated model, the transition probabilities might depend on 

he current score. This would be interesting to study and to fit to 

ata when the sequence of scores is observed. 

The probability distribution of ( X 1 , X 2 ) , f ( x 1 , x 2 ) , is derived in

iveros et al. (1994) , but iterative computation is simpler. Now, 

r ( X 1 = x 1 , X 2 = x 2 | N) is the probability that x 1 goals of x 1 + x 2 = N

re scored by A. It can be computed by defining a sequence of 

robabilities p i, j,k that A has scored i of j goals and A restarts 

k = 1) or B restarts (k = 2) . Thus, a recurrence relation is defined

y the equations 

p i, j, 1 = (1 − q 1 ) p i, j−1 , 1 + q 2 p i, j−1 , 2 , 

p i, j, 2 = q 1 p i −1 , j−1 , 1 + (1 − q 2 ) p i −1 , j−1 , 2 , 
(1) 

 i ≤ j = 1 , ..., N), with initial conditions p 001 = 1 and p 002 = 0 (be-

ause A has first play). Note, the computation time of efficient code 

s O( ( x 1 + x 2 ) 
2 ) . When N varies, with some probability distribution 

 N , 

f ( x 1 , x 2 ) = Pr ( X 1 = x 1 , X 2 = x 2 | N ) h N . (2) 

When there are many competitors, say m , and many matches in 

 tournament, rather than specify a unique ( q 1 , q 2 ) for each com- 

etitor pairing, we link ( q 1 , q 2 ) to measures of competitor strength. 

he most parsimonious model specifies the attack strength of A as 

1 and scales that with the factor r to obtain its defence strength, 

 α1 . Then, we can define 

 1 = g{ (δ/r) α1 

α2 

} 
nd 

 2 = g{ (1 /r) α2 

α1 

} 
or some suitably chosen function g : (0 , ∞ ) → (0 , 1) . Here, δ pa-

ameterises home advantage. When g(x ) = x/ (1 + x ) , we obtain

radley-Terry type expressions ( Dewart & Gillard, 2019 ): 

 1 = 

(δ/r) α1 

(δ/r) α1 + α2 

, 

nd 

 2 = 

(1 /r) α2 

α1 + (1 /r) α2 

. 

The exponential distribution gives 

 1 = 1 − exp 

{
− (δ/r) α1 

α2 

}
, 

nd 

 2 = 1 − exp 

{
− (1 /r) α2 

α1 

}
. 
1101 
These models have m + 1 parameters. However, as strengths 

re relative, one strength parameter can be specified arbitrarily. 

eparate defence strengths can be specified for each competitor, 

hence q 1 = g{ δα1 / β2 } and q 2 = g{ α2 / β1 } , and the model has

 m + 1 parameters. Baker et al. (2021) used the parsimonious ex- 

onential form to model competitor strengths in netball. 

For parameter estimation, we can determine the contribution 

f a match outcome ( x 1 , x 2 ) to a likelihood function for parame- 

er estimation as follows. We must specify h N , the distribution of 

 , the total score. We assume a Poisson distribution with mean 

, although this is not essential. Instead, a multi-parameter dis- 

rete distribution that allows over or under dispersion relative to 

he Poisson could be used. Further, we set α1 = 1 so that strength 

s measured relative to competitor 1. Generally, which competitor 

tarts with first play is unknown, so we suppose that each starts 

ith probability ½ (coin toss). Then, the iterative scheme (Eqs. 1) 

ust be modified so that p 001 = p 002 = 

1 / 2 . Matches that are di- 

ided into periods (e.g. halves or quarters) are a complication. If 

nd-of-period scores are known, for example, then the likelihood 

ontribution for each period can be specified, assuming the total 

core in each half has an identical distribution (e.g. Poisson), with 

he same (e.g. λhalf = λ/ 2 ) or different means. 

The win-probability, Pr ( X 1 > X 2 ) , can be calculated using a re- 

urrence relation analogous to Eqs. (1). Letting D i, j,k be the proba- 

ility of a goal difference of i (A goals minus B goals) when j goals

ave been scored. Then, 

 i, j, 1 = ( 1 − q 1 ) D i +1 , j−1 , 1 + q 2 D i +1 , j−1 , 2 , 

 i, j, 2 = q 1 D i −1 , j−1 , 1 + ( 1 − q 2 ) D i −1 , j−1 , 2 . 

 − j ≤ i ≤ j, j = 1 , ..., N), and the probability that A wins is
 

N 

∑ 

i> 0 ( D i,N, 1 + D i,N, 2 ) h N . The win-probability is not needed for 

odel fitting but is used in Section 5.1 for prediction and model 

valuation. A simpler asymptotic approximation that works well is 

lso used. This is derived in Appendix 1 . 

In principle, the moments, E( X i ) , var ( X i ) , corr ( X 1 , X 2 ) , can be

pecified with recurrence relations, but it is simpler to calculate 

hese by simulation. 

.1. The unified theory 

Our thesis is that three fundamental models are necessary and 

ufficient to model bivariate scores in possessive ball-sports: the 

oisson-match due to Maher (1982); the binomial-match ( Baker et 

l., 2021 ); and the Markov-match formulated in this paper. They 

re necessary and sufficient because there are two basic cases: a) 

n a possession event the probability of a goal is small e.g. in soccer 

 typical match has hundreds of possessions and a few goals; b) in 

 possession event the probability of a goal is large e.g. a netball 

atch at elite level has of the order of 150 possessions and 100 

oals—the ball is rarely “turned over”. A consequence of b) is that 

ossession at the restart makes a difference, and so the restart rule 

ust be modelled when the restarter is known, and there are two 

uch restart rules: b1) alternating; b2) catch-up. So, there are three 

ases: a, b1, b2. 

For case b2, the Markov-match, described above, is the appro- 

riate model. 

For case b1, the binomial-match is the appropriate model. Here, 

here are N ∼ Poisson (λ) plays, A plays first, and then plays alter- 

ate regardless of who scores, so that each competitor has N 1 = 

 2 = N/ 2 plays if N is even or A has N 1 = (N + 1) / 2 plays and B

as N 1 = (N − 1) / 2 if N is odd. Then, 

 X 1 , X 2 ) = ( Y 1 + N 2 − Y 2 , Y 2 + N 1 − Y 1 ) , 

here Y 1 ∼ B ( N 1 , q 1 ) and Y 2 ∼ B ( N 2 , q 2 ) independently, because, at 

he plays of A, successes (goals) acrue to A and failures acrue to B, 

nd vice versa. 
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Fig. 1. Corr ( X 1 , X 2 ) for Markov-match (solid line) and binomial-match (dashed line) with N ∼ Poisson (λ = 56) . Left: equal strengths. Right: unequal strength. 
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For case a), the Poisson approximation to the binomial jus- 

ifies the Poisson-match, in which X 1 ∼ Poisson ( μ1 ) and X 2 ∼
oisson ( μ2 ) . Further, when the restarter is unknown, because the 

estart is contested, assuming there are N ∼ Poisson (λ) plays im- 

lies that: N 1 ∼ Poisson (qλ) and N 2 ∼ Poisson ((1 − q ) λ) ; and N 1 

nd N 2 are independent. Thus, the Poisson-match is obtained. Note, 

 1 is a thinned Poisson, and by symmetry so is N 2 ; N 1 and N 2 are 

ndependent because if they were not then their sum would not 

e Poisson. 

Common to the three models is the notion that the model pa- 

ameters are not unique for each paired contest but instead depend 

n the attack and defence strengths of the competitors in the con- 

est. In this way, a tournament with m competitors can be param- 

terised with m strength paramaters rather than m (m − 1) pairs 

 μ1 , μ2 ) or ( q 1 , q 2 ) . 

Each model can be generalised in many ways, e.g. time-varying 

trengths, multiple scoring modes. All three models are approxima- 

ions to the reality, e.g. ends of periods (half-time) interrupt plays. 

onetheless, the fundamental principles remain. 

.2. Comparison of the Markov-match with the binomial-match 

It is interesting to compare the outcome uncertainty and the 

orrelation of scores in the Markov-match (catch-up restart) with 

hose in the binomial-match (alternating restart). This is because, 

or fixed competitor strengths, the restart rule may influence out- 

ome uncertainty (outcomes may be closer on average) and this 

ay be explained by dependence (e.g. correlation) between scores 

 Scarf et al., 2022 ). Note, the purpose of this comparison is not

o decide which model is better, because, as we discuss above, 

he models are complementary. Rather, it is to compare restart 

ules within a theoretical framework (the unified theory). Rele- 

ant quantities were simulated, noting 10 6 repetitions of a match 

ere required to ensure the standard deviation of the win per- 

entage was less than 0.1. For the two match-types, all conditions 

ere identical except the restart rule. Thus, for both N ∼ Poisson . 

e use λ = 56 because this is the mean total score in a match 

n the Handball World Championships, which we consider later. 

his was a slight departure from the definition of the binomial- 

atch in Baker et al. (2021) , in which each competitor received a 

andom Poisson but equal number of starts. This leads to a sub- 

ly different correlation structure ( Appendix 2 ). To be consistent 

ith the calculations in Appendix 2 , we use the Pearson correla- 

ion ( Fig. 1 ), although because the assignment of competitors to A 

s arbitrary, the intraclass correlation may be more appropriate. We 

an see that the correlation is higher when the teams are unequal 
1102 
trength-wise (left/right comparison of the figures), and that scores 

ave a higher correlation under the catch-up rule (Markov-match) 

han the alternating restart rule (binomial-match). 

Table 1 indicates that the alternating restart (binomial match) 

as slightly fewer tied matches and favours the weaker competi- 

or in comparison to the catch-up restart (Markov-match). This is 

ather counter-intuitive, particularly when the correlation for the 

arkov-match is generally larger than the binomial-match. How- 

ver, the guaranteed, occasional extra play (restart) that one com- 

etitor receives under the alternating restart rule (when N is odd) 

ay be the influencing factor here, because this one-play advan- 

age, which occurs in half of matches, accrues to the weaker or 

tronger competitor with equal probability. Thus, the weaker com- 

etitor may not lose as often as it might because in 50% of matches 

t has an extra play. 

.3. The multi-modal Markov-match 

In aside, here, we outline some ideas for modelling a catch- 

p contest with multiple scoring modes, e.g. basketball with three 

coring modes for 1, 2 and 3 points respectively, although this is 

 simplification. In principle, it is possible to estimate score prob- 

bilities for competitors for each mode of scoring when only the 

otal points-value is known if some assumptions are made about 

he relative rates of different scoring modes. However, we will sup- 

ose the numbers of scores for each score type (mode) for each 

ompetitor are known. 

Proceeding specifically, using the example of basketball, if A 

estarts then there are 6 possible outcomes: A scores a 1 or 2 or 3

oint-basket and B has the restart or B scores a 1 or 2 or 3 point-

asketball and A retains the restart. So, we can use the Markov- 

atch framework but with extra probabilities relating to mode of 

coring. Two parameterisations are natural. 

Let A score with probability q 1 if restarting, otherwise B scores 

ith probability 1 − q 1 . Then, conditional on A scoring, 1, 2 or 3 

oints are scored with probabilities b 11 , b 12 , b 13 respectively, where 

hese probabilities sum to unity. Similarly, conditional on B scoring, 

he corresponding probabilities are b 21 , b 22 , b 23 , which sum to unity. 

he strength parameters for team A are then e.g. q 1 , b 12 , b 13 . 

In the second parameterisation, the probabilities of scoring are 

bsolute, so that b 11 + b 12 + b 13 = q 1 . These three probabilities are 

he strength parameters, and similarly for team B. 

b 11 + b 12 + b 13 + (1 − b 1 ) b 21 

b 2 
/ + 

(1 − b 1 ) b 22 / b 2 + (1 − b 1 ) b 23 

b 2 
= 1 , 

hen, recurrence relations to calculate the likelihood (probability 

istribution) of the outcome ( x , x , x , x , x , x ) conditional 
11 21 31 21 22 23 
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Table 1 

Percentages of outcomes (win, tie, loss) and win-loss ratio in Markov-match (catch-up) and binomial-match (alternating) as a function of q 1 (rows) and q 2 (columns). 

N ∼ Poisson (λ = 56) . 

0.5 0.6 0.7 0.8 

win Tie loss ratio win tie loss ratio win tie loss ratio win tie loss ratio 

0.5 catch-up 47.4 5.3 47.4 1.00 

alternating 47.3 5.3 47.4 1.00 

0.6 catch-up 75.0 4.5 20.4 3.67 46.5 6.4 47.1 0.99 

alternating 75.3 4.0 20.7 3.64 47.4 5.3 47.3 1.00 

0.7 catch-up 75.8 5.4 18.8 4.02 45.8 8.1 46.2 0.99 

alternating 76.3 4.1 19.6 3.89 46.8 5.9 47.2 0.99 

0.8 catch-up 77.0 6.4 16.6 4.64 44.8 10.6 44.6 1.00 

alternating 78.4 4.3 17.4 4.51 46.6 6.6 46.7 1.00 
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n N ∼ Poisson (λ) can be found. Competitor strengths can then be 

arameterised as described in Section 3 . 

. Handball 

Two teams, of seven players, compete on a court with a goal 

n the floor at each end of the court. The ball is moved by hand.

 player in possession can dribble, pass, shoot, or hold the ball for 

p to three seconds or take three steps. Shooting is not allowed 

ithin six metres of the goal. A goal is scored when the ball is 

hrown into the goal. The team with the most goals wins. Normal 

laying time is two halves of 30 min each. Overtime (two halves 

f five minutes each) is played when a match is tied at the end of

ormal time and a winner has to be determined. Overtime can be 

epeated once, and if necessary is followed by a penalty shootout. 

lay starts each half with a contested “throw-off”. Following a goal, 

he conceding team restarts with possession. 

We scraped data of 753 matches at eight editions (2007–2021) 

f the World Men’s Handball Championship from https://www.ihf. 

nfo/competitions , including for each match: date, location, round, 

eams, and scores in each period including overtime and penalties. 

he format of the tournament has changed over this period with 

arying numbers of teams and matches ( Csató, 2021c ). Broadly, 

ualifiers from the initial group stage proceed to knockout (KO) 

tages while non-qualifiers play a “consolation” tournament, the 

residents Cup. In total, 45 national teams participated in the eight 

ournaments ( Table 3 , Appendix 3 ). The scores recorded for two 

atches in 2021 that were voided because Cape Verde withdrew 

rom the tournament were omitted (Cape Verde vs Germany, Cape 

erde vs Uruguay). Then, of the 751 matches, 43 were tied at the 

nd of normal time. Of these 43, 12 played first overtime, and a 

urther 4 played second overtime, and a further one match ended 

ith a penalty shootout. The remaining 31 tied matches occurred 

n the group stages. Note, we might have omitted matches in the 

resident’s Cup, because arguably there may be less incentive for 

eams to play at full strength despite the results contributing to 

orld rankings. 

The scoring rate is high ( Figs. 2 , 3 ) and has not changed much

ver time (figures omitted). An approximate representation of 

eam strengths is shown in Fig. 4 . Analysis of scoring rate by 

ournament round, comparing scoring rate in group stage, Presi- 

ent Cup and KO stages (results omitted for brevity), indicates that 

coring-rate is not quality related. In a match at the highest level 

see Table 4 , Appendix 4 ), we see q i > 0 . 7 and > 50% of plays with

nly one possession (no turn-over). 

We fitted the Markov-match to the scores in these matches. We 

iscuss that in the next section. Our purpose is to demonstrate the 

odel and how to fit it to match results. This then provides some 

ndication of the usefulness of the model. In Fig. 4 , we can see

hat many teams were absent from tournaments. This is because 

hey failed to qualify on those occasions. Therefore, the dataset 

s biased—there is more information about stronger teams than 
1103 
eaker teams and very little information about some teams e.g. 

ape Verde (one match only). We address this important issue in 

he analysis that follows. 

. Estimation of parameters 

In a simple approach, one might assume that competitors pos- 

ess strengths that are fixed for all time. Then, the (vanilla) log- 

ikelihood function is the sum of the log-likelihood contributions 

or each match ( Eq. (2) ). However, strengths are continuously 

volving. Therefore, at a time instant t, competitors’ strengths are 

stimated using the results of matches up to time t. However, three 

ssues arise: how to discount (down-weight) past matches; how to 

andle a competitor that has played no matches by time t ; and 

ow to adjust the estimation when such absence of match re- 

ults is related to strength. The first issue is discussed in detail 

n Baker et al. (2021) and we use the same approach here. Thus, 

esults from a match played τ time units ago are weighted (dis- 

ounted) by the term exp (−ξτ ) . Since matches in a single tourna- 

ent are played close together in time, our approach is close to 

hat of block-discounting. 

For the second, shrinkage is now standard. With shrinkage, at 

 particular time point, the log-likelihood is a weighted sum of 

erms �	 i = −2 ( log αi − μ) 2 / σ 2 , one for each competitor, and the 

discounted) term corresponding to the results of all matches to 

ate. In �	 i , μ and σ 2 are notionally the mean and variance of the 

log-) strength of an “unknown” competitor (no games played to 

ate). Thus, if competitor i is unknown, �	 i is the only place that 

ts strength appears in the log-likelihood, and the maximum likeli- 

ood estimate of αi is ˆ αi = ˆ μ, and ˆ μ is estimated as the mean log- 

trength of “known” competitors. Conversely, the more matches a 

ompetitor has played the less their estimate is shrunk. 

In the dataset that we use for handball, the absence of match 

esults is related to strength. This is because a team is absent from 

 tournament because they failed to qualify and weaker teams are 

ess likely to qualify. The results of qualification matches were not 

vailable. Therefore, an alternative to standard shrinkage is desir- 

ble. We would expect the log-strength of an unknown competi- 

or to be somewhat less than the mean log-strength of “known”

ompetitors. Therefore, we propose a method that is adapted for 

ualification. This is an original contribution of this paper, and is 

otivated by Heckman (1977) who pointed out that a sample of 

he wages of those working is biased. We discuss this next. 

.1. Modelling qualification for a tournament 

We use an empirical Bayes approach, and essentially suppose 

hat the strength of a randomly chosen competitor arises from a 

ormal distribution. However, strength “seen” in qualification, de- 

oted U, and strength “seen” in tournament results, denoted V, are 

ssumed different but correlated, with a correlation coefficient of 

. As qualification is a binary process, it is sufficient to specify 

https://www.ihf.info/competitions
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Fig. 2. Match scores in the World Men’s Handball Championship 2007–2021. Left: score of team 1 (first named on score sheet) vs score of team 2 (second named). Mean 

scores shown as horizontal and vertical lines. Right: total score versus score difference. 

Fig. 3. Histograms of scores in World Men’s Handball Championship 2007–2021. Note, a goodness-of-fit test for total score rejects Poisson ( p < 0.001). 
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 ∼ N(0 , 1) and to suppose a competitor qualifies if U > a . We sup- 

ose V ∼ N(μ, σ 2 ) , as in the standard shrinkage approach. Setting 

 = (V − μ) /σ , the distribution of U and W is then bivariate nor-

al BN(0 , 1 , 0 , 1 , ρ) and the joint pdf is given by 

f U,W 

( u, w ) = 

1 

2 π(1 − ρ2 ) 
1 / 2 

exp 

{
−u 

2 + w 

2 − 2 ρuw 

2(1 − ρ2 ) 

}
. 

The probability of qualification Q is given by 

 = Pr (U > a ) = 

∫ ∞ 

a 

f U,W 

(u, w ) du = 


{ 

(ρw − a ) √ 

1 − ρ2 

} 

. (3) 
1104 
here 
 is the standard normal distribution function and w = 

 log αi − μ) /σ . The terms log Q (from Eq. (3) ) are added to the log- 

ikelihood for each occasion that a competitor qualifies and terms 

og (1 − Q ) are added for each occasion that it does not. Since 

og (1 − Q ) is maximised when Q = 0 , that is, when μ = ∞ , non-

ualification tends to inflate μ, the mean strength of the other, 

ualifying teams. Thus, equivalently, the more often a competitor 

ails to qualify, the more its strength decreases relative to the over- 

ll mean strength. 

Note, in aside, when V is estimated with standard error ν , it 

an be shown that Q = 
{ (ρw − a ) / 
√ 

1 − ρ2 + ρ2 ν2 / σ 2 } . That is,

he error on V causes Q to shrink towards 1/2. Also, further, con- 

idering a single tournament and qualification for that tournament, 



A. Singh, P. Scarf and R. Baker European Journal of Operational Research 304 (2023) 1099–1112 

Fig. 4. Mean goals per match ( + /- 2 standard error of mean) by team and tournament for 45 teams that competed in the World Men’s Handball Championships 2007–2021. 
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he full ‘prior’ pdf is a generalization of Azzalini’s skew-normal dis- 

ribution ( Azzalini & Capitanio, 2014 ) with pdf 

f ( v | ρ ) = 


( 

ρw − a √ 

1 − ρ2 

) 

exp (−w 

2 / 2) √ 

2 πσ 2 
(−a ) 
, 

nd defining S as 1 if the competitor qualifies, else −1 , the mean

f this prior distribution is 

 ( V | S ) = μ + 

Sρσ exp {−a 2 (1 − ρ2 ) / 2 } √ 

2 π
( −aS ) 
. 

Returning to the method we use, the qualification threshold pa- 

ameter, a , is estimated using the proportion of competitors that 

ualify for a tournament. Thus, in a tournament with q competi- 

ors, a is the solution of Pr (U > a ) = q/ 45 and U ∼ N(0 , 1) so a =
−1 (1 − q/ 45) . When 21 of 45 competitors fail to qualify (tourna- 

ents in 2007 to 2019), a = −0 . 084 . The correlation ρ is estimated

sing the modified likelihood function, discussed later. 

The estimated strength of competitors that have not yet played 

 tournament can be estimated in a second step by using these es- 

imates. The additional term in the log-likelihood for strength of a 

ompetitor that has failed to qualify for n consecutive tournaments 

s 

 = 

1 − exp (2 nξ ) 

1 − exp (2 ξ ) 
log { 
( 

ρw − a √ 

1 − ρ2 
) } − w 

2 / 2 . 

Here, the leading factor arises from the block discounting, and 

he geometric series of weights has been summed. The probabil- 

ty 
 is the probability of not qualifying, and the last term is 

he normal prior. Constants have been discarded. To determine the 

tandard error of the estimated strength, this likelihood was max- 

mised for w using Newton-Raphson iteration, which requires ana- 

ytic first and second derivatives of l . Then, the variance of w, and

ence log α, can be found from the Hessian, the matrix of second 

erivatives. 

Failure to qualify pulls the estimated strength down more as 

 increases. However, the discounting term is large, so the esti- 

ated strength and its standard error soon reach a constant. This 

eems realistic: the more times a competitor fails to qualify, the 

eaker we may consider it, but discounting allows for variation in 

ompetitor strength with time, so even a competitor that failed to 

ualify many times may now not be considered very weak after 

ll. 

.2. Outline of computation strategy 

Tournaments, at two-yearly intervals, were labelled 1,…, T. 

trengths were estimated at times immediately following the end 

f each of these T tournaments. Model parameters were the com- 

etitor strengths α plus the other ancillary parameters. Library 

unction minimisers were used to maximise the adjusted log- 

ikelihood. One team’s strength is held constant, as all observable 

esults depend on the ratio of strengths. Denmark was chosen, hav- 

ng played in all tournaments. 

Qualification-adapted shrinkage (as described in Section 4.1 ) 

as used. The full-modified likelihood included terms for: results 

f matches; qualification or otherwise for each tournament; and 

hrinkage for teams who had played few matches. Teams with no 

atches to date (at the time of estimation) were omitted in this 

rst step of likelihood maximisation. Data comprised scores from 

ach half of a match for the subset of the 45 teams who competed 

t each tournament. Each half is modelled separately because the 

atch-up rule does not carry through the half time interval. 

Two parameters could not be estimated by maximum- 

ikelihood, the discounting rate ξ and the σ 2 , variance of the prior 

istribution of logged strengths. The estimation of these two pa- 

ameters is described next. 
1106 
.3. Estimation of ξ and σ 2 

The discounting parameter ξ cannot be estimated by 

aximum-likelihood because it changes the effective amount 

f data in the analysis. However, the weighted likelihood (pseudo- 

ikelihood) can be corrected, as follows. The prior term is omitted, 

eaving the major part of the log-likelihood that pertains to match 

cores. Denote this by l ′ . Then, by calculating the (common) 

xpectation of the contribution of match i of n with weight w i to 

he log-likelihood, it can be shown that C = nl ′ / ∑ n 
i =1 w i has the 

xpectation that 	 would have without discounting. Therefore, ξ
an be chosen to minimise C. 

Now, σ 2 (the variance of the ‘prior’ distribution) cannot be esti- 

ated with the other model parameters because the prior term in 

he likelihood l is such that l → ∞ as σ 2 → 0 and log αi → μ for all

. Therefore, it is sensible to maximise the marginal log-likelihood 

f σ 2 , 

 m 

( σ 2 ) = log 

∫ 
exp (l(θ ))d θ, (4) 

here θ is the vector of all parameters except σ 2 . The integration 

n Eq. (4) is intractable, therefore, we use Laplace’s approximation 

(θ ) ≈ l( ̂  θ ) − (θ − ˆ θ ) T D (θ − ˆ θ ) / 2 , 

here ˆ θ is the maximum-likelihood estimate of θ , and the ma- 

rix D is the negative of the Hessian, that is, D i j = −∂ 2 l/∂ θi ∂ θ j | θ= ̂ θ .

his approximation can be integrated analytically to give 

 m 

( σ 2 ) = l( ̂  θ ) − (1 / 2) ln | D | − (n/ 2) log σ 2 , 

here |D| is the determinant of D, and then maximised to deter- 

ine ˆ σ 2 . 

. Results of fitting the Markov-match 

Fig. 5 shows the strength estimates for the 45 teams at t = 8 

2021). In these plots, estimated strengths are rescaled so that 
 

log ( ̂  αi ) = 0 . Otherwise, the constraint αDEN = 1 used in the pa- 

ameter estimation step would imply a time-constant strength for 

enmark. The large standard error for Cape Verde indicates that 

heir strength is estimated using one match only (vs Hungary). 

able 2 shows estimates of the other (ancillary) model parameters 

ith standard errors for the two models, and the percentage of 

orrect win/lose forecasts, plus other performance statistics such 

s Brier score ( Brier, 1950 ) and the mean absolute error on pre-

icted score difference. The final at the 2021 World Championships 

as Denmark vs Sweden (see Appendix 4 ). Their strength esti- 

ates, ( α1 , α2 ) = (1 . 465 , 1 . 396) , imply ( q 1 , q 2 ) = (0 . 699 , 0 . 664) ,

( X 1 , X 2 ) = (28 . 7 , 27 . 3) , and win (for Denmark) and tie probabil-

ties of 0.57 and 0.05; the actual outcome was (26,24). 

The Poisson-match we fit uses the most parsimonious parame- 

erisation of strengths: μ1 = δα1 /r α2 and μ2 = α2 /r α1 X 1 , and as- 

umes X 1 and X 2 are independent. For this model, the total num- 

er of goals is also Poisson with mean μ1 + μ2 . The win proba- 

ility (for team 1) is approximately P = 
{ ( μ1 − μ2 ) / 
√ 

μ1 + μ2 } , 
nd with a continuity correction, so that a difference less than ½
s regarded as a tie, it is 

 = 

1 

2 

[



{
μ1 − μ2 − 1 / 2 √ 

μ1 + μ2 

}
+ 


{
μ1 − μ2 + 1 / 2 √ 

μ1 + μ2 

}]
. 

Time was measured on a continuous scale with unit of time 

s one year, and exponential discounting was used. Therefore, 

trengths were effectively estimated using the results of approxi- 

ately 1 + e −2 ξ + e −4 ξ + ... tournaments, that is, ∼1.5 tournaments 

hen ξ = 0 . 55 . 

The log-likelihood is higher for the Markov-match, which has 

ne extra parameter, the mean total number of goals scored. The 
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Fig. 5. Evolution of estimated strengths (ribbons at + / − two standard errors) for the Markov-match. Estimates shown dotted prior to first qualification. When ( α1 , α2 ) = 

(1 , 1) , q 1 = q 2 = 0 . 682 , E( X 1 , X 2 ) = (28 , 28) , and win and tie proportions are 0.46 and 0.08. When ( α1 , α2 ) = (1 . 1 , 0 . 9) , ( q 1 , q 2 ) = (0 . 753 , 0 . 608) , E( X 1 , X 2 ) = (31 , 25) , and 

win and tie proportions are 0.86 and 0.04. 
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Table 2 

Quantities of interest in the estimation of the Poisson-match and Markov-match in 2021. Some selected, rescaled strength estimates are shown. 

Poisson-match Markov-match 

coeff. s.e. coeff. s.e. 

log-likelihood −1093.13 – −874.73 –

mean total goals ( ̂ λ) – – 55.98 0.81 

R 0.072 0.001 0.874 0.065 

� 0.45 – 0.55 –

� 0.234 – 0.288 –

P 0.961 0.021 0.906 0.046 

M −0.231 0.046 −0.418 0.069 

αDEN 1.465 0.097 

αSWE 1.396 0.092 

% correct results 74.09 – 74.25 –

Brier score 0.169 – 0.168 –

Score difference error 5.05 – 4.99 –

Hosmer-Lemeshow χ2 15.70 - 10.99 –

γ 1.233 0.091 1.021 0.091 
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ercentage of wins correctly predicted in “one-step ahead” fore- 

asts is however very similar to the Poisson-match. Results were 

lso forecast using a simple ‘strawman’ system, based on the cu- 

ulative percentage of total goals in matches scored by particular 

eams in earlier tournaments. This forecast 72.4% wins correctly, 

lightly worse than either of the parametric models. 

Since a model without home advantage had a lower AIC, δ is 

ot estimated. 

The strength seen in qualification is highly correlated with 

trength seen in tournament results ( ρ = 0 . 906 ). We expect a high

orrelation. One might argue that the parameter ρ is not needed 

n the model, so that qualification could be modelled directly us- 

ng “tournament strength”. However, this part of the model regu- 

arises the likelihood, so that it is “smooth” with respect to inclu- 

ion or exclusion of teams, thus preventing numerical difficulties 

ith likelihood maximisation. 

With μ = −0 . 418 , the strength of the “average team” at 2021 

stimation point is 0.66, indicating that strengths are positively 

kewed, so that there are (at least at 2021) a relatively small num- 

er of teams that are very strong. This “average team” includes 

on-qualifiers and this to an extent explains the lower value. 

.1. Goodness of model fit 

Model fit for complicated models is difficult to assess. We base 

oodness of fit tests on the forecast probabilities of winning. Cor- 

ection for parameter uncertainty shrinks the win probability to- 

ards 1/2. Win-probabilities were computed using Monte-Carlo 

imulation (10,0 0 0 realizations of the multivariate normal distri- 

ution of parameter values) allowing for parameter uncertainty. 

We use a standard measure of fit from logistic regression, 

he Hosmer-Lemeshow statistic ( Hosmer, Lemeshow & Sturdivant, 

013 ), on the predicted (out-of-sample) probability of winning the 

ame. The reference team (for the purpose of defining a win) was 

he team with the lower ID code. The predicted winning probabil- 

ties were sorted into ascending order and divided into ten groups. 

n each group, the observed and expected numbers of reference 

eam wins were used to form a chi-squared, χ2 . The results are 

iven in the Table 2 . The fit of the Markov-match is acceptable 

 p = 0.257), while the Poisson-match ( p = 0.048) shows some evi-

ence of lack of fit. 

Another approach to assess goodness-of-fit adds extra model 

arameters and assesses whether they are needed. In this way, 

he forecast probabilities of winning p F were transformed to q F = 

 ( p F ) . One could, for example, transform the win probability for 

he reference competitor as: p F → p 
γ
F 

. However, a suitable transfor- 

ation must give the same result, whether applied to p or to 1 −
F 

1108 
p F , and hence to q F and 1 − q F . A monotone transformation with 

his property is implied by log ( q F / (1 − q F )) = γ log ( p F / (1 − p F )) .

hus, the log-odds are scaled, that is 

 F = 

p 
γ
F 

p 
γ
F 

+ (1 − p F ) γ
. 

This transformation pulls probabilities towards q = 1 / 2 if γ < 1 ,

ushes them towards extremes if γ > 1 , and it still works when 

ompetitors cannot be meaningfully distinguished. Estimates of γ
or the two models are shown in the Table 2 . Under the Markov- 

atch, the hypothesis that γ = 1 cannot be rejected ( p = 0.751), 

he Poisson-match is shown to need γ > 1 , that is, the win proba-

ilities it forecasts are too central ( p = 0.0171), reinforcing that the 

arkov-match is a good fit but the Poisson-match is not. 

.2. Other remarks 

The numbers of goals scored by the two teams are observed 

o be negatively correlated. Any ratio-of-strengths model will give 

uch a result, because the numbers of goals are stochastic func- 

ions f ( α1 / α2 ) and f ( α2 / α1 ) respectively. For example, in the 

oisson-match, mean numbers of goals are α1 /r α2 and α2 /r α1 re- 

pectively. A distribution of strengths α will then induce a negative 

orrelation between the scores of the competitors. Note that the 

ntraclass correlation must be used to measure this, as competi- 

or labels of 1 or 2 are arbitrary in the absence of a home com-

etitor. Further, it would be interesting to investigate this correla- 

ion directly in a more balanced tournament, such as the European 

andball Federation men’s Champions League (see Csató, 2020 ). 

The two models yield different values of team strength, which 

re highly correlated (correlation coefficient 0.992). There is no 

eason why the two sets of strengths should be identical. 

Ties at the end of the second half of play are common (nearly 

% of games end thus). This is similar to the figures reported in 

he simulation study in Table 1 . 

Note that the prior and qualification terms satisfy an invariance 

roperty that the full likelihood must have: if a different com- 

etitor is chosen to have α = 1 the likelihood describing results of 

ames does not change. The qualification term has the same prop- 

rty, because if α → c α, then μ → μ + ln( c ), and so log( α) − μ does

ot change. 

. Conclusion 

We present a unified suite of models, a theory, for the bivari- 

te scores in possessive ball-sports. One is old, the Poisson-match, 

ne is recent, the binomial-match, and one is new, the Markov- 

atch, which is described in detail in this paper. These models are 
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ppropriate in the cases when: goals are rare or the restart is con- 

ested; when goals are frequent; and for the latter when the restart 

lternates or when it favours the conceder (catch-up rule). These 

ases include all the well-known possessive ball-sports. Therefore, 

e claim these three models provide the fundamental basis for all 

seful models of possessive ball-sports. 

The paper describes in detail the Markov-match, wherein: when 

ompetitor 1 plays (takes the restart) they score with probability 

 1 and concede with probability 1 − q 1 ; when competitor 2 plays 

hey score with probability q 2 and concede with probability 1 − q 2 ; 

nd the conceding competitor restarts. We describe how to com- 

ute the probability distribution of the final score ( X 1 , X 2 ) , how to

arameterise the model, and how to estimate the parameters. The 

odel is illustrated using handball, a high-scoring sport. We show 

hat the Markov-match is a better fit to the handball results than 

he Poisson-match. The Markov-match is compared to the binomial 

atch, particularly in terms of the dependence that the models in- 

uce between X 1 and X 2 . Correlation between the scores is gener- 

lly higher in the Markov-match. 

An interesting problem of selection bias in tournament scores 

s tackled. In this problem, competitors have fewer observations 

fewer matches) in a typical dataset because they are weaker. In 

ur solution, strength estimates of competitors with fewer results 

re shrunk below the overall mean strength rather towards it, as is 

ustomary in standard shrinkage. Also, we present a new solution 

o the problem of estimating the rate at which the results of past 

atches are discounted. The test of goodness of fit for the mod- 

ls is also new, as are the computations of the likelihood and win 

robability (exact and approximate). 

The models are important because they form the basis of mod- 

ls that are used for prediction (e.g. in prediction “competitions”), 

xperimentation (e.g. testing new formats); and understanding 

e.g. rating/ranking competitors). They provide a suite of models 

rom which to choose the “best” model, although the Markov- 

atch and the binomial-match are complementary, each compet- 

ng in its appropriate setting with the Poisson-match. 

In future work, we will look at basketball, water polo, and Eu- 

opean handball. Basketball and water polo use the catch-up rule. 

asketball has multiple scoring modes. In water polo, the scoring- 

ate is moderate, and it will be interesting to see which model, the 

oisson-match or the Markov-match, is preferred. European teams 

ominate men’s handball (the highest placed non-European team 

n Table 3 , Appendix 3 , is Tunisia in 20th), so that the tournaments

e have analysed are rather unbalanced, although our analysis ad- 

usts for this. It would be interesting therefore to study the per- 

ormance of the Markov-match in the more balanced biennial Eu- 

opean Men’s Handball Championship. Modelling strength evolu- 

ion in the manner of Bolsinova, Maris, Hofman, van der Maas and 

rinkhuis (2022) would also be interesting, but this would require 

 large number matches to obtain meaningful results. 

ppendix 1. Asymptotic approximation for the win probability 

nder the Markov-match 

Since the numbers of goals are large, renewal theory can give 

 good approximation to the probability that team 1 wins. The 

times’ (numbers of goals from either team) at which team 1 

say) restarts with possession form a discrete renewal process 

 Noortwijk & van der Weide, 2006 ), with probabilities P j of length 

 given by P 1 = 1 − q 1 , P k> 1 = q 1 (1 − q 2 ) 
k −2 q 2 , so that team 1 either 

ail to score and regain possession immediately, or scores and then 

eam 2 fails to score k − 2 times and then team 2 scores, returning

ossession to team 1. This random variable has a distribution that 

s a mixture of 1, that is, the distribution that assigns probability 1 

o the value 1, and a shifted geometric distribution. Each renewal 
1109 
ounts 1 goal for team 2. The pgf (probability generating function) 

s 

 (z) = 

(1 − q 1 ) z + q 1 q 2 z 
2 

1 − (1 − q 2 ) z 
(A1) 

ecause the pgf of the geometric distribution starting at 2 is 

q 2 z 
2 

1 − (1 − q 2 ) z 
. 

Let T 2 be the time (number of goals by either side) for team 

 to score when team 1 is initially in possession. From (A1), the 

ean time to score for team 2 when team 1 is in possession is 

( T 2 ) ≡ k 2 = 1 + q 1 / q 2 and the var ( T 2 ) ≡ v 2 = (2 − q 1 − q 2 ) q 1 /q 2 
2 
.

ince each renewal is a goal for team 2, the number of goals scored 

y team 2 is the renewal function at time N (the total number of 

oals). 

There are two complications. One is that N is a random vari- 

ble. The Poisson distribution is the obvious choice, but in fact we 

nly need to specify the mean E( N ) and variance var( N ). The other

omplication is that team 1 do not always start in possession. 

Noortwijk and van der Weide (2006) show that the mean num- 

er of renewals (team 1 goals) is such that E( X 1 ) → (N + 1 / 2) / k 1 +
 1 / 2 k 

2 
1 

− 1 / 2 as N → ∞ when team 2 starts in possession. They

lso show that the variance of the number of renewals φ2 ≡
 var (T ) /E (T ) 3 , and the number of renewals X 1 is asymptotically 

ormal. Here, the total number of goals N is a random variable. 

To find the probability that team 1 wins, we study the goal dif- 

erence D , where when team 1 starts with possession 

 = X 1 − X 2 = 2 X 1 − N ≈
(

1 − 2 

k 2 

)
E(N) − 1 

k 2 
− v 2 

k 2 
2 

+ 1 . 

When team 2 starts with possession, by symmetry 

D = X 2 − X 1 = 2 X 2 − N ≈
(

1 − 2 

k 1 

)
E(N) − 1 

k 1 
− v 1 

k 2 
1 

+ 1 . 

Averaging over these expressions for D, when the game starts 

ith a coin toss 

(D ) = X 1 − X 2 ≈
(

E(N) + 

1 

2 

)(
1 

k 1 
− 1 

k 2 

)
+ 

( k 1 − k 2 ) v 1 
2 k 3 

1 

. 

Note that the leading term in D is N( q 1 − q 2 ) / ( q 1 + q 2 ) . That is,

t is as if we have a series of Bernoulli trials where team 1 wins

ith probability q 1 / ( q 1 + q 2 ) . The formula for E( D ) uses the fact

hat v 1 /k 3 
1 

= v 2 /k 3 
2 
. Hence the formula is symmetric between team 

 and 2 as it must be. The asymptotic variance is 

ar (D ) = 

(
1 

k 1 
− 1 

k 2 

)2 

var (N) + 4 

(
v 1 
k 3 

1 

)
E(N) . 

The team 1 winning probability approximation is P = 

{ E(D ) / 
√ 

var (D ) } . 
In the dataset, the mean average error (MAE) on P was 0.00109, 

sing the Poisson approximation with Poisson mean E( N ) = var( N ) 

 56. 

By regarding a score in the range (- ½, ½) as a draw, counting as

alf a win, the probability of winning becomes 

 = 

1 

2 

[ 




{ 

E(D − 1 / 2) √ 

var (D ) 

} 

+ 


{ 

E(D + 1 / 2) √ 

var (D ) 

} ] 

, 

hich has a MAE of 0.0 0 0911. 
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ppendix 2: Correlation in the binomial-match 

For brevity, we consider only the case q 1 = q 2 = q . First, 

ssume N ∼ Poisson (λ) . Then, conditional on N = n , let 

 1 ∼ N(nq/ 2 , nq (1 − q ) / 2) , and Y 1 ∼ N(nq/ 2 , nq (1 − p) / 2) , in-

ependently, and let X 1 = Y 1 + n/ 2 − Y 2 and X 2 = Y 2 + n/ 2 − Y 1 . 

his approximates the true binomial-match, and avoids the 

echnicalities that arise because N can be odd. 

Now, E( X 1 ) = E( X 2 ) = n/ 2 . 

Also, var ( X 1 | N = n ) = var ( Y 1 ) + var ( Y 2 ) = nq (1 − q ) , because Y 1 
nd Y 2 are independent, so that 

( X 1 
2 | N = n ) = var ( X 1 | N = n ) + { E( X 1 | N = n ) } 2 = nq (1 − q ) + n 2 / 4 . 

Therefore, 

( X 1 
2 ) = λq (1 − q ) + E( N 

2 ) / 4 = λq (1 − q ) + (λ + λ2 ) / 4 , 

nd thus var ( X 1 ) = λq (1 − q ) + (λ + λ2 ) / 4 − λ2 / 4 = λ(1 + 4 q −
 q 2 ) / 4 . Notice that when q = 1 / 2 , var ( X 1 ) = λ/ 2 = E( X 1 ) , so that

 1 has the same coefficient of variation as a Poisson (λ/ 2) random 

ariable. 
able 3 

ummary of performance of national teams in the biennial World Men’s Handball Champ

Team matches appearances 

Denmark 73 8 

Spain 72 8 

Norway 50 6 

Romania 16 2 

Slovenia 41 5 

Sweden 50 6 

France 74 8 

Czech Republic 15 2 

Croatia 71 8 

Hungary 55 7 

Russia 52 7 

Slovakia 16 2 

Iceland 51 7 

Germany 65 8 

Austria 27 4 

Serbia 31 4 

Belarus 25 4 

Portugal 6 1 

Ukraine 4 1 

Tunisia 57 8 

Poland 57 7 

North Macedonia 40 6 

South Korea 42 6 

Cape Verde 1 1 

Qatar 43 6 

Brazil 54 8 

Japan 27 4 

Greenland 6 1 

Chile 42 6 

Iran 7 1 

Egypt 56 8 

Angola 26 4 

Montenegro 7 1 

Switzerland 6 1 

Congo 6 1 

Morocco 13 2 

Bosnia and Herzegovina 7 1 

Argentina 55 8 

Algeria 36 5 

Bahrain 27 4 

Kuwait 13 2 

Cuba 9 1 

Saudi Arabia 37 5 

Australia 29 4 

Uruguay 5 1 

1110 
Now, 

( X 1 X 2 | N = n ) = E{ ( Y 1 + n/ 2 − Y 2 )( Y 2 + n/ 2 − Y 1 ) } 
= 2 E( Y 1 Y 2 ) − E( Y 1 

2 ) − E( Y 2 
2 ) + n 

2 / 4 

= −nq (1 − q ) + n 

2 / 4 , 

o that E( X 1 X 2 ) = −λq (1 − q ) + (λ + λ2 ) / 4 , and cov ( X 1 , X 2 ) =
λq (1 − q ) + λ/ 4 , and 

orr ( X 1 , X 2 ) = 

1 − 4 q + 4 q 2 

1 + 4 q − 4 q 2 
. 

When q = 1 / 2 , corr ( X 1 , X 2 ) = 0 , and when q = 1 , corr ( X 1 , X 2 ) =
 . This is as an addendum to Baker et al. (2021) , in which the

inomial-match is defined in a subtly different way. Therein, each 

ompetitor has N ∼ Poisson (λ/ 2) restarts, so that the total num- 

er of restarts has mean λ and variance 2 λ. This is different to the 

bove. 

ppendix 3 
ionship 2007–2021. 

winner runner-up semi-final mean score 

2 2 6 31.30 

1 0 4 31.06 

0 2 2 30.58 

0 0 0 30.19 

0 0 2 30.05 

0 1 2 29.76 

4 0 7 29.66 

0 0 0 29.13 

0 1 3 29.10 

0 0 0 28.80 

0 0 0 28.69 

0 0 0 28.63 

0 0 0 28.61 

1 0 2 28.58 

0 0 0 28.56 

0 0 0 28.13 

0 0 0 28.04 

0 0 0 28.00 

0 0 0 28.00 

0 0 0 27.72 

0 1 3 27.56 

0 0 0 27.35 

0 0 0 27.26 

0 0 0 27.00 

0 1 1 26.84 

0 0 0 26.76 

0 0 0 26.74 

0 0 0 26.67 

0 0 0 26.52 

0 0 0 26.43 

0 0 0 26.34 

0 0 0 25.81 

0 0 0 25.57 

0 0 0 25.50 

0 0 0 25.33 

0 0 0 25.31 

0 0 0 25.00 

0 0 0 24.40 

0 0 0 24.14 

0 0 0 23.78 

0 0 0 23.77 

0 0 0 23.44 

0 0 0 22.41 

0 0 0 16.83 

0 0 0 17.60 
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ppendix 4 

able 4 

en’s Handball World Championship Final 2021, Denmark (D) vs Sweden (S), scor

nded at the buzzer. q DEN = 0 . 80 , q SWE = 0 . 74 . Plays with one possession: 29/52. (W

first half 

play score Play score 

S 0 1 SDS 8 7 

D 1 1 DS 8 8 

SDS 1 2 DSD 9 8 

D 2 2 S 9 9 

S 2 3 D 10 9 

D 3 3 S 10 10 

SDS 3 4 DS 10 11 

D 4 4 DS 10 12 

SD 5 4 D 11 12 

SDS 5 5 S 11 13 

D 6 5 DSD 12 13 

S 6 6 SD 13 13 

DSDSD 7 6 S 

SDSD 8 6 
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