
 i 

 
 
 
 
 
 
 
 
     
                                                        A Thesis Presented 
      To 
 

      The Faculty of the School of  
                     Science, Engineering and Environment 

   
 

     The University of Salford 
 
 
 
 
 
 

  Analyzing Frequent Patterns in Data Streams Using a Dynamic Compact           
Stream Pattern Algorithm 

 
 
 
 
 
 

 In Partial Fulfillment 
 

         Of the Requirement for Degree of  
   Doctor of Philosophy 

 
 
 
 
                                                                  By 
   

    Oyewale Ayodeji 
 
 
 
 
 
 

          - April 2022 - 
 

 



 ii 

 
 

Table of Contents 

1.0 BACKGROUND OF STUDY .......................................................................................................... 1 

1.1 STATEMENT PROBLEM .............................................................................................................. 3 

1.2 THESIS CONTRIBUTIONS ........................................................................................................... 4 

1.3 OBJECTIVE OF THE STUDY ......................................................................................................... 5 

1.4 THESIS ORGANIZATION ............................................................................................................. 5 

2.0      REVIEW OF EXISTING LITERATURE ........................................................................................ 7 

2.1 WHY IS REAL-TIME ANALYSIS CRUCIAL? .................................................................................. 11 

2.2  SETBACKS OF ALGORITHMS IN LEARNING FROM DATA STREAMS ........................................... 14 

2.3  COMPACT DATA STRUCTURE .................................................................................................. 14 

2.4 CLOSELY RELATED WORK ......................................................................................................... 15 

2.5 DATA MODELS ........................................................................................................................ 19 
2.5.1  Summary ............................................................................................................................................... 21 

2.6 MINING SCHEME .................................................................................................................... 22 

2.7 SCALABILITY ISSUES IN FREQUENT PATTERN ........................................................................... 23 

2.8 EFFICIENT AND SCALABLE METHODS FOR MINING FREQUENT PATTERNS ................................ 24 

2.9 CONCLUSION .......................................................................................................................... 30 

3.0 PRELIMINARIES ...................................................................................................................... 33 

3.1 TREE-BASED MODEL ANALYSIS ................................................................................................ 34 

3.2 COMPACT STREAM PATTERN  TREE MODEL ............................................................................. 36 

3.3 BRANCH SORTING TECHNIQUE MODEL ...................................................................... 37 

3.4 SLIDING WINDOW ............................................................................................................. 39 

3.5 APPROACH TO CSP MODEL ............................................................................................. 40 

3.6 DYNAMIC COMPACT STREAM PATTERN TREE CONSTRUCTION ................................................ 43 

3.6.1 Creation of new window ..................................................................................................... 45 

3.6.2 Creation of new pane .......................................................................................................... 45 

3.7 SOLUTION MINING APPROACH ..................................................................................... 46 

3.8 EXPERIMENTAL SETUP .................................................................................................... 47 

3.9 EXPERIMENTAL RESULTS ............................................................................................... 54 

3.10 RUNTIME ANALYSIS ....................................................................................................... 54 

3.11  Summary ............................................................................................................................ 57 
4.0      IMPLEMENTATION AND DISCUSSION ....................................................................... 59 

4.1  DYNAMIC COMPACT STREAM PATTERN DATA MINING .......................................... 60 



 iii 

4.2 IMPLEMENTING THE PROTOTYPE INTO A REAL SIMULATION ENVIRONMENT 66 

4.3 PATTERN SEARCH CRITERION/TYPES ......................................................................... 66 

4.4 RESULT OF CSP PATTERN SEARCH ON MOVIE DATASET ......................................... 67 

4.5 MOST FREQUENT PATTER FOR EACH WINDOW SIZE .............................................. 69 

4.6 ANSWERS TO SOME QUESTIONS ON THE RESULT ..................................................... 71 
Question 1 ....................................................................................................................................................... 71 
Question 2 ....................................................................................................................................................... 71 
Question 3 ....................................................................................................................................................... 72 
Question 4 ....................................................................................................................................................... 72 
Question 5: ...................................................................................................................................................... 72 
Question 6: ...................................................................................................................................................... 72 

4.7 EXPLANATION OF MOVIE DATA ANALYSIS RESULT .................................................. 73 

4.8 PRODUCING AND MAINTAIN ASSOCIATION RULES .................................................. 74 

4.9 METHOD OF ENSURING DATA SET INTEGRITY IN DATA STREAM ......................... 76 

4.10 CONCLUSION ................................................................................................................... 77 

5.0   EVALUATION .................................................................................................................... 78 

5.1 EXPERIMENTAL EVALUATION ........................................................................................ 78 

5.2 MEMORY USAGE ............................................................................................................... 88 

5.3 ANALYTICAL EVALUATION ............................................................................................. 92 

5.4 ASYMPTOTIC ANALYSIS .................................................................................................. 92 

5.5 EFFICIENCY OF ALGORITHM (Asymptotic Notations) ................................................... 95 

5.5 CONCLUSION .......................................................................................................................... 98 

6.0 CONCLUSIONS AND FUTURE WORK ............................................................................. 99 

6.1 SUMMARY OF CONTRIBUTIONS .................................................................................. 100 

6.2 RECOMMENDATION FOR FURTHER STUDIES & CONCLUSION ............................ 101 

BIBLIOGRAPHY ..................................................................................................................... 103 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

List of Figures 
Fig 2.1: A typical Clustering Process .......................................................................................... 17 

Figure 3.2 Data Flow Architecture .............................................................................................. 42 

Figure 3.3:  Framework for CSP Algorithm ................................................................................ 52 

Fig 3.4: Telecoms Tree Creation Time ........................................................................................ 56 

Fig 3.5: Telecoms Tree Restructuring Time ................................................................................ 56 

Fig 3.6: Call Center Tree Restructuring Time ............................................................................. 57 

Fig 4.1 : Stream mining process (Adaptive: Mahnoosh Kholgi et al 2011) ................................ 63 

Figure 4.2: Plot of Memory against Window size ....................................................................... 68 

Figure 4.3: Plot of Time(s) against min_sup (%) ........................................................................ 69 

Figure 5.1: BMS Tree Creation Time .......................................................................................... 79 

Figure 5.2: CSP AND FP Comparison on BSM DATA .............................................................. 80 

Figure 5.3: Sales Tree Creation Time .......................................................................................... 81 

Figure 5.4: Mining time for Sales Dataset .................................................................................. 82 

Figure 5.5 CSP & FP comparison ............................................................................................... 82 

Figure 5.6 Crime Tree Creation Time ......................................................................................... 83 

Figure 5.7: Telecoms Tree Creation Time ................................................................................... 84 

Figure 5.8: Telecoms Tree Restructuring Time ........................................................................... 85 

Figure 5.9:  Call Center Tree Creation Time ............................................................................... 86 

Figure 5.10: Call Center Tree Restructuring Time ...................................................................... 87 

Figure 5.11: Call Center Tree Mining Time ................................................................................ 87 

Figure 5.12 Space Efficieny of BMS .......................................................................................... 89 

Figure 5.13: Space Efficiency of Sales ....................................................................................... 89 

Figure 5.14: Space Efficiency on Crime dataset ......................................................................... 90 

Figure 5.15: Space Efficiency of Telecoms ................................................................................. 91 

Figure 5.16: Space Efficiency for Call care ................................................................................ 91 

Figure 5.17: Graph complexity at Theta notation ....................................................................... 95 

Figure 5.18: Graph complexity at 0 Notation ............................................................................. 96 

Figure 5.19:Gaph complexity at Omega Notation ...................................................................... 97 

            

 



 v 

 

List of Tables 

Table 2.0 Basic Differences between traditional and stream data processing (Adaptive: .......... 12 

João & Pedro, 2004) .................................................................................................................... 12 

Table 3.2: Dataset Characteristics ............................................................................................... 49 

Table 3.3: Telecoms dataset ......................................................................................................... 55 

Table 4.1: Table of values for plot for Moviedataset (Runtime Vs Min_sup) ............................ 68 

Table 4.3: Movie Dataset Characteristics .................................................................................... 72 

Table 4.1: Runtime analysis ........................................................................................................ 79 

Table 5.2: Crime Dataset ............................................................................................................. 83 

Table 5.3: Call Care Datasets ...................................................................................................... 85 

Table 5.4: Memory Usage for BMS ............................................................................................ 88 

Table 5.5: Memory Usage for Sales Dataset ............................................................................... 89 

Table 5.6: Memory usage on Crime Dataset ............................................................................... 90 

Table 5.7: Memory usage on Telecoms Dataset .......................................................................... 91 

 

 

 

 

 

 

 

 
 

 

 



 vi 

ACKNOWLEDGEMENT 

 
Crowning of a long journey that the making of this dissertation happens, I would like to thank 

some of many people who have been most helpful to me in ways unimaginable. 
 
First, I would like to thank Dr Chris Hughes (Supervisor) for his support and guidance over the 

years, and for the numerous and fruitful discussions that laid the foundation of the research 

presented here. In particular, I thank him for passing knowledge on to me, and teaching me how 

to research and solve new problems with persistence. I also thank Professor Mohammed Saraee 

(Joint Supervisor) for valuable discussions on statistical modelling and association rule mining 

that led to the discovery of this research. I am grateful to both of them for many helpful 

discussions and brainstorms on stream data mining and data mining at large, and for 

collaborations on some projects. Their help in cultivating my curiosity in machine learning and 

data mining as it is indispensable to the formation of this dissertation. I thank the colleagues and 

friends at the Science, Engineering and Technology Department. Thank you for your helpful 

discussions and paper proofreading, and the enjoyable environment you have helped to 

maintained. 
 
Special thanks go to Busayo Oyewale, my wife and my personal editor and my new born baby 

Kian Oyewale for the sleepless nights. She has not only kept me cheerful and happy throughout 

the development of this dissertation, but also showed her exemplary proofreading skills in helping 

to make sure this research is a success. Above all, I will like to render my profound appreciation 

to my parents, MR Kehinde Olufemi Oyewale and Mrs. Gbonjubola Oyewale for their endless 

support all through the course of this research. For their emotional, financial and inspirational 

encouragements. 

 
 
 
 
 
 
 
 

          



 vii 

Abstract 
 
 
As a result of modern technology and the advancement in communication, a large amount 

of data streams are continually generated from various online applications, devices and 

sources. Mining frequent patterns from these streams of data is now an important research 

topic in the field of data mining and knowledge discovery. The traditional approach of 

mining data may not be apropriate for a large volume of data stream environment where the 

data volume is quite large and unbounded. They have the limitation of extracting recent 

change of knowledge in an adaptive mode from the data stream. Many algorithms and 

models have been developed to address the challenging task of mining data from an infinite 

influx of data generated from various points over the internet. The objective of  this thesis is 

to introduce the concept of  Dynamic Compact  Pattern  Stream tree  (DCPS-tree) algorithm 

for mining recent data from the contineous data stream. Our  DCPS-tree will dynamically 

achieves frequency descending prefix tree structure with only a single-pass over the data by 

applying tree restructuring techniques such as Branch sort method (BSM). This will cause 

any low frequency pattern to be maintained at the leaf nodes level and any high frequency 

components at a higher level. As a result of this, there will be a considerable mining time 

reduction on the data-set. 

 

 

 

 

 

Keywords: 
 
Data Mining, Frequent Pattern, Stream data, Compact Stream Pattern, Interactive Mining



 

 1 1 

 

                                                  CHAPTER ONE 

1.0 BACKGROUND OF STUDY 

Many organizations need to understand and monitor the rate of data influx that are 

generated from various sources. Most of these datasets generated are in the form of a 

stream (data stream), thereby posing the challenge of being continuous. In real-life 

scenario, stream data come from live observations or in some cases in the form of 

sensors which are subject to noise. This problem is usually handled by pre-processing 

the data. Which is why it is of great importance to design a light-weight pre-processing 

technique that can guarantee quality of the mining results. More often than not, data 

processing consumes more time in the knowledge discovery process. The challenge 

here is to automate such a process and integrate it with the mining techniques. 

Data preprocessing in this research work involves the use of a middleware which 

serves as a functioning hidden translation layer which enables a communication and 

interaction, and data management between the operating system and the application 

running on it. It can be referred to as plumbing as it connects two applications together 

so that data can be easily passed between the pipes created by the middleware. The use 

of a middleware makes it possible to perform requests such as formatting of data an or 

allowing the system to run custom functions based on the user’s specified need or 

requirements. 

Recently, frequent patterns in data streams have been a challenging task in the field of 

data mining and knowledge discovery.  Frequent pattern mining is one of the most 

recent and important research topics in the field of data mining. Lavrac et al. (2010) 

defined frequent pattern mining “ as searches for implicit, previously unknown, and 

potentially useful pieces of information—in the form of frequently occurring sets of 



 

 2 2 

items (also known as patterns)—that are embedded in the data.”.   From the inception 

of  frequent pattern mining, many studies have been conducted. It is important to note 

that,  most of these studies focus on traditional mining of  precise data.  Precise data are 

data type that are certain to be present in a dataset or database transaction. The user is 

always certainly sure to find the data within the database. Apriori algorithm was one of 

the earliest  Frequent Pattern algorithm that was used for mining through a generate and 

test approach. An important observation from the Apriori algorithm is the bottleneck 

that is faced during the result generation process. This algorithm requires multiple 

database scan for patterns. Han et al. (2000) provided a solution to this problem by 

designing  a tree-based mining frequent pattern algorithm  called Frequent Pattern 

growth (FP-growth). The technique of this algorithm makes use of the prefix-tree data 

structure. A gain in performance is achieved by relying upon the compactness  nature 

of FP-tree, where data is stored based on the frequency nature of the items in a 

frequency-descending order. However,  the design of the FP-tree needs two database 

scans as well as a prior knowledge of the dataset support threshold. In the first database 

scan, FP-growth finds all frequent level-1 patterns. Then, it scans the database the 

second time to construct a tree data structure called an FP-tree. This tree data structure 

contains all information in the database. This approach of mining may suffer from two 

major limitations: the memory size and run-time inefficiency causing a higher time 

mining process. A technique called Compact Stream tree was proposed by Tambeer S. 

K. Et al, (2009).  It is an efficient technique to discover the recent dataset of frequent 

patterns from a very fast data stream over a sliding window.   

     The objective of  this thesis is to introduce the concept of  dynamic Compact  

Pattern  Stream tree  (DCPS-tree) algorithm for mining recent data from the 



 

 3 3 

continuous data stream.   The  DCPS-tree will dynamically achieves frequency 

descending prefix tree structure with only a single-pass over the data by applying 

tree restructuring techniques such as Branch sort method (BSM). This will cause 

any low frequency pattern to be maintained at the leaf nodes level and any high 

frequency components at a higher level.  In this DCPS-tree, the sliding window 

will consist of many batches of transactions, and each transaction data  will be for 

each batch that is maintained at each node of the tree structure. In order to discover 

the complete data-set of the recent frequent patterns, the Frequent Pattern growth 

(FP-growth) mining method is implemented to the DCPS-tree of the current  

sliding window.  As a result of this, there will be a considerable mining time 

reduction on the datasets.  

Conclusively, the mining  of the patterns frequency  from dynamic data streams is 

more challenging when compare to the mining of traditional static transaction 

databases,  as a result of  the following data streams characteristics:  

i) Data streams are continuous and unbounded.   

ii)  Data in the streams are not  uniformly distributed.  

In this thesis, we propose a Dynamic Compact Stream Pattern algorithm that will 

successfully overcome the above two challenges. This study, therefore, conceptualized 

handling enormous data as a stream mining problem that applies to continuous data 

stream and proposes an ensemble of unsupervised learning methods for efficiently 

detecting data knowledge in the stream  of data. 

1.1 STATEMENT PROBLEM   
The vast amount of data generated by enterprise networks has led to increasing 

adoption of big data techniques in delivering actionable analytic from collected 



 

 4 4 

data. Various companies and market in an attempt to gain sufficient market share 

in a competitive industry require analytic solutions to make actionable decisions 

in real time to latter predictions. Given the vast amount of applications 

introduced in different organizations and domains, the wide range of collected 

data provides a haven for machine learning algorithms to help in analyzing and 

proscribing anomalous events before they occur. Traditionally, data mining 

techniques have been applied to gain insights into large unstructured data. 

However, few studies have applied CSP algorithm for effectively analyzing 

stream data.  

Let us reflect on the following vital points :   

1.  The traditional approach of mining data is not appropriate for a large volume 

of data stream environment where the data volume is very large and unbounded. 

2.  The traditional approach of mining often suffers from two major limitations: 

the memory size and run-time inefficiency . 

3. Data found in streams are usually non-uniformly distributed and poses the 

challenge of effective mining. 

There are the reasons that necessitated the desired to develop an algorithm that can be 

applied to address the above listed problem. 

1.2 THESIS CONTRIBUTIONS 
The gains of this research work are numerous. The proposed system will definitely 

achieve the following contributions:  

1. The Dynamic Compact Stream Pattern tree algorithm could be used in solving 

the problems of mining which support single database scan;  



 

 5 5 

2. It could be used and applied in different industrial fields such as sensor network 

analysis and network monitoring system, where real time data are needed for 

processing;  

3. It will add knowledge to the existing knowledge of data science where data 

mining  algorithm is a requirement.  

 

1.3 OBJECTIVE OF THE STUDY 

 
At the end of  this research work, we should be able  to develop a dynamic compact 

prefix-tree  (DCP-Tree) algorithm that would be used  to mine frequent patterns from 

a stream of data in various domains.  

And the specific objectives  are: 

 
i. design a Dynamic Compact Stream Pattern tree  (DCSP-tree) algorithm for mining 
frequent pattern in a dynamic data streams  environment ; 
 
 
ii. detect new patterns in real-time streams of high-speed data and adapting quickly to 

changing realities. 

 
v. Design and implementation of a prototype of stream mining system for stream 

processing and normalization of  data. 

 

1.4 THESIS ORGANIZATION 

 
This report covers a detailed study on analyzing stream data using a compact stream 

pattern algorithm based on constructing a prefix tree in a lexicographical order. The 

report is organized as follows: 
 



 

 6 6 

1. Chapter one: The first chapter gives a general introduction and overview of the 

research study by stating the problem, the objective and contributions . 

2. Chapter two:  highlights the general background on data streams, existing data 

stream algorithms and compact data structures. Historical reviews, 

applications, characteristics and the general architecture of the basic ideas were 

discussed in this chapter.  
 

3. Chapter three: presents the analytic review on the general concept of data 

streams and  CSP algorithm, in-depth approach and applications of stream data. 

The chapter also highlights the general overview of results when compared to 

the frequent pattern (FP) growth algorithm. The methodology was adopted 

from the related literature. Finally, the presentation of a preliminary test of the 

proposed CSP algorithm. The analysis determined the performance evaluation 

of the proposed algorithm against the existing protocol.  

4. Chapter four: presents the implementation and discussion of the  algorithm. In 

the implementation section, the implementation of the design concept with a 

detailed explanation of the concept formulation is highlighted. The algorithm 

and state-based model for the Netflix dataset is presented, with concluding 

remarks which summarizes the outcome of the implementation procedures. 

5.  Chapter five: highlights the key evaluation parameters, he rate of data flow. The 

chapter also presented some generic results of the algorithm by predicting the 

mining times and run-time efficiency. The chapter also presents the expansion 

and results of the analytic models 

6. Chapter six: deals with the general summary , conclusion and recommendation 

of the Thesis. 



 

 7 7 

CHAPTER TWO 
 
 

2.0      REVIEW OF EXISTING LITERATURE 
 
 
An increasing investment has been made in the study area of analyzing stream data 

during past years Ascarza et al., (2016). Since the introduction of stream mining by 

Agrawal et al (1993), it has been actively and widely studied by the data mining and 

knowledge discovery research community. Finding meaningful patterns from streams 

of data has become one of the most important and challenging problems for a wide 

range of online applications. Various researches focused on discovering and extracting 

useful information from the most recent data elements since processing the recent data 

is usually important and of utmost essence for the applications that handle stream-

oriented data. 

 
The intensive rivalry and replete markets have left major companies ranging from 

telecoms to retail, network traffic, click and web stream mining with little slack to 

ignore high detection rate. A wide span of stream mining algorithms has been 

developed in the last years. Most advanced models make use of contemporary machine 

learning classifiers such as random forests (Breiman; 2001; Yoon Koehler & Ghobarah 

2010). Customarily, platforms intended for streaming data can only respond based on 

data entered for each set. 

 
Consistent with Yaya, Xiu, Ngai, Weiyun, 2009 & Huang, Kechadi, Buckley, Kiernan, 

Keogh, Rashid, 2010, one of the biggest challenges for researchers in discovering 

meaningful patterns from stream data and the ability to make prediction in the 

imbalanced nature of data (Desamparados & Josep, 2016). Nowadays business firms 

pay more attention to make firm and effective analysis on their enormous data (ZhenYu 



 

 8 8 

Chen et al., 2012; Coussement & Van den, 2008). Making sense out of stream data has 

been extremely outstretched as a concern inmany fields including telecommunication 

(Umman Tuğba, & Şimşek Gürsoy,2010; Rashid ,2016; Idris et  

al.,2012; Bingquan et al., 2012). Therefore, it is stoutly recommended that companies 

in competition within the same business environment operate their own algorithmic 

systems fortified with business intelligence and data mining tools to label and isolate 

an array of incoming data elements for better business advantage. Research in stream 

data has attracted a great amount of attention in literature due to the gravity of the 

problem within many organizations and the purpose of making a single pass over data. 

Consequently, the need to accurately predict an event in near real time before its 

occurrence is of great importance. An extensive study by Coussement & Van den Poel 

(2008); Xie et al., 2009 preside over the use of Support Vector Machines (SVM) in the 

context to stream data mining. 

 
Only a few representatives of those using data mining is mentioned. Most recognized 

algorithms are neural networks, decision tree, logistic regression, and genetic algorithm 

and cluster analysis. Various researches discussed strategies for combating streaming 

data using data mining techniques, but few have examined and studied stream mining 

by classifying it as a stream of data. Verbeke et al., (2011) proposed two novel data 

mining techniques for stream data mining, the first was named AntMiner+ which uses 

Ant Colony Optimization to gather rules from data and second named Active Learning 

Based Approach for support vector machine rule extraction and experiments were 

conducted with C4.5, RIPPER, SVM, logistic regression. 
 

Experiment proved that ALBA combined with C4.5/RIPPER results in higher 

accuracy than the AntMiner+. Khan et al., (2010) with the aid of decision tree, logistic 

regression and neural network have been able to make analytics and ultimately 



 

 9 9 

proposed that demographic features have the lowest effect on the data when compared 

to other usage details. Owczarczuk (2010) used logistic regression, Nie et al., (2011) 

used logistic regression and decision tree model and Keramati, Seyed, Ardabili (2011) 

focused on Binomial logistic regression model for large datasets and detected useful 

patterns. In addition, a study by Shim et al., (2012) used decision tree, neural network 

and logistic regression and was able to ascertain decision tree to show the most 

successful algorithm. 

 
Accuracy and exactness of a prediction is very vital as the sole of a company is 

based on these predictions, Mozer et al., (2000) used neural network, logistic 

regression in order to attain better prediction accuracy for stream data. Several 

algorithms have been used to analyse static data, some of which are eminent 

algorithms including neural networks, decision tree, logistic regression and cluster 

analysis which do not put into consideration the influx and persistence of the 

incoming data. Therefore, “developing an approach that can effectively work on 

streams of data that are incessant and capable of processing millions of instances per 

second is highly crucial”. The major drawback faced with data mining techniques is 

the inability to model data incrementally. Models built sometimes while using data 

mining techniques can gradually lose track of incoming data which can lead to 

opportunity lost, inability to discover and tap i n t o new markets, and reduced 

business velocity. 

 
Due to the infinite amount of continuous measurements and time-evolving 

trends of stream data, Haixun, Wei, Philip, Jiawei (2003) proposed a general 

framework for mining concept-drifting data streams using weighted ensemble 

classifiers where ensemble classification models are trained from sequence chunks of 



 

 10 10 

data streams. The ensemble approach tends to enhance both the efficiency of the 

learning model and the accuracy in performing classification. The idea of ensemble 

methodology is to build a predictive model by integrating multiple models thereby 

being able to improve prediction performance. 

 
Hossein, Mostafa, & Mohammad (2014) gave a lack of proper insight into 

ensemble methods for stream data which led to the comparative analysis of the four 

standard ensemble methods comprising of Bagging, Boosting, Stacking and Voting 

using C4.5 Decision tree, Artificial Neural Network (ANN), Support Vector Machine 

(SVM) and Reduced Incremental Pruning to Produce Error Reduction (RIPPER) with 

the introduction of two distinct sampling techniques; that is ‘oversampling for basic 

sampling and Synthetic Minority Over-sampling Technique (SMOTE) for advanced 

sampling’. Hossein et al., (2014); Martens et al., (2009) rated SVM as the best data 

mining algorithm in terms of performance and it was observed that Boosting has the 

best result among all other methods. Data stream mining techniques from research 

have been envisaged to offer the assurance of discovering new patterns and anomalies 

in high speed streams of data. Borja, Bernardino, Alex, Gavalda, Manzano-Macho 

(2013) arrived at a proof-of-concept in which the technology to perform real-time, 

high-throughput prediction on streams of items is obtainable. An approach using 

stream mining platform MOA (Massive Online Analysis) was used in the 

implementation of a decision trees called Hoeffding tree algorithm by inducing 

Hoeffding bound, which gives certain level of confidence on the best attribute to split 

the tree. An alternative approach to supervised learning is unsupervised learning which 

can be effectively applied to unlabeled data i.e. data in which no points are explicitly 

identified as anomalous or non-anomalous. 
 



 

 11 11 

Tree algorithms are one of the most important forms of unsupervised learning 

(Cook & Holder; 2007; Eberle & Holder, 2007), but it has been traditionally limited 

to static and finite-length dataset. Parveen et al., (2013) applied decision tree to stream 

data which got better classification accuracy when compared with a baseline classifier 

which is applicable to static data stream. The ability to mine stream data addresses 

the rare class problem by building a model that only considers the most recent entry. 

The model is trained over a series of fast flowing data and the ensuing findings are 

classified as the result. Moreover, the approach is only applicable to bound–length 

static data streams. Instead, data related to stream is typically continuous and evolves 

over time; therefore, the data is of unbounded length. Hence, effective classification 

models must be adaptive (i.e. able to handle evolving concepts in the data) and highly 

efficient in order to build the model from huge amount of evolving data. 

 

2.1 WHY IS REAL-TIME ANALYSIS CRUCIAL? 

 
Information is emerging as the new currency of business, and remains the basis for 

true competitive differentiation, innovation, value creation, growth, and risk 

mitigation. Mere having access to information before industry competition is not 

enough today. Streaming continuous data allows companies/organizations to analyse 

data as soon as it becomes available allowing the ability to analysis risks before they 

occur. Data processing and analytics must occur in real-time and be complemented by 

real-time action-ability as it can help companies identify new business opportunities 

and revenue which will eventually result into an increase in profits, acquisition of new 

customers, and improved service. Above all, it provides a form of security protection 

as it gives companies a fast way to swiftly associate various event patterns so as to 

identify relationship. 



 

 12 12 

 

 Traditional Stream 
   
Number of Passes Multiple Pass Single pass 

   
Processing time Unlimited Limited/Restricted 

   
Memory Usage Unlimited Limited/Restricted 

   
Result Outcome Accurate and Exact Approximate 

   
 
 
 
Table 2.0 Basic Differences between traditional and stream data processing 
(Adaptive: 
João & Pedro, 2004) 
 
 
Figure 2.1 above illustrates the significant distinctions between data residing in a 

database (traditional databases) and an influx stream of data. The data available in a 

database can be continually queried as many times as the need arises, unlike stream 

data which doesn’t have the luxury of continuous query over a particular dataset. 

Which implies that only one single pass can be made over a given dataset. The main 

problem in handling data streams is memory constraint because we are restricted to a 

single scan of the database. As stated earlier, in traditional algorithms we are able to 

perform multiple scans over available data. This is not possible in data stream because 

there isn’t enough memory space to store all the transaction and their counts. In regard 

to this, memory size is bounded and can contain the huge amount of data that arrives 

continuously. There are many algorithms for mining stream data. Based on result, they 

are categorizing as exact algorithms or approximate algorithms. In exact algorithms, 

The result consist of all the itemsets which satisfy support values greater than or equal 

to threshold support. To Produced accurate result in stream data, additional cost is 



 

 13 13 

needed. In approximate algorithms, the result is approximate result with or without an 

error guarantee. 

 
Managing data in motion is different from managing static data (also known as data at 

rest). To deal with data in motion, event stream processing relies on: 
 
2.1.1 Assessment: With massive volumes of streaming data, it is simply not practical 

to store it all. Much of what is generated is irrelevant for any action, analysis or even 

archiving. Compact stream pattern algorithm standardizes the incoming data, 

determines if the data is relevant and if any downstream processing is needed. If not, 

the pattern can be discarded without taking up processing bandwidth. 

 
2.1.2 Aggregation: Event stream processing is used to continuously calculate metrics 

across defined intervals of time to understand real-time trends. This type of continuous 

aggregation would be difficult with traditional tools because of the time lag and I/O 

overhead associated with storing data on disk and then running a query. 

 
 
2.1.3 Correlation: An individual event may not be significant as a single data point. But 

when you can establish its relationship to multiple events from a single stream or even 

multiple streams, then you can set the context to assess these events. Monitoring 

patterns and correlations (such as identifying that Event A was followed by B and then 

C within a given time window) provides more accurate understanding of a situation 

than analyzing Event B in isolation. 

 
2.1.4 Analysis: One of the advantages of streaming analytics is gaining as much insight 

as possible while the data is still in motion. Conducting systematic interpretation while 

events are happening ensures operational procedures are tied with existing conditions. 

Adding out-of-stream (i.e., traditional) analytics to events from data streams enables 



 

 14 14 

you to further enrich events and put them in a business context. This approach can help 

you to use event stream processing to create additional revenue, improve a customer 

experience or reduce costs and risk. 

 

2.2  SETBACKS OF ALGORITHMS IN LEARNING FROM DATA STREAMS 

 
The challenging problem for stream mining is the ability to permanently maintain an 

accurate analytical model. These concerns require intuitive algorithms that can tweak 

the current models whenever new datasets are available and accessible. Furthermore, 

older information should be retained or rendered outmoded. Learning from data stream 

requires iterative learning algorithms that take into account concept drift. Solutions to 

these problems require new sampling and randomization techniques, and new 

approximate incremental algorithms. Hulten and Domingos distinguishes desirable 

properties of learning frameworks that are able to mine continuous, high-volume, 

unbounded stream of data as they arrive. This proposes learning models ought to have 

the option to be able to process incoming data and answer queries in real time. 

 

2.3  COMPACT DATA STRUCTURE 

 
In an age where collecting, updating, storing and retrieving of information becomes 

significant, the introduction of a dynamic, adept and compact data structure is of great 

essence. This is as a result of the finite memory size and the persistence convergence 

of the stream data. An efficient and compact data structure is needed to store, update 

and retrieve the collected information. This is due to bounded memory size and huge 

amounts of data streams coming continuously. Failure in developing such a data 

structure will largely decrease the efficiency of the mining algorithm because, even if 



 

 15 15 

we store the information in disks, the input and output operations will increase the 

processing time. The data structure needs to be incrementally maintained since it is not 

possible to rescan the entire input due to the huge amount of data. In [Chen et al., 

2007], the authors employ a prefix tree data structure to store item ids and their support 

values, block ids, head and node links pointing to the root or a certain node. In 

[Giannella, 2003], an FP-tree is constructed to store items, support information and 

node links. A thorough and unmitigated data structure is a determinant in developing 

an efficient algorithm. Since it is directly associated with the way we handle newly 

arrived information and update old stored information.  

A small and compact data structure which is efficient in inserting, retrieving and 

updating information  is most favorable when developing an algorithm to mine 

association rules for stream data. 

 
 

2.4 CLOSELY RELATED WORK 

 
2.4.1 Data Stream Clustering: Clustering has been a widely studied task in the data 

mining literature. However, it is more difficult to adopt illogical clustering algorithms 

to data streams because of one-pass constraints on the data set. The main objective of 

the clustering is to minimize the average distance from data points to their closest 

cluster centers. An algorithm that makes a single pass over the data stream and uses 

small space was proposed by (Guha et al 2000; 2003). It uses a partitioning based 

approach on the entire data set for adaptation of the K-means algorithm by creating a 

cluster over the entire data stream. As a form to improve the proposed algorithm by 

Guha et al 2000; 2003, Babcock et al., 2002 also put forward an exponential histogram 

(EH) data structure to support it. The center of the attention for manyresearchers has 



 

 16 16 

been the k-median enigma, which was originally posed by Weber (1993). In order to 

increase approximation factors in the Guha et al 2003 algorithm, Charikar et al 2003 

proposed k-median algorithm that overcomes the problem. Dominos et al (2000; 2001) 

in a research proposed an algorithm that captured the attention of many scientists is the 

k-means clustering algorithm. 

 
This algorithm scales-up machine learning algorithm known as Very Fast Machine 

Learning VFML which has been equally applied to K-means clustering VFKM and 

decision tree classification techniques known as Very fast decision tree (VFDT). 

However, in data streams clustering the need for online techniques that can cluster data 

points incrementally arises. Ordonez (2003) proposed an enhanced incremental k-

means algorithm for clustering binary data streams. In order to improve incremental 

learning and high- q u a l i t y data stream clustering, O’Challaghan et al. 
 
(2002) further proposed STREAM and LOCALSEARCH algorithm. Aggarwal (2014) 

develop an efficient and effective approach for mining fast evolving data streams 

“CluStream” which integrates the micro- clustering technique in conjunction with a 

pyramidal time window with high-level 

data mining process and also discovers data evolution regularities. This technique can 

be used to cluster different kinds of data streams, as well as create a classifier for the 

data in question. The method has clear advantages over recent techniques which try to 

cluster the whole stream at one time rather than viewing the stream as a changing 

process over time. 

 
To further the course of CluStream, Aggarwa el al.,(2004) later introduced the 

HPStream; a projected clustering for high dimensional data streams, which eventually 

outperformed CluStream.  



 

 17 17 

The Fig 2.1 below shows a typical clustering process. 

    
       Function Clusterin 

Begin 
 
 

Define number of cluster centers Set the 
 

initial cluster centers Repeat 
 

For each input data 
 
 

For each cluster, compute; 
 
 

Distance between the input data and its center 
 

Choose the closest cluster center as the winner 
 

Update the cluster centers 
 

End for 
 
 

End for 
 
 
Until (Convergence or maximum number of iterations is reached) End 
 
 
                        Fig 2.1: A typical Clustering Process 
 
 
2.4.2 Data Stream Classification 
 
A study which distinguished existing classification streaming data algorithms with 

infinite data flow and concept-drift was divided into single classifier and ensemble 

classifier approaches. The single classifier approach extends traditional data mining 

techniques to handle stream data. Domingos and Hulten (2000) developed the Very Fast 

Decision Tree (VFDT) system which is based on the Hoeffding bound principle. It splits 

the tree using the current best attribute taking into consideration that the number of 

examples used satisfies the Hoeffding bound. Such a technique has the property that its 



 

 18 18 

output is (asymptotically) nearly identical to that of a conventional learner. VFDT as an 

algorithm addresses the issues of limited memory, effectiveness and accuracy. Liu, Li 
 
& Zhang (2009) also presents concept- Adapting Very Fast Decision Tree (CVFDT) 

algorithm aimed to dealing with high-speed data evolving data streams and time 

varying data thereby proposing an Adaptive decision-tree learners’ solution for 

streaming data that can incrementally learn from incoming examples and further expand 

rules over time. CVFDT runs VFDT over fixed sliding windows in order to have the 

most updated classifier. The change occurs when the splitting criteria changes 

significantly among the input attributes. Gama & Kosina, (2012) therefore enhanced 

decision making by introducing an Adaptive Very Fast Decision Rules (AVFDR) in 

order to handle changing data known as concept drift. 
 

A prior work on data stream suggested that ensemble approaches which trains 

and updates base level classifier on successive chunk of data perform quite well. Street 

& Kim (2001) introduced the ensemble-based model algorithm for stream data mining 

which depicted the Stream ensemble algorithm (SEA) by building separate classifiers 

on sequential chunk of training points. If the stream analyzed has a relatively slow and 

steady flow, then one can train based-like classifiers on each chunk in succession as it 

fills up with data. A suggestion by Han, Giraud-Carrier, & Li, Apple Intel (2015) 

enumerates that it is far more efficient to train all base classifiers in parallel. Therefore, 

a parallel ensemble learning approach called UELM-MapReduce was proposed to 

classify high speed streams of data. 

 
 
 
 
 
 
 
 
 
 



 

 19 19 

 

2.5 DATA MODELS 

 
In recent times, database and data mining communities have continually focused on 

modern models of stream data (where data arrives in the form of continuous streams). 

When weighed against data in traditional databases, data streams as said earlier are 

unbounded and the number of prospective transactions increase over time (Haiqing & 

Lang, 2017). Because of this, different data models for effective processing of stream 

data have been suggested in different mining algorithms. The initial model 

recommended was based on an incremental technique. In this model, all data from 

inception to the current time are considered in an equal fashion. Therefore, frequent 

item sets are defined on the cumulative data where new data are repeatedly added as 

time grows. The other model is based on a sliding window. That is, despite the infinite 

arrival of the stream data, the frequent itemset are derived based on the most recent 

data that is being captured within a stipulated sliding window where the present time 

signifies end point of that window. One justification for such a sliding-window model 

is that due to temporal locality, the data in streams is bound to change with time, and 

many a times people are interested in the most recent patterns from the stream data. 

The final model falls in between the two aforementioned data models while all data 

are considered in frequent item set mining, they are weighted differently according to 

a predefined weighting function. A very commonly used weighting function is the 

exponentially decaying function. 

 
The first issue addresses which parts of data streams are selected to apply association 

rule mining. From the definition given in Section 2.2, data streams consist of an ordered 

sequence of items. Each incoming set of items is seen as a “transaction”. The main 



 

 20 20 

question associated with data processing model is to derive a way to extract transactions 

for association rule mining from the overall data streams. Due to the continuous and 

unbounded nature of the data streams, there is a likelihood of the transactions been 

extracted to change over time. 
 
Research by Zhu and Shasha [Zhu, 2002] presented three stream data processing 
models, which are; 
 
i. Landmark 
 
ii. Damped and 
 
iii. Sliding Windows. 
 
 
The Landmark model mines all frequent itemsets in relation to the entire history of 

incoming data stream from a specified point in time. [Charikar, 2004, Cormode, 2003, 

Jin, 2003, Karp, 2003, Li, 2004, Manku, 2002, Yang, 2004, Yu, 2004] all have done 

extensive researches on this particular model. Despite this, this model is not appropriate 

for applications and domains where people are more focused only in the most recent 

information of the data streams. A typical example is in the stock monitoring systems, 

where current and real-time information and results will be more meaningful to the end 

users than previous data. 
 
The Damped model is also referred to as the Time-Fading model. This mines frequent 

itemsets in stream data streams such that each transaction has a weight and it decreases 

with age. This model considers different weights for new and old transactions. This is 

widely suitable for applications in which old data predominantly affects the mining 

outcome. 

 
The Sliding Windows model finds and maintains frequent itemsets in sliding windows. 

Only part of the data streams within the sliding window are stored and processed at the 

time when the data flows in. In Chang, (2004), Chi, (2004), Lin, (2005), the authors use 

this concept in their algorithms to get the frequent itemsets of data streams within the 



 

 21 21 

current sliding window. The size of the sliding window may be decided according to 

applications and system resources. The mining result of the sliding window method 

totally depends on recently generated transactions in the range of the window; all the 

transactions in the window need to be maintained in order to remove their effects on 

the current mining results when they are out of range of the sliding window. 
 
 
All these three models have been used in current research on data streams mining. 

Choosing which kind of data process models to use largely depends on application 

needs. An algorithm based on the Landmark model can be converted to that using the 

Damped model by adding a decay function on the upcoming data streams. It can also 

be converted to that using Sliding Windows by keeping track of and processing data 

within a specified sliding window. 

 

2.5.1  Summary 
 
Data stream being a continuous and changing sequence of data that constantly arrive 

at a system needs to be processed in near real-time (Chaudhry, Show, & Abdelgurefi, 

2005). The dissemination of data stream phenomenon has necessitated the 

development of diverse stream mining algorithms. Several studies (Babcock, Babu, 

Datar, Motwani, & Widom, 2002; Ganti, Gehrke, & Ramakrishnan, 2002; Mata & 

Ramesh, 2011) emphasized on different approaches proposed to overcome the 

challenge of storing and processing of fast continuous and uninterrupted streams of 

data. Traditional OLAP and most data mining techniques require multiple scans on 

a timestamp of data and cannot be viable or doable for stream data applications as 

they require a single scan of the data (Han, & Kamber, 2006). As the number of 

applications on mining data streams grow rapidly, there is an increasing need to 

perform analytics and data mining on streams of data. From a near exhaustive review 



 

 22 22 

of literature in stream data mining and machine learning, very few studies were found 

to have employed compact tree-based stream mining on real life dataset. Few 

researchers however have employed various algorithms both supervised and 

unsupervised algorithms. While this represents the evidence of novelty in that regard, 

the proposed methods do not take into consideration the temporal locality issues 

involved with stream data. This study builds on existing stream mining approaches 

by addressing the issue of resource awareness involved in developing a compact 

dynamic tree for finding frequent itemset. 

      
 
 

2.6 MINING SCHEME 
 

Using comparably similar approaches employed in data stream mining, there are 

two general strategies for taking machine learning concepts and applying them to data 

streams. The wrapper approach which aims at maximum reuse of existing schemes, 

and adaptation approach which looks for new methods tailored to the data stream 

scenery. 

 
Coherent to this research work, the wrapper approach which involves collected of 

known samples into a batch with the intent to induce a traditional batch learner model. 

The model(s) required to then be chosen and combined to some degree to form 

predictions. The impediment of this approach specifically is defining the appropriate 

training set sizes, and also that training times will be out of the control of a wrapper 

algorithm, other than the indirect influence of adjusting the training set size. When 

wrapping around complex batch learners, training sets that are too large could stall the 

learning process and prevent the stream from being processed at an acceptable speed. 

Training sets that are too small will induce models that are poor at generalizing to new 



 

 23 23 

examples. Memory management of a wrapper scheme can only be conducted on a per-

model basis, where memory can be freed by forgetting some of the models that were 

previously induced 

 

2.7 SCALABILITY ISSUES IN FREQUENT PATTERN 
 
Stream data continuously flow with great speed and they are very large in size (Al- 

Khateeb, Masud, Khan and Thurasisingham, 2012). This agrees to the characteristics 

of big data. Big data is a data whose scale, diversity and complexity requires new 

architecture, techniques, algorithms and analytics to manage it and extract value and 

hidden knowledge from it. Hence, big data researchers are looking for tools to analyse, 

manage, summarize, visualize and discover knowledge from the collected data in a 

timely manner and scalable fashion. Adding heterogeneous dataset to the system, 

represented as transactions could provide the basis for discovering interesting structural 

patterns and anomalies, which may alert an organization to the potential market 

opportunities. 
 

In other words, frequent patterns are majorly associated with recurrent itemsets 

which are predominant in a given or specified transaction. A transaction on the other 

hand is a set of distinct items (symbols). Association rule mining finds frequent itemsets 

which are satisfying minimum support threshold value, based on that strong association 

rules is generated. The associations rule generates set of rules which satisfy user defined 

threshold value and Based on that one can develop marketing strategies. However, 

while this approach demonstrated its effectiveness in a variety of domains the issue of 

scalability has limited this approach when dealing with domains containing millions 



 

 24 24 

and large expanse of incoming data. In addition, many rules that of interest are dynamic 

i.e. they change as data stream arrive over time. This further complicates the analysis 

because a static rule cannot be analyzed; snapshots would need to be analyzed over a 

period of time. Moreover, the streaming instance offer an opportunity for methods that 

can update the current set of patterns based on the changes to the incoming data rather 

than repeated analyses on the whole incoming data. Frequent pattern mining was first 

proposed by Agrawal et al., (1993) for market basket analysis in the form of association 

rule mining. It analyses customer buying habits by finding associations between the 

different items that customers place in their “shopping baskets”. Since the first proposal 

of this new data mining task and its associated efficient mining algorithms, there have 

been hundreds of follow-up research publications, on various kinds of extensions and 

applications, ranging from scalable data mining methodologies, to handling a wide 

diversity of data types, various e x t e n d e d mining tasks, and a variety of new 

applications. With over a decade of substantial and fruitful research, it is time to perform 

an overview of this flourishing field and examine what more to be done in order to turn 

this technology a cornerstone approach in data mining applications 

 
 

2.8 EFFICIENT AND SCALABLE METHODS FOR MINING FREQUENT 
PATTERNS 
 
The concept of frequent itemset was first introduced for mining transaction databases 

(Agrawal et al. 1993). Let I = {i1, i2,...,in} be a set of all items. A k-itemset α, which 

consists of k items from I, is frequent if α occurs in a transaction database D no lower 

than θ|D| times, where θ is a user-specified minimum support threshold (called 

min_sup in our text), and |D| is the total number of transactions in D. This article 



 

 25 25 

introduces three main basic frequent itemset mining algorithms namely: Apriori, FP-

growth and Eclat, coupled with their various extensions. 

 
2.8.1 Apriori Principles and algorithm 
 
Since there are usually a large number of distinct single items in a typical transaction 

database, and their combinations may form a very huge number of itemsets, it is 

challenging to develop scalable methods for mining frequent itemsets in a large 

transaction database. Agrawal and Srikant (1994) observed an interesting downward 

closure property, called Apriori, among frequent k-itemsets; a k-itemset is frequent 

only if all of its sub-itemsets are frequent. This implies that frequent itemsets can be 

mined by first scanning the database to find the frequent 1st-itemsets, then using the 

frequent 1st-itemsets to generate candidate frequent 2nd-itemsets, and further checks 

against the database to obtain the frequent 2nd-itemsets. Apriori TID generates 

candidate itemset before database is scanned with the help of Apriori-generating 

function. Database is scanned only first time to count support, rather than scanning the 

database it scans the candidate itemset. This variation of Apriori performs well at 

higher level where as the conventional Apriori performs better at lower levels. 
 
Apriori Hybrid on the other hand is a combination of both the Apriori and Apriori TID. 

It uses apriori TID in later passes of database as it surpasses at high levels and Apriori 

in first few passes of database. This process iterates until no more frequent k-itemsets 

can be generated. This is the essence of the Apriori algorithm (Agrawal and Srikant, 

1994). Few of its extensions include sampling approach proposed by Toivonen, 1996; 

incremental mining (Cheung et al, 1996) and integrated mining with relational 

database systems (Sarawagi et al, 1998). The resulting extensions were put together so 

as to further reduce the number of scans made over a database. 



 

 26 26 

 

2.8.2 Equivalence Class Transformation (ECLAT) 

ECLAT algorithm uses vertical database format whereas in Apriori horizontal data 

format (TranscationId, Items) has been used, in which transaction ids are explicitly 

listed. While in vertical data format such as ECLAT (Items, TransactionId) Items with 

their list of transactions duly maintained. ECLAT algorithm with set intersection 

property uses depth-first search algorithm (Borgelt, 2003). In first scan of the database, 

a TID (TransactionId) list is maintained for each single item. k+1 Itemset can be 

generated from k Itemset using apriori property and depth first search computation 

together. This process continues, until no candidate Itemset can be found. One 

advantage of ECLAT algorithm is that to count the support of k+1 large Itemset there 

is no need to scan the database; it is because support count information can be obtained 

from k Itemsets. This algorithm avoids the overhead of generating all the subsets of a 

transaction and checking them against the candidate hash tree during support counting 

(Srinivasan et al.,1997). 

 
2.8.3 Structured data 
 
In some challenging applications of data mining, data better described by sequences 

(for example DNA data), trees (XML documents), and graphs (chemical components). 

Tree mining in particular is an important field of research (Bifet & Gavaldà,(2008)). 

XML patterns are tree patterns, and XML is becoming a standard for information 

representation and exchange over the Internet; the amount of XML data is growing, 

and it will soon constitute one of the largest collections of human knowledge. 

 

 



 

 27 27 

 

 
There are two limitations of this algorithm: 
 
 
a) Complex candidate itemset generation process which consumes large memory and 

enormous execution time. 

b) The excessive database scans for candidate generation 
 
 
 
 
2.8.4 Frequent Pattern (FP) Growth Algorithm 
 
In the field of data mining, the most popular algorithm used for pattern discovery is FP 

Growth algorithm. To deal with the two main drawbacks of Apriori algorithm in Jian & 

Jiawei 2000; a novel, compressed data structure named as FPtree is constructed, which 

is prefix-tree structure storing quantifiable information about frequent patterns. Based 

on FP tree a frequent pattern growth algorithm was developed. 

 
FP Tree in many cases involves a two-step approach; 
 
 
i. The foremost approach when constructing the frequent pattern tree is scanning the 

database or repository involved twice. The first pass of the database scans the data, 

calculate and registers a support count for each item, infrequent patterns are deleted 

from the list and the remaining patterns are sorted and arranged in descending order. 

ii. In second pass, FP Tree is built using FP growth algorithm through which frequent 

patterns are extracted from Tree. 
 
Conditional FP tree base and Conditional FP tree are constructed based on the 

properties associated to the node link as well as the prefix path. The Conditional FP 

tree is constructed for the frequent items of pattern base. Once Conditional FP tree is 

constructed, frequent patterns needs to be extracted. The application of FP growth 



 

 28 28 

algorithm is beneficial compared to other algorithms in accomplishing three significant 

objectives; 

 
i) The database is scanned only twice, and the computational cost is decreased 
dramatically. 
 
 
ii) Secondly, no candidates’ itemset are generated. 
 
 
iii) Thirdly, the divide and conquer approach is utilized which subsequently reduces 

the search space. 

The major drawback associated with FP growth algorithm is the inability to employ 

incremental mining. As the database is updated with new transactions, FP tree needs 

to be equally updated and the process needs to be duplicated. 

 
Various other algorithms have been proposed to discover frequent patterns in 

incremental databases and to maintain association rules in dynamically updated 

databases (Chang & Yang, 2003; Koh & Shieh, 2004; Li, Deng &Tang 2006; Hong, 

Lin & Wu 2008). Many of which are strongly dependent on adjustments made on FP 

tree structure which are tree based. This implies that each proposed approach still 

requires two database scans for both the construction of the FP-tree structure and 

incremented section so as to update the tree structure). Leung et al 2007 proposed the 

CanTree which analyses the contents of a transaction database with only a single-pass 

and stores them as a prefix-tree in a canonical order. It also imbibes the FP-growth 

which is based on the divide-and-conquer approach to discern the frequent patterns. 

The simple tree construction process of CanTree enables it to outperform other 

algorithms based on the FP growth in incremental and interactive mining. However, 

since it is not similar to the FP-tree in compactness, the mining phase takes more time 

than the FP- tree approach when the number of frequent patterns in a database is 

reasonably large. FP-tree from extensive research has been seen to be highly compact 



 

 29 29 

tree structure that enables decidedly efficient mining. In spite of this, it only handles 

the frequent items in a database, and it is a two-pass solution. Contrariwise, CanTree 

offers a single-pass solution which maintains a comprehensive amount of information 

in the database suitable for incremental and interactive mining. However, it incurs very 

high mining time due to the canonical and unquestioned order of its tree structure. 

 
Chris & Han, 2004 proposed a paper ‘Mining frequent Patterns in Data Stream at 

Multiple Time Granularity’ using FP Stream to extract the complete set of frequent 

patterns with an appropriate error bound. This algorithm used the tilted time window 

model to extract the frequency itemsets. To guarantee the completeness of the frequent 

pattern, the less frequent ones are deleted right after the batch of that transaction has 

been processed. Due to the limitation in memory size, the entire incoming stream of 

data cannot be stored. As a result, FP stream splits the data into three stages: Frequent, 

Sub-Frequent and Sparse. The FP-stream structure consists of an in-memory frequent 

pattern tree with tilted-time window embedded. 

 
In the year 2009, Pauray S.M Tsai proposed weighted sliding window (WSW) 

technique. This model allows users to specify various parameter for mining like size 

of window, weight of window and number of windows. In each window, every 

transaction has weight and if the weight satisfies minimum weighted threshold value 

then it is considered as frequent itemset. For large window size, execution time of this 

model decreases. This happens because for the small window size, number of frequent 

itemset is small due to small number of transactions. This model uses Apriori algorithm 

for candidate generation and this may take more memory and time. Therefore, instead 

of Apriori, we can use another algorithm like ‘eclat’ to improve mining. In the year 

2011, Jing, Peng, Jianlong and Li proposed new algorithm called as Hybrid streaming, 

H-stream for short. They use H tree for storing and maintaining historical and potential 



 

 30 30 

frequent itemset. It is used for collaborative and comparative frequent pattern mining. 

The main advantage of this algorithm is that it can efficiently mine frequent pattern 

from multiple streams. 

 
The Landmark computational model was used to mine and stores most frequent items 

and their counts. It gave accurate result but for these accurate results, additional cost 

is needed. This algorithm takes 2 scans to generate exact result items set (Karp & 

Shenker, 2003). The main improvement of this algorithm is low memory usage. This 

algorithm discards infrequent items and their information Infrequent items may 

become frequent in future therefore it needs to be stored It requires 2 passes to generate 

exact result so one can improve this by single scan. In additional it gives no guarantees 

regarding false positive. 

 

2.9 CONCLUSION 

 
This section summarizes all data stream mining algorithms of all types. In relation to 

clustering algorithms, HPStream [31] is a projection-based clustering algorithm which 

models a high scalability. It incrementally updates and is efficient for high spatial 

datasets. Notwithstanding, it is decidedly complicated. CluStream [28] follows a micro 

clustering approach in addition to the concepts of pyramidal time frame. It is time and 

space efficient, can detect temporal changes in data, highly detailed and precise in 

nature. The main disadvantage associated to CluStream is that it predominantly 

supports only offline clustering. Search and Locale Search [24] algorithms are 

KMedians that make use of incremental learning. It is much faster but has low 

clustering quality and accuracy. VFKM (Domingos P., Hutten G. (2002)) is a K-Means 

algorithm which is faster and utilises minimal memory storage. Nonetheless, it requires 

multiple passes over the dataset to complete its processing. D-Stream by Chen & Tu 



 

 31 31 

(2007) is a density-based clustering algorithm which exhibits high quality and 

efficiency. It can detect concept drifts in real time. However, it is highly complex in 

nature. 

 
For classification Gaber, Krishnaswamy & Zaslavsky (2006) in their study of LWClass, 

it is a classification-based algorithm which is based on class weights. It exhibits high 

speed and consumes less memory. Its drawbacks are time consuming and can’t be 

adapted to concept drifts. Ondemand stream classification Muthukrishnan (2003) uses 

micro-clustering approach. It exhibits dynamic updates, high speed, and consumes less 

memory space. VFDT and CVFDT very effective algorithms that produce decision 

trees. They are high speed and consume less memory space. However, they can’t be 

adapted to streaming data, and they are time consuming and costly to study. GEMM 

and FOCUS by Ganti, Gehrke & Ramakrishnan (2002) are meant for generating 

decision trees and frequent item sets respectively. They are also associated with 

incremental mining approach and can likewise detect concept drifts. However, they are 

very time consuming and also costly study. 

Ensemble-based classification uses combination of various classifiers algorithms. Its 

qualities include a single pass, dynamic update, ability to detect drifts, and hig level of 

accuracy. However, it has low speed, minimal storage, and consumes a lot of time. Law 

& Zaniolo, (2005) in the study of ANNCAD used incremental classification and 

exhibits a dynamic update. Its drawbacks are same as that of Ensemble-based 

classification. SCALLOP  is suitable for scalable classification of numerical data 

streams. It exhibits dynamic update. It also suffers drawbacks same as that of ANNCAD 

and Ensemble-based classification. With regards to techniques related to frequent 

patterns and time series analysis, approximate frequent counts generate frequent item. 



 

 32 32 

It exhibits an incremental update, simplicity, consume less memory, and complete 

processing in a single pass. However, it generates approximate output with more error 

range possibility. FPStream also generates frequent item sets. The major objective of 

this article is to analyze and clarify the various data mining techniques and data stream 

mining challenges in real time applications. The data mining techniques that act on data 

streams are classified into clustering, classification, frequency counting and time series 

analysis. A survey on these techniques reveal the facts that from the classification 

techniques VFDT, CVFDT, CDM, on demand stream classification, ensemble-based 

classification, and ANNCAD are applicable and feasible for mining data streams while 

GEMM, FOCUS, OLIN, SCALLOP are not feasible; with respect to clustering 

techniques VFKM, CluStream, AWSOM, and HPStream are applicable while stream 

and locale search, and D-Stream are partially feasible; with respect to time series 

analysis, FPStream and applicable to mining data streams. Finally, we are concluding 

that due to unique characteristics of data streams, a considerable extensive research will 

still need to be carried out. 

 
 
 
 
                                                
 
 
 
 
 
 

 

                

 
 



 

 33 33 

CHAPTER THREE 
 

3.0 PRELIMINARIES 
 
The algorithm we are going to describe act on massive data that arrive readily and that 

cannot usually be stored most of the time. This algorithm works in few passes over the 

data and use limited space (less than linear in the input size).  

 This research work, therefore,  conceptualizes the  handling of enormous data as a 

stream mining problem that applies to continuous data stream and proposes an 

ensemble of unsupervised learning methods for efficiently detecting anomalies in 

stream data. 

Finding frequent patterns from data streams is important and a challenging problem, 

since capturing the stream content memory efficiently with a single-pass and efficient 

mining have been major issues. The FP-growth mining technique is one of the efficient 

algorithms where the achieved performance gain is mainly based on the highly 

compact frequency-descending FP-tree structure that ensures the tree to maintain as 

much prefix sharing as possible. However, the two database scans and prior threshold 

knowledge requirements of the FP-tree restrict its use in data stream. DSTree uses the 

FP- growth mining technique to mine exact set of recent frequent patterns from stream 

data with a single-pass. However, it provides poor compactness in tree structure and 

inefficient mining phase, since it uses frequency-independent canonical order tree 

structure. Therefore, in this paper, we propose a novel tree structure, called CPS-tree 

(Compact Pattern Stream tree), that constructs an FP- tree like compact prefix-tree 

structure with a single-pass over stream data and provide the same mining performance 

as the FP- growth technique through the efficient tree restructuring process.  



 

 34 34 

In this chapter, we will analyse the Dynamic Compact Stream Pattern Algorithm 

in the context of mining from a data stream using a Tree-base structure. This 

algorithm makes use of two different models:  

i) Dynamic stream tree model. 

ii) and Compact pattern stream model. 

The Dynamic Compact Stream Patter Algorithm approach has proved much 

advantageous on compactness, space utilization reduction and time effectiveness. 

The Compact Pattern Stream introduces the concept of dynamic tree restructuring 

techniques in handling data stream at runtime and facilitate an efficient Frequent 

Patter data mining mode. 

 

3.1 TREE-BASED MODEL ANALYSIS 

The tree-based algorithm is based on set-enumeration concepts. The candidates can be 

explored with the use of a subgraph of the lattice of itemsets (see Fig. 3.0), which is 

also referred to as the lexicographic tree or enumeration tree. These terms will, 

therefore, be used interchangeably. Thus, the problem of frequent itemset generation is 

equivalent to that of constructing the enumeration tree. The tree can be grown in a wide 

variety of ways such as breadth-first or depth-first order. Because most of the discussion 

in this section will use this structure as a base for algorithmic development, this concept 

will be discussed in detail here. The main characteristic of tree-based algorithms is that 

the enumeration tree (or lexicographic tree) provides a certain order of exploration that 

can be extremely useful in many scenarios. It is assumed that a lexicographic ordering 

exists among the items in the database. This lexicographic ordering is essential for 

efficient set enumeration without repetition. 



 

 35 35 

To indicate that an item i occurs lexicographically earlier than j, we will use the notation 

i  ≤ L j . The lexicographic tree is an abstract representation of the large itemsets with 

respect to this ordering. The lexicographic tree is defined in the following way: 

• A node exists in the tree corresponding to each large itemset. The root of the 

tree corresponds to the null itemset 

• Let I = {i1, . . . ik} be a large itemset, where i1, i2 . . . ik are listed in 

lexicographic order. The parent of the node I is the itemset {i1, . . . ik−1}. This definition 

of ancestral relationship naturally defines a tree structure on the nodes that is rooted at 

the null node. 

 

 

                                           Fig 3.0: Lexicographical Pattern  
 

It is important to point out that virtually all non-maximal and maximal algorithms, 

starting     from Apriori, can be considered enumeration-tree methods. 

           



 

 36 36 

3.2 COMPACT STREAM PATTERN  TREE MODEL 
 
CSP Tree helps achieves a frequency-descending structure by capturing a subset of data 

from a database or a series of dataset and through dynamic restructuring; it reorganizes 

itself using an efficient tree mechanism. Unlike its subsidiary which is the FP tree 

algorithm, to accelerate the tree transversal process it maintains an item list which can 

be referred to as the I-list. The construction process basically consists of two distinct 

parts, insertion and restructuring. The tree building initiates with an insertion phase and 

ends with a restructuring phase. 
 
Notwithstanding, these two stages are repeatedly carried out several times in the 

development of the tree construction. As a result of the dynamic nature of the incessant 

streaming data, the transformation from insertion phase to the restructuring phase can 

be achieved after analyzing the data in the stream. 

 
3.2.1 Insertion: This insertion phase is similar as that of FP tree algorithm which inserts 

data (transactions) into the CP Tree in a lexicographical order (I-list) and updates the 

frequency count of its respective items in that order. 
 
The insertion phase captures the content of the incoming stream into the tree according 

to the current sort order of the I-list. 

 
3.2.2 Restructuring: the restructuring phase rearranges the aforementioned I-list 

according to the frequency-descending order of the incoming dataset and restructures 

the tree nodes according to a new I-list. The use of an efficient tree restructuring 

mechanism is paramount to scale down the overall tree restructuring running cost. The 

reason for restructuring is to reposition the nodes of an already existing tree based on 

the I-list order. 



 

 37 37 

To restructure the CSP Tree, we use an actual tree restructuring mechanism known as 

branch sorting technique and path adjusting method. Both of this technique are 

proposed to handle tree nodes with only one count and pane counter parameters. 

 

3.3 BRANCH SORTING TECHNIQUE MODEL  

In the process of performing the restructuring, the fundamental procedure to be carried 

out is to reorder the items in I in a frequency-descending order to obtain a sorted list. 

Let’s say the sorted list is Iclass, therefore based on the sorted list, the tree T is 

restructured. BST is an array-based technique that restructures all branches one after 

the other starting from the root of the tree named T. Individual sub-tree concealed under 

each child of the root is treated as a branch. Therefore, T contains as many branches as 

the number of children it has under the root. There is a likelihood of each branch having 

several paths and several branching nodes, which implies that different node can have 

more than one child. BST sorts each path in the branch in relation to the sorted list 

(Iclass) by removing it from the entire tree and grouping it to form an adhoc array. The 

adhoc array in turn is inserted into the tree in a sorted order. 
 
Ultimately, the Branch Sorting Technique aborts as soon as all the branches in T have 

been processed. This produces a final tree that has been sorted named Tclass. In most 

cases, during processing it is possible that a path in the tree T is found already arranged 

in the Iclass. Such path is referred to as class path, which implies as restructuring is 

taking place, any path found to be a class path will be skipped or omitted from the 

processing. The status of this information about the class path is passed to all branching 

nodes in the same path indicating that path from each branching node is up to the null 

root has been sorted. 



 

 38 38 

 
It may be speculated that the Branch sorting technique will require a dual computation 

since it removes a path from the tree structure and inserts it into the tree in a sorted 

order. Instead it is rather less than one would expect for removing and inserting a 

transaction of the most recent window to and from the tree, thereby sorting out the all 

identical transactions in the current window within one application. Generally, BST 

helps to further reduce the cost of processing and the information carried in individual 

branching node in a sorted path may automatically cut down the time required only 

looking at the processing cost for the sub-path instead of the entire path. 

Axiom 1: Let A = {i1, i2,..……, in} be a path in a CSP Tree sorted in a canonical sort 
order 
 
where in is the current tail-node of the path. After restructuring A 
 

If node ij, j [1, n - 1] symbolizes the new tail-item of A, 
 

then ik becomes the new tail-node for the path that has been rearranged. 
 
Based on the above discussion of the theorem, the figure below shows the sorting 
algorithm 
 
 

Algorithm (Branch Sorting Technique)  
Input: T and I  
Output: Tclass and Iclass  
Method:  

Begin  
Compute Iclass from I in freq-descending order using 
merge sort technique For each branch Bi in T 

for each unprocessed Aj in Bi //from the root up to 
the tail-node If Aj is a sorted path 

 
Process_Branch(Aj);  

Else Sort_Path(Aj);  
End If  

End for  
End for  

End for  



 

 39 39 

Terminate when all the branches are sorted and output 
Tclass and Iclass End 

 

These two phases are implemented consecutively always starting with the insertion 

phase and finishing with the restructuring phase. This implies that the Restructuring 

phase is always executed after the insertion phase. The tree is refreshed each time as 

the window slides for a ready-to-mine platform with the exact information about 

frequent item set accompanied with rules is provided for the current window. In cases 

where a rule item is associated with multiple classes, only the class with the largest 

frequency is considered. Restructuring of the tree can be done using either Path 

Adjusting method. When all the frequent item set are obtained, using bottom-up FP-

Growth mining technique, confidence of the various rules is calculated and is sorted in 

the memory. 

3.4 SLIDING WINDOW 

A sliding window algorithm places a buffer between the application program and the 

network data flow. For most applications, the buffer is typically in the operating system 

kernel, but this is more of an implementation detail than a hard-and-fast requirement. 

The sliding window technique inspects every time window at all scales and location 

over a time stamp which means our data will be classified according to the most 

recent item set provided. Typically, sliding window algorithms serve as a form of 

flow control for data transfers. 

 

Datasets in a sliding window are often described in a structure 

 

(𝐷𝑖) = {'(,'*,….'-}-/01*
{'-,'-2*,….'02-1*}-301*

   

 



 

 40 40 

If the timespan (length, l) of a window is denoted with n 

However; data at a point Ti in the window is denoted by 

Where; Di: Dataset present in the sliding window 

Si: Data values of the dataset at the point i 

              

3.5 APPROACH TO CSP MODEL 

The algorithm uses data passed to it to construct a CSP tree which is always in ready 

state to be mined. There are several techniques out there in building this kind of 

algorithm; most of them  work  by  firstly  constructing  FP  tree  then  restructuring  

the  FP  tree  into  CSP. At first, transactions in the data stream are inserted into the 

CSP-tree based on a predefined item order (e.g., lexicographical item order). This item 

order of the CSP-tree is maintained by a list, called the I-list, with the respective 

frequency count of each item. After inserting some transactions, if the item order of 

the I-list deviates significantly from the current frequency- descending item order, the 

CSP-tree is dynamically restructured by the current frequency- descending item order 

and the I-list updates the item order with the current one. 

In contrast the technique used in this algorithm allows us direct building of frequency- 

descending item order list from data. This is achieved by using creating a track 

table that keeps track of the items which can stand for the l-list in other techniques 

and construct CSP tree from it, this can be shown in the figure 3.1 below. This will 

save the algorithm from iterating over tree nodes several times during the creation and 

modification of tree.   In dealing with continuous data stream different systems has 

been used in dealing with movement of data; sliding window is used in this work 

where data are captured in pane and panes are housed in window, when new data enter 



 

 41 41 

the stream the window slides removing some old panes while inserting new ones; 

depending on sliding size of the window. 

 

                
            Figure 3.1: Transaction with Window  
           

 A stream of data of window n = size 2, pane size = 2   

During sliding of the window, the data with transaction id from A06 to A09 are being 

processed in the first window, the reason for this is that a window is of size 2 which 

means a single window can have a minimum of two panes, and each pane in return 

holds two transactions, and each window therefore contains four transactions. The 

window slide is one, which makes the window to move one pane at a time, one pane 

contains two transactions. Therefore, window 2 contains transactions with id from A08 

to A11. 

On the first, the run algorithm does the following: 

7. Format data from source 

8. Creates an empty window 

9. Creates an empty pane 

10. Fills the pane with transaction data 

11. Insert the pane into window 

12. Repeats step three to five until the window is full 

13. Construct CSP tree from the table 

With the constructed tree, mining can occur. Due to the nature of our data where 

we are not dealing with discrete data but continuous, a function is created called 

refresh, this function can be triggered by any event and what it does are the 

following; 



 

 42 42 

1. Check data source if there is change. 

2. If there is no change the algorithm continues resting but if there is, the change 

will be added to algorithm data 

3. Reconstruct the tree. 

 

The figure 3.2 shows the architectural design of the data-item flow of the data stream 

mining. Each component in the figure represents the requirements and algorithm of 

the model. 

 

 
                        

                                       Figure 3.2 Data Flow Architecture  
 

The system architecture invokes requests made by inserting the transactions from data 

stream with a single scan of the data. With the middleware already active, a successful 

connection should be established which makes easy passage of the data. The 

transaction is imported into the current sliding window with its respective support 

value, here we use sliding window in the next update window module which take 

the input from create window module and delete the old panes and add new panes 

to mine latest frequent patterns then updated window pass as input to restructure 

module which perform the extraction, sorting and reinsertion operation then pass the 

sorted, extracted data as input to final mine module which mine all the transactions 

over dynamic data streams and find the latest frequent patterns which are greater than 



 

 43 43 

threshold value and finally display the set of latest frequent patterns over the dynamic 

data stream. The runtime rates of both algorithms are very important and vital in the 

analysis of this research work. We evaluate performance of the proposed CSP 

algorithm through extensive experiments. The algorithm is written in Python. In 

performance evaluation we consider the run time and memory usage for different 

threshold values. 

 

 

 

 

 

 

 

 

 

 

 

3.6 DYNAMIC COMPACT STREAM PATTERN TREE CONSTRUCTION 

A complete tree is nothing but an instance of a Node class with Null Node as it name 

but has no parent. Every CSP tree start with a Null Node which will be the parent of all 

nodes; 

                        tree = Node ("Null Node", 1) 

To create a node value and count of the node are mandatory properties that must be 

fulfilled before the node can be created. In this case we created a node with Null Node 

as its value and support count of 1, this is where everything begins. The next node 

created is going to be added to this node as its child: 

                def add_to_tree(self, items, in_tree, count): 



 

 44 44 

if items[0] in 

in_tree.children: 

in_tree.children[items[0]].inc(count) 

else: 

in_tree.children[items[0]] = Node(items[0], count, in_tree) 

if self.trackTable[items[0]][1] is None:  # update header table 

self.trackTable[items[0]][1] = in_tree.children[items[0]] 

    else: 

self.update_track_table(self.trackTable[items[0]][1],in_tree.children[item

s[0]]) 

if len(items) > 1: 

self.add_to_tree(items[1::], in_tree.children[items[0]], count) 

The function above does the job of building a tree by creating a node from 

an item and adding it to the tree as child. It firstly checks whether the item already 

present in the tree is present. It will simply increase the support count of the node. 

Otherwise, new Node will be created as seen on line 5 of the code.  

 

The rest of the code checks and update track table accordingly. 

 

  Formatting of data 

The algorithm doesn’t work on arbitrary data, it expects a dictionary with the item 

sets as the dictionary keys and the frequency as the value.  

            def create_init_set(data_set): 

ret_dict = {} 

for trans in data_set: 

if frozenset(trans) in ret_dict.keys(): 

ret_dict[frozenset(trans)] += 1 

else: 



 

 45 45 

ret_dict[frozenset(trans)] = 1 

return ret_dict 

This code snippet creates new dictionary and fills it with the transaction, it is 

the dictionary that  will be supplied to the algorithm. 

 

3.6.1 Creation of new window 

  Creation of new window requires; 

�        Size of window: maximum number of pane the window will contain 

�        Size of pane, and 

�        Sliding size 

Self.window = Window (self.windowSize, self.paneSize, self.slideSize) 

 

3.6.2 Creation of new pane 

Creation of empty window is followed by creation pane once data is available 

and to create a pane the following parameters are required; 

�        Size of the pane: maximum number of transactions a pane can contain 

� Age of the pane: minimum is maximum technique is used in considering 

how old a pane is and if it is ripe for popping off the window. 

 

3.6.3 Filling of the pane with transaction 
The code snippet above does the job of creation of new pane object and calling 

insert_transaction method of the object to push the transaction item into the 

pane. It is also noticeable that after all items in a transaction finished the putting, 

the pane is inserted into the window. 

for trans in                     

self.frequentItem

: 

             pane = Pane(self.paneSize, self.paneAgeCounter) 



 

 46 46 

             self.paneAgeCounter += 1 

      for item in trans: 

 pane.insert_transaction(item) 

self.window.insert_pan

e(pane) 

 

3.7 SOLUTION MINING APPROACH 

 

Mining or discovering frequent pattern item-sets consist of the first step of association 

rule mining process. Data mining is termed as the practice of spontaneously searching 

large stores of data to ascertain patterns, trends and development that go beyond simple 

analysis (oracle.com). It extracts hidden predictive information from datasets. Data 

mining uses sophisticated algorithms to wedge the data and evaluate the probability 

of future events. Data mining entails analyzing a set of persistent relations, set of 

well-defined operations, and highly optimized query processing and transaction 

management component which requires less frequent update and a snapshot of the 

database used for processing queries. However, the past two decades have witnessed 

several classes of application with additional set of requirements than those provided 

by traditional database management systems. A typical example is data warehouses 

developed for Online Analytical Processing (OLAP). OLAP requirements have 

resulted in new techniques for data consolidation from multiple sources of database 

(Chakravarthy & Jiang, 2009). As a result, data mining has successfully 

accommodated these advances by adding new capabilities to store and process 

structured, unstructured, and multi-media data types.  In addition, knowledge 

discovery research has prompted mining of large data sets directly from a relational 



 

 47 47 

DBMS using novel mining operators and the Structured Query Language (SQL). 

Organizations with substantial amount of data are specifically starved of valuable 

knowledge. Data mining tools could best help these organizations to extract hidden 

patterns of useful information (Vivek Bhambri, 2013). 

        In recent years, there has been emerging class of data intensive applications such 

as data processing, traffic monitoring, stock data, and telecom call records which 

need to process data at a high input-rate. These applications are different from 

traditional database management system applications where data is at rest with respect 

to; data arrival rate, update frequency, processing requirements and queries asked. 

Data mining which is synonymous to Knowledge Discovery in Data (KDD), has 

helped diverse business organizations in increasing tangible profit that can be 

measured in terms of amount of money, number of customers and customers loyalty. 

It entails analyzing a set of persistent relations, set of well-defined operations, and 

highly optimized query processing and transaction management component which 

requires less frequent update and a snapshot of the database is used for processing 

queries. Data mining consists of five major elements: Extract, transform, and load 

transaction data onto the data warehouse or management system; Store and manage 

the data in a multidimensional database system; Provide data access to business 

analysts and information technology professionals; Analyze the data by application 

software; Present the data in a useful format, such as a graph or table. 

3.8 EXPERIMENTAL SETUP 
 

The following sections are organized as follows: A comprehensive experimental setup 

on the CSP tree model, and real dataset from KDD-CUP 2000 competition . All 



 

 48 48 

programs are written in Python 3.3 version and run on a time-sharing environment with 

Windows 7 Operating System on a 2.66 GHz machine and a RAM memory of 2 

gigabyte (GB). Runtime includes tree construction, tree restructuring and mining time. 

Data Preprocessing: In real-life scenario, stream data come from live observations or 

in some cases in the form of sensors which are subject to noise. This problem is usually 

handled by preprocessing the data. Which is why it is of great importance to design a 

light-weight preprocessing techniques that can guarantee quality of the mining results. 

Data pre- processing consumes most of the time in the knowledge discovery process. 

The challenge here is to automate such a process and integrate it with the mining 

techniques. 

 
Data preprocessing in this research work involves the use of a middleware which 

serves as a a functioning hidden translation layer which enables a communication and 

interaction, and data management between the operating system and the application 

running on it. It can be referred to as plumbing as it connects tow applications together 

so that data can be easily passed between the pips created by the middleware. The use 

of a middleware makes it possible to perform requests such as formatting of data and 

or allowing the system to run custom functions based on the user’s specified need or 

requirements. 

 
Data representation: Stream data are essentially high dimensional data. Defining 

algorithms that work directly on the raw persistent data would be computationally a bit 

expensive. The main motivation of representation is thus to emphasize characteristics 

of data in a concise way. 

 

 
 



 

 49 49 

3.8.1  Characteristics Of The Datasets 

Some of the popularly used datasets  are DARPA 1998 data set, DARPA 1999 data 

set and KDD Cup 1999 data set which are available in the MIT Lincoln Labs.  

The dataset used in this study represents the KDD-CUP 2000 competition. It 

contains 77,512 sequences of click-stream data and comprises of 3340 distinct 

items. The average length of sequences is 4.62 items with a standard deviation of 

6.07 items. The table 3.1 below provides a brief illustration of the general overview 

of the dataset characteristics. 

 
  

Data #Rows 
#Tran
s #Items Trans field Itemset 

AvgT
L (AvgTL/I)x100 

Sales  999 920 2 
Transaction_d
ate Products 1.08 54.18 

Teleco
m  3334 2093 6 Area code State 1.59 26.53 

Crime  7585 30 132 Cdatetime 
Crimedes
cr 244.63 185.33 

BMS 1  77512 
7751
2 10 — — 4.62 46.22 

Call  
104548
90 566 305 Date Service 

1657.3
9 543.41  

 
 
 
                                                 Table 3.2: Dataset Characteristics 
 
 

#Rows: contain the total number of rows in the dataset  
 

#Transactions: includes the number of translated transaction data  
 
 

#Items: are the numbers of translated item data For example in the Sales dataset, 

having just Product1 and Product2 as items which makes #items to be 2. 
 

Transaction Field: contains the selected column to guide mining, this is required for 

multi columns dataset. The dataset to be mined needs a strong guide upon which it 



 

 50 50 

can be easily mined and analyzed. For sales dataset Transaction_date was chosen. 

The date column is having date and time, if we use the date as it is the mining will 

be too narrowed or restricted, so as to have a wider view of the analysis a 

middleware is used to strip the time away so that we can analyse product that are 

purchased the same day instead of the same seconds. Items Field: This column 

contains the item needed to be mined. 
 

AvgTL: Average transaction length is the average lengths of each transaction, this 

is useful due to the fact that each transaction has varied length, the average will 

show center tendency of the transaction. 
 

(AvgTL/I) x 100: AvgTL divided by number of item multiply by 100, this value is 

useful, by bringing diversification set in each transaction to comparable scale. 
 
3.8.2  Data Preprocessing 

Data preprocessing is crucial aspect in the process of data mining. If data input to 

algorithm is not in proper format, then it cannot be processed efficiently. So pre-

processing is needed and in which existing data transform into new data which is in 

proper format and suitable for processing. Different data mining tools available in 

the market have different formats for input which makes the user forced to transform 

the existing input dataset into the new format.                                                                                      

Mining Association rule involves quite a bit of memory and CPU costs. A noticeable 

drawback is that processing time is always limited to only one online scan. So there is 

need of real time maintenance and updating association rule. However, stream data if 

we update association rules too frequently, the cost of computation will increase 

drastically. 



 

 51 51 

Most of the resources such as memory space and CPU in data stream mining are vital. 

One cannot ignore the resources availability, a typical example is when the main 

memory is totally used up in processing, data will be lost and it leads to errors or 

inaccuracies in results. These challenges need to be considered in order for our 

algorithm to perform at its utmost best. 

Essentially, the processing of stream data requires two layers: 

 
 
i.) a storage layer and 
 
 
ii.) a processing layer. 
 
 
The prerequisite of the storage layer is to provide and maintain a detailed prioritization 

and strong consistency to enable fast, inexpensive, and replayable reads and writes of 

substantial streams of data. The processing layer is responsible for continually using up 

data from the storage layer, running computations on that data, and then notifying the 

storage layer to delete data that is no longer needed or deleting the limited storage area 

for a new set of data to come in. 

3.8.3  Data Processing Approach: 

Data preprocessing in this research work involves the use of a middleware which 

serves as a functioning hidden translation layer which enables a communication and 

interaction, and data management between the operating system and the application 

running on it. It can be referred to as plumbing as it connects tow applications together 

so that data can be easily passed between the pips created by the middleware as 

shown in the figure 3.3 below. The use of a middleware makes it possible to perform 

requests such as formatting of data and or allowing the system to run custom functions 

based on the user’s specified need or requirements. 



 

 52 52 

 

                                     
 Figure 3.3:  Framework for CSP Algorithm 

 

The internal memory represents a temporary repository for the incoming dataset 

where it is passed to the data processing interface (middleware). This is where the 

incoming influx of data is converted to the computers understandable language for 

data analysis to be made possible. After this is done, an actionable result is passed 

to make inference. 

Data preprocessing in this research work involves the use of a middleware which 

serves as a functioning hidden translation layer which enables a communication and 

interaction, and data management between the operating system and the application 

running on it. It can be referred to as plumbing as it connects two applications 

together so that data can be easily passed between the pipes  created  by  the  

middleware.  The use of a middleware makes it possible to perform requests such as 



 

 53 53 

formatting of  data  and  or allowing the system to run custom functions based on 

the user’s specified need or requirements. 

 

Data representation: Stream data are essentially high dimensional data. Defining 

algorithms that work directly on the raw persistent data would be computationally a 

bit expensive. The main motivation of representation is thus to emphasize 

characteristics of data in a concise way. 

The middleware class is created to build skeleton of conversation between the 

algorithm and data it is meant to process. The constructor of this class require file 

name of the file that should be processed, the item column(s) that the algorithm should 

process and the transactional column the item should be matched against. 

def   init (self, file, transaction_field, item_field): 

The middleware class has a function call format_data which is used to handle data 

return the algorithm specific data type. The middleware also declared an abstract 

method named process_data that must implemented by every subclass of the class. 

 

Class  

 

SalesMiddleware(Middlewar

e): 

       def process_data(self): 

item_data = 

self.input_data[self.item_field] 

raw_trans_data = 

self.input_data[self.transaction_field] 

trans_data = [] 



 

 54 54 

    # We need only the date value we need to discard the time 

       for i in range(len(raw_trans_data)): 

trans_data.append(raw_trans_data[i].split()

[0]) 

        return item_data, trans_data 

 

 

3.9 EXPERIMENTAL RESULTS 
 

The algorithms for processing streams in one way or the other involves a form of 

summarization of the stream by making useful sample of the stream to eliminate most 

of the “undesirable” elements. The speed of the mining algorithm must be faster than 

the incoming data rate otherwise, summarization is of great effect. An algorithm can 

also run faster by processing less information, either by stopping early or storing less, 

thus having less data to process. The more time an algorithm has, the more likely it 

is that accuracy can be increased. The performance of an algorithm that operates on 

data streams is measured by three basic factors: 

 
a. The number of passes the algorithm must make over the stream. 
 
b. The available memory. 
 
c. The running time of the algorithm 

In addition, in the experiments, we follow the evaluation method used by many state-

of-the-art  Compact Stream Pattern mining algorithms. The actual class label of an 

incoming example becomes available immediately after its prediction.  

 

3.10 RUNTIME ANALYSIS 
 



 

 55 55 

Runtime efficiency: this represents the measure of amount of time needed for the CSP 

algorithm to execute each stream of data presented to it in comparison with that of the 

FPTree. CSP tree tends to mine faster as there is an influx dataset CSP to handle. This 

is a positive test   case to know how effective CSP Tree could be over FP tree. 

 
Total  CSPTree       FPTree       Window Pane 

Runtim
e 

                 
Size Size  Creatio

n 
 Restructu

re 
  

Mining 
  Creatio

n 
  Restructu

re 
  Minin

g 
 

               

                   

2 700   
0.0173
8  2.95e -5 0.00026 0.01272   2.79e -5  4.19e - 

                5    

              

   
0.0228
5  8.62e -6   

0.0003
1   

0.01994
8   8.62e -6   

0.0002
5  3 700 

                     

  
0.0256
7  9.44e -6 0.00043 0.02543  1.02591  

0.0002
9  4 700 

              

   
0.0247
5  8.62e -6   

0.0003
2   0.01855   9.03e -6   

0.0002
6  5 700 

                     
 
Table 3.3: Telecoms dataset 
 
 

table 3.3 above shows the Test runtime for the Telecoms dataset which comprises of the 

tree creation, tree ructuring and how long it takes to mine a given instance of the 

telecoms data present in the pane of a window. 
 
 
 
 
 
 
 
 
 
 



 

 56 56 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.4: Telecoms Tree Creation Time  
 
The fig. 3.4 above shows the tree creation time for the crime dataset between CSP Tree 

and FP tree. The resulting come explains that FP Tree in the first window has a faster 

tree creation rate compared to CSP Tree. And at each sequent window the time it takes 

to create the tree gradually lowers till the necessary patterns are derived. 

 

 

 

 

 

 

 

 

 

                 

Fig 3.5: Telecoms Tree Restructuring Time 



 

 57 57 

The figure 3.5 above shows the time it takes to restructure each incoming tree 

for the two algorithms. In the first dow, FP tree restructures faster but in 

subsequent windows CSP Tree outperforms it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 

             

                     Fig 3.6: Call Center Tree Restructuring Time 
 
 
 
fig 3.6 above shows the tree creation time for the Call care dataset between CSP Tree 

and FP tree.   The resulting outcome demonstrates and confirms that CSP Tree in the 

entire window has a faster rate of tree creation en compared to CSP Tree. 

 

3.11  Summary 

We have a n a l y s e d  t h e  CSP-tree that dynamically processes a continuous and 

and unbounded data-stream using a frequency-descending prefix tree structure with a 

single-pass by applying tree restructuring technique. This considerably reduces the 

mining time. We looked at the Branch sorting method which is a new tree restructuring 



 

 58 58 

technique; and presented guideline in choosing the values for tree restructuring 

parameters. We have shown that despite the additional overhead cost of the tree 

restructuring, CSP-tree achieves a remarkable performance gain on overall runtime. 

Moreover, the easy-to-maintain feature and property of constantly summarize full data 

stream information in a highly compact fashion facilitate its efficient applicability 

in interactive, incremental and stream data. 

In approaching stream data mining, solutions can be categorized as data-driven solution 

and task- driven solution. The former analyses only a subset of the whole data set or 

totally alters the data to a summarized data size. Such an approach allows us to utilize 

many known data mining techniques to the case of data streams, while the latter which 

is the Task-based techniques methods modifies existing techniques or invent new ones 

in order to address the computational challenges of data stream processing. For the 

purpose of this research, the two approaches will be utilized in achieving an efficient 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 59 59 

CHAPTER FOUR 
 

 4.0      IMPLEMENTATION AND DISCUSSION 

 

We have presented several methods for mining frequent patterns for both synthetic 

dataset and real application dataset. To undertake a comprehensive study of stream data, 

including the application of strategies and to acquire in-depth knowledge of the data 

streams, various previous works on data streams and the potential for improving 

performance were reviewed. In addition, the existing mining algorithm framework with 

specific consideration of fast mining techniques were reviewed in order to understand 

the limitations of current algorithms that have been addressed in later part of this 

research work.  

A characterization of stream mining in real-time will be extensively examined using the 

sliding window technique by making use of the most recent dataset to anticipate 

incongruity, oddity and outliers. Thereafter, CSP Algorithm will be employed as a 

means to find a linear optimal hyperplane in order for the margin between positive and 

negative cases is maximized as the base algorithm and iteratively improving it using 

sorting techniques. Also, CSP tree will be used in detecting frequent patterns from data 

stream with the aid of Path Adjustment methods and the Branch sorting methods. It 

does this by performing insertions which constitute the attachment of incoming flow of 

data and dynamic restructuring of the new dataset. The algorithm basically involves 

insertion and restructuring. The proposed algorithm will be tested on telecoms data, 

BSM data, Crime rate datasets Sales Dataset and Call care so as to ascertain its efficacy. 

The dataset will be used in such a way as to mimic stream data in an effort to evaluate 

the effectiveness of the proposed algorithm in handling feature evolution, ability to 



 

 60 60 

predict in real-time and concept shift inherent in stream data. An implementation of the 

resultant algorithm will be done using python programming language on Windows 

Operating system as the platform. 

4.1  DYNAMIC COMPACT STREAM PATTERN DATA MINING 

 
Data Stream mining refers to informational structure extraction as models and patterns 

from continuous data streams. Information is imperative to make wise and actionable 

decisions. This is quintessentially true in real life but also in computing and especially 

critical in several areas, such as finance, fraud detection, business intelligence or 

battlefield operation. Information flows in from different sources in the form of 

messages or events, giving a hint on the state at a given time. While data mining usually 

operates directly on the complete, stored data, stream data tends to make use of 

supporting application models and data models because of the transient nature of the 

data to be processed. Mining Streams of data is a process of being proactive about data 

thereby avoiding an eventual reactive phase of letting too much data go by, which might 

eventually lead to a total lose or devaluation of the actions initiated for processing. 

Pertinent to diverse inchoate incipient domains, nonetheless, the inflow of data and the 

need for it to be handled and processed on an unremitting basis is vital; with the benefit 

of a single pass over a static, incessant data is a trending shortcoming in the research 

area of mining of stream data. The starting point of continuous data streams arise 

spontaneously. When dealing with data streams it is usually impossible to store all the 

data from streams and only a small part of the data can be stored and used for 

computations within a limited time span. An idyllic procedure for mining data streams 

should have the following properties: high accuracy, fast adaptation to change and low 



 

 61 61 

computation cost in both space and time dimensions i.e. short processing time (Bifet, 

Holmes, Pfahhringer, Kirkby, Gavalda, 2009).  Delving into data streaming, when a 

significant amount of data needs to be quickly processed in real-time or near real time 

to gain insights, data in motion in the form of streaming data is the most productive 

approach. When organizations are planning for their future, they need to be able to 

analyse a preponderate sum of data. Stream data is an analytic computing platform that 

is focused on velocity because applications for streaming data require continuous and 

incessant influx of often unstructured data 

 to be processed and analyzed. Therefore, data is continuously analyzed and 

transformed in memory before it is stored on a disk. Therefore, is useful when analytics 

need to be done in real time while the data is in motion. This infers that “the value of 

the analysis decreases with time”. A fundamental problem of data stream is that there 

is too much information to be stored or processed which implies that data has to be 

processed as it arrives either at a single-pass of the data or as a summarized data 

(approximation). In the case of data stream, approximate answers are questions or 

queries are allowed if there are guarantees of result quality (Korn, Muthukrishnan & 

Wu, 2006). A typical illustration that if you can’t analyze and act immediately on a 

series of datasets, a deal opportunity might be lost, or a threat might go undetected or 

unnoticed. When the volume of the underlying data is very large, it leads to a number 

of computational and mining challenges: 

 
i. With increasing volume of the data, it is no longer possible to process the data 

efficiently by using multiple passes. Rather, one can process a data item at most once. 

This leads to constraints on the implementation of the underlying algorithms. 



 

 62 62 

Therefore, stream mining algorithms typically need to be designed so that the 

algorithms work with one pass of the data. 

 
ii. In most cases, there is an inherent temporal component to the stream mining 

process. This is because the data may evolve over time. This behavior of data streams 

is referred to as temporal locality. Therefore, a straightforward adaptation of one-pass 

mining algorithms may not be an effective solution to the task. Stream mining 

algorithms need to be carefully designed with a clear focus on the evolution of the 

underlying data. Majority of organizations are used to handling data at rest which 

implies a system that control active transactions and therefore need to have persistence. 

However, in some cases, those transactions are been executed and analyzed in a data 

warehouse or data mart. This means that the information is being processed in batch 

and not in real time. 

 
Stream mining is a new data mining area where data are incessant in nature (Masud et 

al. 2011). Huge and potentially infinite volumes of data streams are frequently 

generated by real time surveillance system, internet traffic, online transactions, 

communication networks and other dynamic environments. In traditional datasets, 

stream data flows in and out of a computer system continuously with varying update 

rate. They are massive, fast changing temporarily ordered and potentially infinite it 

may be impossible to store an entire data stream or scan through it multiple times due 

to its tremendous volume. However, stream data tends to be of rather low level of 

abstraction, whereas most analysts are interested in relatively high level dynamic 

changes, such as trends and deviations. To discover knowledge or patterns from data 

streams, it is necessary to develop single scan, multilevel, multi-dimensional stream 

processing and analysis methods. 
 



 

 63 63 

This single scan, online data analysis methodology are not confined to only stream data 
but is 
 
also critically important for processing non stream data that are massive. With data 

volumes mounting by terabytes or petabytes, stream data effectively captures today’s 

data processing need, despite when the complete set of data is collected and can be 

stored in massive data storage devices, data stream system instead of random access 

may still be the most realistic processing mode because it is often too expensive to 

scan such dataset multiple times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Fig 4.1 : Stream mining process (Adaptive: Mahnoosh Kholgi et al 2011) 
 
The data stream mining task  can be considered similar when compared to traditional 

tasks in terms of targets and objectives reasonably different in terms of data processing; 

this is so because of the infinite influx of high-speed data. This therefore absolutely 



 

 64 64 

makes traditional data mining algorithms and methods inept of properly handling data 

streams. 

 
This can be done in either of two ways; 
 
 
i.by modifying an existing data/stream mining algorithm to make suitable for 

stream mining ii. Developing a new stream mining algorithm 

 
Data stream can be represented as input data that comes at increasingly high rate. High 

rate means it stresses communication and computing infrastructure, which can make it 

challenging to; 

 
• relay (R) the entire input to the program, 
 
 
• compute (C) practical functions over substantial chunk of the input data presented, 
and 
 
 
• backlog(B), acquire momentarily or extract all of continually 
 
 

Set Theory 
 
 

Let S represent our proposed system 
 

S = {I, O, F, Su, Fa, φ} 
 

Where, 
 

I is an Input I = {DS, Ws, Ps, δ} 
 

Where, 
 

DS = Data Stream 
 

Ws = Window Size 
 

Ps = Pane Size 
 

δ = Threshold value 
 

    O is an output = {P} 



 

 65 65 

Where, P= set of frequent patterns 
Success= Frequent pattern 

 
F is a function = {LC, CW, UW, RES, MINE} 

 
LC= LoadConnection (DS) 

 
Input = DS (Data Stream) 

 
Output = Imported Data 

 
Failure = No Data imported 

 
CW= CreateWindow (ID) 

 
Input = Imported Data 

 
Output = Window 

 
Failure = No Window Created 

 
UW = UdatedWindow (W) 

 
Input = Window 

 
Output = Updated Window 

 
Failure = No Window Updated 

 
RES = Restructure (W) 

 
Input = Updated Window 

 
Output = Sorted Window 

 
Failure = No Sorted Data 

 
MINE = Mining (Sorted Data) 

 
Input = Sorted Data 

 
Output = Frequent Pattern 

 
Failure = No frequent Patterns 

 
Fa is a failure = No frequent patterns 

 
j is constraints of the system 
j = {DS, Ps, Ws} 
 



 

 66 66 

4.2 IMPLEMENTING THE PROTOTYPE INTO A REAL SIMULATION 
ENVIRONMENT 
 

4.2.1 Data Preprocessing 

The dataset used for this study implementation is called Netflix Shows and Movies 

Exploratory Data (Netflix).   It is a metadata of Tv shows and movies on Netflix as 

of 2019.  It has over 505,780 unique data values. The dataset was taken from 

University of Manchester Data Science stream application. 

Data preprocessing is crucial aspect in the process of data mining. If data input to 

algorithm is not in proper format, then it cannot be processed efficiently. So pre-

processing is needed and in which existing data transform into new data which is in 

proper format and suitable for processing.  

The influx of the Netflix data stream would convey an in-depth explanation of the 

effectiveness of the algorithm. A view and observation into the influx shows the 

following few dataset items:   

“Despicable me (PictureBox) was rated to be the most watched movie in the stream of 

data presented while Carrie, The Pink Panther (2006), LOL – HD, Django Unchained 

- HD_BBFC, Twilight Saga; The: New Moon – HD, Rob Roy, Reign of Assassins  - HD 

(Subtitled), Kill for Me_BBFC, Romeo + Juliet(wt), Conan – HD, Lake Placid The 

Final Chapter[#] BBFC, Reign of the Assassins_BBFC, test:Playing for Keeps, Texas 

Chainsaw – HD, Dark Knight Rises; The – HD, Fast &amp; Furious – HD, Pink 

Panther; The_MGM, Hook_BBFC, test:I Give It A Year, The test:Lords of Salem, Lions 

for Lambs, Dumb &amp; Dumber, Now is Good, Three Stooges; The – HD,  Midnight 

Cowboy, White Collar Hooligan 2[#]_BBFC, Hackers, Valkyrie – HD, Groundhog 

Day_BBFC  and Snowmen” ect. 

4.3 PATTERN SEARCH CRITERION/TYPES 

In developing a pattern search for a dataset with multi-dimensional characteristics, the 

choice of the pattern search criterion is important. This criterion should completely 



 

 67 67 

describe the dataset and truly represent the characteristics of the dataset. Some 

suggested search criterions are: 

1. What is the pattern in the movie watched on Mondays to Sunday. 

2. What pattern of movie is watched weekends? 

3. What is the pattern of movie watched overall? 

4. What is the pattern in the genre of overall movie 

5. What is the pattern in the movie watched weekly? 

6. What is the pattern in the movie watched monthly? 

7. What is the pattern in the movie watched in 2013? 

8. How to determine the number of transactions in a batch of transactions. 

9. Provides some statistical information about the datasets used in the 

experimental analyses. 

 

4.4 RESULT OF CSP PATTERN SEARCH ON MOVIE DATASET 

4.4.1 Runtime Efficiency 

We compared the overall runtime efficiency of CPS-tree and DSTree for mining the 

exact set of frequent patterns from the current window based on changes in the min_sup 

value. These results show that CSP-tree outperforms DSTree when the min_sup values 

for datasets are large-enough to produce few frequent patterns. 

 

Memory vs Window Size    

Window Size (No of Panes) 2 4 6 8 10 

Memory (KB) 13.46 26.71 40.07 53.44 66.8 

Pane Size = 67 KB 

 

Runtime Vs Min_sup 

 

      



 

 68 68 

Since the value of (ATL/I x 100) is less than 10 for movie dataset, then the dataset is 

sparse. 

Table 4.1: Table of values for plot for Moviedataset (Runtime Vs Min_sup) 
 

 
                             Figure 4.2: Plot of Memory against Window size 
 

 

      

Window Size (No of Panes) 2 2 2 22 2 

No of Panes 10 10 10 10 10 

Time (sec) 

803.515958

5 

1203.40283

1 

1370.54139

1 

1856.77534

4 

3490.32763

5 

Min Sup 1000 900 800 700 600 

Min Sup (%) 100 90 80 70 60 



 

 69 69 

 
 

Figure 4.3: Plot of Time(s) against min_sup (%) 
 

4.5 MOST FREQUENT PATTER FOR EACH WINDOW SIZE 
 

 Below is the result for the CPS search on the Movie dataset for window of pane size 2, 

4, 6, 8, and 10        respectively. 

Pat
ter
ns                                     

 

Jack Reacher   1792 
       Hobbit; The An Unexpected Journey   643 
         Pitch Perfect   82 
           Impossible; The   33 
             Silver Linings Playbook   8 
               102 Dalmatians (Disney)   1 
                 I Give It A Year   1 
                   A Good Day to Die Hard   1 
                     Seven Psychopaths   1 
                       Here Comes the Boom   1         



 

 70 70 

 
 

 

Jack Reacher   1792 
       Hobbit; The An Unexpected Journey   649 
         Pitch Perfect   89 
           Impossible; The   30 
             Silver Linings Playbook   9 
               102 Dalmatians (Disney)   1 
                 I Give It A Year   1 
                   A Good Day to Die Hard   1 
                     Seven Psychopaths   1 
                       Here Comes the Boom   1 
                         Lincoln   1 
 
      

 

Jack Reacher   1807 
       Hobbit; The An Unexpected Journey   638 
         Pitch Perfect   89 
           Impossible; The   38 
             Silver Linings Playbook   7 
               102 Dalmatians (Disney)   1 
                 I Give It A Year   1 
                   A Good Day to Die Hard   1 
                     Seven Psychopaths   1 
                       Here Comes the Boom   1 
                         Madagascar 3: Europes Most Wanted   1 
 
    

 

     Jack Reacher   1780 
       Hobbit; The An Unexpected Journey   630 
         Pitch Perfect   93 
           Impossible; The   38 
             Silver Linings Playbook   9 
               102 Dalmatians (Disney)   1 
                 I Give It A Year   1 
                   A Good Day to Die Hard   1 
                     Seven Psychopaths   1 
                       Here Comes the Boom   1 
                         Lincoln   1 
                           Madagascar 3: Europes Most Wanted   1 
 
 



 

 71 71 

 

Jack Reacher   1777 
       Hobbit; The An Unexpected Journey   624 
         Pitch Perfect   74 
           Impossible; The   31 
             Silver Linings Playbook   7 
               102 Dalmatians (Disney)   1 
                 I Give It A Year   1 
                   A Good Day to Die Hard   1 
                     Seven Psychopaths   1 
                       Here Comes the Boom   1 
                         Madagascar 3: Europes Most Wanted   1 
                           Shes All That (Miramax)_BBFC   1 
 

 

4.5.1 Observation  

Each search result gives patterns with “Jack Reacher “ as the movie with the highest 

frequency, but the lowest frequency movie in each patter vary due to the changing size 

of the number of window. This allows more items in the movie dataset to qualify to be 

amongst the searched items 

4.6 ANSWERS TO SOME QUESTIONS ON THE RESULT 

 

 Question 1: Reason for using a particular min_sup? 

Using minimum criteria of 1000 means that the only items that are counted as frequent 

item must h.ave a frequency greater than or equal to the minimum support. More of the 

items on the database are having a frequency above 1000. 

 

Question 2: Reason for converting them to transactions? 

The CSP algorithm reads patterns that are present in transactions. Therefore, the dataset 

are converted from mere list of items to a list of transactions. 

 



 

 72 72 

Question 3: Why random selection? 

The effectiveness of the algorithm is independent of whether it is time-based or random 

selection.  

 

Question 4: How effective is the algorithm? 

We can determine the effectiveness of the CPS algorithm by running it over [different 

sets of database].   

 

Question 5: How the CPS algorithm works? 

 [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z', 'y', 'x', 'w', 

'v', 'u', 't', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 

's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 

'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['r', 

'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], 

['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]. 

 

The dataset above consists of 23 transactions. The main CPS code is ‘app_main = 

AppMain(2, 12, 1, data_one, 1)’. This line of code uses a window containing 2 panes, 

with each pane containing 12 transactions. This covers the entire 23 transactions present 

in data_one. Using a minimum support of 1, it captures all the elements present in 

data_one i.e {'y', 'm', 'v', 'n', 'h', 'o', 's', 'p', 'w', 'z', 't', 'q', 'x', 'u', 'r', 'e', 'j'}as the ‘most 

frequent item’. 

 

 Question 6: Give a simple analysis on the movie dataset? 

 

                                         

Dataset  #Trans. (T)  #Items (I) 

MaxTL 

(MTL) 

 AvgTL 

(ATL) (ATL/I)/ 100 

Movie Data 17066 366453 38 21 0.00570612 

Table 4.3: Movie Dataset Characteristics 



 

 73 73 

From the table 4.3 above  Since the value of (ATL/I x 100) is less than 10 for movie 

dataset, then the dataset is sparse. 

The movie dataset has 637 different locations. It has 13 genres with comedy with the 

highest frequency of 101701 and animation with the lowest frequency of 87. It is rated 

from 0.0 to 6.0 with 3.5 having the highest frequency of 69145and 6.0 having the least 

frequency of 5. 

 

4.7 EXPLANATION OF MOVIE DATA ANALYSIS RESULT 

                   Case 1: 

                   Window Size: 2 

                   Number of Pane: 10 

                   Minimum support: 1000 

                   Number of items in movie dataset: 366453 

                   Number of items in a transaction: 36 

                   Number of transactions in a pane: 1703 

                   Number of transactions: 17033 

                   The maximum transactions length is: 38 

                   The minimum transactions length is: 2 

                   The average transaction length is : 21 

ATL/I x 100 =  0.005730612111239368 (Since the value of (ATL/I x 

100) is less than 10 for   movie    dataset, then the dataset is sparse) 

                   Data size of panes is : 6848Kb 

    Datasize of data_set is : 142696Kb10.  Write codes to get the dataset 

characteristics 

a) Number of transactions (T) 

b) Number of items (I) 

c) Maximum transaction length (MTL) 

d) Average transaction length (ATL) 
 
 
 



 

 74 74 

4.8 PRODUCING AND MAINTAIN ASSOCIATION RULES 
 
Mining Association rule involves quite a bit of memory and CPU costs. A noticeable 

drawback is that processing time is always limited to only one online scan. So there is 

need of real time maintenance and updating association rule. However stream data, if 

we update association rules too frequently, the cost of computation will increase 

drastically. 

 
4.8.1 Resource Awareness 
 
Most of the resources such as memory space and CPU in data stream mining are vital. 

One cannot ignore the resources availability, a typical example is when the main 

memory is totally used up in processing, data will be lost and it leads to errors or 

inaccuracies in results. These challenges need to be considered in order for our 

algorithm to perform at its utmost best. 

 
4.8.2 Scalability 

One of the main challenges in data streaming is the issue of scalability. Data stream 

being a very recent research field is experiencing exponential advancement in a way 

much faster than most computer resources. The processors follow Moore’s law, but the 

size of data is increasingly exploding. Consequently, research resolutions should be 

geared towards developing scalable frameworks and algorithms that will be able to 

contain data stream computing methods, effective resource allocation strategy, 

parallelization and complementing issues to cope with the ever-growing size and 

complexity of data. 

 
 
 
 
 
 



 

 75 75 

4.8.3 Timeliness 

 Time is of the essence for time-sensitive processes such as mitigating security threats, 

impeding fraud, or responding to a disaster of any sort. There is a need for architectures 

or platforms that will enable continuous processing of data streams which can be used 

to maximize the timeliness of data. The main challenge is implementing a distributed 

architecture that will aggregate local views of data into global view with minimal 

latency between communicating nodes. Consistency Achieving stability in data stream 

computing environments is non-trivial as it is demanding to determine which data are 

needed and which nodes should be consistent. Hence a satisfactory system structure is 

required. 

 
 
4.8.4 Heterogeneity and incompleteness 

Data streams are heterogeneous in design, organisations, semantics, accessibility and 

granularity. The challenge here is how to effectively handle an always ever-increasing 

data, extract meaningful content out of it, aggregate and correlate streaming data from 

multiple sources in real-time. A competent data presentation should be designed to 

reflect the structure, diversity and hierarchy of the streaming data. 

 
4.8.5 Accuracy 

One of the main objectives of big data stream analysis is to develop effective 

techniques that can accurately predict future observations. However, as a result of 

inherent characteristics of big data such as volume, velocity, variety, variability, 

veracity, volatility, and value, big data analysis strongly constrains  

processing algorithms spatiotemporally and hence stream-like requirements must be 

taken into consideration to ensure high accuracy. 



 

 76 76 

4.8.6 Atomicity 

Independent transaction constitutes an indivisible entity of processing. This property 

refers to the ability of the stream mining algorithm to guarantee that either all of the 

tasks of a transaction are performed or none of them are. 

4.9 METHOD OF ENSURING DATA SET INTEGRITY IN DATA STREAM 
 
Individual transaction arrives a logically consistent set of operations. The system has to 

ensure the realization of every transaction will be accomplished with either an 

occurrence or relapse. Contingent to a failure, the system has to assure that no changes 

will be incurred on the incoming dataset. The execution of this process in a multi-access 

environment establishes one of the basic factors influencing the efficiency of the whole 

computer system. 

 
In 1983, T. Härder and A. Reuter (1983) proposed the suitability of transaction 

properties prescribed: 

 
4.9.1 Consistency – a stream of data is in a persistent and rational state if there is a 

potential of achieving an unambiguous and systematic pattern from the information 

accrued in a data set. The consistency of the database plays an important role in 

actualizing the transaction. This property refers to the dataset being in an appropriate 

state when the transaction begins and when it terminates. 

 
4.9.2 Isolation – a transaction happens independently of different operational systems 

and sources of data including different transactions. The changes introduced in a data 

set are visible for other transactions only after the termination of the transaction. This 

property refers to the ability of the application to make operations in a transaction 

appearing separately from every other operation. 



 

 77 77 

 
4.9.3 Persistent – in case of a system breakdown, the data set will not lose its 

consistency. This property refers to the guarantee that once the user has been notified 

of success, the transaction will persist and will not be undone. 

 

4.10 CONCLUSION 
 

After conducting a thorough literature review, it is clearly understood that it is evident 

that the existing problems of data stream are still enormous and not much work has 

been focused on analysing stream data, especially with regards to tree structures. In 

view of this, this research focuses on designing an algorithm that mines frequent pattern 

in comparison to other single pass algorithms. The designed framework will be 

implemented in order to test the proposed algorithm. Different scenarios will be created 

based on the defined parameters in order to obtain different results for analysis and to 

propose future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 78 78 

                                          CHAPTER FIVE 
 

5.0   EVALUATION 
 

We evaluated the performance of the dynamic   CSP algorithm on various dataset 

through some extensive experiments. In our performance evaluation we consider the 

run time and memory usage for different threshold values. The runtime rates of the 

algorithms under study are very important and vital in the analysis of this research work. 

For our experimental evaluation, we use eight publicly available datasets from the UCI 

machine learning repository. Recall that pattern mining methods require the data to be 

discrete. Our performance focuses predominantly on finding frequent pattern within  a 

single scan over dynamic data stream using effective compact sliding window tree 

structure which avoid the duplicate items in transactions, and provide accurate 

frequent patterns. Additionally, the algorithm extract mining results regarding the 

latest data over data streams, and can gain the resulting pattern more quickly, so this 

approach is very useful to find frequent pattern over wide range of data stream like 

retail, telecoms, marketing and network, Call records and other related data stream. 

The extensive experiments presented in this research work shows that the proposed 

algorithm could mine latest frequent patterns more effectively than the previous 

algorithms and it gives outstanding performance in terms of runtime, memory usage. 

5.1 EXPERIMENTAL EVALUATION 

Runtime efficiency: this represents the measure of amount of time needed for the CSP 

algorithm to execute each stream of data presented to it in comparison with that of the 

FPTree. 

 



 

 79 79 

Test 

Runtime 

CSPTree FPTree Window 

Size 

Pane 

Size 

Creatio

n 

Restruct Mining Creatio

n 

Restruc

t 

Mining   

  1.87 2.97 0.00040 2.53 3.64 0.00021 2 10K 

  3.55 4.65 0.00062 5.96 6.52 0.00044 3 10K 

  6.17 6.76 0.00107 11.02 11.02 0.00073 4 10K 

  7.90 9.23 0.00301 13.20 15.09 0.00221 5 10K 

 

Table 4.1: Runtime analysis 

The table 4.1 above shows the Test runtime for the BMS dataset which comprises of 

the tree creation, tree restructuring and how long it takes to mine a specific dataset 

present in the pane of a window. 

 
 

Figure 5.1: BMS Tree Creation Time  
 

1.87
2.97

0.0004

2.53
3.64

0.00021

3.55
4.65

0.00062

5.96 6.52

0.00044

6.17 6.76

0.00107

11.02 11.02

0.00073

Creation
Restruct

Mining

Creation

Restruct

Mining
0

2

4

6

8

10

12

14

16

Creation Restruct Mining Creation Restruct Mining

Analysis Comparison

Unnamed Series 1 Unnamed Series 2

Unnamed Series 3 Unnamed Series 4



 

 80 80 

 

 

The fig 5.1 above shows the tree creation time for BMS dataset between CSP Tree and 

FP tree. The resulting outcome explains that CSP Tree has a faster rate of tree creation 

when compared to FP The resulting outcome shows that CSP Tree has a faster rate of 

restructuring each tree when compared to FP Tree with the BMS dataset.  

 

 
 

                   Figure 5.2: CSP AND FP Comparison on BSM DATA 
 

The table 5.2 above shows the Test runtime for the Sales dataset which comprises of 

the tree creation, tree restructuring and how long it takes to mine a specific dataset 

present in the pane of a window. 

 

01/02/19
00

01/03/19
00

01/04/19
00

01/05/19
00

CSPTree 0.0000509 0.000039 0.0000435 0.0000464
FPTtree 0.00135 0.0017 0.00343 0.00305

0.00E+00
5.00E-04
1.00E-03
1.50E-03
2.00E-03
2.50E-03
3.00E-03
3.50E-03
4.00E-03

Time(s)

Window(Pane #)

Sales Tree RestructuringTime (Pane # 
150)

CSPTree

FPTtree



 

 81 81 

 
                            Figure 5.3: Sales Tree Creation Time    
                           
Fig 5.3 above shows the tree creation time for Sales dataset between CSP Tree and FP 

tree. The resulting outcome explains that FP Tree has a faster rate of tree creation when 

compared to CSP Tree. This is so because of the limited amount of data presented in 

the form of a stream. It can be said to be a negative test case. 

For each step of the restructuring process, CSP tree again proves to be the most effective 

and efficient algorithm in comparison to FP tree 

 

01/02/19
00

01/03/19
00

01/04/19
00

01/05/19
00

CSPTree 0.0000509 0.000039 0.0000435 0.0000464
FPTtree 0.000039 0.0000263 0.0000689 0.0000315

0.00E+00
1.00E-05
2.00E-05
3.00E-05
4.00E-05
5.00E-05
6.00E-05
7.00E-05
8.00E-05

Time(s)

Window(Pane #)

Sales Tree Mining Time (Pane # 150)

CSPTree

FPTtree

01/02/190
0

01/03/190
0

01/04/190
0

01/05/190
0

CSPTree 0.02683 0.0259 0.03106 0.02755
FPTtree 0.03109 0.0316 0.03146 0.03975

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

Time(s)

Window(Pane #)

Crime Tree Creation Time (Pane # 1500)

CSPTree

FPTtree



 

 82 82 

                           Figure 5.4: Mining time for Sales Dataset 
In fig 5.4 above due to the limited arrival of data, FP tree tends to mine faster as there 

is no enough dataset for CSP to handle. Also, this is a negative test case to know how 

effective FP Tree. 

                                 
    Figure 5.5 CSP & FP comparison    

 

 

Fig 5.5  above shows a graphical comparison between CSP Tree and FP Tree. As 

discussed earlier, due to the inconsistency and the scarce proportion of the dataset, FP 

tree seems to outperform CSP tree. 

 

Total 

Runtime 

CSPTree FPTree Window 

Size 

Pane 

Size 

Creatio

n 

Restruc

t 

Mining Creatio

n 

Restruct Mining   

  0.02683 1.85e-5 0.00222 0.03109 1.72e-

05 

0.00494 2 1500 

01/02/1900 01/03/1900 01/04/1900 01/05/1900
CSPTree 0.00222 0.00268 0.00307 0.00429
FPTtree 0.00494 0.00555 0.00312 0.00307

0

0.001

0.002

0.003

0.004

0.005

0.006

Time(s)

Window(Pane #)

Crime Tree Mining Time (Pane # 1500)

CSPTree

FPTtree



 

 83 83 

  0.02590 1.64e-5 0.00268 0.03160 1.81e-

05 

0.00555 3 1500 

  0.03106 8.08e-5 0.00307 0.03146 1.72e-

05 

0.00312 4 1500 

  0.02755 2.01e-5 0.00429 0.03975 1.48e-

05 

0.00307 5 1500 

 

                                         Table 5.2: Crime Dataset  
 

 

The table 5.2 above shows the Test runtime for the Crime dataset which comprises of 

the tree creation, tree restructuring and how long it takes to mine a specific crime rate 

present in the pane of a window. 

 

 

 
 

Figure 5.6 Crime Tree Creation Time 
                                                                                                                                

01/02/1900 01/03/1900 01/04/1900 01/05/1900
CSPTree 0.00222 0.00268 0.00307 0.00429
FPTtree 0.00494 0.00555 0.00312 0.00307

0

0.001

0.002

0.003

0.004

0.005

0.006

Time(s)

Window(Pane #)

Crime Tree Mining Time (Pane # 1500)

CSPTree

FPTtree



 

 84 84 

The fig 5.6 above shows the tre creation time for the crime dataset between CSP Tree 

and FP tree. The resulting outcome explains that CSP Tree has a faster rate of tree 

creation when compared to FP Tree. This is so because of the consistent arrival of the 

stream data presented. CSP Tree outperforms FP tree at every level of creation in the 

window. It can be said to be a positive test case. 

 

 

 
     Figure 5.7: Telecoms Tree Creation Time   

                                                                                                                 

The fig 5.7 above shows the tree creation time for the crime dataset between CSP Tree 

and FP tree. The resulting outcome explains that FP Tree in the first window has a faster 

tree creation rate compared to CSP Tree. And at each subsequent window the time it 

takes to create the tree gradually lowers till the necessary patterns are derived. 

 



 

 85 85 

 
  Figure 5.8: Telecoms Tree Restructuring Time    

 

Figure 5.8 above shows the time it takes to restructure each incoming tree for the two 

algorithms. In the first window, FP tree restructures faster but in subsequent windows 

CSP Tree outperforms it. 

 

Total 

Runtime 

CSPTree FPTree Window 

Size 

Pane 

Size 

Creatio

n 

Restruct Mining Creation Restruct Mining   

  6.476 2.46e-5 0.00447 10.50 3.49e-05 0.33 2 2M 

  5.97 2.30e-5 0.00443 11.07 2.95e-05 0.09 3 2M 

  6.015 2.59e-5 0.00437 9.00 2.54e-05 0.09 4 2M 

  5.84 2.59e-5 0.00277 10.56 2.67e-05 0.06 5 2M 

 

Table 5.3: Call Care Datasets 
 



 

 86 86 

The table 5.3 above shows the Test runtime for the Call care dataset which comprises 

of the tree creation, tree restructuring and how long it takes to mine a given instance of 

the telecoms data present in the pane of a window. 

 

 
Figure 5.9:  Call Center Tree Creation Time 

 
The fig 4.13 above shows the tree creation time for the Call care dataset between CSP 

Tree and FP tree. The resulting outcome demonstrates and confirms that CSP Tree in 

the entire window has a faster rate of tree creation when compared to CSP Tree 



 

 87 87 

 
         Figure 5.10: Call Center Tree Restructuring Time  

                                                                                                                                        

The fig 5.10 above shows the time it takes for the trees created for the Call Center 

dataset to be restructured between CSP Tree and FP tree. The resulting outcome shows 

that CSP Tree has a faster rate of restructuring each tree when compared to FP Tree with 

the call center dataset. 

 

 
                                Figure 5.11: Call Center Tree Mining Time   

                                                                                                                                    

  



 

 88 88 

In fig 5.11 above when all necessary conditions to the consistent arrival of data are met, 

CSP tree tends to mine faster as there is an influx dataset for CSP to handle. This is a 

positive test case which shows are requirements meet the actual results over FP tree as 

expected. 

 
 
 
 
 

 

5.2 MEMORY USAGE                                                                                                                                                             

In the representation of space efficiency which measures the amount of memory needed 

for an algorithm to execute a given dataset. The tables below are detailed space 

efficiency of CSP Algorithm when compared to the FP algorithm. 

 

CSPTree FPTree Window Size Pane Size 
118 121 2 10K 
140 144 3 10K 
160 166 4 10K 
179 188 5 10K 

                                             

Table 5.4: Memory Usage for BMS 
 

 

 



 

 89 89 

 

                                           Figure 5.12 Space Efficieny of BMS  
The figure 5.12 above shows how efficient the CSP Tree algorithm has been able to 

utilize the minimal memory assigned to it compared to  FP Tree. Which means it only 

needs a n infinitesimal amount of memory to function effectively. 

 

CSPTre

e 

FPTree Window Size Pane Size 
456 460 2 150 
458 458 3 150 
460 459 4 150 
458 458 5 150 

 

                 Table 5.5: Memory Usage for Sales Dataset 
 

 
                      Figure 5.13: Space Efficiency of Sales                      
    
As expected, fig 5.13 above shows how efficient the CSP Tree algorithm has been able 

to utilize the minimal memory assigned to it compared to FP Tree. This means it has 

higher memory adeptness when compared with FP Tree Algorithm. 

 

 

 

 

 



 

 90 90 

                                               Crime Dataset 

CSPTree FPTree Window Size Pane Size 
47853568 48009216       2 1500 
47742976 48095232       3 1500 
48140288 48336896       4 1500 
47747072 48099328       5 1500 

 

                            Table 5.6: Memory usage on Crime Dataset 
 

 
 

          Figure 5.14: Space Efficiency on Crime dataset  
 
The fig 5.14 above shows how efficient the CSP Tree algorithm has been able to utilize 

the minimal memory assigned to it compared to FP Tree. Which means it only needs a 

n infinitesimal amount of memory to function effectively.                                                           

  

CSP Tree Fp Tree Window size Pane Size 

46144960 46829568 2 700 

46780416 47206400 3 700 

46776320 46792704 4 700 

46784512 47255552 5 700 



 

 91 91 

            

               Table 5.7: Memory usage on Telecoms Dataset 

 
  Figure 5.15: Space Efficiency of Telecoms  

 
 
 
 
 

 
 

                                          Figure 5.16: Space Efficiency for Call care 
 

The fig 5.16 above proves how efficient CSP Tree algorithm has been able to utilize the 

exploit the memory assigned to it compared to FP Tree. This means when provided a 

limited amount of it can still function efficiently and effectively. 



 

 92 92 

 

5.3 ANALYTICAL EVALUATION 

The analysis of any algorithm is duly focused on time complexity and space complexity. 

As compared to time plexity, the space complexity analysis requirement for an 

algorithm is pretty much straightforward, but Wherever and whenever necessary both 

of them need to be put to used space complexity refers to the amount of working storage 

that is needed by a given algorithm. The amount of memory needed by a program to 

run from start to completion is referred to as Space complexity while the amount ime 

needed by the program to run from start to completion is referred to as the Time 

complexity, which typically ends on the size of the input data. It is a function of size: 

(n) [T (n)]. 

 
§ Best Case: 
 

It is the function defined by the maximum number of steps taken on any instance 
of size (n). 

 
§ Average Case: 
 

It is the function defined by the Average number of steps taken on any instance of 
size (n). 

 
§ Worst Case: 
It is the function defined by the minimum number of steps taken on any instance of 
size (n). 

 
 
 

5.4 ASYMPTOTIC ANALYSIS 

 
Asymptotic Analysis is the big idea that handles above issues in analyzing algorithms. 

In Asymptotic Analysis olves assessing and weighing the performance(s) of an 

algorithm in terms of input size (we don’t measure the ual running time). We calculate, 



 

 93 93 

how does the time (or space) taken by an algorithm increases with the input. An increase 

in the input size to the time and space is greatly considered and calculated. Asymptotic 

Analysis is not perfect, but it’s an ideal way to analyzing an algorithm. For example, 

say there are two ting algorithms that take 1000nLogn and 2nLogn time respectively 

on a machine. Both of these algorithms are mptotically the same (order of growth is 

nLogn) 

5.4.1 Worst, Average and Best Cases 

Aymptotic analysis overcomes the problems of naive way of analyzing algorithms. 

 
We can have three cases to analyze an algorithm: 

 
    i) Worst Case 
 
   ii) Average Case 
 
   iii) Best Case 
 
 
5.4.2  Worst Case Analysis 
 
In the worst-case analysis, we calculate upper bound on running time of an algorithm. 

It is essential to know the e(s) that cause maximum number of operations to be executed. 

Compact Search Algorithm, the worst case happens when the element to be searched 

(x in the above code) is present in the array. When x is not present, the search() function 

compares it with all the elements of the array[] by one. Therefore, the worst-case time 

complexity of linear search would be Θ(n) worst-case complexity (denoted in 

asymptotic notation) measures the resources (e.g. running time, memory) algorithm 

requires given the worst-case. It gives an upper bound on the resources required by the 

algorithm. In case of running time, the worst-case time-complexity indicates the 

longest running time performed by an orithm given any input of size n, and thus this 



 

 94 94 

guarantees that the algorithm finishes in a short time. Moreover, order of growth of the 

worst-case complexity is used to compare the efficiency of two algorithms. 

5.4.3  Average Case Analysis 
 
In the average case analysis, we take all possible inputs and calculate computing time 

for all of the inputs. Sum all the culated values and divide the sum by total number of 

inputs. We must know (or predict) distribution of cases the linear search problem, let us 

assume that all cases are uniformly distributed (including the case of x not ng present in 

array). So, we sum all the cases and divide the sum by (n+1). Following is the 

 value of average e time complexity. 

 

Average Case Time =  

                            =  

                            = Θ(n) 

 

5.4.4 Best Case Analysis 
 
A best-case analysis, the lower bound on running time of an algorithm is being 

determined. It is required to be are of the case(s) that cause the minimum number of 

operations to be executed. 
 
The linear search problem, the best case occurs when x is present at the first location. 

The number of operations he best case is constant (not dependent on n). So time 

complexity in the best case would be Θ (1) set of the times, we do worst case analysis 

to analyze algorithms. In the worst case analysis, we guarantee an er bound on the 

running time of an algorithm which is a valuable and acceptable information average 

case analysis is not easy to do in most of the practical cases and it is rarely done. In the 



 

 95 95 

average case lysis, we must know (or predict) the mathematical distribution of all 

possible inputs.  Best-Case analysis guarantees a lower bound on an algorithm and 

doesn’t provide any information as compared he worst case which can result in an 

algorithm taking an awfully long time to run alternatively, for some algorithms all the 

cases are asymptotically the same, i.e., there are no worst and best cases. example, Merge 

Sort does Θ(nLogn) operations in all cases. Most of the other sorting algorithms have 

worst best cases. For example, in the typical implementation of Quick Sort (where pivot 

is chosen as a corner), the worst occurs when the input array is not  sorted, and the best 

occur when the pivot elements always in the array in two halves is already sorted. For 

insertion sort, the worst case occurs when the array is reverse sorted, and the best e 

occurs when the array is sorted in the same order as output. 

5.5 EFFICIENCY OF ALGORITHM (Asymptotic Notations) 

The main idea of asymptotic analysis is to have a measure of efficiency of algorithms 

that doesn’t depend on chine specific constants and doesn’t require algorithms to be 

implemented and the time it takes a program to be pared. Asymptotic notations are 

mathematical tools to represent time complexity of algorithms for asymptotic analysis.   

following 3 asymptotic notations are mostly used to represent time complexity of an 

algorithm. 

 

 

 

 

 

 

Figure 5.17: Graph complexity at Theta notation                                        



 

 96 96 

5.4.1 θ Notation: The theta notation bounds a function from above and below, so it 

defines the exact asymptotic avior. 

A simple way to get Theta notation of an expression is to drop low order terms and 
ignore leading constants. 
 
For a given function g(n), we denote Θ(g(n)) in the following set of functions. 

          Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such 

that 0 <= c1*g(n) <= f(n) <= c2*g(n) for all n >= n 

 

The above definition means, if f(n) is theta of g(n), then the value f(n) is always 

between c1*g(n) and c2*g(n) for e values of n (n >= n0). The definition of theta also 

requires that f(n) must be non-negative for values of n ater than n0. 

 

 

 

 

 

 

 

 

 

Figure 5.18: Graph complexity at 0 Notation 
 
5.4.2 Big O Notation 
 
Big O notation defines an upper bound of an algorithm; it bounds a function only from 

above. For example, sider the case of Insertion Sort. It takes linear time in best case 

and quadratic time in worst case. We can safely that the time complexity of Insertion 



 

 97 97 

sort is O(n^2). Note that O(n^2) also covers linear time. We use Θ notation to represent 

time complexity of Insertion sort, we have to use two statements for best and rst cases: 
 
the worst-case time complexity of Insertion Sort is Θ(n^2). 
 
the best-case time complexity of Insertion Sort is Θ(n). 
 
 
Big O notation is useful when we only have upper bound on time complexity of an 

algorithm. Many times, easily find an upper bound by simply looking at the 

algorithm. 

 
 
(n)) = {f(n): there exist positive constants c and 

n0 such that 0 <= f(n) <= c*g(n) for 

all n >= n0} 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19:Gaph complexity at Omega Notation 
 
 
 
5.4.3 Ω Notation 
 
The Big O notation provides an asymptotic upper bound on a function, Ω notation 

provides an asymptotic lower bound. The Big O notation can be useful when we have 



 

 98 98 

lower bound on time complexity of an algorithm. As discussed previously, best case 

performance on an algorithm is generally not useful, the Omega notation is the least 

used notation ong all three. 
 
a given function g(n), we denote by Ω(g(n)) the set of functions. 

 

 g(n)) = {f(n): there exist positive constants c and 

      n0 such that 0 <= c*g(n) <= f(n) for all n >= n0}. 

 

5.5 CONCLUSION 
 
We have evaluated the CSP-tree algorithm on various application datasets to observe its 

performance and time complexity. We analysed the results in line with the evaluation 

metrics one by one.  The CSP-Tree dynamically achieves a considerable amount of 

reduced mining time. We have shown that despite additional insignificant tree 

restructuring cost, CSP-tree achieves a remarkable performance gain on an overall 

runtime.  The evaluation also shows that CSP Tree algorithm has been able to utilize the 

exploit the memory assigned to it compared to FP Tree. This means when provided a 

limited amount  space, it  can still function efficiently and effectively. 

Moreover, the CPS algorithm presents the fastest runtime performance in all cases. The 

algorithm finds the latest frequent patterns from the dataset, and  requires less time as 

compare to current algorithm in all cases. As per the threshold,  we compare our 

algorithm with existing algorithm and in all cases, it gives better performance for 

runtime. 

 

      

 



 

 99 99 

                                       CHAPTER SIX 

6.0 CONCLUSIONS AND FUTURE WORK  

Data stream being a continuous and changing sequence of data that constantly arrive 

at a system needs to be processed in near real-time.  The dissemination and challenges 

involved on the data stream phenomenon has necessitated the development of diverse 

stream mining algorithms. Several studies emphasized on different approaches 

proposed to overcome the challenge of storing and processing of fast continuous and 

uninterrupted streams of data. Traditional data mining techniques require multiple 

scans on a timestamp of data, but that cannot be viable or doable for stream data 

applications as they require a single scan of the data. 

 The mining of Frequent Patterns  from data streams poses many challenges.  

i) First, it is not feasible to keep all streaming data in the memory. 

ii) Second, mining algorithms need to process the arriving data in real time with one 

scan of data. 

 Iii) Third, the distribution of data varies over time, and hence analysis results need to 

be updated in real time.  

This study builds on existing stream mining approaches by addressing the issue of 

resource awareness involved in developing a compact dynamic tree for finding frequent 

item set. The aim of this research work is, therefore, to develop a dynamic compact 

prefix-tree for mining frequent patterns in stream data in various domains and 

implementing a stream mining algorithm. 

 



 

 100 100 

6.1 SUMMARY OF CONTRIBUTIONS 

The primary contribution of this paper is that we propose a unified approach to 

improving mining capability by considering data dependency extensively in data 

mining. We adopted the frequent pattern mining as the a model, and use a middleware 

propagation for efficient inference, so as to clean the data, to infer missing values, this 

generally improves the mining results from a model that ignores data dependency. This 

research may also contribute to data mining practice with our investigations on some 

real-life applications.  

We made the following contributions:  

1. The Dynamic Compact Stream Pattern tree algorithm could be used in solving 

the problems of mining which support single database scan;  

2. It could be used and applied in different industrial fields such as sensor network 

analysis and network monitoring system, where real time data are needed for 

processing;  

3. It will add knowledge to the existing knowledge of data science where data 

mining  algorithm is a requirement.  

4. We addressed the problem of memory adaptive over the mining of item-sets 

from data streams.  

5. We proposed an algorithm, called Dynamic Compact Stream Pattern (DCSP), to 

discover Frequent Pattern over the entire data streams. DCSP is based on a 

dynamically achieves frequency descending prefix tree structure with only a 

single-pass over the data by applying tree restructuring techniques such as branch 

sort method. 



 

 101 101 

Our experiments were conducted on both synthetic and real datasets. The results show 

an efficiency enhanced  performance without missing any sequential patterns from the 

data stream. 

6.2 RECOMMENDATION FOR FURTHER STUDIES & CONCLUSION  
 

 
DCSP had the advantages of not requiring further pruning threshold and its performance 

was relatively stable over a e range of low-probability-item population. In particular, it 

outperformed most tree mining algorithms in comparison when the dataset contained 

few low-probability items. We argued that the previous approaches and the CSP 

approach were orthogonal to each other. And there can be further improvements if two 

tree mining approaches could be combined leading to a generally best overall 

performance. 

 
This research elaborated on research challenges associated with data streams which 

emanated from real world publication as discussed in previous chapters. The discussed 

issues were illustrated by practical applications. The study of real-world problems 

mentioned in this research identified shortcomings of existing methodologies 

demonstrated previously unaddressed research challenges. 

It will be ideal for the researchers in data stream mining to take into account the 
following action points; 
 
 
. Considering the continuous availability of information by developing models that 

handle incomplete, and delayed feedback; 

. developing a systematic methodology for streamed preprocessing; 

. creating simpler models through multi-objective optimization criteria, which 

consider not only accuracy, but also computational resources, diagnostics, reactivity, 

interpretability. 



 

 102 102 

. developing online monitoring systems, ensuring reliability of any updates, and 

balancing the distribution of resources. 

 
Our research showed that , there are challenges in every step of the CSP algorithm 

process. As of recent, modeling  data streams has been viewed and approached as an 

extension of traditional methods. However, our discussion from the application 

examples show that in many cases it would be beneficial to step aside from building 

upon existing mining approaches, and start blank considering what is required in the 

stream setting. 

Primarily, there exists various tools and technologies for implementing data streams 

and there seems to be no data mining tool and technologies that offer key features 

required for now. While each tool and technology may have strengths and weaknesses, 

the choice depends on the aim and objective of the research and data made readily 

available. A decision in favour of the wrong technology may result in increased 

overhead cost and time. The provision should take into consideration factual analysis 

that comes along with the system requirement. Furthermore, earch efforts should also 

be directed to ways through which existing data streaming tools can be further improved 

and enhanced with technologies to provide key features such as scalability, integration, 

timeliness, consistency, erogeneity and incompleteness management. 

 

 

 

 
 
 
 



 

 103 103 

BIBLIOGRAPHY 
 
 
 
Aggarwal C (2009): On classification and segmentation of massive audio data 

streams. KnowledgeInformation System 20(2):137–156 
 
Adnan Idrisa, Muhammad Rizwana & AsifullahKhan (2012):Churn prediction in 

Telecom using Random Forest and PSO based data balancing in combination 

with various feature selection strategies; Comput Electr Eng, 

http://dx.doi.org/10.1016/j.compeleceng.2012.09.001 
 
Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer (2010); MOA: 

Massive online analysis. J. Mach. Learn. Res., 11:1601–1604, 
 
Anuj .S, Prabin, D., Panigrahi, K., (2011): “A Neural Network based Approach for 

Predicting Customer Churn in Cellular Network Services”, International 

Journal of Computer Applications; 27– No.11, 0975 – 8887. 
 
Ascarza, .E, Ebbes, .P, Netzer, .O and Danielson, .M (2016): Beyond the Target 
Customer:  

Social Effects of CRM Campaigns.  
Arasu, .A, Babcock, .B, Babu, .S, Datar, .D, Ito, .K, Nishizawa, .I, Rosenstein, J and 

J. Widom (2003). STREAM: The stanford stream data manager. ACM 

SIGMOD, Demo 
 
Babcock B, Babu S, Datar M, Motwani R,Widom J (2002) Models and issues in data 

stream systems.In:Proceedings of 21st ACM SIGMOD-SIGACT-SIGART 

symposium on principles of database systems(PODS’ 02), pp 1–16. 

 

Bifet A, Holmes G, Pfahhringer B, Kirkby R, Gavalda R (2009). New Ensemble 

Methods for Evolving Data Streams. In KDD ’09: Proceedings of the 15th 

ACM SIGKDD International conference on Knowledge Discovery and Data 

Mining, New York, NY, USA, ACM Press; pp. 139-148. 
 
Bifet,  Holmes.  G,  Kirkby,  R.,  and  Pfahringer,  B  (2010);  MOA:  Massive  online  
analysis.  J.  

Machine.Learning. Res., 11:1601–1604. 
 



 

 104 104 

Bifet,A.,Gavaldà,R (2008).:Miningadaptivelyfrequentclosedunlabeled rooted trees in 

data streams. In: Proceedings of the ACM International Conference on 

Knowledge Discovery and Data Mining, pp. 34–42. Las Vegas, USA 
 
Bingquan Huang, Mohand Tahar Kechadi & Brian Buckley (2012). Customers churn 

prediction in telecommunication; Expert Systems with Application. An 

International Journal Vol 39(1); Tarrytown, NY,USA,pg 1414-1425 
 
Borja, B., Bernardino, C., Alex, Ricard Gavald`a, David Manzano-Macho (2013): The 

Architecture of a Churn Prediction System Based on Stream Mining. 
 
Borgelt C., (2003)"Efficient Implementations of Apriori and Eclat," in 1st IEEE ICDM 

Workshop on Frequent Item Set, p. 9. 
 
 
 
Breiman, L. (2001) Machine Learning 45: 5. 
https://doi.org/10.1023/A:1010933404324. Kluwer 
 

Academic Publishers. ISSN: 0885-6125. 
 
Chakravarthy, S., and Jiang. Q (2009): Stream Data Processing: A Quality of Service 

Perspective: Modeling, Scheduling, Load Shedding, and Complex Event 

Processing Advances in Database System 36, DOI: 10.1007/978-0-387-71003-

7 1. 
 
Chandrasekharan, S, et al.2003 TelegraphCQ: Continuous dataflow processing for an 
uncertain world.  

CIDR. 
 
Charu C. Aggarwal (2007). DATA STREAMS: Models and Algorithms: Springer IBM, 
T. J. Watson 
 

Research Center Yorktown Heights, NY, USA, pp. 1-6, ISBN- 13: 978-0-387-
28759- 1. 

 
Chen Y., Guo J., Wang Y., Xiong Y., Zhu Y. (2007) Incremental Mining of Sequential 

Patterns Using Prefix Tree. In: Zhou ZH., Li H., Yang Q. (eds) Advances in 

Knowledge Discovery and Data Mining. PAKDD. Lecture Notes in Computer 

Science, vol 4426. Springer, Berlin, Heidelberg. 
 



 

 105 105 

Charikar M, Chen K, Farach-ColtonM(2002) Finding frequent items in data streams. 

In: Proceedings of 29th international colloquium on automata, languages and 

programming, pp 693–70. 

 

Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, Philip S. Yu (2003); Mining 

Frequent Patterns in Data Streams at Multiple Time Granularities; Data Mining: 

Next Generation Challenges and Future Directions, AAAI/MIT. 
 
Coussement Kristof, & Dirk Van den Poel (2008): Churn prediction in subscription 

services: An application of support vector machines while comparing two 

parameter-selection techniques. Expert Systems with Applications 34 313–327. 
 
Cortes, .C, Fisher, .K, Pregibon, .D and Rogers, .A (2000). Hancock: A language for 

extracting signatures from data streams. KDD, 9–17 
 
Cortec . C and Pregubon. D (2001): "SIgnature-Based Methods for Data Streams", 

Data Mining and Knowledge Discovery, Kluver Academic Publishers. (5) ; pp 

167 - 182 
 
David .H, Heikki M. & Padhraic S. (2001). “Principles of Data Mining”, ISBN: 

026208290 MIT Press, Cambridge, MA. 
 
Desamparados Blazquez, Josep Domenech (2016); Big Data sources and methods for 

social and economic analyses. Technological Forecasting & Social Change. 

Department of Economics and Social Sciences, Universitat Politècnica de 

València, Camí de Vera s/n., Valencia 46022, Spain. 
 
Fang, R. and Tuladhar, S. (2006). “Teaching Data Warehousing and Data Mining in a 

Graduate Program in Informa-tion Technology,” Journal of Com- puting 

Sciences in Colleges, Vol. 21, Issue 5, pp. 137-144. 
 
Gantz J, Reinsel D (2012). The digital universe in 2020: big data, bigger digital 
shadows, and biggest  

growth in the Far East. New York: IDC iView: IDC Analyse future. 
 
George. D and Shuqin, C (2014): A Hybrid Churn Prediction Model in Mobile 
Telecomunication 



 

 106 106 

 
Industry. International journal of e-Educatio, e-Management and e-Learning, 

(4) No 1, pp 55-60. 
 
Guha. S, Adam M, Nina M, Rajeev Motwani, Member, IEEE, and Liadan O’Callaghan 

(2003): Clustering Data Streams: Theory and Practice; IEEE Transactions on 

Knowledge and Data Engineering, VOL. 15, NO. 3, pg 515-525. 
 
Guha. S, Rajeev R & Kyuseok S (2000): ROCK: A ROBUST CLUSTERING 
ALGORITHM FOR 
 

CATEGORICAL ATTRIBUTES. Information Systems Vol. 25, No. 5, pp. 
345{366, 200}. 

 
 
 
 
Haiqing Li, Lang Wang (2017): A Variable Size Sliding Window Based Frequent 

Itemsets Mining Algorithm in Data Stream. College of College of Computer 
Science and Technology, Chongqing University of Posts and 
Telecommunications, Chongqing 400065, China. 

 
Haixun W, Wei F, Philip S. Yu, Jiawei Han (2003): Mining Concept-Drifting Data 

Streams Using Ensemble Classifiers; In Proceedings of the 9th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, KDD '03. 
pp. 226-235. DOI:10.1145/956750.956778. 

 
Hossein, A., Mostafa, S., and Mohammad T., (2014): “A Comparative Assessment of 

the Performance of Ensemble Learning in Customer Churn Prediction”; The 

International Arab Journal of Information Technology, (11)6, pp 599-606. 
 
Howard, R. (1988) “Decision Analysis: Practice and Promise.” Management Science 
34, 6: 679–695. 
 
 
 
Huang, b.Q , Kechadi, T.-M, Buckley, .B ,Kiernan .G , Keogh, .E , Rashid, T (2010):"A 

new feature set with new window techniques for customer churn prediction in 

land-line telecommunications", Expert Systems with Applications, 37, pp. 3657– 

3665. 
 



 

 107 107 

Intel IT (2012), IT Best Practices Business Intelligence Retrieved from 
http://www.intel.com/it/ 
 
Karp RM, Papadimitriou CH, Shenker S (2003) A simple algorithm for finding 

frequent elements in streams and bags. ACM Trans Database Syst, 28:51–

55. 
 
Keramati .A, Seyed M.S, and Ardabili (2011) “Churn analysis for an Iranian 

mobile operator”, Telecommunications Policy 35 344–356 
 
Kfihn, O., & Abecker, A. (1977). Corporate memories for knowledge management in 

industrial practice: Prospects and challenges. Journal of Universal Computer 

Science, 3(8) URL: http://www.iicm.edu/jucs-3-8/corporate-memories-for- 

knowledge. 
 
Khan, A.A, Jamwal, .S, and Sepehri, M.M. (2010): “Applying Data Mining to 

Customer Churn Prediction in an Internet Service Provider”, International 

Journal of Computer Applications; 9(7). 0975– 8887. 
 
Kifer, D., Ben-David, S., Gehrke, J (2004).: Detecting change in data streams. In: 

Proceedings of the International Conference on Very Large Data Bases, pp. 

180–191. Morgan Kaufmann, Toronto 

 
 
 
Kisioglu .P and Topcu .Y (2011) “Applying Bayesian Belief Network approach to 

customer churn analysis: A case study on the telecom industry of Turkey”, 

Expert Systems with Applications; 38, 7151–7157. 
 
Korn, F, Muthukrishnan, F & Wu,Y : Modeling skew in data streams. In Proc. ACM 
SIGMOD Int. 
 

Conf. on Management of Data, pages 181-192, 2006. 
 

Koutri, M., Avouris, N., & Daskalaki, S. (2004). Ch. A survey on web usage mining 
techniques for web-based adaptive hypermedia systems. 
 
 
Kristof Coussement, Dirk Van den Poel (2008): Improving customer attrition 

prediction by integrating emotions from client/company interaction emails and 



 

 108 108 

evaluating multiple classifiers. Ghent University, Faculty of Economics and 

Business Administration, Department of Marketing, Tweekerkenstraat 2, B-

9000 Ghent, Belgium; (36) pg 6127–6134 
 
Lavrac, N., Motoda, H., Fawcett, T., Holte, R., Langley, P. & Adriaans, P. (2004). 

Introduction: Lessons Learned from Data Mining Applications and 

Collaborative Problem Solving. Machine Learning 57(1-2): 13-34. 
 
Lin C, Chiu D,Wu Y, Chen A (2005) Mining frequent itemsets from data streams with 

a time- sensitive sliding window. In: Proceeding of the 2005 SIAM 

international conference on data mining (SDM’05), Newport Beach, pp 68–

79 
 
Leo Breiman Statistics Department University of California Berkeley, CA 94720 

 
 
 
Luan, J. (2002). Data mining, knowledge management in higher education, potential 
applications. In 
 
Workshop associate of institutional research international conference, Toronto, 1–18. 
 
Gurmeet Singh Manku and Rajeev Motwani; 2002; Approximate Frequency Counts 

over DataStreams; Int'l Conf. on Very Large Databases; 2. 
 
Mahnoosh K, and Mohammadreza, .K (2011): An Analytical Framework for Data 

Stream Mining Techniques based on challenges and requirements; 

International Journal of Engineering Science and Technology (IJEST), (3)3. 

pp 2508: ISSN : 0975-5462. 
 
Martens D., Van T., and Baesens B., (2009); “Decompositional Rule Extraction from 

Support Vector Machines by Active Learning,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 
 

21, no. 2, pp. 178-191. . 
 
Martin, O. (2012). Between the Ideal and the Ordeal: The Business of Data in 

Nigeria’s Corporate Competitiveness, ValueFronteira Limited,The Frontier 

Post, 3 
 



 

 109 109 

Masud, M. M., Al-Khateeb, K., Khan, L., Aggarwal, C., Gao, J., Han, J., and 

Thuraisingham, B. (2011). Detecting recurring and novel classes in concept-

drifting data streams. In ICDM, pp.1176-1181 
 
Metwally A, Agrawal D, El Abbadi A (2005) Efficient computation of frequent and 

top-k elementsin data streams. In: Proceeding of the 2005 international 

conference on database theory (ICDT’05), Edinburgh, UK, pp 398–412. 

 

Mozer. M.C. ; R. Wolniewicz ; D.B. Grimes ; E. Johnson ; H. Kaushansky (2000): 

Predicting subscriber dissatisfaction and improving retention in the wireless 

telecommunications industry. IEEE Transactions on Neural Networks:  
  
Owczarczuk, M. (2010) Churn Models for Prepaid Customers in the Cellular 

Telecommunication Industry Using Large Data Marts. Expert Systems with 

Applications, 37, 4710-4712. http://dx.doi.org/10.1016/j.eswa.2009.11.083 
 
Parveen, P., Evans, J., Thuraisingham, B., Hamlen, K., and Khan, L. (2011). Insider 

threat detection using stream mining and graph mining, Privacy, Security, Risk 

and Trust (PASSAT), IEEE Third International Conference on and 2011 IEEE 

Third International Conference on Social Computing (SocialCom), 1102–1110. 
 
Parveen, P., Evans, J., Thuraisingham, B., Hamlen, K., and Khan, L. (2011). Insider 

threat detection using stream mining and graph mining. In Proceedings of the 
3rd IEEE Conference on Privacy, Security, Risk and Trust (PASSAT) MIT, 
Boston, USA. (acceptance rate 8%) (Nominated for Best Paper Award). 

 
Parveen, P., McDaniel, N., Evans, J., Thuraisingham, B., Hamlen, K., and Khan, L. 

(2013). Evolving insider threat detection stream mining perspective. 

International Journal on Artificial Intelligence Tools (World Scientific 

Publishing) 22 (5), 1360013-1-1360013-24. 
 
Qian ZP, He Y, Su CZ et al (2013). TimeStream: Reliable stream computation in the 
cloud. In: Proc. 8th  

ACM European conference in computer system, EuroSys 2013. Prague: ACM 
Press;. p. 1–4 

 
Quinlan, J. (1986). 'Induction of Decision Trees'. Machine Learning, 1, 81-106. 



 

 110 110 

 
Rashid T.A. (2016) Convolutional Neural Networks based Method for Improving 

Facial Expression Recognition. In: Corchado Rodriguez J., Mitra S., Thampi 

S., El-Alfy ES. (eds) Intelligent Systems Technologies and Applications 2016. 

ISTA 2016. Advances in Intelligent Systems and Computing, vol 530. Springer, 

Cham 
 
Shim .B, Choi .K and Suh .Y (2012): “CRM strategies for a small-sized online 

shopping mall based on association rules and sequential patterns”, Expert 

Systems with Applications; 39, 7736– 7742. 
 
Srinivasan Parthasarathy, and Wei Li Mohammed Javeed Zaki, (1997) "A 

Localized Algorithm for Parallel Association Mining," in In 9th ACM Symp. 

Parallel Algorithms & Architectures. . 
 
Tsai, .C.H and Lu, Y.H (2009): Data Mining Techniques in Customer Churn Prediction; 

Recent Patents on Computer Science, Bentham Science Publishers, 3, 28-32. 

 

Vivek Bhambri, (2013). Effective use of Data Mining in Banking. International 

journal of engineering sciences & research, ISSN: 2277-9655 Scientific 

Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.85 TECHNOLOGY 
 
Umman Tuğba & Şimşek Gürsoy (2010): Customer churn analysis in 

telecommunication sector. Istanbul University Journal of the School of Business 

Administration Cilt/Vol:39, Sayı/No:135-49 ISSN: 1303-1732. 
 
Xie Yaya; Li, Xiu, Ngai, E.W.T. Ngai & Ying Weiyun (2009): Customer Churn 
Prediction Using Improved 
 

Balanced Random Forests, Expert Systems with Applications 36,: 5445–5449 
 
www.oracle.com 
 
Yoon Koehler & Ghobarah 2010: Prediction of advertisers Churn for Google AdWorks 
JSM 
 

Proceeding, American Statistical Association. 
 



 

 111 111 

Zhen-Yu Chen , Zhi-Ping Fan , Minghe Sun, "A hierarchical multiple kernel support 

vector machine for customer churn prediction using longitudinal behavioral 

data", European Journal of Operational Research, 223, 2012, 461–472 
 
Zorrilla, M. E., Menasalvas, E., Marin, D., Mora, E., & Segovia, J. (2005).Web usage 

mining project for improving web-based learning sites. In Web mining 

workshop, Catalun. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 



 

 112 112 

Time Complexities of Functions in the CSP Algorithm code 
 

CSP algorithm code is made up of seven functions/classes. To calculate the entire 

complexity of the code, we had to calculate the individual time complexities of the 

functions that make up the code, and then add them up. 

 
ndow Class 
 
 
m Pane import Pane 
 
 
ss Window: 
 
ef __init__(self, size, pane_size): 
 

self.size = size 
 

self.dataStartMark = 0 
 

self.slideSize = 3 + size // pane_size 
 

self.dataEndMark = size * pane_size 
 

self.trackTable = {} 
 

self.frequentItem = {} 
 

self.sentinel = {} 
 

self.paneSize = pane_size 
 

self.container = [] 
 

self.sentinel["count"] = 0 
 
 
 
e Complexity: N(N +1) +2 [ O(N2) ] 

 
insert_pane(self, pane): 
 

if len(self.container) < self.size: 
 

self.container.append(pane) 
 

for trans in pane.transactions for item in trans: 
 



 

 113 113 

self.trackTable[item] = self.trackTable.get(item, 0) + 

pane.transactions[trans] #self.tree. 
 
e Complexity: N +1 [ O(N) ] 

 
f fill(self, panes): 
 

for pane in panes: 
 

self.container.append(pane) 
 
 
 
e Complexity: N + 15 [ O(N) ] 

 
f slide(self, data_set): 
 

self.pop_oldest_pane() 
 

count = 0 
 

pane = None 
 

rem_data = data_set[self.sentinel["count"]:] 
 
# Supplied data_set has changed totally 
 
# if self.sentinel["data"] != data_set[self.sentinel["count"]]: 
 
# return 
 
 
 
# The dataset remain is not slideable 
 

if len(rem_data) < self.paneSize * self.slideSize: 
 

return 
 
 
 

for x in rem_data: 
 

if count >= self.paneSize * self.slideSize: 
 

self.sentinel["data"] = x 
 

if pane is not None: 
 



 

 114 114 

self.insert_pane(pane) 
 

break 
 

if count % self.paneSize == 0: 
if pane is not None: 

 
self.insert_pane(pane) 

 
pane = Pane(self.paneSize, (count // self.paneSize) + 1) 

 
pane.insert_transaction(frozenset(x)) 

 
count += 1 

 
self.sentinel["count"] += 1 

 
self.dataStartMark += self.slideSize * self.paneSize 

 
 
 
e Complexity: N + 4 [ O(N) ] 

 
f pop_oldest_pane(self): 
 

#for i in range(self.slideSize): 
 
# pane = self.container[i].remove_transaction_from_tree(tree) 
 
# self.container.pop(i) 
 

self.dataEndMark += self.slideSize * self.paneSize 
 

return 
 
table Class 
 
 
 
m bisect import bisect 
 
m Queue import Queue 
 
 
 
ss Sortable(Queue): 
 
ef __init__(self, f=lambda x: x): 
 

self.A = [] 



 

 115 115 

 
self.f = f 

 
 
 
e Complexity: 1 [ O(1) ] 

 
ef append(self, item): 
 

bisect.insort(self.A, (self.f(item), item)) 
e Complexity: 1 [ O(1) ] 

 
ef __len__(self): 
 

return len(self.A) 
 
 
 
e Complexity: 2 [ O(2) ] 

 
f pop(self): 
 

if self.order == min: 
 

return self.A.pop(0)[1] 
 

else: 
 

return self.A.pop()[1] 
 
 
 
e Complexity: 1 [ O(1) ] 

 
ef __contains__(self, item): 
 

return any(item == pair[1] for pair in self.A) 
 
e Complexity: N + 2 [ O(N) ] 

 
ef __getitem__(self, key): 
 

for _, item in self.A: 
 

if item == key: 
 

return item 
 
e Complexity: N + 2 [ O(N) ] 

 



 

 116 116 

ef __delitem__(self, key): 
 

for i, (value, item) in enumerate(self.A): 
 

if item == key: 
 

self.A.pop(i) 
 
 
 
eue Class 
 
ss Queue: 
 
e Complexity: 1 [ O(1) ] 

 
ef __init__(self):raise NotImplementedError 
 
 
 
e Complexity: N + 1 [ O(N) ] 

 
ef extend(self, items): 
 

for item in items: 
 

self.append(item) 
 
ne Class 
 
ss Pane: 
 
 
e Complexity: 3 [ O(3) ] 

 
ef __init__(self, size, age): 
 

self.size = size 
 

self.age = age 
 

self.transactions = {} 
 
 
 
e Complexity: 1 [ O(1) ] 

 
insert_transaction(self, transaction): 
 

self.transactions[frozenset(transaction)] = 1 
 



 

 117 117 

 
 
e Complexity: N + 1 [ O(N) ] 

 
fill(self, transactions): 
 

for transaction in transactions: 
 

self.insert_transaction(transaction) 
 
 
 
e Complexity: 1 [ O(1) ] 

 
f remove_transaction_from_tree(self, tree): 
 

pass 
 
de Class 
 
ss Node:  
""A node in a search tree. Contains a pointer to the parent (the nodehat this is a successor 
of) and to the actual state for this node. """ 
 
 
 
e Complexity: 11 [ O(11) ] 

 
__init__(self, value, support=0, parent=None, tail=False, pane=None, window=None, 
pane_counter=None): 
 

"""Create a search tree Node, derived from a parent by an action.""" 
 

self.parent = parent 
 

self.support = support 
 

self.value = value 
 

self.is_tail = tail 
 

self.pane = pane 
 

self.age = 0 
 

self.depth = 0 
 

self.pane_counter = pane_counter 
 

self.children = {} 



 

 118 118 

 
if parent is not None: 

 
self.depth = parent.depth + 1 

 
 
 
e Complexity: 1 [ O(1) ] 

 
f inc(self, num_occur): 
 

self.support += num_occur 
 
 
 
e Complexity: 1 [ O(1) ] 

 
ef dec(self, num_dec): 
 

self.support -= num_dec 
 
 
 
e Complexity: N + 5 [ O(N) ] 

 
ef processed_according_to(self, i_list): 
 

for child in self.children.items(): 
 
if len(child[1].children) == 0:if i_list[child[1].value][0] > i_list[self.value][0]: 
 

return False 
 

else: 
 

child[1].processed_according_to(i_list) 
 
return True 

 
e Complexity: 3 [ O(3) ] 
 
add_child(self, node): 
 
node.parent = self 

 
if node.value in self.children: 

 
self.children[node.value].support += node.support 

 
else: 



 

 119 119 

 
self.children[node.value] = node 

 
 
 
e Complexity: N + 5 [ O(N) ] 
 
search(self, node): 
 
for child in self.children: 

 
if len(child.children) == 0: 

 
if child == node: 

 
return True 

 
else: 

 
child.search(node) 

 
return False 

 
e Complexity: N + 4 [ O(N) ] 
 
tails(self): 
 
ret = [] 

 
for child in self.children: 

 
if len(child.children) == 0: 

 
ret.append(child) 

 
else: 
ret.extend(child.tails()) 

 
return ret 

 
e Complexity: 8 [ O(8) ] 
 
swap(self, node): 
 
if node in self.children: 

 
self.children.pop(node.value) 

 
node.parent = self.parent 

 



 

 120 120 

self.parent = node 
 

node.children = self.children 
 
if node == self.parent: 

 
self.parent = node.parent 

 
node.children.pop(self.value) 

 
self.children[node.value] = node 

 
node.parent = self 

 
e Complexity: N + 2 [ O(N) ] 
 
disp(self, ind=1): 
 
print (' '*ind, self.value, ' ', self.support) 

 
for child in self.children.values(): 

 
child.disp(ind+1) 

 
e Complexity: 1 [ O(1) ] 
 
__repr__(self): 
 
return "<Node {}>".format(self.disp()) 

 
 
 
e Complexity: 1 [ O(1) ] 
 
__lt__(self, node): 
 
return self.support < node.support 

 
e Complexity: 1 [ O(1) ] 
 
__gt__(self, node): 
 
return self.support > node.support 
e Complexity: 1 [ O(1) ] 

 
solution(self): 
 

"""Return the sequence of actions to go from the root to this node.""" 
 

return [node.action for node in self.path()[1:]] 



 

 121 121 

 
e Complexity: 5 [ O(5) ] 

 
path(self): 
 

"""Return a list of nodes forming the path from the root to this node.""" 
 

node, path_back = self, [] 
 

while node: 
 

path_back.append(node) 
 

node = node.parent 
 

return list(reversed(path_back)) 
 
 
 
We went for a queue of nodes in breadth_first_search or a star_search to have no 
duplicated states, so we treat nodes with the same state as equal.  

 
e Complexity: 1 [ O(1) ] 

 
__eq__(self, other): 
 

return isinstance(other, Node) and self.value == other.value 
 
e Complexity: 1 [ O(1) ] 

 
__hash__(self): 
 

return hash(self.value) 
 
S Tree Class 
 
m Node import Node 
 
m Sortable import Sortable 
 
 
 
ss CPSTree: 
e Complexity: 10 [ O(10) ] 
 
__init__(self, window_size, pane_size, slide_size): 
 
self.nodeList = Sortable() 

 
self.slideSize = slide_size 



 

 122 122 

 
self.paneSize = pane_size 

 
self.fp_tree = None 

 
self.transactions = {} 

 
self.trackTable = {} 

 
self.frequentItem = {} 

 
self.dataSet = {} 

 
self.treeSet = [] 

 
self.windowSize = window_size 

 
e Complexity: (N + 3)(N + 2) + 3 [ O(N2) ] 
 
create_cps_tree(self, data_set, freq_item, track_table): 
 
self.trackTable = track_table 

 
self.frequentItem = freq_item 

 
tree = Node("Null Node", 1) 

 
for tranSet, count in data_set.items(): 

 
local_d = {} 

 
for item in tranSet: 

 
if item in freq_item: 

 
local_d[item] = track_table[item][0] 

 
if len(local_d) > 0: 

 
ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: 

p[1], reverse=True)] self.add_to_tree(ordered_items, tree, count) # 

populate tree with ordered freq itemset 
 
self.fp_tree = tree 

 
return self.restructure_tree() 

 
 



 

 123 123 

 
e Complexity: N(N + 3) + 1 [ O(N2) ] 
f restructure_tree(self): 
 

i_sort = {v[0]: v[1] for v in sorted(self.trackTable.items(), key=lambda p: 

p[1], reverse=True)} for child in self.fp_tree.children.items(): 
 

for branch in child[1].children.items(): 
 

print(branch[1].processed_according_to(i_sort)) 
 

if not branch[1].processed_according_to(i_sort): 
 

self.process_branch(branch, i_sort) 
 

else: 
 

self.sort_path(branch) 
 

return self.fp_tree 
 
e Complexity: N + 8 [ O(N) ] 

 
process_branch(self, branch: Node, i_sort: dict): 
 
 
 
for tail 
in 
branch.t
ails(): 
 

parent = tail.parent 
 

if i_sort[tail.value] > i_sort[parent.value]: 
 

if tail.support < parent.support: 
 
# Attaching new node to the parent parent joining_node = Node(parent.value, 

tail.support) parent.parent.add_child(joining_node) 
 
# Reset support counts 
 

parent.support -= tail.support 
 



 

 124 124 

# Attaching tail to the new node joining_node.add_child(tail) del 

(parent.children[tail.name]) 
 
# Swap the nodes 
 

joining_node.swap(tail) 
 

else: 
 

parent.swap(tail) 
e Complexity: 1 [ O(1) ] 

 
f sort_path(self, branch): 
 

pass 
 
 
 
e Complexity: 3 [ O(3) ] 

 
add_to_tree(self, items, in_tree, count): 
 

if items[0] in in_tree.children: 
 

in_tree.children[items[0]].inc(count) 
 

else: 
 

in_tree.children[items[0]] = Node(items[0], count, in_tree) 
 

if len(items) > 1: 
 

self.add_to_tree(items[1::], in_tree.children[items[0]], count) 
 
e Complexity: 3 [ O(3) ] 

 
remove_from_tree(self, items, count): 
 

if items[0] in self.fp_tree.children: 
 

self.fp_tree.children[items[0]].dec(count) 
 

else: 
 

self.fp_tree.children[items[0]] = Node(items[0], count, self.fp_tree) 
 

if len(items) > 1: 
 

self.add_to_tree(items[1::], self.fp_tree.children[items[0]], count) 



 

 125 125 

 
 
 
e Complexity: 2 [ O(2) ] 

 
updateTrackTable(self, node_to_update, target_node): 
 

while (node_to_update.nodeLink != None): 
 

node_to_update = node_to_update.nodeLink 
 

node_to_update.nodeLink = target_node 
 
 
 
pMain2 CLass 
 
import csv 
import sys 
 
 
 
from CPSTree import CPSTree 
 
from Sortable import Sortable 
 
from Window import Window 
 
import time 
 
 
 
ss AppMain2: # 
 
e Complexity: 17 [ O(17) ] 

 
__init__(self, window_size, pane_size, slide_size, data_set, min_sup=1):
 #Definatio
n of class AppMain 
 
ibutes 
 

self.nodeList = Sortable() 
 

self.dataSet = data_set 
 

self.localData = {} # Dictionary localData 
 

self.slideSize = slide_size 
 



 

 126 126 

self.paneSize = pane_size 
 

self.min_sup = min_sup 
 

self.transactions = {} #Dictionary transactions 
 

self.trackTable = {} #Dictionary trackTable 
 

self.frequentItem = {} #Dictionary frequentItem 
 

run_time2 = [] 
 

run_time = [] 
 

self.dataSet = data_set 
 

self.windowSize = window_size 
 

self.window = Window(self.windowSize, self.paneSize) 
 

self.prepare_dataset() 
 

self.cps_tree = CPSTree(window_size, pane_size, slide_size) 
 

self.tree = self.cps_tree.create_cps_tree(self.localData, 

self.frequentItem, self.trackTable) return 

e Complexity: N(N + 1) + (N + 11) + 3 [ O(N2) ] 

 
prepare_dataset(self): #Definition of method prepare_dataset 
 

self.localData = 

self.create_init_set(self.dataSet[self.window.dataStartMark:self.window.dataEn

dMark]) for trans in self.localData: # first pass counts frequency of occurance 
 

for item in trans: 
 

self.trackTable[item] = self.trackTable.get(item, 0) + self.localData[trans] #Adds 
up all similar items in 

 
aset 
 

start = time.time() 
 



 

 127 127 

for k in list(self.trackTable): #Converts self.trackTable 

from a dictionary to list run_time = [] 
 

run_time2 = [] 
 

if self.trackTable[k] < self.min_sup: #allows only items who is equal or 

greater than the minimum port to be in the list. 
 

del (self.trackTable[k]) #Deletes 

items less than min support else: 
 

self.trackTable[k] = [self.trackTable[k], None] 
 
 
 

run_time2.append(k) 
 

end = time.time() 
 

run_time2 = end - start 
 

run_time.append(run_time2) 
 

run_time2 = [] 
 
 
 

self.frequentItem = set(self.trackTable.keys()) #Creates a set of frequent item key 
wihout their values 

 
# ranger = -len(self.dataSet) if len(self.dataSet) < self.paneSize * self.windowSize 
else 
 
# -self.paneSize * self.windowSize 
 

print(self.trackTable) 
 

print(self.frequentItem) 
 

print(run_time) 
 
@staticmethod 

 
e Complexity: N + 4 [ O(N) ] 

 
ef create_init_set(data_set): 
 



 

 128 128 

ret_dict = {} 
 

for trans in data_set: 
 

if frozenset(trans) in ret_dict.keys(): 
 

ret_dict[frozenset(trans)] += 1 
 

else: 
 

ret_dict[frozenset(trans)] = 1 
 

return ret_dict 
 
e Complexity: 5 [ O(5) ] 

 
reload_dataset(self, data_set): 
 
# If dataset has not changed since the last loading if len(self.dataSet) == len(data_set): 

return 
 
# new_data = data_set[len(self.dataSet):] 
 
# If new data is not up to what the algorithm can slide through 
 

if self.slideSize * self.paneSize > len(data_set[len(self.dataSet):]): 
 

return 
 

self.dataSet = data_set 
 

self.refresh() 
 
e Complexity: 5 [ O(5) ] 

 
refresh(self): 
 

# data are no more available in the dataset to slide into 
 

if self.slideSize * self.paneSize > len(self.dataSet[self.window.dataEndMark + 1:]): 
 

return 
 

else: 
 

self.window.slide(self.dataSet) 
self.trackTable = {} 

 
self.frequentItem = {} 



 

 129 129 

 
self.prepare_dataset() 

 
self.tree = self.cps_tree.create_cps_tree(self.localData, self.frequentItem, 
self.trackTable) 

 
 
 
e Complexity: 5 [ O(3) ] 
ef walk_tree(self, node, prefix_path): # ascends from leaf node to root if node.parent 
is not None:  

prefix_path.append(node.value) 
 

self.walk_tree(node.parent, prefix_path) 
 
 
 
e Complexity: 6 [ O(6) ] 

 
ef prefix_path(self, node): # treeNode comes 

from header table condPats = {} 
 

while node is not None: 
 

prefix_path = [] 
 

self.walk_tree(node, prefix_path) 
 

if len(prefix_path) > 1: 
 

condPats[frozenset(prefix_path[

1:])] = node.support node = 

node.nodeLink 
 

return condPats 
 
 
 
_name__ == '__main__': 
 
ata_one = [['r', 'z', 'h', 'j', 'p'], 
 

['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 
 

['y', 'r', 'x', 'z', 'q', 't', 'p'], 
 

['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 



 

 130 130 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 
 
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']] 

 
ata_two = [['r', 'z', 'h', 'j', 'p'], 
 

['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 
 

['y', 'r', 'x', 'z', 'q', 't', 'p'], 
 

['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 
 

['y', 'r', 'x', 'z', 'q', 't', 'p'], 
 

['y', 'r', 'x', 'z', 'q', 't', 'p'], 



 

 131 131 

 
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 
 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['y', 'z', 'x', 'e', 'q', 's', 't', 'm'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['z'], 

 
['r', 'x', 'n', 'o', 's'], 

 
['y', 'r', 'x', 'z', 'q', 't', 'p'], 

 
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']] 



 

 132 132 

 
pp_main = AppMain2(3, 10, 10, data_one, 1) 
 
print(app_main.tree) 
 
app_main.refresh() 
 
print(app_main.tree) 
 
app_main.refresh() 
 
print(app_main.tree) 
 
app_main.refresh() 
 
print(app_main.tree) 
 
app_main.reload_dataset(data_two) 
 
app_main.refresh() 
 
print(app_main.tree) 
 
input = pandas.read_csv(sys.argv[1]) 

 
column = sys.argv[2] 

 
duram = input.column 

 
e Complexity: N + 48 [ O(N) ] 

 
 
 
in Program 
 
ort pandas as pd 
 
m AppMain import AppMain 
 
ort random as random 
 
ort time 
 
ort dis 
 
ort math, sys 
 
m sys import getsizeof 
 
m memory_profiler import profile 
 



 

 133 133 

 
 
t = time.time() 
 
profile 
 
 
 
dow_size = int(input('Input the size of your window: ')) 
 
e_size = int(input('Input the size of your pane: ')) 
 
_sup = int(input('Input the minimum support: ')) 
 
 
 
= pd.read_csv("C:/Users/Silas/Desktop/phd project/moviedata.csv") 
 
 
 
 
.dropna(axis=0) # Drop rows 

with missing values a_set = [] 

a_set2 = [] 

 
s_length = [] 
 
_of_pane = [] 
 
_of_trans = [] 
 
s_size = [] 
 
 
 
nt = 0; 
 
of_trans = 0; 
 
 
 
of_items_in_a_transaction = random.randrange(100, 200, 2) 
 
 
 



 

 134 134 

his Part of the program produces the 

transactions from the he dataset''' 

 
 
line in file['Movie']: 
 
ount = count + 1 
 
ata_set2.append(line) 
 
f count % no_of_items_in_a_transaction == 0: 
 

no_of_items_in_a_transaction = random.randrange(100, 200, 2) 
 

data_set.append(data_set2) 
 

data_set.append(',') 
 

trans_length.append(len(data_set2)) 
 

trans_size.append(sys.getsizeof(data_set2)) 
 

data_set2 = [] 
 

no_of_trans = no_of_trans + 1 
 
 
 
of_trans_in_pane = 0; 
 
 
 
of_trans_in_pane = len(data_set)//(pane_size * window_size) 
 
e_size = 0; 
 
e_size = len(data_set)//(window_size) 
 
nt ('The number of items are :' , count) 
 
nt ('The number of items in a transaction are :' , no_of_items_in_a_transaction) 
 
nt ('The average number of transactions in a pane are :' , no_of_trans_in_pane) 
 
nt ('The number of transactions are :' , no_of_trans) 
 
nt (trans_length) 
 
nt (size_of_trans) 



 

 135 135 

 
 
 
x_trans_length = max(trans_length) 
 
 
 
nt('The maximum transactions length is:' , max_trans_length) 
 
 
 
_trans_length = min(trans_length) 
 
 
 
nt('The minimum transactions length is:' , min_trans_length) 
 
 
 
rage_translength = (count//no_of_trans) 
 
 
 
nt('The average transaction length is :', average_translength) 
 
nt('ATL/I x 100 = ', (average_translength/count)*100) 
 
nt('The datasize of panes is :', sys.getsizeof(data_set[:no_of_trans_in_pane])) 
 
nt('The datasize of data_set is :', sys.getsizeof(data_set)) 
 
int('The datasize of transactions is :', sys.getsizeof(data_set)) 
 
 
 
_main = AppMain(window_size, pane_size, 3 , data_set, min_sup) 
 
nt(app_main.tree) 
 
= time.time() nt(end - start) 

s.dis(AppMain) 
 
p_main.refresh() 
 
int(app_main.tree) 
 
p_main.refresh() 
 
int(app_main.tree) 



 

 136 136 

 
p_main.refresh() 
 
int(app_main.tree) 
 
 
 
I A ) Answers to some questions on the result 

 
Question 1: Reason for using a particular min_sup? 
 
 
ng minimum criteria of 1000 means that the only items that are counted as frequent 

item must have a frequency ater than or equal to the minimum support. More of the 

items on the database are having a frequency above 0. 

 
Question 2: Reason for converting them to transactions? 
 
 

CSP algorithm reads patterns that are present in transactions. Therefore, the dataset 

are converted from mere of items to a list of transactions. 

 
 Question 3: Why random selection? 
 
 
effectiveness of the algorithm is independent of whether it is time-based or random 
selection. 

 
 
 Question 4: How effective is the algorithm? 
 
 
can determine the effectiveness of the CPS algorithm by running it over [different sets 
of databases]. 

 
 
 Question 5: How the CPS algorithm works? 
 
 
, 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z', 'y', 'x', 'w', 'v', 

'u', 't', 's'], ['y', 'r', 'x', 'z', 't', 'p'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['y', 

'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], 

['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], 'x', 'n', 'o', 's'], 



 

 137 137 

['y', 'r', 'x', 'z', 'q', 't', 'p'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['y', 'z', 'x', 'e', 

'q', 's', 't', ]. 

 
dataset above consists of 23 transactions. The main CPS code is ‘app_main = 

AppMain(2, 12, 1, data_one, 1)’. s line of code uses a window containing 2 panes, with 

each pane containing 12 transactions. This covers theire 23 transactions present in 

data_one. Using a minimum support of 1, it captures all the elements present in a_one 

i.e {'y', 'm', 'v', 'n', 'h', 'o', 's', 'p', 'w', 'z', 't', 'q', 'x', 'u', 'r', 'e', 'j'}as the ‘most frequent 

item’. 

 
Question 6: Give a simple analysis on the movie dataset? 
 
 

table A: Further analysis on movie datasets 
 
 

Dataset 
#Trans. 
(T) 

#Items 
(I) 

MaxTL 
(MTL) 

AvgTL 
(ATL) 

(ATL/I)/ 
100 

      

Movie Data 
170
66 

36645
3 38 

2
1 

0.0057061
2 

      
 
 
 

From the table A above, since the value of (ATL/I x 100) is less than 10 for movie 

dataset, then the dataset is rse. 

 
The movie dataset has 637 different locations. It has 13 genres with comedy with the 

highest frequency of 101701 animation with the lowest frequency of 87. It is rated from 

0.0 to 6.0 with 3.5 having the highest frequency of 45and 6.0 having the least frequency 

of 5. 

 
The Explanation of Movie Data Analysis Result 
 

e 1: 



 

 138 138 

 
 

window Size: 2 
 

number of Pane: 10 
 
 minimum support: 1000 

 
number of items in movie dataset: 366453 

 
number of items in a transaction: 36 

 
number of transactions in a pane: 1703 

 
number of transactions: 17033 

 
    maximum transactions length is: 38 
 
   minimum transactions length is: 2 
 

average transaction length is : 2L/I x 100 = 0.005730612111239368 (Since the value 
of (ATL/I x 100) is less than 10 for movie dataset, then dataset is sparse)  

a size of panes is : 6848Kb 
 
asize of data_set is : 142696Kb 
 
a minimum support of 1000, here are the movies whose frequency is more than 1000 

and that form a pattern(s) ny of the transaction set. The number after the movie title is 

the frequency of the movie. 

 
ere Comes the Boom': [1014, None], 'Seven Psychopaths': [1251, None], 'Hobbit; The 
An Unexpected Journey': 
 
47, None], 'Silver Linings Playbook': [2340, None], 'Jack Reacher': [3793, None], 
'Impossible; The': [2774, 
 
ne], 'Pitch Perfect': [2817, None], 'A Good Day to Die Hard': [1382, None], 'I Give It 
A Year': [1515, None], 
 
2 Dalmatians (Disney)': [1738, None], ',': [17033, None], 'Up (2009) (Disney)': [1438, 
None], 'Despicable Me 
 
ctureBox)': [5131, None], 'Brother Bear (Disney)': [1702, None], 'Your Highness 
(PictureBox)': [1447, None], 



 

 139 139 

 
st And The Furious; The (PictureBox)': [1213, None], 'Snatch (2000) (Sony 
Pictures)_BBFC': [1937, None], 
 
antis: The Lost Empire (Disney)': [2068, None], 'Wreck it Ralph': [1341, None], 'Cars 
2 (Disney)': [1940, 
 
ne], 'Emperors New Groove; The (Disney)': [1558, None], 'Eagle; The (PictureBox)': 
[4506, None], 'Seed Of 
 
ucky (PictureBox)': [1306, None], 'Life Of Pi': [3000, None], 'Brother Bear 2 (Disney)': 
[1272, None], 'Quartet': 
 
56, None], 'Argo': [1865, None], '13 Ghosts (2001) (Sony Pictures)_BBFC': [2322, 
None], 'Rise of the 
 
ardians': [1193, None], 'Django Unchained': [2372, None], 'Flight (Before
 DVD!)': [1110, None], 
 
ventureland (Miramax)_BBFC': [1074, None], 'Stand By Me (Sony Pictures)_BBFC': 
[1001, None], 'Bone 
 
lector; The (Sony Pictures)_BBFC': [1677, None], '2 Fast 2 Furious (PictureBox)': 
[1503, None], 'Bourne 
 
imatum;  The  (PictureBox)':  [1494,  None],  'Few  Good  Men;  A  (Sony  
Pictures)_BBFC':  [1164,  None], 
 
nfessions Of A Shopaholic (Disney)': [2327, None], 'Aristocats; The (Disney)': [1974, 
None], 'Surrogates 
 
sney)': [1152, None], 'Hollow Man (Sony Pictures)_BBFC': [1454,
 None], 'Far And AwayctureBox)_BBFC': [1711, None], 'Don 
Quixote (PictureBox)': [1104, None], 'Accepted (PictureBox)[#]BBFC': 
 
37, None], 'Saint Sinner (PictureBox)': [1507, None], 'Bad Boys (1995) (Sony 
Pictures)_BBFC': [1427, None], 
 
bsters (PictureBox)': [1922, None], 'G-Force (Disney)': [1486, None], '_test:Twins 
Effect; The (PictureBox)': 
 
36, None], 'Desperado (1995) (Sony Pictures)_BBFC': [1297, None],
 'Sabrina The Teenage Witch 
 
ctureBox)_BBFC': [1272, None], 'Lady And The Tramp (Disney)': [1069,
 None], 'U-Turn (Sony 
 
tures)_BBFC': [1687, None], 'Hook (Sony Pictures)_BBFC': [2105, None],
 'Matilda (1996) (Sony 
 



 

 140 140 

tures)_BBFC':  [3395,  None],  'Dumbo  (Disney)':  [1144,  None],  'Snow  White:  The  
Fairest  Of  Them  All 
ctureBox)': [1177, None], 'Wall-E (Disney)': [1282, None], 'Gambit':
 [1078, None], 'Scary Movie 2 
 
ramax)_BBFC': [1033, None], 'Charlie St. Cloud (PictureBox)_BBFC': [2774, None], 
'The Story Of Us 
 
arnerFilm)_BBFC': [1580, None], 'Ali G Indahouse (PictureBox)_BBFC': [1062, 
None], 'Lego: The Adventures 
 
Clutch Powers (PictureBox)_BBFC': [1064, None], 'Baby Mama (PictureBox)': [1089, 
None], 'Borrowers; The 
 
ctureBox)': [1177, None], 'Swan Princess; The (Sony Pictures)_BBFC': [1710, None], 
'Chronicles Of Narnia; 
 
: Prince Caspian (Disney)': [1104, None], 'Kids Are All Right; The (PictureBox)': 

[1445, None], 'Adventures Rocky And Bullwinkle (PictureBox)[#]BBFC': [1894, 

None], 'Proposal; The (2009) (Disney)': [1441, None], sketeer; The 

(Miramax)_BBFC': [1117, None], 'Flashbacks Of A Fool (Disney)': [1209, None], 

'Principles Of t; The (Film4oD)': [1081, None], 'Memoirs Of A Geisha (Disney)': 

[1499, None], 'Gone Baby Gone ramax)_BBFC': [1040, None], 'Wild Hogs (Disney)': 

[1068, None], 'Hot Fuzz (PictureBox)[#]BBFC': [1611, ne], 'Skeleton Key; The (05) 

(PictureBox)_BBFC': [1431, None], 'High School Musical 3: Senior Year (Disney)': 

28, None], 'Johnny English (PictureBox)[#]BBFC': [1346, None], 'Spy Kids 

(Miramax)_BBFC': [1535, None]} 

 
 
 
 
reck it Ralph', 'Flashbacks Of A Fool (Disney)', 'Saint Sinner (PictureBox)', 'Cars 2 

(Disney)', 'Few Good Men; Sony Pictures)_BBFC', 'Brother Bear (Disney)', 'Hobbit; 

The An Unexpected Journey', 'Lego: The Adventures Clutch  Powers  

(PictureBox)_BBFC',  'Gambit',  'Brother  Bear  2  (Disney)',  'Bad  Boys  (1995)  (Sony 



 

 141 141 

tures)_BBFC', 'Your Highness (PictureBox)', 'Don Quixote (PictureBox)', 'Dumbo 

(Disney)', ',', 'Baby Mama ctureBox)', 'Scary Movie 2 (Miramax)_BBFC', 'Gone Baby 

Gone (Miramax)_BBFC', 'Mobsters (PictureBox)', ventureland  (Miramax)_BBFC',  

'Kids  Are  All  Right;  The  (PictureBox)',  '13  Ghosts  (2001)  (Sony tures)_BBFC', 

'Atlantis: The Lost Empire (Disney)', 'Up (2009) (Disney)', 'Accepted 

(PictureBox)[#]BBFC', ok (Sony Pictures)_BBFC', 'Lady And The Tramp (Disney)', 

'Life Of Pi', 'Confessions Of A Shopaholic (Disney)', istocats;  The  (Disney)',  'Rise  of  

the  Guardians',  'Borrowers;  The  (PictureBox)',  'Ali  G  Indahouse ctureBox)_BBFC', 

'Sabrina The Teenage Witch (PictureBox)_BBFC', 'Principles Of Lust; The (Film4oD)', 

tilda  (1996)  (Sony  Pictures)_BBFC',  'Spy  Kids  (Miramax)_BBFC',  'Hot  Fuzz  

(PictureBox)[#]BBFC', oposal; The (2009) (Disney)', 'Johnny English 

(PictureBox)[#]BBFC', 'Adventures Of Rocky And Bullwinkle ctureBox)[#]BBFC', 

'Bourne Ultimatum; The (PictureBox)', 'Snatch (2000) (Sony Pictures)_BBFC', 

'Quartet', gh School Musical 3: Senior Year (Disney)', 'Here Comes the Boom', 'Charlie 

St. Cloud (PictureBox)_BBFC', Fast  2  Furious  (PictureBox)',  'Musketeer;  The  

(Miramax)_BBFC',  'Despicable  Me  (PictureBox)',  'Seve’ chopaths', 'Emperors New 

Groove; The (Disney)', 'Surrogates (Disney)', 'Eagle; The (PictureBox)', 'Memoirs A 

Geisha (Disney)', 'Silver Linings Playbook', 'Far And Away (PictureBox)_BBFC', 

'_test:Twins Effect; The ctureBox)', 'Jack Reacher', 'Hollow Man (Sony 

Pictures)_BBFC', 'Fast And The Furious; The (PictureBox)', ne Collector; The (Sony 

Pictures)_BBFC', 'Desperado (1995) (Sony Pictures)_BBFC', 'G-Force (Disney)', ch 

Perfect', 'Argo', 'U-Turn (Sony Pictures)_BBFC', '102 Dalmatians (Disney)', 'Snow 

White: The Fairest Of m All (PictureBox)', 'Stand By Me (Sony Pictures)_BBFC', 'Wild 

Hogs (Disney)', 'Skeleton Key; The (05) ctureBox)_BBFC', 'Impossible; The', 'Django 



 

 142 142 

Unchained', 'Wall-E (Disney)', 'Flight (Before DVD!)', 'A Good y to Die Hard', 

'Chronicles Of Narnia; The: Prince Caspian (Disney)', 'Swan Princess; The (Sony 

tures)_BBFC', 'The Story Of Us (WarnerFilm)_BBFC', 'I Give It A Year', 'Seed Of 

Chucky (PictureBox)'} 

 
1 The frequent data in the dataset (Insight into frequent pattern) 
 
ck Reacher 1816, Hobbit; The An Unexpected Journey  647, Pitch Perfect 89, 
Impossible; The 28, 
Silver 
 
ings Playbook 7, 102 Dalmatians (Disney) 1, I Give It A Year 1, A Good Day 
to Die Hard 1, Seven 
 
chopaths 1, Here Comes the Boom 1} 
 
The explanation to this is amongst the list of transactions, the most frequent sequential 

order of movie watched is ollowed. Jack Reacher appears 1st 1816 times but it has a 

total frequency of 4355 in the entire movie dataset. bbit; The An Unexpected Journey 

appears 2nd after Jack Reacher 647 times but it has a total frequency of 4309 he entire 

movie dataset. Pitch Perfect appears in 3rd position after Hobbit; The An Unexpected 

Journey appears times but has a total frequency of 5399 in the entire movie dataset. 

Impossible; The appears 4th position after ch Perfect 28 times but has a total frequency 

of 3169 in the entire movie dataset. Silver Linings Playbook appears position after 

Impossible; The 7 times but has a total frequency of 54 in the entire movie dataset. 102 

Dalmatians sney) appears 6th position after Silver Linings Playbook 1 time but has a 

total frequency of 1790 in the entire vie dataset. I Give It A Year appears 7th position 

after Silver Linings Playbook 1 time but it has a total frequency 2603 in the entire movie 

dataset. A Good Day to Die Hard appear 8th position after I Give It A Year 1 time but a 

total frequency of 1511 in the entire movie dataset. Seven Psychopaths appears 9th 

position after A Good Day Die Hard 1 time but has a total frequency of 1349 in the 

entire movie dataset. Here Comes the Boom appears 

position after Seven Psychopaths 1 time but has a total frequency of 1801 in the entire 
movie dataset. 
 



 

 143 143 

 
 


