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Abstract: This study investigates the spatial heteroge-
neity in the maximum monthly rainfall amounts reported
by stations in Ireland from January 2018 to December
2020. The heterogeneity is modeled by the Bayesian
normal mixture model with different ranks. The selection
of the best model or the degree of heterogeneity is imple-
mented using four criteria which are the modified Akaike
information criterion, the modified Bayesian information
criterion, the deviance information criterion, and the
widely applicable information criterion. The estimation
and model selection process is implemented using the
Gibbs sampling. The results show that the maximum
monthly rainfall amounts are accommodated in two and
three components. The goodness of fit for the selected
models is checked using the graphical plots including
the probability density function and cumulative distribu-
tion function. This article also contributes via the spatial
determination of return level or rainfall amounts at risk
with different return periods using the prediction intervals
constructed from the posterior predictive distribution.

Keywords: rainfall amounts, Bayesian mixture modeling,
cumulative distribution, prediction interval, posterior pre-
dictive distribution

1 Introduction

Rainwater, also called precipitation, is a natural feature
of the earth’s weather system. Air currents in the atmo-
sphere bring evaporated water from the ocean and the
earth’s surface into the sky. The evaporated liquid con-
denses in the cold air, forming moisture-filled rain clouds
[1]. Rain water’s most well-known and most important
effect is providing water to drink. According to the United
States Geological Survey, rainwater seeps into the ground
in a process called infiltration. Some of the water seeps
deep beneath the top layers of soil where it fills up the
space between subsurface rocks and becomes ground-
water, also called the water table. Less than 2% of the
earth’s water is groundwater, but it provides 30% of our
freshwater. Without rain water’s continued replenish-
ment of the water table, potable water would become
scarcer than it already is in ref. [2]. Furthermore, many
researchers demonstrated the impact of heavy rainfall
on floods [3–5]. Therefore, the analysis of precipitation
quantities on a certain area aims to give an overall visual-
ization or prior information to evaluate the risk of some
natural disasters such as droughts, floods, landslides,
and so in ref. [6].

Many researchers have used different analysis methods
to analyze the rainfall trend. Meneghini et al. [7] used dif-
ferent statistical methods such as the area-time integral
(ATI) method to estimate the average rainfall over a large
space. Arvind et al. [8] used different analysis methods on
the Annual and Monthly rainfall for Musiri Region; they
concluded that Gumbel distribution is the best type. Panda
and Sahu [9] used the Mann–Kendall test as a statistical
method and Sen’s slope estimator to examine and analyze
the seasonal rainfall over the state of Odisha in India. Their
results showed a relatively maximum amount of rainfall in
monsoonal months. Nyatuame et al. [10] used linear regres-
sion analysis as a statistical method for annual andmonthly
rainfall. They stated an insignificant increasing trend in annual
mean rainfall data among the Volta Region and a significant
trend in mean monthly rainfall. Asfaw et al. [11] inspected the
change of rainfall and temperature in north-central Ethiopia
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using gridded monthly precipitation data. The Mann–Ken-
dall was used to detect the time series trend. Praveen et al.
[12] analyzed and forecasted rainfall changed in India. They
used Pettitt and Mann–Kendall tests as analysis methods.
However, this group of studies did not take into account the
variation in data.

This study assumes that the maximum rainfall quan-
tities follow the normal distribution assuming that rains
are distributed equally throughout Ireland. However, this
assumption is invalid due to variation or fluctuation in
rainfall amounts, leading to a phenomenon called the
heterogeneity of the data. Identifying spatial hetero-
geneity of rainfall can give a valuable indicator for the
analytical studies and government planning to detect
the factors linked to various causes to the low or height
in the rain falling. For this reason, the statistical mod-
eling method called the mixture model with a finite
number of components was proposed to accommodate the
heterogeneity in data. The task of finite mixture models is
to capture unobserved heterogeneity in the population by
assuming that the population consists of K homogeneous
subgroups [13]. However, identifying the number of homo-
geneous subgroups K or the rank of model forms is more
challenging. Several criteria have been addressed in the
literature to determine the model’s rank under both the
frequentist and the Bayesian settings. As in this article,
the Bayesian framework focused on estimating the model
parameters, four well-known model selection criteria
derived under the Bayesian principle. These criteria are
the modified Akaike information criterion (AIC) [14], the
modified Bayesian information criterion (BIC) [15], the
deviance information criterion (DIC) [16], and the widely
applicable information criterion (WAIC) [17]. An approach
was followed to fit a set of candidate models to the data
and select the best one. In other words, in this research,
the assumption that the number of the model components
is fixed and unknown and the best model is determined by
one of our four proposed criteria via fitting several candi-
date mixture models with different components. Despite
that, another approach called the reversible jump Markov
chain Monte Carlo sampling [18] can be applied to select
the appropriate number of components. However, this
latter approach has drawbacks when the Markov chain
moves between mixture models with different classes [13].

This article also determines the spatial return level or
rainfall amounts at risk with different return periods
using the prediction intervals constructed from the pos-
terior predictive distribution. This latter can be consid-
ered as a newly developed alternative approach to the
confidence intervals adopted by several kinds of litera-
ture to identify the rainfall amounts at risk [4,6].

This article is classified as follows. Section 2 intro-
duces the article’s methodology, including the model’s
construction, estimation, and election. Section 3 includes
a description of the data under study. The results and
discussion are shown in Section 4. Finally, Section 5 sum-
marizes the important conclusions of this article.

2 Methodology

This section introduced the building of the model and
estimation of the model parameters under the Bayesian
principle. After that, the best model to fit the maximum
was selected. Each station’s monthly rainfall quantity is
reported under study using model selection criteria such
as AIC, BIC, DIC, and WAIC. In addition, the goodness of
fit was also checked.

2.1 Model construction and Bayesian
analysis

Let us assume that the study region is divided into m
stations, and let yi represent the maximum monthly rain-
fall quantity reported by ith station, = …i n1, 2, , . To take
into account the heterogeneity in the data of rainfall
quantities, those data follow a mixture of univariate
Gaussian distribution:

( ∣ ) ( ∣ )∑=

=

wk μ σ w N μ σy yPr , , , , ,
j

k

j j j j
2

1

2 (1)

where k is the number of components of the model (that
can be viewed as levels of monthly rainfall quantity),

( )= …w w w w, , , k1 2 is the vector of probabilities asso-
ciated with the components of the model, with ∑ =

=

w 1j
k

j1
and ≥w 0j , and ( ∣ )N y .i represent the mixed Gaussian prob-
ability density function (PDF) which is defined as
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where μj and σj
2 are the mean and variance of jth mixture

of the Gaussian distribution, respectively. The mixture
models can be analytically easier by including latent vari-
ables in their formation as this latter makes it more useful
for the purpose of interpretation and numerical computa-
tions. For a mixture with a certain number of components,
the model can be described by inserting n independent
discrete variables, …z z z, , , n1 2 , with the multinomial
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distribution ( ∣ )= =μ σ wz j K wPr , , ,i j
2 , for = …j K1, 2, , .

Given ( )= …z z zz , , , n1 2 , equation (1) can be written as
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which is called the complete-data likelihood function.
The role of latent variable, zi, is to assign the observation
yi to one of the mixture components. By taking the loga-
rithm for equation (3), we obtain:
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The log-likelihood function in equation (4) can be approxi-
mated over the posterior distribution. For example, given
( )( ) ( ) ( )
ℓ ℓ … ℓ, , , M0 1 computed over a full Monte Carlo Markov
chain (MCMC) run, obtaining the estimated log-likelihood
by post-processing the posterior outcome:
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To complete the Bayesian analysis for the model, we have
to define the prior and posterior distributions for all the
model parameters. For this purpose, Algorithm 1, given
by ref. [19], is used to implement the sampling process
using one of the MCMC approaches that is called Gibbs
sampler.

Algorithm 1: Gibbs sampler for K-component normal
mixture model

1. Initialization: Choose ( )wj
0 , ( )μj

0 and
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2 0 , = …j K1, 2, , .
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where ηj, ζj, aj, bj, and δj are known hyper-parameters,

= …j K1, 2, , , and they are commonly given non-infor-
mative hyper-priors or flat values [20]. For instance, the
inverse Gamma with parameters =a 0.001 and =b 0.001
and thus amean of / =a b 1 and a variance of / =a b 1,0002

can give diffuse values of this form. The prior of the mean
parameter can be assigned flat values from a Normal dis-
tribution with a shape parameter, =η 0, and a scale para-
meter, =ζ 0.001, which has a large variance equal to 1,000.
Theweight parameter, π, is given a Dirichlet prior with non-
informative value, =δ 1j , = …j K1, 2, , .

2.2 Model selection criteria

These first three sections introduce four criteria for choosing
the number of components in Gaussian mixture models in
Bayesian settings. In the last section, a graphitic display
method to evaluate the goodness of fitness of the model is
shown.

2.2.1 Akaike information and Bayesian information
criteria

Two well-known criteria modified were introduced under
the Bayesian principle, which are the AIC and BIC pro-
posed by Kadhem et al. [21]. These criteria depend on the
deviance and penality term. From equation (5), the deviance
can be defined as twice the negative log likelihood:

( ) { ( ∣ )}= − ℓμ σ w μ σ wD y z, , 2 ˆ , , , ,2 2 (6)

where the deviance above is approximated over MCMC
samples as explained in equation (5). The penality term
is computed based on the free parameters of the model
as: =

−h 3 K 1 [22]. The AIC and BIC take the deviance as a
measure of model fit and penalizes it for the number of
parameters in the model. Then, AIC and BIC are given as
follows:

( )

( ) ( )
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= +
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μ σ w

D h
D h n

AIC , , 2 ,
BIC , , log ,

2

2 (7)

where n is the sample size.
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2.2.2 DIC

Another criterion proposed in this article is the DIC. Eight
versions of this criterion were introduced by Celeux et al.
[23]. They recommended the version that is based on the
complete-data likelihood. In this article, we apply this
version which is given by:
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with its effect number of parameters, p DIC , defined as
follows:
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where ( )μ zˆ , ( )σ zˆ 2 , and ( )w zˆ are the complete-data pos-
terior modes of the parameters μ σ, 2, and w, respectively,
which are computed for each samples from the pos-
terior ( ∣ )μ σ wp z y, , ,2 .

2.2.3 WAIC

The last criterion proposed in this article is the WAIC.
This criterion is fully Bayesian and it is computed based
on the so-called integrated pointwise predictive density
(ilppd). For a Gaussian mixture distribution, the ilppd
can be defined as follows:
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where ( )
( )μz
m
it

m ,
( )
( )σ z
m2

i
m , and ( )
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m
i

m represent the mth sample
drawn in Gibbs sampler. To complete the definition of
the WAIC, Gelman et al. [20] proposed adding a correc-
tion term or the so-called effect number of parameters
p WAIC , to avoid the bias. This number is based on com-
puting the variance of individual terms in the ilppd,
which is defined as follows:
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The WAIC then is constructed as follows:

= − + pWAIC 2ilppd 2 .Y WAIĈ (12)

2.2.4 Graphical display method

In this research, the cumulative distribution function
(CDF) is used as one of the graphical display methods
to reinforce the correct model chosen by the model
selection criteria above. The CDF plot is implemented
to visualize the fitness of model distributions where it is
monotonically increasing between the limits from 0 to 1.
The CDF of a Gaussian mixture with K components can be
given as

( ) ( ) ( ) ( )= + + …+F x w F x w F x w F x .K K1 1 2 2 (13)

2.3 Analysis of rainfall amounts at risk

In this section, the so-called prediction intervals that are
being constructed from the posterior predictive distribu-
tion were introduced [20] to analyze the extreme amounts
of rainfall. The predicted values can be used as a good-
ness of fit approach to prediction accuracy of a statistical
model. The limits of prediction interval can be con-
structed by the lower prediction limit, LPI ( ∗y ), and upper
prediction limit, UPI ( ∗y ), where ∗y represent the pre-
dicted data. In such cases, the interval [LPI ( ∗y ), UPI
( ∗y )] is termed as the prediction interval and has a pre-
diction coefficient of (1 − p)100%. By introducing the
prediction interval, the range that T-year rainfall takes
can be theoretically estimated and also becomes possible
to estimate the swing of T-year probability hydrological
quantities in flood control measures for a T-year prob-
ability scale. This makes it possible to interpret the
record-breaking heavy rainfall mentioned above as a
phenomenon within the prediction interval. In other
words, the prediction interval can be a tool to evaluate
the return period of heavy rainfall.

In this research, the prediction interval is constructed as
follows. Given the estimation of the model parameters sam-
pling through an MCMC, ( )( ) ( ) ( )

= …w μ σ m M, , ; 1, 2, ,j
m

j
m

j
m2

and observed infections data, ( )= …y y yy , , , n1 2 , for each
region i at the time t, the PPD for predicted infections, ∗yi ;

= …i n1, 2, , of the normal mixture model can be defined as
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where ( ∣ )μ σ w z yNormal , , ,post
2 represents the joint com-

plete posterior distribution. Given samples of the relative
risk parameter, ( )λjt

m , and latent variables, ( )z m , drawn
from an MCMC run, the predictive data of a Poisson mix-
ture model can be approximated as

( ) ( ) ( )
( ) ( )( )
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∗ μ σ

i n j K

y ~ Normal , ;

1, 2, , ; 1, 2, , .
i

m m m
z z

2
ijt
m

ij
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Hence, the prediction interval can be formulated as follows:

±

+

∗ cσy ˆ ,i h h (16)

where σ̂h is an estimate of the standard deviation of the
h-step forecast distribution and c is the multiplier that
includes a range of coverage probabilities assuming a
normal forecast distribution.

Given that the return period can be calculated as
follows. Let us assume that X is the variable that equals
to or greater than an incident of magnitude xT occurring
once in T years. In a given year, the probability of occur-
rence of incident X , ( )≥X xPr , is expressed as:

( )≥ =X x
T

Pr 1 , (17)

( )
=

− ≥

T
X x

1
1 Pr

. (18)

Wilks [6] pointed out that the amounts of maximum
monthly rainfall with the 50-year or 100-year return per-
iods cannot be directly calculated from the data set used
here, but have to be extrapolated from the 98th and 99th
percentiles of the fitted distribution, respectively, i.e.,
[ ]− =

− −1 0.98 50year 1 years and[ ]− =

− −1 0.99 100year 1 years.
On this basis, we can compute the return periods based on
the prediction intervals.

3 Data description

Ireland is an island in North western Europe in the North
Atlantic Ocean with 84,421 km2 (land; 98.2%, water;
1.8%). The coordinates are ′ ′

∘ ∘53 20.65 N6 16.06 W. It lies
on the European continental shelf, part of the Eurasian
Plate. Low lowlands and low mountainous beaches char-
acterize it. Corran Tuathail, at 1,041 m above sea level, is
the highest summit. The western coast has a rough shore-
line with many islands, peninsulas, headlands, and bays.
The Shannon River is Ireland’s longest river, flowing south
from County Cavan in Ulster to the Atlantic Ocean. Along
Ireland’s rivers, there are several big lakes, the greatest of
which being Lough Neagh: 392 km2. More than 134,600 ha

Table 1: Geographic characteristics of the stations under study

No. Stations Latitude (N) Longitude (E) Elevation (m)

1 Ballyhaise 52.69 −8.918 15
2 Shannon

Airport
51.847 −8.486 155

3 Cork Airport 51.793 −8.244 40
4 Roches Point 51.576 −9.428 21
5 Sherkin

Island
52.164 −8.264 46

6 Moore Park 54.494 −8.243 33
7 Finner Camp 55.372 −7.339 20
8 Malin Head 53.248 −6.241 71
9 Dublin

Airport
53.364 −6.35 48

10 Phoenix Park 53.289 −8.786 40
11 Athenry 53.326 −9.901 21
12 Mace Head 53.306 −6.439 91
13 Casement 51.948 −10.241 24
14 Valentia

Observatory
54.051 −7.31 78

15 Belmullet 54.228 −10.007 9
16 Claremorris 53.711 −8.993 68
17 Knock

Airport
53.906 −8.817 201

18 Dunsany 53.516 −6.66 83
19 Newport

Furnace
53.922 −9.572 22

20 Gurteen 53.053 −8.009 75
21 Markree

Castle
54.175 −8.456 34

22 Mullingar 53.537 −7.362 101
23 Johnstown

Castle
52.298 −6.497 62

24 Oak Park 52.861 −6.915 62
25 Mount Dillon 53.727 −7.981 39

Figure 1: The maximum values of rainfall amounts for all stations
over period from January 2018 to December 2020.
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(19.5% of the total area) were devoted to growing crops; 6
and 1.5% of the agricultural area were used to grow cer-
eals, and root and green crops, respectively. Over half of
the agricultural production is exported. The income was
increased from 314£ million in 1972 to 1920£ million in
1995 and 1.1£ billion in 2001. Ireland’s climate is mild,
moist, and changeable, with abundant rainfall and a
lack of temperature extremes. Ireland’s climate is defined
as a temperate oceanic climate. In general, Iceland has
warm summers and pleasant winters, as compared to,
say, Newfoundland, which is significantly warmer at the
same latitude and located downwind of the Atlantic Ocean.
It is also hotter than marine climates around the same lati-
tude, such as the Pacific Northwest, due to the heat released
by the Atlantic overturning circulation, which includes
the North Atlantic Current and Gulf Stream. In comparison,
Dublin is ∘9 warmer in the winter than St. John’s,
Newfoundland, and ∘4 warmer than Seattle, Washington
[23]. Ireland’s climate is not vulnerable to extreme weather
phenomena, such as tornadoes, and storms are uncommon.
Throughout the winter, the North Atlantic Current keeps
the Irish coast clear of ice. Ireland, on the other hand, is

vulnerable to storms heading eastward from the North
Atlantic. The prevailing wind is from the southwest, and it
breaks on the west coast’s steep mountains. As a result, off
the west coast of County Kerry, Valentia Island receives
nearly twice as much rain as Dublin, on the east coast
(1,400 vs 762)mm, demonstrating the importance of rainfall
in Western Ireland. The coldest months are January and
February, with average daily air temperatures ranging
from four to ∘7 C. July and August are the hottest months,
with average daily air temperatures of 14 to ∘16 C. In July
and August, daily maximum temperatures range from 17 to

∘18 along the coast to 19 to ∘20 inland. May and June are
the months with the highest sunshine, with an average of
5–7 h per day. Extreme weather occurrences do occur,
notwithstanding their rarity in comparison to other Eur-
opean countries. Atlantic depressions can bring gusts of
up to 160 km/h to Western coastal regions in December,
January, and February. Thunderstorms are common
during the summer months, especially in late July and
early August. This article investigates the rainfall pattern
via analyzing the monthly maximum rainfall quantities
reported by the stations on Island. The data on the rainfall

Table 2: Results of the best model selected by all or most selection criteria for every station

No. of components Best model

No. Stations 1 2 3 4 5 6 (Selection %)

1 Ballyhaise — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
2 Shannon Airport — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
3 Cork Airport — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
4 Roches Point — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
5 Sherkin Island — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
6 Moore Park — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
7 Finner Camp — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
8 Malin Head — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
9 Dublin Airport — AIC BIC, DIC, WAIC — — — K 3= (75%)
10 Phoenix Park — AIC BIC, DIC, WAIC — — — K 3= (75%)
11 Athenry — AIC BIC, DIC, WAIC — — — K 3= (75%)
12 Mace Head — AIC BIC, DIC, WAIC — — — K 3= (75%)
13 Casement — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
14 Valentia Observatory — AIC, BIC, DIC WAIC — — — K 2= (75%)
15 Belmullet — AIC, BIC, DIC WAIC — — — K 2= (75%)
16 Claremorris — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
17 Knock Airport — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
18 Dunsany — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
19 Newport Furnace — AIC BIC, DIC, WAIC — — — K 3= (75%)
20 Gurteen — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
21 Markree Castle — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
22 Mullingar — AIC BIC, DIC, WAIC — — — K 3= (75%)
23 Johnstown Castle — AIC BIC, DIC, WAIC — — — K 3= (75%)
24 Oak Park — AIC, BIC, DIC WAIC — — — K 2= (75%)
25 Mount Dillon — AIC, BIC, DIC, WAIC — — — — K 2= (100%)
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are obtained fromMet’ Eireann, Ireland’s National Meteor-
ological Service, via web site (https://www.met.ie/climate/
available-data/monthly-data#top) as shown in Table 1. The
maximum values of rainfall amounts for all stations are
presented from January 2018 to December 2020, as shown
in Figure 1.

4 Results and discussion

For every station, the aim is to select the best normal
mixture fitted to the monthly maximum rainfall amounts
for return periods of 50 and 100 years expressed with
prediction interval periods derived from a posterior pre-
dictive distribution. Table 2 shows the results of model
selection, where the maximum rainfall amounts reported
by the stations follow models either with two or three
components as produced by the proposed criteria. Note
that model with =K 1 (standard normal distribution) is
not selected by all model selection criteria suggesting
that the data suffer from the heterogeneity. The model

estimation results for the models selected by the criteria
are shown in Table 3, where the estimated weights,
means, and variances represent the estimated parameters
of the models selected by our proposed criteria. In addi-
tion, we provide the CDF and PDF plots for the model
selection, in Figures 2 and 3, respectively, which appear
as adequate goodness of fit. It can be noted from Table 2
that most of the rainfall data reported by stations (18
stations) are modeled by models with =K 2, except seven
stations such as Dublin Airport, Phoenix Park, Athenry,
Mace Head, Newport Furnace, Mullingar, and Johnstown
Castle are modeled by mixture model with =K 3.

For the results of determination of the return periods,
Figures 2 and 3 show the estimation of risk levels for
a certain incident, with including a plot of the actual
maximum monthly rainfall amounts in red color (as
threshold), which are represented by the heights of rain-
fall levels of 50 and 100 year return periods with 95%
prediction intervals. It can see from Figure 4 that there
is a stable in rainfall amounts over 50 years return period
(all values of mid-point of prediction intervals under the
actual data), but there is a notable increase in the rainfall

Table 3: Results of the best model selected by the model selection criteria

Weights Means Variances

Station w1 w2 w3 μ1 μ2 μ3 σ1
2 σ2

2 σ3
2

Ballyhaise 0.54 0.45 — 61.81 121.91 — 21.76 41.31 —
Shannon Airport 0.78 0.21 — 70.90 170.42 — 29.79 39.32 —
Cork Airport 0.71 0.28 — 82.57 177.62 — 33.55 17.44 —
Roches Point 0.55 0.44 — 60.97 133.86 — 23.21 35.791 —
Sherkin Island 0.55 0.44 — 68.29 141.36 — 26.44 33.82 —
Moore Park 0.56 0.43 — 57.26 134.74 — 20.07 26.65 —
Finner Camp 0.63 0.36 — 78.24 164.70 — 27.02 43.46 —
Malin Head 0.51 0.48 — 73.48 126.48 — 26.05 39.82 —
Dublin Airport 0.49 0.41 0.09 34.51 84.73 140.68 15.49 11.53 23.37
Phoenix Park 0.47 0.44 0.08 33.27 80.30 139.25 15.74 12.67 14.69
Athenry 0.62 0.32 0.05 76.90 148.94 272.88 22.99 24.85 24.48
Mace Head 0.31 0.19 0.49 46.24 160.97 97.68 16.11 10.36 16.74
Casement 0.36 0.63 — 30.60 84.88 — 12.52 29.65 —
Valentia Observatory 0.57 0.42 — 101.25 216.01 — 37.68 30.20 —
Belmullet 0.24 0.75 — 47.43 133.60 — 16.93 42.71 —
Claremorris 0.75 0.24 — 98.21 182.56 — 39.09 54.85 —
Knock Airport 0.64 0.35 — 103.33 186.36 — 36.37 39.62 —
Dunsany 0.79 0.20 — 58.02 139.22 — 25.10 17.04 —
Newport Furnace 0.264 0.43 0.30 152.88 244.76 73.52 14.69 44.09 25.04
Gurteen 0.61 0.38 — 61.67 106.88 — 26.86 48.08 —
Markree Castle 0.83 0.16 — 89.19 202.55 — 30.27 24.39 —
Mullingar 0.47 0.29 0.24 47.01 134.91 86.86 15.53 28.73 11.59
Johnstown Castle 0.36 0.42 0.22 41.83 100.52 166.24 15.48 18.02 19.36
Oak Park 0.56 0.44 — 44.25 108.62 — 20.91 29.38 —
Mount Dillon 0.68 0.32 — 76.63 132.65 — 27.12 52.12 —
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Figure 2: The CDF plots for the model selected by the proposed model selection criteria for each station.
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Figure 3: The best-fitting model for each station.
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amounts at the risk over 100 years return period as
shown in Figure 5. More specifically, the stations: Cork
Airport (215 mm), Roches Point (214 mm), Sherkin Island
(214 mm), Morre Park (213 mm), Malin Head (214 mm),
Dublin Airport (209 mm), Phoenix Park (210 mm), Mace
Head (212 mm), Casement (210 mm), Dunsany (210 mm),
Mullingar (214 mm), Johnstown Castle (212 mm) and
Oak Park (215 mm), show high rainfall amounts on the
long term.

5 Conclusion

In this study, we used a finite mixture of Gaussian dis-
tributions to model the heterogeneity in monthly rainfall
quantities in Ireland based on databases taken from 25
stations. Several tools were used to assess the Bayesian
normal mixture models fitted to the data under study. The
model selection criteria such as AIC, BIC, DIC, and WAIC
were used to select the best model fit to the data. In

Figure 4: The maximum monthly rainfall amounts (measured in millimeter (mm)) for each station vs the predicted values represented by
95% prediction intervals for return period 50 years.

Figure 5: The maximum monthly rainfall amounts (measured in millimeter (mm)) for each station vs the predicted values represented by
95% prediction intervals for return period 100 years.
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addition, we used graphical approaches such as the CDF
and PDF to assess both the selected models. Most of the
data reported by stations were modeled under a normal
mixture model with two components, while the rest
stations were modeled with only three components. We
conclude that data that have been modeled by two com-
ponents are more homogeneous than those modeled by
three components. This article also shows the computa-
tion of return periods, for 50 and 100 years, for each
station using the prediction intervals deriving from the
posterior predictive distribution of the models selected by
the model selection criteria. The diagnostic of high rain-
fall rates in the long term can help the related systems to
put the plans that save lives and possessions. The advan-
tage of the methodology used in this article is to reveal
the heterogeneity in data by modeling it over several
homogeneous groups. On the other hand, the disadvan-
tage of this methodology is that it could not taken into
account the hidden trend in increasing and decreasing in
the maximum rates of rainfall. This latter can be modeled
by so-called the hidden Markov mixture model which
represents our future interest to study this phenomenon.
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