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TALK ABSTRACT 

 

 

In physics, the discrete nonlinear Schrödinger (dNLS) equation plays a key role in modelling wave 
propagation in periodic optical systems [Christodoulides and Joseph, Opt. Lett., vol. 13(9), 794–796 

(1988)].  Architectures typically involve light confined to a set of waveguide channels with nearest-

neighbour coupling and whose dielectric response has a local cubic nonlinearity.  While the widely-
used dNLS model is non-integrable, it possesses an integrable counterpart––the Ablowitz-Ladik (AL) 

equation [J. Math. Phys. vol. 17(6), 1011–1018 (1976)]––which is often of greater interest in applied 

mathematics research.  The price paid for integrability is a nonlinear response that remains cubic but 

becomes nonlocal in a way that defies straightforward physical interpretations.  In this presentation, 
our interest lies with the Salerno equation [Phys. Rev. A, vol. 46(11), 6856–6859 (1992)], which 

facilitates a simple linear interpolation between the dNLS and AL regimes. 

 
Here, we consider the Salerno equation in the context of spontaneous pattern formation involving a 

discrete waveguide array and a ring-cavity arrangement.  Feedback from the cavity––which comprises 

external periodic pumping, coupling-mirror losses, and mistuning relative to the pump wave––is 
accommodated via a single ‘lumped’ boundary condition applied on the input plane.  The stationary 

plane-wave solutions of the cavity are detailed, and a linearized perturbation theory deployed to 

predict their robustness against small-amplitude periodic modulations.  In this way, the most-unstable 

spatial frequency (hence the dominant length-scale of any emergent static patterns) can be identified 
from the threshold instability spectrum.  The dNLS and AL spectra appear as special cases, and the 

long-wavelength asymptotics of all three models are consistent with the continuum nonlinear 

Schrödinger equation. 
 

Extensive simulations of discrete cavities with a single transverse dimension have been carried out, 

with initialization corresponding to a plane-wave stationary state perturbed by low-level coloured 

noise.  Those numerical calculations demonstrate the emergence of static cosine-type patterns, in good 
agreement with theory.  We have also extended our considerations to capture a second transverse 

dimension in the Salerno equation.  Simulations have yielded static hexagon patterns that appear to be 

stable across time. 
 

We conclude with a foray into mean-field theory, which is typically used to model the space-time 

dynamics of a longitudinally-averaged cavity field.  The resulting Salerno equation is of the discrete 
Ginzburg-Landau class, where cavity effects appear as additional forcing terms rather than through 

repeated application of a formal boundary condition.  Results from pattern formation in both one and 

two transverse dimensions will be detailed. 
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