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Abstract

B-Diketones are 1,3-dicarbonyl compounds containing two carbonyl compounds separated
by a methylene carbon. This functional diketo group is found in natural sources and can be
synthesised in the laboratory. They serve as a synthetic intermediate to medicinally important
compounds such as flavonoids. The aim of this thesis is focused on the synthesis and cytotoxic
evaluation of novel series of B-diketones bearing different substituents. 30 novel B-diketones
and 19 benzoyl thiourea analogues have been synthesised, characterised, and tested for
activity on 6 different cancer cell lines. All the B-diketones synthesised appeared as the enolic
tautomer, with chemical shifts ranging between 16.25 ppm — 17.15 ppm. The synthesised
compounds were tested on lung adenocarcinoma (A549), human bone osteosarcoma cells
(U20S) and three different human myeloid leukaemia cells: K-562, MOLT-4 and CCRF-CEM.
An MTT-assay was carried out on the compounds to enable determine their activity. Among
the cell lines tested with both series of B-diketones (BDKT) and benzoylthiourea (BTU), the
A204 cells have shown greater sensitivity at a lower ICsos at micromolar range than the
remaining cell lines. Unlike the other cell lines, the ICso values of the BDKT series ranged from
3.61 uMto 23.82 uM. 31, 32 and 34 and 30 have the best activity with I1Cs0s 3.61 uM, 3.63 uM
and 3.78 uM and 3.87 respectively. Whereas A204 compounds treated BTU series showed
lower ICsp values ranging from 3.39 uM to 9.36 uM, suggesting greater activity than the BDKT
series. The most active compounds (with lower ICso values < 4 uM) among the BTU series
include 55 (3.39 uM), 56 (3.65 uM), 61 (3.75 uM) 60 (3.76 uM), and 53 (3.97). Molecular
docking result analysis of the active compounds: 31, 32 and 34 from the BDKT series have
revealed that the presence of halogen groups in the molecules is contributing to its activity.
Also, of significant activity in 31,32 and 33 is the bonding interaction with cys241 amino acid
residue located in the tubulin binding site. This interaction site is common for most

microtubule inhibitors such as colchicine, combretastatin-A4 and curcumins.
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Chapter One

1.0 Introduction:

Cancer rises as an uncontrollable growth which occurs in cells and can be recognized by rapid
structural and functional alteration in cell development that varies from normal cell activities
(Kesikli and Guler, 2015). Cancer is the term used to describe this condition, derived from the
Latin for “crab” having claws that enables it to move to neighbouring tissues in a living body
(McKinnell et al., 2006). Cell proliferation and continuity is generally controlled by the genes
in the form of DNA, which resides in the nucleus of a cells. These genes (constituting
characters and traits) are transferred by parents to the offspring in a well-organised pattern.
Cancer emerges as a result of uncontrollable growth and abnormal behaviour of these cells
in the body (Kierszenbaum and Tres, 2016). Main causes of all cancers known today results
from the damage in DNA, which result in abnormal cell division (Vogelstein and Kinzler, 2004).
Clinically, cancer can be either a benign neoplasm (Greek, neos, new; plasma, things formed)
or a malignant neoplasm. The benign cancer is a massive growth of abnormal cells in a
localized region within the body, which gradually moves into the lymphatic vessels.
Sometimes, a tumour can grow and cause blockage by compression of adjacent organ (e.g.
tumour that affects the brain stem) or it can lead to obstruction of the intestine
(Kierszenbaum and Tres, 2016). In malignant tumours, abnormal cells develop from the
originating tissue and then flow into the lymphatic vessels. They get transported to other
parts of the body to establish colonies also known as secondary metastasis (Stephens and
Aigner, 2009). Malignant tumours are the major cause of death in cancer patients as

compared to benign tumours which tend to localize in a certain region (NIH, 2020).

Cancers can be further classified into three depending on the region from which they
originate, these are: carcinomas, sarcomas, and leukaemia (Bielenberg and Zetter, 2015).
Carcinoma affects the epithelial cells, this includes the layers such as the intestinal tracts, the
stomach and mouth. This type of malignancy constitutes about 80-90% of cancer cases in the
western world (Cancer Classification | SEER Training, 2020). Sarcoma is the cancer that affects
connective tissues of bones and cartilages, cases of this type of cancer is not common in
humans. Leukaemia contributes about 8% of cases in cancer fatalities, it affects the ‘blood-

forming-cells’ and cells that are responsible for immunity (Cooper, 2019).



1.1 Basis of cancer at a molecular level:

1.1.1 Gene alteration:

Gene alteration is an integral factor that leads to most malignancies in human cancers at
different stages and occurs because of the variation in the genetic sequence and is considered
one of the hallmarks of cancer. This variation takes place in different forms (Negrini, Gorgoulis
and Halazonetis, 2010). The most common one is known as chromosomal instability (CIN).
This happens when a large portion of chromosome undergoes change in number of
chromosomes (aneuploidy) or structural rearrangement (Tanaka and Hirota, 2016). About 70-
90% of reported cancer cases emerge from this type of instability (Weaver and Cleveland,
2006). Confirmed cases of cancer is the result of CIN which is related with mutations in DNA
repair genes (Figure 1). The mutational changes favours cells to adapt to stressful and
cytotoxic conditions. This type of instability is one of the primary targets in most anticancer
research. The mechanism of CIN is not clearly understood but many studies attribute the
mechanism to division and duplication that occurs during the process of mitosis (Vargas-

Ronddn, Villegas and Ronddn-Lagos, 2017).
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Figure 1: depicting chromosomal instability, obtained from (Vargas-Ronddn, Villegas and
Ronddén-Lagos, 2017)

Microsatellite instability (MSI), another form of genetic instability, occurs when addition or
deletion of a few nucleotides takes place. As mentioned above, the primary cause of

microsatellite instability occurs when the DNA repair mechanism that is responsible for



detection and correction is not functional (Baudrin, Deleuze and How-Kit, 2018). About 15-
20% MSI have been identified in cases related to colorectal cancer and with minor cases being
confirmed as gastric, liver, and ovarian cancer (Baudrin, Deleuze and How-Kit, 2018; lonov et

al., 1993).

1.1.2 Oncogenes:

Oncogenes refers to mutated genes that are formed from normal cellular proteins, the proto-
oncogenes. This gene encodes the essential regulatory proteins required by blocking the
sequence required for normal transformation; thus, leading to aberration in cell cycle process
(Papoutsoglou and Moustakas, 2020). Alterations that take place in the sequence can be
addition, insertion between two genes, deletion or by changing the position of chromosomes
location to a different environment (chromosomal translocation) (Kierszenbaum and Tres,
2016). The formation of oncogenic products takes place through different pathways
depending on the regulatory function involved. Among the prominent functions used by
oncogenes include growth factors, growth factor receptors, signal transduction and

transcription factors (Labazi and Phillips, 2003; Kierszenbaum and Tres, 2016).

Oncogenes take advantage of growth factor proteins (mitogens) to induce abnormal cell
proliferation. These growth factors are supplied by the rough endoplasmic reticulum and then
transferred to the membranous outer surface of the cell, before being activated by enzymes.
Some of these growth factors for instance, the platelet-derived growth factors (PDGF) are
released by platelets to enable coagulation (Goustin et al., 1986). Growth factor receptors are
transmembrane proteins that bind to ligands (which are essentially growth factors) to enable
them to pass to the intracellular space. They are also collectively grouped as tyrosine kinase
receptors, with the same protein structural features made up of three important domains.
This includes the extracellular domain that binds with ligands; the transmembrane and the
tyrosine kinase (TK) domain (Vargas-Ronddn, Villegas and Ronddn-Lagos, 2017). About 10%
of cancers related to proteins are caused by kinases. These molecules are capable of
phosphorylating different amino acids (Scheme 1) such as serine and threonine, and
therefore, tumours related to protein kinases are classified according to the amino acid that
they phosphorylate. For instance, threonine protein kinase, tyrosine kinase. When a growth

factors (GFs) bind one of these TK domains, it forms a dimer that phosphorylate and activate
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the mitogen activated pathway (MAPKs) also known as the MAP kinase cascade (Wagener,

Stocking and Muller, 2017).

(0]
/,'\n/ N/\\‘ e N N/\\
H H
o o)
O

H Phosphoserine

0 1
ADP-O-P-O  ADP O0—H=0

. N g

H Protein kinase
”,'\ﬂ/N N/\‘~ H (@]
i H _—”\[rN N/\‘\
H .
0 Phosphotyrosine
OH

7
O_—I|3=O
A=

Scheme 1: Protein kinase catalysed phosphorylation of amino acids, obtained from (Miiller,
2009)

Examples of these receptors include epidermal growth factor receptors (EGFR) and vascular
endothelial growth factor receptors (VEGFR, required for growing blood vessels) are examples

of receptors that can initiate oncogenesis in cells (Goustin et al., 1986).

1.1.3 Angiogenesis and tumour metastasis:

Angiogenesis is a process associated with formation of new blood vessels. These new vessels
enable the supply of neighbouring tissues with oxygen and nutrients. It also helps with
adequate supply of nutrients to wounds that require healing. Earlier studies have shown that
angiogenesis could be a major contributor of cancer growth (tumour angiogenesis), as new
blood vessels are rapidly formed from preexisting vessel so that tumour cells can have access
to an oxygen supply and nutrients for growth and replication (Folkman, 1971; Bielenberg and
Zetter, 2015). Eventually, tumour cells accumulate and become deficient in oxygen until an
equilibrium is attained between proliferation and apoptosis. Recent progress have been made
on the fact that tumour cells may be hypoxic, and the information about the important roles
played by the vascular growth factor receptors (VEGF) and their inhibitors such as
bevacizumab has provided clinical approaches to treat patients with cancer (Hsu et al., 2019).

This approach has proved an effective inhibitor against tumour genesis. Yet, despite the



progress, some tumour cells tend to be resistant to such drugs by growing further until it

metastasises (McKinnell et al., 2006).

However, the challenge is linked to the fact that hypoxia due to oxygen deprivation in the
tumour environment is associated with cellular response that expresses hypoxia induced
factor-1 (HIF-1). HIF-1 is a transcription factor that initiates the activity of genes involved in
angiogenesis and migration (Gilkes and Semenza, 2013). Most recent studies have shown that
ginsenoside and autophagy-inducing-chloramphenicol (Figure 2) proved as a potent inhibitor

of HIF-1 with increased level of hypoxia in lung and gastric cancer cells (Li and Qu, 2019; Hsu

etal., 2019).
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Figure 2: Structure of Ginsenoside (left) and Chloramphenicol (right)
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Figure 3: Different stages of cancer progression, taken from (Fidler, 2003)

1.1.4 Tumour suppressor genes:

Tumour suppressor genes belong to an important class of cellular proteins that control and
inhibit the growth of abnormal cells. Absence or reduction in the activity of these proteins
can lead to uncontrolled growth of abnormal cells that may lead to carcinogenesis (Swanson,

Kim and Glucksman, 2013; Stephens and Aigner, 2009).

p53 is a tumour suppressor gene, also referred to as the “guardian of the genome”, is an
important gene that halts the cell cycle by inducing senescence (loss of ability to grow) or
activating of apoptosis. About 50% of cancer manifestation in patients is due to defects from
p53 (Lu, 2012). Another group of tumour suppressor genes are the BRCA1 and BRCA2 related
with breast cancer and ovarian cancer. About 20-30% of women with breast cancer can be
attributed to the mutated version of the BRCA1 and BRCA2. They play an active role in
suppressing the estrogen-dependent transcription pathways that controls the replication of

epithelial cells in the breast (Mehrgou and Akouchekian, 2016).



1.1.5 Cell-cycle-related defects and carcinogenesis:

Cell-cycle related tumours are sometimes related to defects in regulation and deregulation of
cyclin dependent kinase (CDK) and its inhibitor (CDKI). The genome in humans is reported to
encode about 21 different CDKs, however, seven among these have a direct relation with cell
cycle progression(Sanchez-Martinez et al., 2015). Mutation in CDK is also attributed to many
cancer conditions, as the mutation in these proteins could improve their resistance to
inhibitors that regulates their functionality. (Wagener, Stocking and Muller, 2017). Under
physiological conditions, however, cell cycle can be controlled by the proteins that encode
cyclin dependent kinase inhibitors (CDKI). CDKl is required as a checkpoint to control cell cycle
progression, by inhibiting growth factors such as TGFB (transforming growth factors) and
stress signals like reactive oxygen species (ROS). Cell-cycle related factors leading to cancer is
prevalent in lung, colon, and breast cancer in women. Absence of these mutations in patients
is an important marker in tumour patients. Higher concentrations of CDKI infers good
prognosis. Many cancer cases show active mutations of genes encoded for CDK4 and CDK6
and these mutations are significantly resistant to CDKI (Wagener, Stocking and Muller, 2017;

Tsihlias, Kapusta and Slingerland, 1999).

The functional differences underlying cell cycle activities between normal cells and cancer
cells can be explored as a medicinal target. Tumour cells compromise the cell cycle
checkpoints and increases the rate of proliferation at a faster rate and by targeting the
proteins involved in the mechanism will represent a potential drug target (Bonelliet al., 2014).
Recently, many drug targets have been reported to show activity on tumour cells in different
phases of the cell cycle. For instance, an analogue of a base nucleotide, 5-fluorouracil (5-FU)
blocked the replication of DNA in S phase; flavopiridol inhibited CDK activity at checkpoint. 7-
Hydroxystaurosporine (UCN-01) has shown a greater activity on many cell lines (Figure 4). It
affects cell cycle progression from G1 phase to S phase. UCN-01 activity is linked with CDK
inhibition and in combination with tamoxifen, it has revealed potent clinical activity on breast

cancer (Bonelli et al., 2014; Wagener, Stocking and Muller, 2017).



NHCH3
Flavopiridol 5-fluorouracil 7-Hydroxystaurosporine

Figure 4: Structures of reported drug targets with antitumour activity

1.1.6 Senescence and its connection with tumourigenesis:

Normal cells generally undergo replication for a limited number of times and then undergo a
self-destructing mechanism referred to as senescence. A normal fibroblast cell has earlier
been reported to replicate about 40-60 times (Hayflick limit) before it self-destructs (Lee and
Lee, 2019). However, loss telomeric DNA resulting form degradation and partial replication in
immortal cells is balanced by telomere elongation (Harley, Futcher and Greider, 1990). The
enzyme DNA telomerase extends the required nucleotide sequence of several kilobases of
TTAGGG repeats. This telomeric end serves as a clock counter that maintains the lifetime and
integrity of cells. The mechanism of senescence is therefore expected to take place when the
integrity of cell is no longer assured due to shortening in length of the telomere

(Kierszenbaum and Tres, 2016).

Large number of studies have reported the presence of higher proportion of telomerase in
cancer tests than normal cells (Shay et al., 2001). While telomere plays a key role in regulating
cancer from evolving, the enzyme, telomerase reverse transcriptase (hTERT) is linked to the
higher telomerase activity that is major contributor of immortality in tumour cells (Shay et al.,
2001; Blackburn, 2005). The TERT activity is due to the expression of two proliferative genes
Wnt/B-catenin (Hoffmeyer et al., 2012; Zhong et al., 2020) and NF-kB that can be mutated.
This is responsible for deregulation of TERT activity (Perkins, 2012). Hence, the TERT
mechanism proceeds to restore telomeres by activating an alternative lengthening of
telomere (ALT) which overcomes the replication problem and preserves the length of
telomere with unrestricted and unlimited replication that may result in abnormal

proliferation (Figure 5) (Bajaj et al., 2020).
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Figure 5: The role of TERT related pathways (B-catenin and NF-kB ) in relation to cancer,

diagram obtained from (Bajaj et al., 2020)

Owing to the expression of telomerase in varieties of cancers and the high activity of

telomerase in abnormal cells (Prasad, Pal and Mohammad, 2020), targeting the hTERT with

potency and selectivity to healthy cells has become an important approach to inhibiting

telomerase activity in cancer cells.

Depending on the structural orientation and presence of susceptible binding pocket in the

target, many approaches have been established ranging from nucleotide inhibitors to

development of vaccines (Ruden and Puri, 2013) and G-quadruplex stabilisers (Burger et al.,

2005).

Moreover, polyphenols such as resveratrol and curcumins (Figure 6) have been reported to

be effective telomerase inhibitors in cancerous cells (Bajaj et al., 2020).

10



Curcumin Resveratrol

H H
HO X0 OH
HO

Quercetin Rosmaric acid

Figure 6: Telomerase inhibitors derived from polyphenols.

1.2 Therapeutic approaches in cancer diagnosis:

Cancer therapeutics has been one of the major concerns among medical communities
throughout history. No one approach is considered a milestone treatment, rather combined
methods are considered for different cases depending on the nature and complexity of the
disease. For instance, a surgical approach for removal or tumour has evolved a long time ago,
yet, it remains a valuable option to patients with solid tumours detected at late stage
(Arruebo et al., 2011). Furthermore, the current emergence and advancement in technology
is contributing to the present therapies administered to patients. Whereas gene therapy has
offered promising alternatives to curing cancer by targeting cancers cells at a genetic level.
Most clinicians today, frequently consider the use of chemotherapy and radiotherapy as the

method of choice in modern medicine.

1.2.1 Gene therapy
This therapy involves introducing a DNA or RNA to the target to stabilise or restore the gene
functionality. The technique requires a delivery vector that ensures reaching the target.

Adenoviruses (Ad) is one of the clinically used vectors for encapsulation and delivery of gene
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materials(Lee et al., 2017), however, it is generally expensive and difficult to manufacture.
Other delivery shuttles include recombinant proteins, organic cations and inorganic

nanoparticles (Pucci, Martinelli and Ciofani, 2019).

The mode of action in gene therapy requires inserting a gene called antisense version of
MRNA obtained from the target gene (oncogene). The antisense is a flipped version of the
RNA which blocks the synthesis of protein for the oncogene by hybridising with the produced

mRNA which undergoes degradation that results in apoptosis (Brown, 2016).

1.2.2 Immunotherapy

Immunotherapy is a suitable alternative and is recommended for different stages of cancer
by increasing the immune system of patients against tumour cell progression, and is now
considered an important hallmark in cancer therapy (Esfahani et al., 2020). Immunotherapy
has now transformed the area of oncology as it prolonged the survival rate of many patients,
a preferred clinical choice in diagnostics and presumably, will be opening a plethora of novel
combinations in decades to come (Waldman, Fritz and Lenardo, 2020). One of the interesting
mechanisms in immunotherapy is by mediation of cytokines to activate different signalling

molecules directly or indirectly.

However, the toxicity in this method is significantly low as some cells can gradually overcome
the effect and resist the immune response (Disis, 2014). Employing cytokines characterised
with direct tumour activity remains a subject of research in many institutes. Cytokines that
affect tumour cells indirectly is currently in practice clinically. Interleukins-2 (IL-2) and
interferon-a (IFN-a) are examples of approved products by FDA. These immunomodulatory
cytokines act on target cells by activating T-cells and natural killer (NK) and are widely used
as a successful alternative in treating metastatic stage melanoma and renal cell carcinoma

(Dong and Markovic, 2018; Disis, 2014).
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Table 1:FDA approved monoclonal antibodies

Drug Target Immunological relevance FDA-approved
indication
Bevacizumab  VEGF-A Significant toward angiogenesis and Colorectal cancer and
inhibition of apoptosis cervical cancer
Ramucirumab VEGFR2 VEGF2 receptor plays role in Gastric and colorectal
angiogenesis and inhibition of cancer
apoptosis

Trastuzumab  HER2 Controls cell growth and angiogenesis  Gastrointestinal cancer
and breast cancer

Adapted from (Dong and Markovic, 2018)

1.2.3 Photodynamic therapy

Photodynamic therapy (PDT) is a clinically approved technique used in treating solid and
malignant tumour cells by a source of light directed on tumours at a certain wavelength in
the presence of photosensitive compounds. PDT is simple to apply, and because of its
selective cytotoxic activity, has been used to patients with early-stage cancer and conditions

that are not surgically operable (Figure 7) (Agostinis et al., 2011).
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Figure 7:Mechanism of photodynamic therapy (PDT), adapted from (Agostinis et al., 2011)
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Moreover, PDT is considered to have fewer side effects with no recurring complications of
intrinsic resistance mechanisms as the mode of action in this therapy is mainly necrosis or
apoptosis. Because it is a safer technique its application is also evident in cosmetics. Three
integral steps are required to ensure proper administration of PDT in cancer treatment. A
photosensitizing agent with good light absorbing properties such as monomeric or dimeric
tetrapyrrole (Figure 8); a critical absorption wavelength of the photosensitiser and in situ
generation of an energetic oxygen (in a singlet state 0,). Singlet unstable oxygen has an
opposite spin of electron pair that is energetically favourable to react.

HO HO
OH

COOH
COOH coon  COOH

Figure 8: Tetrapyrrole based photosensitizers used in PDT, (Bonneau and Vever-Bizet, 2008)
Tumour damaging effect in the process depends on the concentration of the photosensitizer,
generation of excited oxygen and the rate interval between the light source and the

photosensitizer also known as fluence rate.
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Figure 9:Mode of action in PDT, obtained from (Castano, Mroz and Hamblin, 2006)
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The injected photosensitizer is typically activated by light irradiation of 800-1200 nm to
initiate a photochemical reaction that generates a singlet oxygen specie (102). The oxygen
species causes an irreversible damage to the tumour cells exposed, thus leading to apoptosis
or necrosis (Figure 9) (Castano, Mroz and Hamblin, 2006). Nanoparticle based (NP)
photosensitizers have been used recently to improve and enhance efficient delivery to the

tumour site (Wilson, 2006).

1.2.4 Hormone therapy

Hormone therapy is a treatment that inhibits the development of cancer by targeting
hormones through surgical means or with the aid of drugs. The mode of action in this therapy
is to block the production of hormones that cause cancer or by the altering the functional
activity of the hormone to render it inactive. Most cancers affecting glands such as breast
cancer, prostate cancer and ovarian cancer is caused by disruption in hormones and the

glands that produce it (Simpkins, Garcia-Soto and Slingerland, 2013).

Hormonal agents administered to breast cancer patients is increasing in the market, however,
the commonly used drugs include aromatase inhibitors and tamoxifen. These drugs (Figure
10) act by inhibiting the estrogen receptors, thus weakening the tumour activity. An annual
study for duration of 5 years on tamoxifen administered to breast cancer patients reduced

recurring cases by about 40% (Trialists, 2015) and mortality rate by 34% (Abraham and

Staffurth, 2020). O

Figure 10: Structure of tamoxifen

Clinically approved steroidal and non-steroidal inhibitors administered to breast cancer

patients include exemestane, letrozole and anastrozole(Figure 11) (Fusi et al., 2014).
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Figure 11: Structures of some steroidal and non-steroidal inhibitors

Anti-androgen drugs are administered to male patients with protstate cancer, as the drugs
are capable of blocking androgen receptors that regulate genes associated with cell
development of prostate cells, and hence leading to cancer progression (Figure 12).
Bicalutamide and cyproterone acetate are two of the among clinically approved

antiandrogens for patients with prostate cancer (Hejmo et al., 2020).

Bicalutamide Cyproterone

Figure 12: Clinically approved steroidal and non-steroidal antiandrogen drugs for prostate
cancer

1.3 Chemotherapy

Chemotherapy refers to the use of drugs that are used in treating different types of cancer.
Hundreds of drugs are clinically approved which are administered as a single drug or in
combination with other drugs to enhance the success of the therapy. Furthermore, an

increasing number of cancer therapeutic targets such as tyrosine kinase (TK), proteasome
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inhibitors, gene therapy, vaccines have been developed recently and a new generation of
chemotherapeutic drugs continue to emerge. Chemotherapeutic drugs are initially identified
in the laboratory through a series of successive experiments and tests on cell lines and
animals. They undergo successive phases of clinical trials to ascertain their efficacy as a
successful drug candidate (Kesikli and Guler, 2015). Chemotherapeutic agents can be
classified into two major categories based on the structure activity of relationship (SAR) of

the agents and the mode of action within the cell cycle.

1.3.1 Alkylating agents

Alkylating agents refers to group of compounds that covalently interact with the
macromolecules through an alkyl group. Commonly known alkylating agents interact with
DNA to disrupt the activity of cellular process. Alkylating agents attack DNA in a nucleophilic
or electrophilic fashion depending on the specie in the molecule and the bases present in the
DNA (Burney, 2011). However, nucleophilic oxygen and nitrogen atoms present in the
nucleoside bases are regarded to be of therapeutic use (Avendafio and Menéndez, 2015b).
The process is primarily an electrostatic interaction between the two sites (ligand and the
receptor): an overlap of the high occupied molecular orbital (HOMO) of the receptor site with

lower unoccupied molecular orbital (LUMO) of the ligand site.

The interaction of alkylating agents with the DNA results in different steric changes by
preventing DNA from replication and transcription. The main site exposed for alkylation in the
DNA are the nitrogen atoms present at different positions of the bases (Figure 13). The
reactivity of alkylating agents with N atoms in the bases depends on their increase in
nucleophilicity (N7 of guanine> N1 of adenine >N3 of cytosine > N3 of thymine) (Oronsky et
al., 2012).
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Figure 13: Structures of guanine, adenine, cytosine, and thymine (from left to right)
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Mode of interactions in alkylating drugs

The primary target of all alkylating drugs is DNA (Burney, 2011); and their cytotoxic effect can
be determined based on their mode of interaction with the target and the reaction kinetics
involved in drug metabolism (Huang and Li, 2013). Many alkylating drugs can link two
complementary DNA strands (inter-strand crosslinking, Figure 14), while some bind to single
strand at two different points (intrastrand crosslinking). Some alkylators bind to DNA at one
end with a different molecule, e.g protein at another end. It has been reported that
compounds that form interstrand crosslinking are more cytotoxic than those interacting
through intrastrand and with proteins. Cisplatin and its analogues targets DNA and form both
inter and intrastrand DNA adducts which makes it one of the most effective alkylating drugs

(Avendano and Menendez, 2015).
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Figure 14:Types of interactions between alkylating agents and DNA.

Nitrogen mustards

Nitrogen mustards are highly reactive bio-alkylating agents discovered during World War |l

when its effect was observed to cause lymphoid and myeloid suppression. Their high
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reactivity is attributed to the formation of a highly unstable aziridinium cation that reacts with
the nucleophilic sites on the DNA (Figure 15). The high reactivity also results from disruption
in the hydrogen bond interaction occurring between two adjacent DNA bases e.g. The DNA
base pairs between guanine and cytosine (also known as the Watson-Crick bases pairs) can
be affected by the tautomeric effect of cytosine. This is caused by the presence of the alkyl
group at the N7 position (Figure 15) that generates a partial positive charge at the carbonyl

center at the purine site, hence making it electron deficient (Cleaves, 2011).
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Figure 15: Disruption of hydrogen bond interaction due to alkylation in the DNA

Higher toxicity associated with nitrogen mustards toward normal cells encouraged the
development of varieties of hybrids which include aromatic nitrogen mustards, fatty nitrogen
mustard and amide nitrogen mustards (Figure 16). These hybrids have shown significant
clinical effects, yet toxicity and solubility remained a prevailing clinical disadvantage. A recent
study reveals that cyclophosphamide, a heterocyclic nitrogen mustards is toxic and is clinically

used for lung, ovarian and breast cancer (Chen et al., 2018b).
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Figure 16: Modified hybrids of nitrogen mustards
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1.3.1.1 Antimetabolites

Antimetabolites are naturally occurring compounds or their synthetic analogues, capable of
interfering with the metabolic reactions within a cellular environment, mainly through
interaction with enzymes (Avendafio and Menéndez, 2015a). A notable feature of
antimetabolites is their ability to competitively interact with binding sites of enzymes in
rapidly dividing cancerous cells. Also, this property makes them a good target in the
chemotherapeutics. Also, most clinically approved antimetabolites have different
mechanisms of action on DNA. This include blocking the synthesis of pyrimidines and blocking
the pathway to synthesis of DNA polymerase. However, disadvantage of this group of
compounds in chemotherapy is their lack of specificity, as they interact with metabolic
processes in normal cells which may cause side effects. Nevertheless, antimetabolites remain
one of the essential areas in chemotherapy with current ongoing research (Tassinari et al.,

2017; Logan et al., 2020).

1.3.1.2 Topoisomerase-interacting agents

Topoisomerases are the enzymes that maintain the 3-dimensional integrity of the DNA and
regulates the winding and unwinding process during transcription and replication, to ensure
the functional stability of the genomic system. Two types of topoisomerases are known in
both prokaryotes and eukaryotes, they are: topoisomerase | and topoisomerase Il. Their
function depends on the number of strands they break and ligate. Topoisomerase | break a
single DNA strand and then allows it to pass through the unbroken strand. Whereas
topoisomerase Il breaks both DNA strands. During the process, however, the topology of the
DNA remains intact with no loss in DNA fragments. As a result, cells cannot replicate without

the role played by topoisomerases which makes it an important target for cancer.

The mode of action in drugs that target topoisomerase is related with the enzymatic activity
of “topoisomerase suppressors” and camptothecins (abbreviated CPT), an alkaloid isolated
from the bark Camptoteca acuminate (originated from China), interacts by limiting the activity

of topoisomerase. However, despite its potency, it has solubility problems.
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Improved analogues of CPT have been synthesised to overcome the difficulties associated
with solubility. Topotecan (abbreviated CPT-11) is a clinically approved drug to address this

problem and has been used for various cancer including ovarian and lung cancer (Figure 17).

N(CH3)2
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Figure 17: Camptothecin and Topotecan used as topoisomerase inhibitors

Some drugs primarily target (intercalate) to the enzymes-DNA complex after cleavage (Figure
18). Most of the topoisomerase Il inhibitors belong to this group and because of their direct
mode interaction with complex domain of the DNA, they are described as “topoisomerase

poisons”.
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Figure 18: Topoisomerase Il drugs that interact with the DNA

Clinically approved drugs in this group include Doxorubicin and Etoposide which bind to the
DNA-topoisomerase Il complex after cleavage thus stabilising the activity of the enzyme.
Some analogues of these compounds have other inhibition mechanisms and have not yet

been fully identified (Marinello, Delcuratolo and Capranico, 2018).
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1.3.1.3 Kinase inhibitors

Protein kinases consist of vast number of proteins that catalyse the transfer of a phosphate
group from phosphates with higher energy, a process also commonly known as
phosphorylation. It involves reduction of adenosine triphosphate (ATP) to an adenosine
diphosphate along with transfer of energy during the process. It is the basis through which
energy is exchanged such that the life cycle of a cell depends on it. As a result, many studies
have revealed that distortion in the activity of kinase activity is related to the activation of
protooncogenic pathways that lead to uncontrolled proliferation of cells and manifestation
of cancer. About 2000 protein kinases have been recognized in nature, ranging from
unicellular to multicellular organisms (Manning et al., 2002). More than 500 kinase genes
were identified with 90 of these genes existing in human genes as receptor and non-receptor

kinases (Metibemu et al., 2019).

Protein kinases have become an important target in cancer chemotherapy. This is because
many cases of cancer activation have revealed the overexpression of enzymes that are
directly orindirectly related to oncogenesis (Pericles, 2012). About 16 PTKs have been marked
as important therapeutic targets in cancer chemotherapy depending on their structural and
binding functionality, along with their localization on the cellular membrane. Recently, the
naturally occurring B-diketone, curcumin has been reported to be an essential receptor
tyrosine kinase inhibitor and responsible for targeting cancer by inhibiting
autophosphorylation and transphosphorylation in p185neu tyrosine kinase receptor and

inhibition of proliferation in breast cancer cells (Hong, Spohn and Hung, 1999).

A more recent study revealed that curcumin (Figure 19) is also effective in deregulation of
HER-2 oncoproteins in breast cancer cells. The mechanism of its action is to block signal
transduction pathways associated expression of cancer. This includes the PI3K/Akt, MAPK,

and NF-kB. (Lai et al., 2012).
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Figure 19: Structure of a biologically active derivative of curcumin
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The structural features that determine the activity of curcumin is the presence of methoxy
and phenolic groups attached to the ring. These two groups describe the anticancer and
antioxidant activity and can be compared with compounds such as the anti-vascular agent

combretastatin A-4 (Figure 20) that bear the same groups on one of its aromatic rings

MeO
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(Golonko et al., 2019).

Figure 20: Structure of combretastatin CA-4

Furthermore, the structural flexibility emerging from the unsaturated bonds in curcumin
enables it to freely interact with different proteins. The B-carbonyl group is useful in reducing

metal toxicity in many most metal complexes (Busse et al., 2001).

1.3.1.4 Proteasome inhibitors

Proteasomes also known as proteolytic enzymes are agents that aid in degradation and
regulation of misfolded proteins by breaking them down into peptides and amino acids. They
are high molecular weight proteins (2.4 MDa) comprising of 60 subunits, constituting almost
2% of proteins located within the cytoplasm of cells and are involved in many cellular
processes related to cell progression (Adams, 2004). In eukaryotes, alteration in their
structural conformation due to genetic and environmental factors can lead to varieties of
abnormalities including cancer (Giovanni and David, 2005). About 80% of protein is being
degraded through the ubiquitin proteosome pathway (UPP) into polypeptide units (Crawford,
Walker and Irvine, 2011).

Protease inhibitors constitute many FDA approved drugs for HIV therapy and about 26 of
these drugs are clinically administered (Lv, Chu and Wang, 2015; Rakashanda and Amin,
2013). The main effect of these drugs is by imitating the proteasome active site where the
hydroxyl group of the inhibitor interacts with the carboxylic site on the protein. The presence
of a hydroxyl in these molecules commonly represents one of the active groups in most HIV-

inhibitors available on the market (Figure 21).
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Figure 21: Chemical structures of some clinically approved HIV protease inhibitors

Recently, proteases have also became an important target in cancer as they control and
regulate cell cycle processes (cell progression and apoptosis) that lead to cancer. Cellular
pathways such as p-53, nuclear factor NF-kB and the cyclins can be targeted by proteasome
inhibitors through blocking their activity and thus leading to cellular death (Adams, 2004). The
full details of how the mechanism of this process leads to cellular death is not yet fully

understood (Giovanni and David, 2005).
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Figure 22: Active protease inhibitors in chemotherapy
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The approval of bortezomib (Figure 22) by FDA as the first protease inhibitor has prompted
the development of novel protease inhibitors with clinical applications in treatment of

malignancies such as myeloma and cell lymphoma (Korubo et al., 2017).

The mode of action in bortezomib is by reversibly binding to 26S catalytic domain thus
blocking the activity of B2/trypsin and B1/caspase. Likewise, lactacystin has been tested in
vitro to induce cellular death at a minimal concentration of about 5uM thus qualifying it as a
useful Pl candidate (Chabner and Longo, 2019). High cost of isolating bortezomib and the
other protease inhibitors has discouraged the production and diversion to other alternative

drugs(Trezza et al., 2020).

1.3.1.5 Platinum analogues

Platinum-related drugs constitute one of the oldest and most effective anticancer drugs with
an outstanding mechanism of action and have been administered to combat different types
of cancer. The first generation of platinum drugs, cisplatin, was approved for the first time by
the food drug administration (FDA) for treating lung, ovarian, colorectal, bladder and
testicular cancers (Yu et al., 2020). Since the approval of cisplatin as an anticancer drug in the
past 40 years, over 150,000 platinum compounds have been explored and documented in

chemical abstract databases (Angel and Consuelo, 2009; Sarkar, 2017).

(a) Cisplatin-DNA (b) Oxaliplatin-DNA

Figure 23:DNA interacting with different platinum drugs. Obtained from (Muggia et al., 2015)
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One of the interesting applications of platinum drugs is their affinity to bind and bend the
DNA chain (Figure 23) leading to cell cycle arrest and apoptosis. Third generation platinum
drugs like oxaliplatin further block the major groove and by interacting with many sites in the

DNA, and hence show greater activity (Muggia et al., 2015).

JJ\/\/'L Ao
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Figure 24: Glutathione reduces the activity of platinum drugs

Toxicity and drug resistance due to high reactivity with scavenging species such as glutathione
transferase and metallothionein (Figure 24) (Zhou et al., 2020; Si and Lang, 2018) remain one
of the main setbacks that that led to the development of second and third generation of
platinum (I1) drugs (Raymond et al., 2002; De Luca et al., 2019). Considering the 23 platinum
drugs in clinical trials, only carboplatin and oxaliplatin analogues (Figure 25) of the 2"d and 3™
generation platinum (ll) have been clinically approved (Wheate et al., 2010). Considering the
enhanced toxicity problems above with cisplatin, research on the mechanism of resistance of

these drugs has continued for the past four decades (Zhou et al., 2020).
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Figure 25: Structure of FDA approved platinum (I1) drugs

Current and ongoing research to overcome the drawbacks associated with the square planar
platinum (ll) analogues is the emerging interest in inert platinum (1V) bearing two extra ligands

at the axial positions (Figure 26). The oxidative addition of two ligands kinetically controls
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unintended extracellular interactions with plasma proteins before reaching the tumour cell
environment, and hence makes it more effective in reaching its target (Karmakar et al., 2019;

Browning et al., 2017).
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Figure 26: Structural geometry of platinum (I1) drugs

The structural geometry of platinum (IV) compound from the axial position offers an excellent
physicochemical property that platinum (II) compounds cannot provide. Almost all platinum
(IV) compounds explored have enhanced lipophilicity and solubility which makes them

suitable for tethering with active ligands with wider activity for many biological targets.

Furthermore, owing to their advantage as stable compounds compared to platinum (), they
express minimal side effects (as they are not prone for interaction with many proteins); and
their axial ligands can be linked with pharmacologically active ligands, leading to a dual
activity with the same or different target within the tumour microenvironment (Browning et

al., 2017; Wang et al., 2018b).

Figure 27: Structure of naphthalimide, a potent DNA intercalator and target for cancer
therapy
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Naphthalimides (Figure 27) are fused aromatic compounds which effectively interacts with
the DNA. Owing to its conjugated structure, it can form different interactions (H-bond, Van
der Waals) and hence is considered as a suitable DNA intercalator. In a recent report, platinum
(IV) tethered at the O- axial bonds with naphthalimide (Figure 28) can provide a suitable
strategy for dually active compounds for targeting cancer as compared to platinum (ll)

compounds (Wang et al., 2018b).
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Figure 28: Prodrug and dual activity of platinum (IV) tethered with naphthalimide (Nap) at
the axial position. Obtained from (Wang et al., 2018b)

1.3.2 Antimitotic agents:

1.3.2.1 Structural orientation of tubulins and microtubules:

Microtubules and the microtubular proteins represent an essential part in the formation of
the mitotic spindle, which plays a significant role during mitosis (Gupta and Bhattacharyya,
2003). The microtubules consist of tubulin dimers identified as a and B tubulins, with each
subunit arranged in a longitudinally ordered fashion termed as the protofilaments (Figure 29).
Tubulins are 55 kDa sized proteins coded by 23 genes of the human genome. Collectively,
tubulins form subfamilies of six, the alpha (a), beta (B), gamma (y), delta (), epsilon (g) and
zeta (z) tubulin (Findeisen et al., 2014; Hu et al., 2020). The two subfamilies, a and B are more
common in eukaryotic cells and form heterodimers that undergo polymerisation leading to

microtubules (Schwarzerova et al., 2019).
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Protofilament

Figure 29:Dimensional structure of microtubule with (+) and (-) represented in green and
red. Obtained from (Janke and Chloé Bulinski, 2011)

Dimers formed from a and B-tubulins form oligomers that lead to the formation of a
protofilament (Figure 30) with thirteen of these protofilaments assemble in a vertical manner

forming a cylindrical hollow space that forms the microtubule (Barbier et al., 2019).
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Figure 30: Assembly of a and B-tubulins from dimers to form microtubules. Obtained from
(Barbier et al., 2019)

The interior diameter of microtubule is approximately 15 nm and 25 nm from the exterior
(Huang et al., 2020). The vertically elongated structure of the microtubule have polar ends;
one end being positive representing the phase of growth and elongation, and negative end

that enables contraction, a process called dynamic instability (Kierszenbaum and Tres, 2016).

During the polymerisation process, both alpha and beta tubulins are bound to two guanine
triphosphate (GTP) molecules, through the GTP binding sites on the subunits, with one site
irreversible and trapped and not actively hydrolysable. The second molecule is bound to the
site of the beta tubulin exposed on the surface, hence easily hydrolyses to GDP (Kaur et al.,
2014). Evidence has shown that the kinetic property of tubulin to polymerize and

depolymerize is largely dependent on factors including temperature, concentration of local
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tubulin dimers favoured by energy in the form of GTP (Huzil, Luduefia and Tuszynski, 2006),
the driving factor that controls the polymeric assembly of microtubules (Sontag, Staley and
Erickson, 2005). As a result, different anti-mitotic agents have different binding capacities
with tubulin and could develop resistance that render such drugs ineffective (Kumbhar et al.,
2020). Alteration in the dynamic equilibrium of microtubules is an important target for
development of cancer drugs (He et al., 2020). Microtubule targeting agents (MTA) disrupt
the formation of mitotic spindles which arrests cells in the G2/M phase (the phase in which

cells physically separate into two newly formed cells).

1.3.2.2 Microtubule targeting agents (MTA)

A large number of microtubule targeting agents (MTA) and microtubule disrupting agents
(MDA) have been derived from natural products and synthetic sources; with some isolated
from marine products such as marine sponges (Gupta et al., 2019) and plant algae (Steinmetz
and Prota, 2018). As mentioned earlier, MTA / MDA destabilize the assembly of microtubules
leading to cell arrest at the G2/M phase. The first drug molecule that was known to have
inhibiting activity on tubulin is colchicine (Figure 31) (Warda et al., 2020). Currently, x-ray
crystallography studies has revealed 6 binding sites in tubulin have been identified as
important MTA targets and their molecular mechanisms reveals their exciting activities in

anticancer research (Coulup and Georg, 2019).
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Figure 31: Structure of colchicine

Early discovery in their activity from natural sources provided an abundant means of obtaining
MTAs with bioactive properties on a larger scale and only a few were synthesised and
modified to improve their activity. Many types of MTA analogues have been designed,
explored, and used as medication against different types of cancer for many years. Yet, a

common problem associated with these compounds is that patients undergoing treatment

30



with these drugs develop resistance and toxicities that lead to peripheral malfunctions in the

nervous system (Gupta et al., 2019).

1.3.2.4 Tubulin associated ligands and their binding agents

Microtubule targeting agent can be classified into two groups depending on their mode of
action as stabilisers or destabilisers of tubulin. Epothilones and taxanes such as paclitaxel,
and docetaxel are well known microtubule stabilisers and can catalyse the polymerisation of
microtubules. Evidence from a previous clinical study revealed that epothilones and taxanes
(Figure 32) share a common tubulin binding site. The conclusion of the study also suggests
that epothilones show greater activity than taxanes by stabilising microtubule and inducing

apoptosis (Forli, 2014).

O OH O

An epothilone analogue (Ixabepilone) Taxane (paclitaxel)

Figure 32: Structures of microtubule stabilizing agents

Colchicine and vinca-alkaloids on the other hand are well known as effective destabilizing
agents as they can hinder the polymerisation of microtubules (Mirzaei et al., 2020). In
addition, colchicine can also act as an antiangiogenic agent and cause disruption of tumour

vasculature which is not present in the other binding agents (Li et al., 2017).

1.3.2.5 Taxane binding site

The taxane binding site is located at the B-domain of the tubulin. They share a common
similarities with the epothilone binding site and much interest is focused on finding a
pharmacophore that targets both sites (Gupta et al., 2003). Different amino acid residues in
the receptor site of the tubulin are susceptible for interaction with ligands within a bond
distance of 6 A. The cyclic structure that contributes to taxane activity is the polar oxetane
ring (Figure 33). The ring is in proximity with the amino acids Pro274, Leu27 (not shown) and
Thr276 within a binding distance of 2.0 — 3.0 A. Thr276 interacts effectively with oxygen in

the oxetane ring as shown in Fig 32. It is in believed to be in close range to form hydrogen
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bond interaction with the hydroxyl group directly attached to the alicyclic ring neighbouring

the oxetane moiety (Lowe et al., 2001).

Figure 33: Interaction of taxane (green) with oxetane ring with Thr276 (blue) of B-tubulin
within a binding distance of 3.0 A. (1JFF-B-tubulin retrieved from PDB). The coloured broken
lines represent the site of interaction between reside and the taxane ligand.

1.3.2.6 Vinca alkaloid binding site

Like the taxane molecular structure, vinca alkaloids also consist of a complex structure with
molecular weights to more than 800 gmol? and appreciable number of electronegative
groups present within their structural scaffolds (Figure 34). Analogues of this natural product
demonstrate their activity by stabilising the microtubules in cancerous cells (Huzil, Ludueiia

and Tuszynski, 2006).

(a) (b)

Figure 34: Structural scaffold of a vinca alkaloids (highlighted red)
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In vitro and in vivo studies on different vinca alkaloids have revealed the formation of different
metabolites. Owing to the presence of active functional groups attached to the complex
structure. Currently, about 35 different metabolites with molecular weights between 350 to
830 gmol? have been elucidated and their adverse drug reactions such as hydroxylation,
hydrolysis, demethylation and N-demethylation have been documented (Chagas and
Alisaraie, 2019). As a result, vinblastine and related alkaloids interact with different protein

receptors and cause clinical side effects in cancer patients.
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Figure 35: 2D and 3D representation of vinblastine (vinca alkaloid) interaction with both a
and B-chain of tubulin.

The image on the right is a 2D depicts the hydroxyl and amine groups present in catharanthine
scaffold interacting with Pro222 and Asn329.

Molecular docking analysis reveals that vinca alkaloids interact with residues in both a-tubulin
and B-tubulin. The catharanthine moiety in these molecules (coloured red) is the major
contributor to the activity of vinca alkaloids (Huzil, Ludueia and Tuszynski, 2006). Most vinca
alkaloids including the ones in (Figure 35) form a hydrogen bond interaction with residues
Asn329 (purple, 2.23 A) and Phe351 (red, 2.26 A) on the a-tubulin, and a strong interaction
with B-tubulin residues at Pro222 (yellow, 1.91 A), Val177 (pink, 2.56 A). Other interactions
of vinca alkaloids in tubulin include the residues of a-subunits at Ser178, Asp179 and Tyr210
(Chagas and Alisaraie, 2019; Torin Huzil et al., 2010).
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1.3.2.7 Structural features of Colchicine binding site

The water-soluble colchicine molecule was extracted from a toxic meadow saffron plant,
(botanical name Colchicum autumnale). Many studies have explored inhibitors that target the
colchicine binding site on tubulin. Colchicine has a simple structure compared to the other
tubulin sites targeted by enormously complex ligands. Structural conformation of colchicine
appears like a butterfly (Yingge et al., 2020) that perfectly fits into one of the binding pockets

in the colchicine domain (Figure 36).

Figure 36: Hydrogen bond interaction of colchicine with microtubule. Adapted from (Li et
al., 2017)

From X-ray diffraction studies, it has been reported that the trimethoxy phenyl moieties
(assigned as ring A) in the structure is bonded to the Cys241 amino acid residue through a
hydrogen bonding. The carbonyl group on the seven-membered ring of the colchicine also

interacts through a hydrogen bond with Vala181 (Li et al., 2017; Ravelli et al., 2004).

The trimethoxy phenyl group in the molecule is essential. Replacing one of the groups with a
bulky substituent result in loss of activity (Yingge et al., 2020). However, a study has shown
that the replacement of the substituents with a different groups (Figure 37) has presented an

improved activity than expected (Torin Huzil et al., 2010).
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Figure 37: Structural features of colchicine and important substituents

Extensive studies on the microtubule inhibitors that target the colchicine binding site bearing
aliphatic moieties have been reviewed in studies (Luduena and Roach, 1991). They
emphasized that the colchicine binding pocket is rich with nucleophilic groups attached to the
amino acid residues which are attracted to alkyl groups in ligands. Ligands bearing aromatic
rings or substituted with larger alkyl groups (Xa from Figure 37) tend to interact better and
hence more aliphatic substitution will infer a greater hydrophobic interaction (Legault et al.,

2000).

Owing to the high toxicity of colchicine, effort of many research concentrated on modifying
the colchicine scaffold by replacing ring B (Figure 37) with a different bridge / linker (Lu et al.,
2012). Ring C has also been replaced with an aromatic ring bearing different substituents.
Many analogues targeting the colchicine binding site have been synthesised and tested for
activity. The methoxy groups were retained in the aromatic system to identify a
pharmacophore with similar activities in the colchicine binding site (Niu et al., 2014). Recently
synthesised combretastatin analogues have been proposed to be among the best targets of
the colchicine binding site and have demonstrated a binding capacity of about 78 % relative

to colchicine (Zheng et al., 2014).

1.4 Colchicine binding site inhibitors (CBSI) reported before 2019

1.4.1 Combretastatins A-4 (CA-4)

Combretastatins (CA-4) belongs to a member of naturally occurring stilbenes isolated for the
first-time by Pettit et. al in 1989. It is extracted from the bark of the bush willow tree

botanically known as Combretum caffrum, which more often grows near a riverbank in the
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Eastern province of South Africa. CA-4 is an active anti-cancer agent with a simplified
structural scaffold that can be easily modified for improved solubility and therapeutic activity.
The ICso of CA-4 is in the nanomolar range for many cancer cell lines (Nainwal et al., 2019).
Approximately, over a thousand of CA-4 analogues have been synthesised and have shown
cytotoxic effects on cancerous cell lines, thus making CA-4 to qualify as a lead compound in
cancer research. Due to its structural flexibility, CA-4 can exist in two geometric

configurations: cis-stilbene and trans-stilbene (Figure 38).

OH

H3CO X
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Figure 38: Isomers of CA-4. cis on the left and the trans-isomer on the right.

The cis-configuration is biologically active and interacts strongly with colchicine binding site
(CBS) on tubulin. However, some factors such as heat, light, prolonged storage and
metabolism in the cell environment can isomerize cis-configuration to a thermodynamically
favourable trans-configuration (Ilbrahim et al., 2021). Bioactivity of CA-4 drastically falls when
the configuration changes from cis to trans and therefore, limited efforts have been made to
synthesise the trans-isomer of CA-4 (McLoughlin and O’Boyle, 2020). Hence, almost all the

synthesised analogues aimed at targeting cancer is focused on the cis-isomer analogues.

Considering the structure activity relationship (SAR) of colchicine with CA-4, three essential
features are expected to be the major contributors of CA-4 as an effective tubulin inhibitor.

These features include:

1. substitution of three methoxy groups on ring A at positions 3, 4, and 5;
2. Hydroxyl at position-3 on ring B can be subject for modifications with a different group
(e.g a halogen);

3. retaining the cis-orientation that links the two aromatic rings.
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1.4.2 Successful modifications of CA-4 stilbenoid double bond

Modifying a lead compound in order to improve its bioactivity without altering the structural
scaffold is regarded as one of the important elements in identifying new drugs. These
modifications can be three to six-membered cyclic or heterocyclic rings which replace the
olefinic bond in CA-4 (Harrold and Zavod, 2018; Hadfield et al., 2005) or they can be a straight
chain alkyls or units bearing electron withdrawing groups such as carbonyls, dicarbonyl and

thiourea (Gomtsyan, 2012).

A number of CA-4 analogues bearing different groups have been prepared with the aim of
replacing the ethylene bridge without changing the configuration of the original molecule
(McLoughlin and O’Boyle, 2020). To date, CA-4 analogues bearing pyrrole, thiazole, imidazole,
and oxazole have been prepared and their bioassays reveals an enhanced solubility. It is
believed that modifying the stilbene bonds can play significant role than just a linker, as it can

allow insertion of active groups that can interact with the CBS (Tron et al., 2006).

However, in some cases, linkers with 3-membered atoms and six membered atoms may tend
to result in decreased activity (Figure 39). Though, despite the poor activity in the CBS the
structural configuration cannot isomerise to the trans-isomer. A study reveals that some six-
membered ring linkers markedly decreased the activity in CA-4 analogues bearing imidazole

and pyrazine linkers (Wang et al., 2002).
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Figure 39: Imidazole and pyrazine analogue of CA-4 showing decreased activity in 5 and 6-
membered ring.

Therefore, exploring and alteration of linkers with a cyclic ring system may provide an insight
to new residual interaction of CBS and drug molecules. Much data is currently available that
has explored the activity of CA-4 analogues on different cancer cells (Daniel, Siyaram and

James, 2017; McLoughlin and O’Boyle, 2020).
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Structural modification mostly focused on the linkers (Figure 40) bearing two, three, four, five
or six membered units that can be either noncyclic or cyclic members such as heterocycles
(Seddigi et al., 2017). The linker is believed contribute to improved solubility, structural
stability and itself may even contribute to interactions with the binding site of target (Harrold

and Zavod, 2018; Chen et al., 2018a).
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Figure 40: Different linker modification with R and R’ denoting atom or functional group at
different positions of the ring

1.4.3 Chalcone analogues of CA-4

Chalcones (or keto stilbenes) are naturally occurring products found in a Chinese plant
Scutellaria barbata. It is traditionally administered as an antimalarial (Chen et al., 2017), anti-
inflammatory and diuretic (Rathnakar et al., 2020). Chalcones have antitumour activity and
have been observed to inhibit proliferation in different types of cancer cells including breast,

colorectal, cervical and lung cancers (Yin et al., 2004).

Methanolic extract of Scutellaria barbata was fractionated into different components and
tested for cytotoxicity on a human leukaemia cell line (K562) using the MTT assay; and one of
the fractions showed micromolar activity. Further purification of the fraction gave E-1-(4’-
hydroxyphenyl)-but-1-en-3-one (Figure 41) as the active component of the extract (Ducki et

al., 1996).
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Figure 41: Structure of E-1-(4’-hydroxyphenyl)-but-1-en-3-one

Using the compound as a lead, (Ducki et al., 1997) synthesised a series of enones bearing
different substituents to test their inhibitory activity on the K562 leukaemia cell lines (K562).
ICso values showed that analogues of with electron withdrawing groups (EWG) possessed a
higher inhibitory activity (>30 fold) than the lead molecule (Figure 41) but lesser potency

when no EWGs were present in the analogues (Figure 42) (Ducki et al., 1997).
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Figure 42: Chalcone analogues bearing electron withdrawing groups

These findings inspired the further investigation of chalcones where the methyl group is
replaced with an aryl group to determine their effect on cancer cells. However, chalcones
with aryl groups this type originally belong to family of flavonoids which are common in many

plants; and their use in medicine is generally accepted (Rozmer and Perjési, 2016).

Previously, Edwards et al., 1990 synthesised the 1,3-diaryl chalcone (Figure 43) that inhibits
tubulin in Hela cells, by interfering with the sulfhydryl group on Cys241 residue of the tubulin
subunit in the colchicine binding site (Edwards, Stemerick and Sunkara, 1990; Wang et al.,

2016)
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Figure 43: structure of first synthesised 1,3-diarylchalcone with tubulin inhibiting property in
Hela cells
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The procedure employed by Edwards et al., 1990 was adopted by (Lawrence et al., 2000) to
synthesise series of 1,3-daryl chalcones bearing different groups on the aryl ring; the
chalcones were screened for cytotoxicity on K562 cells. Chalcone analogue (4)(E)-3-(3"-
hydroxy-4"’-methoxyphenyl)-2-methyl-1-(3’,4’,5’-trimethoxyphenyl)-prop-2-en-1-one (Figure
44) with the same moieties in CA-4 showed highest inhibition activity at a nanomolar with an

ICso of 4.3nM suggesting strong interaction with the CBS (Ducki et al., 1998).
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Figure 44: Modified diaryl chalcone bearing CA-4 moieties

However, insertion of a methyl group in the a-position as in (Figure 45 left) resulted in
conformational change to s-trans and a twenty-fold improvement in cytotoxicity (0.21 nM)

(Ducki, 2007). -
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Figure 45: Diaryl-chalcones bearing methyl and phosphate moieties

A phosphate modified analogue (Figure 45 -right) on a methyl-substituted chalcone suggested
that the s-trans conformation of has better interaction with the CBS when the a-methyl is
present(Pang et al., 2017). Yet, despite the continued effort to modify CA-4 mimicking
chalcone analogues with different moieties, it did not pass into clinical trials stage because of

poor bioavailability in the plasma membrane (Fagundes et al., 2017).

1.4.4 Phenstatin CA-4 analogues
Phenstatins are structurally rigid analogues of CA-4 with potent microtubule destabilising
properties with cytotoxic activity recorded at a nanomolar concentration in different cancer

cell lines (Chen et al., 2018a). Like combretastatins, phenstatin has entered advanced clinical

40



trials as an antimitotic agent (Chen et al., 2018a; Seddigi et al., 2017). Perhaps, phenstatin
analogues are metabolically stable and their potential bioavailability in the plasma membrane

makes it an attractive clinical candidate for antimicrotubular drugs (Sardaru et al., 2020).
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Scheme 2: Synthetic steps for the synthesis of phenstatin (Pettit et al., 2000)
In addition to their structural stability over combretastatin, phenstatin is easy to synthesise.
They are derived from simple benzophenones which can be synthesised with commercially
available reagents. The original synthesis of phenstatin is described in (Scheme 2). A lithiated
aryl bromide (above) was reacted with a silyl protected benzaldehyde to give the
corresponding alcohol. Mild oxidation and deprotection of the silyl group afforded the
phenstatin (Pettit et al., 2000). It is reported as a feasible method from which potentially
active phenstatins (Zhang et al., 2016) (Figure 46) are synthesised (Chen et al., 2013).
O
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Figure 46: Structure of potentially active phenstatin

Like CA-4 and colchicine, structure activity studies on phenstatin reveals interaction of groups
that determine strong activity. Methoxy groups at position 3,4,5 of ring A (Figure 47) is
important for activity in CBS, likewise the methoxy group on ring B. The sp? carbon of the

carbonyl is also essential as it overcome the problem of isomerisation. Position 3 on ring B
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substituted with hydroxyl can also tolerate replacement with other groups that are electron

withdrawing (Figure 47) (Wang et al., 2018a).

essential
—t—

X
H3;CO R R=F, Cl, Br,
@ @ I, NH,, OCH,
HsCO OCHS//
OCHj important
important

Figure 47: Active groups that contribute to activity of phenstatin with CBS

1.5 B-Diketones as inhibitors of the colchicine binding site and Wnt / B-catenin pathway

B-Diketones belong to the class of 1,3-dicarbonyl compounds with a wide application in
organic and inorganic chemistry. Recently, modified derivatives of these compounds have
been used in medicinal chemistry (Kljun and Turel, 2017). Also, owing to their chelating
properties which enables them to form metal complexes (Shinde et al., 2020); they have been
used as important ligands in metal extraction and manufacture of fine materials through

chemical vapour deposition (Amano et al., 1993).
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Figure 48: a-Alkenylated analogue of B-diketone used as intermediate to heterocyclic
compounds

B-Diketones and their and a-alkenylated analogues (Figure 48) have been used as medicinal
intermediates for the synthesis five membered heterocyclic compounds which show a wide
range of biological activities including antimicrobial (Shabalin et al., 2020), antiviral,
antidiabetic (Kamal et al., 2015) and anticancer. For example, recently, a derivative of an
important substituted B-diketone (Figure 49- left) was used as intermediate to synthesise aryl

pyrazoles (Figure 49- right) showing cytotoxicity on different cancer cell lines including lung
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cancer (A549) and breast cancer (MCF-7) which showed lower ICso values between 0.10 uM

and 0.13 uM (Lakkakula et al., 2019).
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Figure 49: B-Diketone (left) used as intermediate to synthesis of substituted pyrazoles (right)

Because of their reactivity in different conditions, they also form major substrates for the
biosynthesis of many compounds found in plants and animals by intramolecular cyclization in
basic media; these include bioactive benzopyran derivatives such as chromones, pyrimidines

and pyridines (Figure 50) (Reis et al., 2017).
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Figure 50: B-diketone as intermediate for synthesis of chromones pyrimidines and pyridines

1.5.1 Naturally occurring B-diketones as anticancer agents
Naturally occurring B-diketones are not very common in nature. However, dicarbonyls with

the same functionality and structural scaffolds as the B-diketone constitute the main
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structural component of the naturally occurring herbs such as the curcumins (Figure 51) and

its derivatives (Kljun and Turel, 2017).

Figure 51: Structure of curcumin

Curcumin (diferuloylmethane) represents the major compound found in roots of plant
Curcuma longa. Apart from being an antioxidant, curcumin which has a B-dicarbonyl scaffold
is believed to be one of the currently known non-toxic compounds that has been clinically

tested for anticancer properties (Gupta, Patchva and Aggarwal, 2013).

Figure 52: Structure of Taxol

Curcumin also plays an important role in preventing tumour initiations and modulating the
synthesis of DNA during cell cycle by activating DNA damaging signals such as Ras and Myc
(Bava et al., 2005). Curcumin is used in combination with taxol (Figure 52) to enhance cell

cycle arrest at Go/G1 and G,/M stage (Figure 53) (Sa and Das, 2008).
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Figure 53: Curcumin activity in modulating cell different stages of cycle progression. Obtained
from (Sa and Das, 2008)

Curcumin has been shown to have anticancer activity on different cell lines including
pancreatic cancer cells (Sahu, Batra and Srivastava, 2009), breast cancer (Simon et al., 1998;
Choudhuri et al., 2002), oesophageal and colorectal cancer (Ryu et al., 2008). Owing to its
non-toxic properties and specificity toward targeting cancer cells, it has received considerable
attention and is widely studied in animal models (Dorai and Aggarwal, 2004). Based on this
property, curcumin and its derivatives have recently entered clinical trials; a daily dosage as
much as 4-8 g was safely administered with no harmful effects observed (Cheng et al., 2001).
The mechanism through which naturally occurring B-diketones inhibits cancerous cells has
not been fully identified. Nevertheless, many studies show that curcumin derivatives of B-
diketones can directly or indirectly interact with different proteins and transcription factors

in cancer cells (Chakraborti et al., 2011; Gupta et al., 2006).

1.5.2 B-Diketones as inhibitors of tubulin polymerisation

In a cell viability study, it has been shown that curcumin inhibited proliferation of cervical
cancer cell lines (Hela) and breast cancer (MCF-7) cells resulting 1Csp values of 13.8 uM and
12.0 uM. The antimicrotubular activity examined with immunofluorescence microscopy at

curcumin concentration of 25 uM depolymerized microtubules suggesting presence of
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activity on tubulin (Gupta et al., 2006). Molecular docking of curcumin with tubulin showed

strong hydrogen bond interactions in the colchicine binding site (CBS) (Figure 54).
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Figure 54: 2D diagram of curcumin interaction in the CBS (Docking score and -6.8 and -7.7)

Two essential interactions including other weak interactions (figure below) with the amino
acid residue of the binding site receptor suggests curcumin has a role in depolymerising
microtubules. The OH on ring A forms a hydrogen bond with Val238 (2.19 A), the tautomeric
enol also contributes to the formation hydrogen bond interaction with Ala250 (2.64 A). Other

weak interactions with the ligand include the residues Val318, Cys241 and Cys352 (Figure 55).

Figure 55: 3D-strucutre of curcumin interacting in the CBS
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1.5.3 Curcumin and modulation of Wnt / B-catenin pathway leading to cancer

1.5.3.1 Wnt / B-catenin signalling pathway

Wnt / B-catenin signalling represents one of the important pathways facilitated by association
of different proteins and receptors between the cellular and nuclear membrane in eukaryotic
cells. As mentioned earlier, they are among the essential mediators consisting of proteins and

protein kinases that regulate transcription factors for cell replication.

In the absence of Wnt activity in a normal cell, B-catenin is phosphorylated by a scaffold of
cytoplasmic complex involving Axin and two other kinases, glycogen synthase kinase (GSK-3)
and APC (Milad et al., 2020; Cooper, 2019). This process leads to ubiquitylation and hence
Wnt undergoes protoseomic degradation that keeps it from translocating into the nuclear

environment (Figure 56).
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Figure 56: Inhibition and stimulation of transcription of Wnt / B-catenin signalling pathway,
adapted from (Cooper, 2019).
A) Normal Wnt / B-catenin pathway dimerizing Frizzled and LRP to become a proto-oncogene.

B) mutated oncogene formed through Wnt / B-catenin pathway.
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On the other hand, Wnt protein bound to Frizzled and LRP membrane receptors dimerize and
lead to recruitment of Dishevelled (DVL), which destabilises the scaffolded destruction
complex, hence the concentration of free B-catenin in the cytoplasmic environment is
increased (Liu et al., 2019). When B-catenin is translocated into the nucleus, it binds with a T-
cell fact (Tcf) which acts as a gene repressor and forms a complex. B-Catenin upregulates
mutations associated with the absence of Wnt renders it as an oncogene with a mutated
versions of either APC, cyclin D1 or c-Myc (Prasad et al., 2009). Recently, most women with
breast and cervical cancer and about 85 % of people with colorectal cancer have been
detected to have cellular mutations in VEGF (Xu et al., 2013) cyclin D1 and c-Myc related genes
(Reyhaneh et al., 2018; Kierszenbaum and Tres, 2016). Several small drugs and naturally
occurring compounds that target Wnt / B-catenin pathway have been selected for clinical
trials (Table 2); each has a specific or multiple target within the cascade of proteins that may
be responsible for abnormal accumulation of B-catenin in the nuclear environment (Liu,

Takada and Zhu, 2020).

Table 2: Wnt / B-catenin pathway targets currently in different stages of clinical trials

Compound Structure Target/ Corporation Preclinical/clinical Ref
receptor trail
Small molecule
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OH O - Dana-Farber Cancer Phase II/1lI:
OH Institute; Quercegen Thromboembolism
. Pharmaceuticals; Phase I/Il: Chronic
quercetin O OH NIH (USA) obstructive
HO 0
O pulmonary disease
OH
OH - GlaxoSmithKline Phase I: Colorectal
HO S O cancer, Cancer
resveratrol O metastases,
Multiple myeloma
OH
Monoclonal antibody (mAb)/peptide
mAb Frizzled Onco Med Phase |: Breast
receptor Pharmaceuticals, cancer, pancreatic
OMP-18R5 Bayer cancer, non-small
cell lung cancer,
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FZD8-Fc fusion protein Wnt Onco Med Phase I: Liver
protein Pharmaceuticals, cancer, pancreatic
OMP-54F28 Bayer cancer, ovarian
cancer, solid
tumours
OTSA 101 mAb Frizzled OncoTherapy Science  Phase I: Synovial
receptor sarcoma
SAH-BCLY Peptide BCL9/.B- - Preclinical
catenin

1.5.3.2 Mediation of curcumin with proteins and Wnt / B-catenin signalling pathway

Recent reports have experimentally suggested that curcumin has a mode of inhibition which
directly or indirectly span across many pathways in cancer progression. It was found that
curcumin regulates the required homeostatic level required for different proteins related to
signal transduction pathways (Shishodia, 2013). For example, curcumin induces intrinsic and
extrinsic pathways that activate apoptosis in cells by mediating with Bcl2 and p53 proteins
associated with tumour suppression. Also, curcumin extrinsically mediates with death
receptors on cell membrane (DR4, DR5) which elevates the concentration of different
intracellular protease enzymes such as Caspases 8, -3 and -7, thus resulting in cell death

(Shehzad and Lee, 2013).

Curcumin alone can mediate Wnt / B-catenin pathway and exerts multiple activity on cancer
cells (Figure 57). One of the pathways include Wnt pathway mediated by cyclin D1 and c-Myc
which involves an increase in concentration of SOD enzymes that control elevated levels of

ROS thus keeping cells in a well maintained condition (Wang et al., 2018c).
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Figure 57: Different wnt /B-catenin bathways targetted by curcumin to inhibit cancer
progression. Adapted from (Milad et al., 2020)

Evidence has shown that mutation in GPC3 expression is one of the factors involved in
abnormal cell growth and regulation in cancer and is the genesis of most human
hepatocellular carcinoma patients (Gao and Ho, 2011). As a result, curcumin also inhibits the
Wnt / B-catenin pathway mediated by GPC3 and is shown to be promising in resisting

abnormal proliferation due to mutated GPC3 gene in HCC cell lines (Milad et al., 2020).

An insight to the molecular mechanism of curcumin with proteins members in the Wnt /B-
catenin pathway reveals that two oxygen atoms in curcumin at the B position are essential
for interaction with most amino acid residues, thus showing multiple activities in different
pathways (Xu et al., 2013). For example, a structure-based virtual screening analysis of
curcumin with DvI2 (Figure 58-left) in the binding pocket forming hydrogen bond interaction

with the two tautomeric oxygens of the B-diketone with best scoring function (Figure 58).
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Figure 58: (Left) 3D representation of curcumin interacting with amino acid residues of DvI2

(PDB ID: 3CBY).
The 2D representation (right) indicates the amino acid residues: Asp360, Trp363 and Ser281

that interact with curcumin . (Xu et al., 2013)
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1.6 Overview on synthesis of B-diketones:

Over the past decades, large number techniques and methods for the synthesis of B-
diketones and their derivatives have been reported (Alexander, 2003). The focus of these
reports is mainly aimed at employing B-diketones as alternative route to isolation of active
medicinal compounds. For instance, B-diketones have been widely used as precursors in

synthesis of chalcones, flavonoids and heterocyclic compounds (Sambaiah et al., 2017).

Claisen acylation and carbethoxylation of ketones and esters is one of the oldest existing
method employed in synthesis of most of B-diketones (Swamer and Hauser, 1950). Although
a strong base is used, the method gives high yield of product. The reaction usually employs
sodium hydride for the deprotonation, but softer bases have also been used. Yang et al.,2013,
have optimized the Claisen acylation method in work by using different bases and solvents.
The outcome of the work showed the reaction with sodium hydride as base with THF is the
driving factor to achieving Claisen products in higher yield. Sodium hydride as a base in the
Claisen reaction will remains the efficient method for synthesis in spite of the flammable
nature of this base. (Yang et al., 2019). Wai et al., 2000 also reported a modified procedures
for this method with sodium methoxide and potassium tert-butoxide (Wai et al., 2000) The

method was found to be efficient for yielding both aliphatic and aromatic B-diketones.

)J\ o ji\/”\
CH OR" DMF R R
R, R', R" = alkyl, aryl

Scheme 3: A modified Claisen condensation of ketones to a B-diketone using potassium tert-
butoxide as a base.

An efficient way of obtaining aliphatic and aromatic B-diketones was also reported according
to the same procedure as in (Scheme 3). Due to its flexibility and milder conditions, it has
been used in synthesising several commercial diketones with sterically hindered substituted

such as 2,2,6,6-tetramethyl-3,5-heptanedione (Nandurkar et al., 2007).

Baker-Venkataraman is also one of the most efficient methods that allows rapid synthesis of
B-diketones and many classes of natural product-like compounds such as flavones and
chromones (Gomes et al., 2009; Kalinin et al., 1998). The method employs o-

benzoloxyacetophenones to undergo a base-catalysed intermolecular Claisen condensation

53



of esters and ketones to produce B-diketones (Scheme 4). The advantage of this method is
that it allows the use of different solvents of choice giving high yields of product. This method
also gives reasonable yields under microwave conditions which can improve the reaction time

compared to the classical methods (Ameen and Snape, 2015).

NaH
A\ OCONE;  —T&H O NoEt2
RVT:/ or PhMe RfT:/
R or Xylenes R
0] (reflux) 0

Scheme 4: Optimisable Baker-Venkataraman conversion of aromatic esters to B-diketones

A rapid method for the preparation of PB-diketones like the Baker-Venkataraman
rearrangement has been reported by Wallet and Gaydou (1996) using a phenyl benzoate
through dibenzoylation. It is a fast and efficient method which does not require heating
throughout the entire process. However, isolation of product from larger volume of reaction

could be difficult with DMSO as solvent (Scheme 5).

0

O 3

° DMSO

w  ECLTC
8 0

Scheme 5: Baker-Venkataraman rearrangement of phenylbenzoate to B-diketone using
DMSO as solvent

O

Likewise, substituted B-diketones bearing halogenated substituents were synthesised by a
rapid method from acetophenones and aromatic acids to give the corresponding benzoate in
two steps (Scheme 6 and Scheme 7) (Sartape, Gadde and Salunkhe, 2015). Reports that
employed a similar procedure showed that the method is associated with purification

problems related to isolation of product from pyridine (Bansal et al., 2017).
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COOH R= alkyl, halides

O
S
POCI3
©f‘\CH3 + Q Pyridine
OH <40°C

Scheme 6: Isolation of aromatic esters from aromatic acetophenone and carboxylic acid

0] —
o KOH U
Pyridine
O O

o} R= alkyl, halogens

Scheme 7: Rearrangement of aromatic ester into B-diketone.

Similarly, B-diketones have been also synthesised by refluxing o-hydroxyacetophenone with
aroyl chlorides with dry potassium carbonate. In this method different methoxy substituents
containing o-hydroxyacetophenones were treated with potassium hydroxide or potassium
carbonate. The method has been employed in preparing B-diketones under microwave
conditions in the presence of 1,8-Diazabicyclo[5.4.0Jundec-7-ene (DBU) as base and pyridine
as solvent (Abdel Ghani et al., 2008). One of the drawbacks related with this method is the
difficulty of isolating the compound from the excess of pyridine., and therefore considered

unreliable solvent of choice (Scheme 8).
(0] (0]

)J\ DBU (2equiv.) R,
Cl ————>
pyridine, 80°C

R1,R, = Alkyl, Aryl

Scheme 8: Modified Baker-Venkataraman synthesis of B-diketone bearing alkyl and aryl
groups from DBU and pyridine

A more efficient method that overcomes the use of high boiling point solvents was employed
by Jae et al., 2005. An acetophenone and benzoyl cyanide gave B-diketones by condensation
in the presence of lithium diisopropylamide (LDA) (Scheme 9). This method employs THF, and

thus serves as an efficient alternative to pyridine and DMSO (Lee and Son, 2005).
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L THF, H,0* — ™

Scheme 9: A modified route to preparation of B-diketone using THF as solvent

Recently, most of the papers reviewed on synthesis of B-diketones relied on procedures that
avoid the use of solvents with higher boiling points. Therefore, the method used for the
preparation of most B-diketones for this thesis relied on the use of THF and inorganic bases

to achieve easy extraction and purification from solvents.

1.7 Aims and objectives

Despite the interest of many researchers on anticancer activity of curcumin and its excellent
profile as one of the non-toxic compounds, its lack of solubility and bioavailability in the target
receptor poses challenge for its clinical development. Reducing the bridge length and
introducing different groups on the two aromatic rings (Figure 59) offers a rational approach
in drug design (Ghinet et al., 2013) and development. Introducing electron withdrawing
groups (EWG) and electron donating groups (EDG) at different positions of ring A and B will

provide B-diketones with the potential to offer anticancer activity.

R1=R2=EDG or EWD

Figure 59: Replacement of the olefinic length of curcumin chain in B-diketone

Hepta-1,6-diene-3,5-dione replaced with 1,3-diphenylpropane-1,3-dione bearing different
substituents of R1 and R, on the dibenzoyl rings.

The aim of this thesis is to synthesise and characterise novel B-diketone analogues and
investigate their anticancer activity on different cell lines. These cell lines include: lung
carcinoma cell line (A549), hepatocellular carcinoma (HepG2), Rhabdomyosarcoma (A204),

cancerous cervical cancer cells (HeLa) and osteosarcoma epithelial cells (U20s). Effects of
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some selected B-diketones and benzoylthioureas will be determined on three different
leukaemia cell lines in order to widen the scope of their activity of different cancer cell lines.
The project will also explore the molecular interactions between the active analogues and the
colchicine binding site of tubulin by docking analysis. This will enable to identify amino acid

residues that are essential for interaction with these compounds.
The objective of the thesis is as follows:

1. To synthesise novel analogues of B-diketones and benzoylthiourea bearing different
substituents on the rings.

2. To evaluate the cytotoxicity of synthesised compounds on different cell lines by MTT
assay.

3. To conduct a molecular docking analysis to identify the amino-acid residues that that

bind with these molecules in the colchicine binding site of tubulin.
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CHAPTER TWO
Materials and Methods
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Chapter two

2.0 Materials and Methods

2.1 Synthesis and purification of 1,3-diketones

All reagents and chemicals were obtained from Fluorochem Ltd, Apollo Scientific Ltd and

Thermo Fisher Scientific.

Chromatography

Thin-layer chromatography (TLC) was carried out on pre-coated silica gel (0.20 mm) with
fluorescent indicator UVasa. TLC spots are observed with a handheld UV lamp (UVGL-58
LW/SW) viewed under a fluorescent analysis cabinet (Spectroline model CM-10). Flash
chromatography was carried out with silica gel of high purity grade having a pore size of 60

A, 220-440 mesh particle size, 35-75 um particle size from Fluka.

Melting points:
Melting points are uncorrected and were recorded with Electrothermal MP apparatus and a
Stuart Digital® melting point apparatus model number SMP20. A preliminary melting point

for each sample was determined, and the exact melting point was recorded in triplicate.

NMR spectrometer:

Bruker AC-400 MHz and 600 MHz NMR spectrometer was used to obtain the spectra for
proton (*H), fluorine (*°F), carbon (33C) and nitrogen (**N) NMR and related techniques such
as attached proton test (APT), distortionless enhancement by polarization transfer (DEPT) and
2D (COSY, HMQC and HMBC). Deuterated chloroform (CDCl3) was used as solvent unless
stated otherwise. Chemical shift (8§) of spectra were reported in parts per million (ppm),
coupling constants (J) were presented in (Hz); patterns of in ®fwere reported as singlets (s),
doublets (d), triplets (t), quartets (q) and multiplets (m). The position of atoms in the
structures are numbered e.g. (1,2...1'2".... or 1”7, 2"”...); these numbers will be used to address
the chemical shifts assigned for each peak. Topspin 3.6.1 and Topspin 4.1.0 software was used

for analysing all NMR data.

Mass spectrometer:
High resolution mass spectra (HRMS) data were obtained from the Cambridge analytical
services, department of chemistry, UK, by using methanolic solutions (50% MeOH: 50% H,0)

on a 6200 Series TOF and 6500 series Q-TOF with electron spray as ionisation method (ESI).
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Infra-red (IR):

Absorption spectra for all compounds was acquired using Compact Bruker ALPHA Il Platinum-
ATR and ThermoScientific Nicolet iS10 connected to a terminal with OMNIC Software version
8.3 and 9.0. Data for all compounds was recorded as frequencies of absorption for all
compounds in reciprocal centimetres (cm™) against transmittance (%). During collection of
data, a background is run first, then the sample is run. The background (CO;) is subtracted

from sample to give the IR data.

Microwave reactor:
Microwave synthesiser Discover SP, CEM corporation (programmable temperature range: O -
300 °C, maximum power output: 0 - 300 W (+ 30 W/min) and reaction vials of volumes 10 ml

and 50 ml were used for all reactions.
Cell viability assay (MTT):

MultiScan Ascent Thermo Fisher Scientific was used for reading 96-well plates (flat well — Lot

1020121 (SARSTEDT) between absorption range of 540 nm — 640 nm.
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2.1.1 Synthesis of 1,3-diketones, benzoyl thiourea and intermediates:

General procedures

Procedure A:

[l OMe+
' THF
(Reflux, 12 h)

Following the methods described by Dubrovina (Dubrovina et al., 2003; Jin et al., 2011) To a
mixture of sodium hydride (60% in oil) (8.9 mmol, 3.0 eq) in THF (15 ml) under nitrogen at 0°C
a ketone (3.0 mmol, 1.0 eq) in THF (15 ml) was added dropwise. After 10 minutes, ester (3.0
mmol, 1.12 eq) in THF (15 ml) was added dropwise and stirring was continued. After 30
minutes, the reaction mixture was brought to room temperature, heated under reflux for 16
hours, and monitored by TLC. After completion of the reaction was confirmed, the reaction
mixture was poured into ice water (150 g) and acidified with 1.0 M hydrochloric acid (HCI).
The organic layer was extracted with ethyl acetate (3 x 50 ml), washed with brine and (2 x 50
ml) and dried with magnesium sulphate (MgS04) and concentrated in vacuo. The residue was

purified by column chromatography and / or recrystallised.

61



Procedure B:

Methyl 3-((tert-butyldimethylsilyl)oxy)-4-methoxybenzoate (1)

e} O
HO OTBDMS
OCHj; t.Bu(Me),sicl H3CO
—»
H,CO DMF/ DIPEA OCHj

(1)
A solution of methyl-3-hydroxy-4-methoxybenzoate (0.4 g, 2.2 mmol, 1 eq) in dry DMF (35
ml) under argon was cooled to 0 °C and N,N-diisopropylethylamine (DIPEA) (0.57g , 4.4 mmol,
2 eq) was added. t-Butyldimethylsilyl chloride (TBDMS) (0.37 g, 2.7 mmol, 1.12 eq) was added
over a period of 30 minutes and allowed to warm to room temperature for 1 hour. After 4
hours, the reaction mixture was poured into ice (150 g) and extracted with diethyl ether (3 x
60 ml). The combined extracts were washed with brine (2 x 60 ml), dried with MgSO4 and the
solvent removed in vacuo. The residue was purified by column chromatography to give a

yellow oily product (Nagarathnam and Cushman, 1991). (0.37 g, 1.25 mmol, 93 %)

R: 0.27 (Hex: EtOAc 8:2)

8k (CDCls, 400 MHz): 0.0 (6 H, s, Si-CHs), 0.83 (9 H, s, C(CHs)3), 3.69 (3 H, s, 4-OCHs), 3.71 (3
H, s, 0=C-OCHs), 6.70 (1 H, d, J = 8.4 Hz, 5-H), 7.35 (1 H, d, J = 2.1 Hz, 2-H), 7.51 (1 H, dd, J =
8.4 Hz, 2.1 Hz, 6-H)

13¢ NMR (CDCls, 100 MHz): -4.65 (2 C, 1), 18.4 (1 C, 2’), 25.7 (3 C, 3’ 4',5-CH3), 5.19 (1 C,
OCHs, 2”"), 55.4 (1 C, OCHs, 4), 110.9 (1 C, 5), 121.9 (1 C, 2), 122.7 (1 C, 3), 124.3 (1 C, 6),
144.6 (1 C, 3),155.1 (1 C, 4), 166.8 (1 C, 17).

IR vmax: 2939, 2842, 1705 (C=0), 1584, 1506, 1546, 1435, 1284
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Procedure C:
o] e} 0] O
TBDMSO oMe + X ve  LIHMDS N OTBDMS
W T N onte
MeO

A solution of lithium hexamethyldisilane in THF (1 M, 0.5 g, 2.9 mmol, 2.0 eq) (15 ml) was
added dropwise to a stirred solution acetophenone (0.3 g, 1.48 mmol) in THF (15 ml) under
argon atmosphere at -78 °C. After 1 hour, a solution of silyl protected ester (0.5 g, 1.48 mmol,
1.0 eq) in THF (15 ml) was added dropwise. Stirring was continued for 1 hour at -78 °C and 36
— 48 hours at room temperature and monitored with TLC. The reaction mixture was poured
into ice (100 g), acidified with 1 M HCI (5 ml) and extracted with chloroform (3 x 60 ml). The
combined extract was dried with MgS0O4 and concentrated in vacuo. The crude product was

purified with column chromatography to give a diketone.
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Procedure D:

A solution of acetophenone (1 g, 7.35 mmol, 1.00 eq) and 3-fluoro-4-methoxybenzoyl chloride
(1.94 g, 10.28 mmol, 1.40 eq) in pyridine (10 ml) was stirred at room temperature. After 20
minutes, the reaction mixture was added to a crushed ice (100 g) containing 1 M HCI (30 ml)
and stirred for 10 minutes. The precipitate was filtered and washed with cold methanol (10

ml) and cold water (10 ml). Recrystallisation from ethanol afforded the ester.

H

M.P: 96 -98 °C;

84 (CDCl3, 400 MHz): : 2.47 (3 H, s, 1"-CH3), 3.92 (3 H, s, 4-OCHs), 7.02 (1 H, t, J = 8.35 Hz, 5),
7.16 (1 H, dd, J = 8.21 Hz, 1.01 Hz, 2’), 7.32 (1 H, dt, J = 7.60 Hz, 0.99 Hz, 4’), 7.54 (1 H, dt, J =
7.77 Hz, 1.65 Hz, 3’), 7.80 (1 H, dd, J = 7.76 Hz, 1.65 Hz, 6), 7.86 (1 H, dd, J = 11.65 Hz, 1.97 Hz,
2),7.94 (1H,d, ) =8.51Hz, 5).

8¢ (CDCls, 100 MHz): 30.9 (1 C, 1"’-CHs), 56.4 (1 C, 4-OCHs), 112.7 (1 C, d, J = 2.01 Hz, 5),
118.0 (1C, d,J =203 Hz, 2), 121.9 (1C, d, ) =6.17 Hz, 1), 123.9 (1 C, 2'), 126.2 (1 C, &),
127.7(1C, d,J=3.36 Hz, 6), 130.3 (1 C, 3’) 150.6 (1 C, 1’), 152.6 (1 C, d, J = 10.6 Hz, 4), 153.1
(1C,d,J=247.7,3),197.5 (1 C,2"),207.0 (1C, 1").

m/z HRMS (ESI) [M + H]: Calculated for CigH14FO4 289.0871, found 289.0878 ((AMs=2.44

ppm)

IR Umax: 2923 (C-H), 1738 (C=0).
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Procedure E:

Methyl 4-methoxy-3-((tetrahydro-2H-pyran-2-yl)oxy)benzoate

HO

H,CO

(3)

Methyl-3-hydroxy-4-methoxybenzoate (2.73 g, 15.0 mmol, 1 eq) was reacted with 0.25 g
pyridinium p-toluenesulfonate (0.25, 1 mmol, 0.07 eq) and 3,4-dihydro-2H-pyran (3.36 g, 40
mmol, 2.67 eq) in dichloromethane (30 ml) and stirred at room temperature overnight. After
the completion of reaction was confirmed by TLC (Hexane: EtOAc 8:2), the reaction mixture
was washed with 1 M NaHCOs3 solution (30 ml x 2), and brine (30 ml), dried with MgSQs, and
solvent was evaporated under reduced pressure to give a crude colourless product.
Purification with column chromatography afforded a pure white product (Hexane: EtOAc 8:2).

(1.21 g, 4.54 mmol, 44 %).

M.P: 96-98°C; Rs: 0.31; (Hex:EtOAc 8:2 );

84 (CDCls, 400 MHz): 1.16 —2.08 (6 H, m, 2/, 3, 4’), 3.61 —4.03 (2 H, m, 5'), 3.89 (3 H, s, 4-
OCHs), 3.92 (3 H, 2”’-CH3), 5.49 (1 H, t, J = 3.20 Hz, 1’), 6.93 (L H, d, ) = 8.47 Hz, 5), 7.75 (1 H, dd, J =
8.53 Hz, 2.05 Hz, 6), 7.80 (1 H, d, 2.04 Hz, 2).

8¢ (CDCl3, 100 MHz) 18.8 (1 C, 3’), 25.2 (1 C, 4'), 30.2 (1 C, 2’), 51.9 (1 C, 2”’-CH3) 56.0 (1 C, 4-
OCHs), 62.2 (1 C,5),97.5(1C, 1'), 111.1 (1 C, 5), 118.7 (1 C, 2), 122.7 (1 C, 1), 125.0 (1 C, 6),
145.7 (1 C, 3),154.3 (1 C, 4), 166.8 (1 C, 17).

m/z HRMS (ESI) [M + H]: Calculated for C1aH150s 267.1227, found 267.1207 (AMs=2.44 ppm)

IR Umax: 3015 (C-H), 1715 (C=0), 1165 (C-0)
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Procedure F:

0 o S 2.
—R
W2 hsen )]\ P
A c t R4 roatone > X N~ N
| ] Acetone |
Ry Z (RT) R H H
Z =

A solution of acid chloride (1 mmol, 1 eq) in dry acetone (15 ml) was added dropwise to a
solution of ammonium isothiocyanate (1 mmol, 1 eq) in acetone (15 ml). The mixture was
stirred for 5 minutes until precipitate of isothiocyanate was formed. A solution of amine (1
mmol, 1 eq) in acetone (10 ml) was added slowly. The reaction mixture was refluxed for 30
minutes and allowed to stir at room temperature for 5 hours. The solvent was removed under

reduced pressure and the product was recrystallised.
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2.1.2 Synthesis of B-diketones:
1-(3-Fluoro-4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (4)

(4)

Compound (4) above was synthesised from 3-fluoro-4-methoxy acetophenone (0.5 g, 2.97

mmol) and methyl-3,4,5-trimethoxybenzoate (0.85 g, 3.75 mmol) and sodium hydride as in
procedure A. Following column chromatography (Hex: EtOAc 7:3) and recrystallisation from

ethanol the title compound (4) was isolated as yellow crystals (0.71 g, 1.93 mmol, 65 %).

M.P: 122 — 125 °C; Rf: 0.28 (Hex:EtOAc 8:2);

64 (CDCl3, 400 MHz): 3.96 (3 H, s, OCHs, 4),3.98 (6 H, s, 2 x OCHs, 3, 5),4.00 (3 H, s, OCHs, 4'),
6.68 (1H,s,2"”),7.09(1H,t,/=8.24Hz,5'),7.23(2H,s,2,6),7.76 (1H,d,J=12.4 Hz, 1.8 Hz,
2’),7.81(1H,d,/=8.4Hz, 6’),17.06 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 56.3 (1 C, OCHs, 4’), 56.4 (2 C, OCHs, 3, 5), 61.0 (1 C, OCH3, 4), 92.2 (1 C,
2”),104.5 (2 C, 2,6),112.7 (1C, d, ) = 1.89 Hz, 5), 115.0 (1 C, d, J = 20.3 Hz, 2’), 124.1 (1 C, d,
J=3.16 Hz, 6'), 128.5 (1 C, d, J = 5.94 Hz, 1), 130.8 (1 C, 1), 142.1(1C, 4),151.4 (1C, d,J =
10.53 Hz, 4’), 153.2 (2 C, 3, 5), 153.3 (1 C, d, J = 257.85 Hz, 3’), 183.8 (1 C, d, J = 1.81 Hz, 3"),
185.0 (1 C, 1”).

Or (400 MHz): -134.1 (1 F, dd, J = 8.3 Hz, 3.7 Hz, 3’)

HRMS (ESI-TOF) m/z: [M+H] Calculated for C19H19FOs 363.1238; found 363.1248 (AMs=2.71

ppm)

IR Umax: 3366 (enolic OH), 2940 (C-H), 1632 (C=0).
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1,3-Bis(3,4,5-trimethoxyphenyl) propane-1,3-dione (5)

This compound has been synthesised by Choshi et al., 1992. 3,4,5-Trimethoxy acetophenone
(0.85 g, 4.03 mmol) and methyl-3,4,5-trimethoxybenzoate (1.15 g, 5.09 mmol) and sodium
hydride (0.29 g, 12.13 mmol) were reacted as in procedure A. Following column
chromatography (Hex:EtOAc 7:3) and recrystallisation from ethanol compound (5) was

isolated as yellow crystals (1.20 g, 2.96 mmol, 73 %).

M.P: 161 - 163 °C; lit: 154-155 °C (Choshi et al., 1992); Rs: 0.37 (Hex:EtOAc 7:3);

84 (CDCl3, 400 MHz): 3.95 (6 H, s, 2 x OCHs, 4, 4'),3.97 (12 H, s, 4 x OCHs, 3,5, 3, 5), 6.67 (1
H,s,2”),7.22 (4H,s,2,6,2,6),17.06 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 56.5 (4 C, OCHs, 3, 5, 3', 5'), 61.09 (2 C, OCHs, 4, 4), 92.7 (1 C, 2”), 104.8
(4C, 2,6,2,6),130.9(4C,3,5,3,5),142.2(2C, 4,4'),153.3(2C, 1, 1'), 185.1 (2 C, 17, 3").

HRMS (ESI-TOF) m/z: [M+H] Calculated for C21H240s; 404.1471 found 404.1493. (AMs=3.70

ppm)

IR Umax: 3108 (enolic OH), 1606 (C=0), 1553 (C=C).
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1-(3,4-Dimethylphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (6)

Compound (6) above was synthesised from 3,4-dimethyl acetophenone (0.5 g, 3.30 mmol)
and methyl-3,4,5-trimethoxybenzoate (0.70 g, 3.11 mmol) and sodium hydride (0.24 g, 9.90
mmol) as in procedure A. Following column chromatography (Hex:EtOAc 8:2) and
recrystallisation from ethanol compound (6) was isolated as yellow crystals (0.55 g, 1.60

mmol, 49 %).
M.P: 112 -115°C; Rs: 0.32 (Hex:EtOAc 8:2);

84 (CDCls, 400 MHz) : 2.36 (3 H, s, 3'CHs), 2.37 (3 H, s, 4-CH3), 3.96 (3 H, s, OCHs, 4), 3.98 (6
H,s,2xOCHs3,5),6.76 (LH,s, 2"),7.25 (2 H,s, 2,6), 7.27 (LH, d, J = 8.2 Hz, 5’), 7.75 (1 H,
dd, J=8.2 Hz, 2.4 Hz, 6), 7.78 (1 H, d, J = 2.4 Hz, 2’), 17.07 (1, s, enol).

8¢ (CDCls, 100 MHz): 19.8 (1 C, CHs, 4’), 20.0 (1 C, CH3, 3'), 56.4 (2 C, OCHs, 3, 5), 61.0 (1 C,
OCHs, 4), 92.6 (1 C, 2”), 104.6 (2 C, 2, 6), 124.7 (1 C, &), 128.2 (1 C, 2’), 130.0 (1 C, 1), 131.2
(1C,5), 132.9(1C, 1’), 137.1 (1 C, 3’), 141.9 (1 C, 4’), 142.0 (1 C, 4), 153.2 (2 C, 3, 5), 185.0 (1
C,3”),185.7 (1C, 1”).

HRMS (ESI-TOF) m/z: [M+H] Calculated for C,1H240s; 343.1540 found 343.1539 (AMs=0.25

ppm)

IR Umax: 3114.5 (enolic OH), 1558 (C=0),
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1-(3,4-Dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (7)

Compound (7) above was synthesised from 3,4-dimethoxy acetophenone (0.5 g, 2.77 mmol)
and methyl-3,4,5-trimethoxybenzoate (0.96 g, 4.30 mmol) and sodium hydride (0.27 g, 9.50
mmol) as in procedure A. Followed column chromatography (Hex:EtOAc 8:2) and
recrystallisation from ethanol afforded compound (7) as yellow crystals (0.72 g, 1.60 mmol,

70 %).

M.P: 115-117 °C; Rs:0.25; (Hex:EtOAc 7:3 );

81 (CDCl3, 400 MHz): 3.86 (3 H, s, OCHs, 4), 3.88 (6 H, s, 2 x OCH3, 3, 5), 3.89 (3 H, s, OCH3, 3'),
3.91 (3 H,s, OCHs, 4'), 6.64 (1 H,s,2”), 6.88 (1 H,d, J=8.41 Hz, 5), 7.14 (2 H, s, 2, 6), 7.50 (1
H, d,J=1.90 Hz, 2), 7.55 (1 H, dd, J = 8.41 Hz, 1.90 Hz, 6’), 17.11 (1 H, s, enolic).

8¢(CDCls, 100 MHz): 56.1 (2 C, OCHs, 3’, 4'), 56.4 (2 C, OCHs, 3, 5), 61.0 (1 C, OCHs, 4), 92.2 (1
C,2”),104.5 (2 C, 3, 5),109.8 (1 C, 2’), 110.4 (1 C, 5), 121.2 (1 C, 6'), 128.4 (1 C, 1’), 130.9 (1
C,1), 141.9(1C 4),149.2(1C, 3),152.9(1C, 4’), 153.2(2C, 3, 5), 183.9 (1 C, 3”), 185.7 (1
C,1”).

m/z HRMS (ESI) [M + H]: Calculated for CaoH2207; 375.1438 found 375.1441 (AMs=0.73 ppm)

IR Umax: 3023.1 (enol OH), 1595.9 (C=0).
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1-(4-Methoxyphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (8)

Compound (8) above was synthesised from 4-methoxy acetophenone (0.5 g, 3.33 mmol) and
methyl-3,4,5-trimethoxybenzoate (0.75 g, 3.66 mmol) and sodium hydride (0.23 g, 9.90
mmol) as in procedure A. Following column chromatography (Hex:EtOAc 7:3) and
recrystallisation from ethanol compound (8) was isolated as bright yellow solid (0.64 g, 1.60

mmol, 70 %).

M.P: 124 — 126 °C; Lit mp 127-128 °C (Wallet and Gaydou, 1996); Rs: 0.32; (Hex:EtOAc 7:3 );

84 (CDCls, 400 MHz): 3.95 (6 H, s, 4,4’-OCHs), 3.97 (6 H, s, 3',5'-OCHs), 6.74 (1 H, s, 2"’-H), 6.94
(2 H, d,J=8.40 Hz, 3,5-H), 7.55 (2 H, s, 2’6’-H), 7.61 (2 H, d, J = 8.40 Hz, 2,6-H), 17.15 (1 H, s,

enolic).

8¢(CDCl3, 100 MHz): 56.1 (4 C, OCHs, 3,3, 5 4’), 91.7 (1 C, 2”), 109.7 (2 C, 2/, 6'), 110.5 (2 C,
3,5),121.0 (2C, 2,6),128.4 (2C,1,1’),149.1 (2 C, 3, 5), 152.7 (2 C, 4, &), 184.5 (1 C, 3”),
192.7 (1C, 1).

IR Umax: 3014 (enol OH), 1593 (C=0).
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1-(2-Bromophenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (9)

Compound (9) above was synthesised from 2-bromoacetophenone (0.4 g, 1.75 mmol) and
methyl-3,4,5-trimethoxybenzoate (0.5 g, 2.20 mmol) and sodium hydride (0.13 g, 5.24 mmol)
as in procedure A. Following column chromatography (Hex:EtOAc 7:3) and recrystallisation

from ethanol compound (9) was isolated as light brown crystals (0.29 g, 1.02 mmol, 72 %).

M.P: 106 — 108 °C; R:0.41; (Hex:EtOAc 7:3 );

84 (CDCls, 400 MHz): 3.92 (9 H, s, 3'4’5’-OCHs), 6.59 (1 H, s, 2”’-H), 7.20 (2 H, s, 2’6’-H), 7.34 (1
H,td,J=7.8 Hz, 1.66 Hz, 5-H), 7.44 (1 H, td, J = 7.8 Hz, 1.66 Hz, 4-H), 7.62 (1 H, dd, 7.8 Hz, 1.60
Hz, 3-H), 7.69 (1 H, dd, J = 7.8 Hz, 1.59 Hz, 6-H), 16.32 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 56.3 (2 C, OCHs, 3', 5'), 61.0 (1 C, OCHs, 4), 98.0 (1 C, 2”), 104.7 (2 C, 2,
6), 120.3 (1 C, 2), 127.6 (1 C, 5), 129.9 (1 C, 6), 130.2 (1 C, 1’), 131.7 (1 C, 4), 133.9 (1 C, 3),
138.2 (1C, 1), 152.7 (1 C, 4'), 153.3 (2C, 3, 5), 184.8 (1 C, 3”), 186.8 (1 C, 1).

HRMS (ESI-TOF) m/z: [M+H] Calculated for C18H17BrOs; 393.0325 found 393.0329
(AMs=2.30 ppm)

IR Umax: 3006 (enol OH), 1592 (C=0).
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1-(4-Methoxyphenyl)-3-(4-(trifluoromethyl(phenyl)propane-1,3-dione (10)

Compound (10) above was synthesised from 4-methoxy acetophenone (0.5 g, 2.38 mmol) and
methyl-4-trifluoromethylbenzoate (0.72 g, 2.62 mmol) and sodium hydride (0.23 g, 9.51
mmol) as in procedure A. Following column chromatography (Hex:EtOAc 8:2) and
recrystallisation from ethanol compound (10) was isolated as bright yellow crystals (0.25 g,

0.78 mmol, 32 %).
M.P: 110 - 112 °C; Lit. mp 109 — 110 °C (Rao and Muthanna, 2015) Rs: 0.29; (Hex:EtOAc 8:2 );

84 (CDCls, 400 MHz): 3.82 (3 H, s, OCHs, 4), 6.73 (1 H, s, 2), 6.93 (2 H, d, J = 8.4 Hz, 3, 5), 7.67
(2H,d,J=8.4Hz,3,’5),7.92 (2H,d,J=8.4,H-2,6),7.93 (2 H, d, /= 8.4 Hz, 2, 6), 8.00 (2 H, d,
J=8.4Hz, 2, 6),16.80 (1 H, s, enolic H)

8¢ (CDCl3, 564 MHz): -62.2 (3 F, s, 4'-CFs).

8¢ (CDCl3, 100 MHz): 55.54 (1 C, OCHs, 4), 93.01 (1 C, 2”), 114.01 (2C, 3,5), 122.37 (1C, qt,
J =282.55 Hz, CF3), 125.7 (2 C, qt, ) =4.74 Hz, 3 5'), 127.3 (2 C, 2, 6), 127.9 (1 C, 1) 129.6 (2
C,2,6),133.0(1C, qt,J =35.5 Hz, 4), 138.8 (1 C, 1), 163.6 (1 C, 4), 181.6 (1 C, 3""), 187.2 (1 C,
1”).

IR Umax: 3001.5 (enol OH), 1588.2 (C=0).
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1-(4-Bromophenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (11)

Compound (11) above was synthesised from 4-bromoacetophenone (2.00 g, 10.01 mmol) and
methyl-3,4,5-trimethoxybenzoate (2.86 g, 12.86 mmol) and sodium hydride (0.72 g, 30.14
mmol) as in procedure A. Following column chromatography (Hex:EtOAc 8:2) and
recrystallisation from ethanol compound (11) was isolated as brown crystals (3.1 g, 7.88

mmol, 79 %).

M.P: 147 — 149 °C; Rs:0.29; (Hex:EtOAc 8:2);

84 (CDCl3, 400 MHz): 3.96 (3 H, s, OCHs, 4), 3.98 (6 H, s, 2 x OCH3, 3, 5), 6.79 (1 H, s, 2""), 7.24
(2H,s,2,6),7.64(2H,d, J=86Hz3,5),7.88 (2H,d,J=8.6 Hz, 2, 6'), 16.92 (1 H, s, enolic
H)

8¢ (CDCls, 100 MHz): 56.41 (2 C, OCHs, 3, 5) , 61.04 (1 C, OCHs, 4), 92.77 (1 C, 2”’), 104.76 (2 C,
2,6),127.23 (1 C, 4), 128.58 (2C, 2, 6), 130.78 (1 C, 1), 132.14 (2 C, Ar 3’, 5"), 134.21 (1 C, 1),
142.31(1C, 4), 153.28 (2 C, 3, 5), 183.26 (1 C, 3”), 186.46 (1 C, 1”).

HRMS (ESI-TOF) m/z: [M+H] : Calculated for CisH17BrOs 393.0332 found 393.0333
(AMs=0.16 ppm)

IR Umax: 3019 (enol OH), 1594 (C=0).
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1,3-Bis(3,4,5-trimethoxyphenyl) propane-1,3-dione (12)
O O OCH;

Compound (12) above was synthesised from 2,4,6-trimethoxy acetophenone (0.85 g, 4.03
mmol) and methyl-3,4,5-trimethoxybenzoate (1.15 g, 5.09 mmol) and sodium hydride (0.29
g, 12.13 mmol) as in procedure A. Following by column chromatography (Hex:EtOAc 7:3) and
recrystallisation from ethanol compound (12) was isolated as yellow crystals (0.70 g, 1.73

mmol, 36.3 %).

M.P: 150 - 152 °C; Rs: 0.33 (Hex:EtOAc 7:3);

8u (CDCl3, 400 MHz): 3.82 (6 H, s, 3, 5'-OCHs), 3.86 (3 H, s, 4-OCHs), 3.92 (9 H, s, 2, 4, 6-
OCHs), 6.17 (2 H, s, 3, 5-H), 6.35 (1 H, s, 2”’-H), 7.15 (2 H, s, 2’, 6’-H), 16.35 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 55.7 (1 C, 4),56.1(2C, 2, 6),56.3(2C, 3, 5),60.7 (1C, 4'),92.0(2C, 3,
5),101.2 (1C,2""), 104.6 (2 C, 2, 6),109.8 (1 C, 1), 132.9 (1 C, 1), 143.3 (1 C, 4), 152.8 (2 C, 3,
5), 161.3 (2 C, 2, 6), 162.6 (1 C, 4), 172.4 (1 C, 3”), 187.9 (1 C, 1).

HRMS (ESI-TOF) m/z: [M+H] Calculated for C21H240s 405.1544 found 405.1543 (AMs=0.32

ppm)

IR Umax: 2978 (enol OH), 1591 (C=0).
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4-(3-ox0-3-(3,4,5-trimethoxyphenyl) propanoyl) benzonitrile (13)

13

Compound (13) above was synthesised from 3’,4’,5’-trimethoxyacetophenone (0.65 g, 3.11
mmol) and methyl-4-cyanobenzoate (0.5 g, 3.11 mmol) and sodium hydride (0.22 g, 9.31
mmol) as in procedure E. Completion of the reaction was confirmed by TLC (Hex:EtOAc 7:3)
and recrystallisation from methanol afforded the title nitrile as orange crystals (0.90 g, 2.65

mmol, 85 %).

M.P: 215 - 217 °C; Rs: 0.31 (Hex:EtOAc 7:3);

84 (CDCls, 400 MHz): 3.97 (3 H, s, OCHs, 4), 3.99 (6 H, s, 2 x OCHs, 3,5), 6.79 (1 H, s, 2""), 7.26
(2H,s,2,6),7.82(2H,d, 1 =8.5Hz3,5),8.09 (2H,d,)=8.5Hz, 2, 6),16.78 (1 H, s, enolic)

8¢ (CDCls, 100 MHz): 56.44 (2 C, OCHs, 3, 5), 61.07 (1 C, OCHs, 4), 93.74 (1 C, 2”"), 104.97 (2 C,
2,6),115.42 (1 C, C=N, 4'), 118.13 (1 C, 4'), 127.5 (2 C, 2’, 6'), 130.6 (1 C, 1), 132.48 (2 C, 3,
5),139.2 (1 C, 4), 142.7 (1 C, 1), 153.3 (2 C, 3, 5), 180.89 (1 C, 3”"), 187.8 (1 C, 1”).

&n (CDCl3, 60 MHz): 259.2 (1 N, 4)

HRMS (ESI-TOF) m/z: [M+H] Calculated for C19H17NOs: 340.1179 found 340.1180 (AMs=0.53

ppm)

IR Umax: 3102 (enol OH), 2221 (C=N), 1533 (C=0).
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1-(2,5-Dimethylphenyl)-3-(3,4-dimethoxyphenyl) propane-1,3-dione (14)

OCHs

14
Compound (14) above was synthesised from 2,5-dimethoxyacetophenone (0.80 g, 4.44
mmol) and methyl-3,4-dimethylbenzoate (0.80 g, 4.88 mmol) and sodium hydride (0.46 g,
19.10 mmol) as in procedure A. Following column chromatography (Hex:EtOAc 8:2) and
recrystallisation from methanol compound (14) was isolated as yellow flakes (0.86 g, 2.75
mmol, 62 %).
M.P: 111 -113°C; Rs: 0.31; (Hex:EtOAc 8:2);

6n (CDCls, 400 MHz): 2.35 (6 H, 3’,4’-CH3s), 3.85 (3 H, 5-OCHs), 3.94 (3 H, 2-OCHs), 6.98 (1 H, d,
J=8.82Hz 3), 7.06 (1 H, dd, ) = 8.82 Hz, 2.96 Hz, 4),7.18 (1 H, s, 2”), 7.26 (1L H, d, ) = 8.19
Hz,5'),7.52 (L H, d, ) =2.96 Hz,6),7.73 (1 H,dd, ) =8.19 Hz, 1.70 Hz, 6'), 7.78 (1L H, d, J = Hz,
2’),16.93 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 18.83 (1 C, 4), 20.02 (1 C, 3), 55.86 (1 C, OCHs, 5), 56.52 (1 C, OCHs, 2),
92.42 (1C,2”),114.10 (2 C, 2, 6), 126.04 (1 C, 6), 127.67 (1 C, 5), 128.92 (1 C, 5), 129.49 (2
C,3,5'),130.70 (1C, 2),133.23 (1 C, 4), 135.59 (1C, 1), 136.36 (1 C, 1'), 163.57 (1 C, 4’), 181.49
(1¢C,37),186.41(1C, 17).

HRMS (ESI-TOF) m/z: [M+H] Calculated for C19H2004: 313.1434 found 313.1433 (AMs=1.02

ppm)

IR Umax: 3011 (enol OH), 1549 (C=0).
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4-(3-(3,4-Dimethoxyphenyl)-3-oxopropanoyl)benzonitrile (15)

15

Compound (15) above was synthesised from 3’,4’-dimethoxyacetophenone (0.5 g, 2.38
mmol) and methyl-4-cyanobenzoate (0.72 g, 2.62 mmol) and sodium hydride (0.23 g, 9.51
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2) recrystallisation from methanol afforded the title nitrile as yellow needles (0.45 g, 1.39

mmol, 61 %).

M.P: 199 - 201 °C; Rs: 0.34; (Hex:EtOAc 8:2);

8k (CDCl3, 400 MHz): 3.97 (3 H, OCHs, 4’), 3.98 (3 H, OCHs, 3’), 6.81 (1 H, s, 2”), 6.95 (1 H, d, J
=8.6Hz,5'),7.57 (1H,d,J)=1.86Hz,2),7.64 (LH, dd, ) = 8.6 Hz, 1.86 Hz, 6'), 7.78 (2 H, d, J =
8.4 Hz,2,6),8.06(2H,d,J=84Hz3,5),16.79 (1 H, s, enolic H)

8. (CDCls, 100 MHz): 56.09 (1 C, OCHs, 4’), 56.15 (1 C, OCHs, 3’), 93.46 (1 C, 2”), 109.83 (1 C,
2’),110.44 (1C, 5’), 115.18 (1 C, 4), 118.19 (1 C, CN), 121.82 (1 C, 6’), 127.36 (2 C, 2, 6), 128.27
(1C, 1),132.58 (1C, 3, 5),139.26 (1 C, 1), 149.26 (1 C, 3'), 153.50 (1 C, 4’), 179.59 (1 C, 3”),
188.23 (1, 1).

8n (CDCls, 60 MHz): 258.9 (1 N, 4)

HRMS (ESI-TOF) m/z: [M+H] Calculated for C1gH1sNO4 310.1074 found 310.1078 (AMs=0.11

ppm)

IR Umax: 3109 (enol OH), 2219 (C=N), 1593 (C=0).
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1-(3,4-Dimethoxyphenyl)-3-(3-fluoro-4-methoxyphenyl)propane-1,3-dione (16)

16

Compound (16) above was synthesised from 3’,4’-dimethoxyacetophenone (1.50 g, 8.30
mmol) and methyl-3-fluoro-4-methoxybenzoate (1.68 g, 9.12 mmol) and sodium hydride
(1.00 g, 41.68 mmol) as in procedure A. Following column chromatography (Hex:EtOAc 7:3)
and recrystallisation from ethanol compound (16) was isolated as brown crystals (2.53 g, 7.61

mmol, 91 %).

M.P: 137 — 139 °C; Rs:0.37; (Hex:EtOAc 7:3);

84 (CDCls, 400 MHz): 3.98 (6 H, s, 2 x OCHs, 3, 4), 4.00 (3 H, OCHs, 4'), 6.71 (1 H, s, 2”"), 6.96 (1
H,d,J=8.5Hz5),7.07 (LH,tr,/=8.45 Hz, 5'), 7.56 (L H, d, J = 2.01 Hz, 2), 7.63 (1 H, dd, J =
8.4 Hz, 2.01 Hz, 6), 7.75 (1 H, d, J = 12 Hz, 2.04 Hz, 2’), 7.80 (1 H, dd, J = 8. 4 Hz, 2.01 Hz, &),
16.79 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 56.06 (1 C, OCHs, 3), 56.09 (1 C, OCHs, 4), 56.3 (1 C, OCHs, 4’), 91.7 (1 C,
2”),109.7 (1 C, 2),110.5 (1 C, 5), 112.7 (1 C, d, ) = 1.94 Hz, 5’), 114.8 (1 C, d, J = 19.64 Hz, 2'),
121.2(1C, 6),123.9(1C, d,J=3.10 Hz, 6'), 128.3 (1 C, 1), 128.5 (1 C, d, J = 5.89 Hz , 1’), 149.1
(1C,3),151.2(1C, d,J = 10.78 Hz, &), 152.9 (1 C, 4), 153.3 (1 C, d, J = 246.8 Hz, 3'), 182.7 (1
C,1”), 185.5(1C, 3”).

HRMS (ESI-TOF) m/z: [M+H] Calculated for C1gH17FOs 333.1133 found 333.1140 (AMs=2.12

ppm)

IR Umax: 3094 (enol OH), 1615 (C=0).
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1-(3-Fluoro-4-methoxyphenyl)-3-(4-methoxyphenyl) propane-1,3-dione (17)

17

Compound (17) above was synthesised from 4’-methoxyacetophenone (0.50 g, 2.38 mmol)
and methyl-3-fluoro-4-methoxybenzoate (0.72 g, 2.62 mmol) and sodium hydride (0.23 g,
9.51 mmol) as in procedure E. After completion of the reaction was confirmed by TLC
(Hex:EtOAc 8:2), recrystallisation from methanol afforded the title compound (17) as yellow

crystals (0.20 g, 0.66 mmol, 24 %).

M.P: 148 — 150 °C; Ry: 0.3; (Hex:EtOAc 8:2 );

84 (CDCl3, 400 MHz): 3.91 (3H, s, 4-OCHs), 3.99 (3H, s, 4'-OCHs), 6.72 (1H, s, 2”-H), 7.02 (2 H,
d, ) =8.8Hz, 3,5-H),7.07 (LH, t,J =5.4 Hz, 5'-H), 7.76 (1L H, dd, J = 12.1 Hz, 2.1 Hz, 2’-H), 7.80
(1H,d,)=8.6Hz, 6-H),7.99 (2 H, d, ) = 8.7 Hz, 2, 6-H) 17.03 (1H, s, enolic H).

8. (CDCI3, 100 MHz): 55.51 (1 C, OCHs, 4), 56.31 (1 C, OCHs, 4’), 91.63 (1 C, 2”), 112.68 (1 C,
d,J=1.86 Hz, 5’), 114.01 (2 C, 3,5), 114.94 (1 C, d, J = 19.8 Hz, 2’), 123.96 (1 C, d, J = 3.3 Hz,
6')127.88 (1 C, 1), 128.71 (1 C, d, J = 5.94 Hz, 1’), 129.19 (2 C, 2, 6), 151.18 (1 C, d, J = 10.36
Hz, 4’), 153.33 (1 C, d, J = 246.8 Hz, 3'), 163.22 (1 C, 4), 183.46 (1 C, 3”), 186.85 (1 C, 1").

Or (CDCl3, 564 MHz): -134.3 (1 F, dd, J = 8.02 Hz, 4.16 Hz, 3’)

HRMS (ESI-TOF) m/z: [M+H] Calculated for C17H15sFO4 303.1027 found 303.1027 (AMs=0.01

ppm)

IR Umax: 3076 (enol OH), 1602 (C=0).
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1-(3-Chloro-4-fluorophenyl)-3-(3,4-dimethoxyphenyl) propane-1,3-dione (18)

Compound (18) was synthesised from 3-chloro-4-fluoroacetophenone (0.40 g, 2.32 mmol)
and methyl-3,4-dimethoxybenzoate (0.50 g, 2.55 mmol) and sodium hydride (0.23 g, 9.27
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2), recrystallisation from ethanol afforded the title compound (18) as a yellow powder (0.53

g, 1.57 mmol, 67 %).
M.P: 136 - 138 °C; R¢: 0.35; (Hex:EtOAc 8:2 );

&1 (CDCl3, 400 MHz): 3.99 (3 H, s, 4-OCHs), 4.01 (3 H, s, 3-OCHs), 6.73 (1 H, s, 2”-H), 6.97 (1 H,
d, ) =8.2 Hz, 5-H), 7.04 (1 H, d, ) = 8.9 Hz, 5’-H), 7.57 (1 H, d, J = 2.0 Hz, 2-H), 7.65 (1 H, dd, J =
8.2 Hz, 2.0 Hz, 6-H), 7.94 (1 H, dd, ) = 8.8 Hz, 2.1 Hz, 6’-H), 8.03 (1 H, d, J = 2.1 Hz, 2’-H), 17.06
(1H, s, enolic H).

8. (CDCls, 400 MHz): 56.0 (1 C, 4-OCHs), 56.1 ( 1 C, 3-OCHs), 92.3 (1 C, 2), 109.7 (1 C, 5),
110.5(1C, 1), 116.4 (1C, d,J =19.9 Hz, 5'), 117.7 (1 C, d, ) = 18.5 Hz, 3'), 121.5 (1 C, 6), 123.7
(1C, d,J=3.53Hz,2'),128.1(1C, 1), 132.6 (1 C,d,J =2.52 Hz, 1), 149.2 (1 C, 3), 153.2 (1 C,
4),154.2 (1C, d, ) =246.1 Hz, 4),181.3 (1C, 1”), 186.5 (1 C, 3”).

8¢ (CDCls, 564 MHz): -134.3 (1 F, m)

m/z HRMS (ESI) [M + H]: Calculated for C17H14CIFO4 337.0637 found 337.0638 (AMs=0.20

ppm)

IR Umax: 3056 (enol OH), 1646 (C=0).
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1-(3-fluoro-4-methoxyphenyl)-3-(4-methoxyphenyl) propane-1,3-dione (19)

Compound (19) was synthesised from 4-(trifluoromethyl) acetophenone (0.40 g, 2.12 mmol)
and methyl-3,4-dimethoxybenzoate (0.46 g, 2.34 mmol) and sodium hydride (0.21 g, 8.50
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2), recrystallisation from ethanol afforded the title compound (19) as a white powder (0.45

g, 1.38 mmol, 65 %).
M.P: 109 - 111 °C; Rs: 0.31; (Hex:EtOAc 8:2 );

84 (CDCl3, 400 MHz): 3.99 (3 H, s, OCHs, 4), 4.01 (3 H, s, OCHs, 3), 6.84 (1 H, s, 2”’), 6.98 (1 H,
d,J=8.4Hz5),7.60 (1LH,d,J=1.99Hz, 2),7.67 (L H, dd, J = 8.4 Hz, 1.99 Hz, 6), 7.78 (2 H, d,
J=8.4Hz,3,5),809 (2H,d,J=8.4Hz 2,6),17.04 (1 H, s, enolic H)

8¢ (CDCls, 564 MHz): -62.8 (3 F, s, 4'-CFs).

8¢ (CDCls, 100 MHz): 56.09 (1 C, OCHs, 3), 56.12 (1 C, OCHs, 4), 93.17 (1 C, 2”), 109.81 (1 C,
5),110.45 (1C,2),121.68 (1C, 6'),125.71(2C, q,) =3.70 Hz, 3, 5'), 127.80 (1 C, q, J = 272.80
Hz, CF3), 128.39 (2 C, 2’ 6'), 129.28 (1 C, 1), 133.95 (1 C, g, J = 32.50 Hz, 4’), 138.59 (1 C, 1'),
149.2 (1€, 3),153.3(1C, 4),179.6 (1C,3”),187.8 (1 C, 1”).

IR Umax: 3034 (enol OH), 1641 (C=0).
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1-(3,4-Difluorophenyl)-3-(3,4-dimethoxyphenyl)propane-1,3-dione (20)

Compound (20) was synthesised from 3,4-difluoroacetophenone (0.47 g, 3.01 mmol) and
methyl-3,4-dimethoxybenzoate (0.55 g, 3.31 mmol) and sodium hydride (0.28 g, 12.04 mmol)
as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc 8:2),
recrystallisation from ethanol afforded the difluoro compound (20) as a yellow powder (0.61

g, 1.90 mmol, 58 %).

M.P: 111 - 113 °C; Rs: 0.29; (Hex:EtOAc 8:2 );

84 (CDCl3, 400 MHz): 3.96 (6 H, s, 3, 4-OCHs), 6.80 (1 H, s, 2”-H), 7.01 (1 H, d, J = 8.4 Hz, 5-H),
7.36 (1 H, dd, J = 10.0 Hz, 8.1 Hz, 5’-H), 7.57 (1 H, d, J = 1.82 Hz, 2-H), 7.69 (1 H, dd, ) = 8.4 Hz,
1.82 Hz, 6-H), 7.84 (2 H, m, 2’, 6'-H), 17.02 (1H, s, enolic H).

8¢ (CDCls, 100 MHz): 56.3 (2 C, OCH3, 3, 4), 92.7 (1 C, 2”), 110.2 (1 C, 5), 111.1 (1 C, 2), 116.7
(1C,d,)=18.7 Hz,5'),118.0 (1 C, d, ) = 18.0 Hz, 2’), 121.9 (1 C, 6), 124.2 (1 C, m, &), 128.2 (1
C,1),133.2(1C,m, 1), 149.7 (1C, 3), 152.1 (1 C, dd, J = 250.4 Hz, 12.7 Hz, 3’), 153.9 (1 C, 4),
154.5 (1 C, dd, J = 253.2 Hz, 12.5 Hz, 4’), 181.8 (1 C, 3”), 186.8 (1 C, 1”).

8¢ (CDClz, 564 MHz): -132.5 (1 F, m, 3'), -137.4 (1 F, m, &').

IR Umax: 3021 (enol OH), 1658 (C=0).
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1-(3-Bromo-4-methylphenyl)-3-(4-methoxyphenyl) propane-1,3-dione (21)

Compound (21) was synthesised from 4-methoxyacetophenone (0.30 g, 1.98 mmol) and
methyl-3-bromo-4-methylbenzoate (0.5 g, 2.18 mmol) and sodium hydride (0.15 g, 5.95
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2), recrystallisation from ethanol afforded the title bromo compound (21) as a yellow

powder (0.59 g, 1.70 mmol, 78 %).

M.P: 119 - 121 °C; R#: 0.28; (Hex:EtOAc 8:2 );

84 (CDCl3, 400 MHz): 2.49 (3 H, s, 4'-CHs), 3.91 (3 H, s, 4-OCHs), 6.75 (1 H, s, 2”-H), 7.02 (2 H,
d, ) =8.69 Hz, 3, 5-H), 7.37 (1 H, d, ) = 8.01 Hz, 5’-H), 7.84 (1 H, dd, J = 8.01 Hz, 1.99 Hz, 6'-H),
8.01 (1H,d,J=8.77 Hz, 2, 6-H), 8.15 (1 H, d, J = 1.99 Hz, 2’-H), 16.96 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 23.2 (1 C, 4-CHs), 55.5 (1 C, 4-OCHs), 92.2 (1 C, 2”), 114.0 (2 C, 3, 5),
1252 (1C, 3'), 125.6 (1 C, 1), 127.9 (1 C, 1), 129.4 (2 C, 2, 6), 130.8 (1 C, 5'), 130.9 (1 C, 2'),
135.0(1C, 1), 142.4 (1C, 4'), 163.4 (1 C, 4), 182.7 (1 C, 3”), 185.9 (1 C, 1"").

m/z HRMS (ESI) [M + H]: Calculated for C17H15BrO3 347.0277 found 347.0277 (AMs=0.14 ppm)

IR Umax: 3079 (enol OH), 1610 (C=0).
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1-(2,4-Dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (22)

o) c|> OCH,

Compound (22) was synthesised from 2,4-dimethoxyacetophenone (0.50 g, 2.77 mmol) and
methyl-3,4,5-trimethoxybenzoate (0.79 g, 3.50 mmol) and sodium hydride (0.21 g, 8.32
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
9:1), recrystallisation from ethanol afforded the title compound (22) as a white solid (0.75 g,
2.00 mmol, 72 %).

M.P: 137 - 139 °C; Rs: 0.22; (Hex:EtOAc 9:1);

641 (CDCls, 400 MHz): 3.88 (3 H, s, 4’-OCH3), 3.94 (3 H, s, OCHs3-4), 3.96 (9 H, s, OCH3-2, 3/, 5),
6.54 (1 H, d, ) =2.3Hz, 3-H), 6.64 (1 H, dd, J = 8.5 Hz, 2.3 Hz, 5-H), 7.14 (1 H, s, 2”-H), 7.24 (2
H,s, 2’,6’-H), 8.03 (1 H, d, J = 8.6 Hz, 6-H), 17.05 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 55.4 (1 C, OCHS3, 4), 55.7 (1 C, OCHs, 2), 56.2 (2 C, OCHs, 3’, 5’), 61.0 (1
C, OCHs, 4’), 97.3 (1C, 3), 98.8 (1 C, 2”), 104.6 (2 C, 2’, 6'), 105.3 (1 C, 5), 117.3 (1 C, 1), 131.8
(1C,1),132.0(1C, 6),141.6 (1 C, 4), 153.1(2C, 3', 5'), 160.4 (1 C, 2), 164.1 (1 C, 4), 182.1 (1
C,3”),185.9 (1C, 1”).

m/z HRMS (ESI) [M + H]: Calculated for C2oH2,07 375.1438 found 375.1438 (AMs=0.05 ppm)

IR Umax: 3181 (enol OH), 1646 (C=O0).
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1-(2,4-Dimethoxyphenyl)-3-(3-fluoro-4-methoxyphenyl)propane-1,3-dione (23)

Compound (23) was synthesised from 2,4-dimethoxyacetophenone (0.60 g, 3.33 mmol) and
methyl-3-fluoro-4-methoxybenzoate (0.77 g, 4.20 mmol) and sodium hydride (0.24 g, 9.99
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
9:1), recrystallisation from ethanol afforded the title compound (23) as a yellow powder 0.62

g, 1.69 mmol, 56 %).
M.P: 112 - 114 °C; R¢: 0.40; (Hex:EtOAc 8:2 );

61 (CDCl3, 400 MHz): 3.87 (3 H, s, 2-OCH3), 3.95 (6 H, s, 4,4’-OCH3s), 6.51 (1 H, d, J = 2.20 Hz, 3-
H), 6.60 (1 H, dd, J = 8.77 Hz, 2.20 Hz, 5-H), 7.03 (1 H, t, J = 8.50 Hz, 5’-H), 7.09 (1 H, s, 2”’-H),
7.70 (1 H, dd, J =12.2 Hz, 2.13 Hz, 2’-H), 7.75 (1 H, d, ) = 8.62 Hz, 6’-H), 8.00 (1 H, d, J = 8.77
Hz, 6-H), 17.01 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 55.6 (1 C, OCHs, 4), 55.8 (1 C, OCHs, 2), 56.3 (1 C, OCHs, 4), 96.9 (1 C,
2”),98.7(1C,3),1053(1C,5),112.6 (1C, d, ) =2,3 Hz, 5), 114.9 (1 C, d, J = 19.3 Hz), 117.2
(1C,1),124.1(1C,d,J=3.41Hz,6),129.4 (1C, d, ) =6.82 Hz, 1), 132.0 (1 C, 6), 151.0 (1 C,
d, ) =11.3 Hz, 4), 153.3 (1 C, d, J = 246.3 Hz), 160.4 (1 C, 2), 164.1 (1 C, 4), 182.2 (1 C, 3”),
184.5 (1C, d,J = 1.93 Hz).

6¢ (CDCl, 564 MHz): -134.1 (1 F, dd, J = 8.3 Hz, 3.7 Hz, 3’).
m/z HRMS (ESI) [M + H]: Calculated for C1gH17FOs 333.1133 found 333.1133 (AMs=0.01 ppm)

IR Umax: 3176 (enol OH), 1608 (C=0).
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1,3-Bis(3-fluoro-4-methoxyphenyl)propane-1,3-dione (24)

Compound (24) was synthesised from 3-fluoro-4-methoxyacetophenone (0.50 g, 2.97 mmol)
and methyl-3-fluoro-4-methoxybenzoate (0.69 g, 3.75 mmol) and sodium hydride (0.21 g,
8.92 mmol) as in procedure E. After completion of the reaction was confirmed by TLC
(Hex:EtOAc 8:2), recrystallisation from ethanol afforded the title compound (24) as a bright
yellow solid (0.8 g, 2.50 mmol, 84 %).

M.P: 178 — 180 °C; R¢: 0.37; (Hex:EtOAc 8:2 );

61 (CDCl3, 400 MHz): 3.90 (6 H, s, 4, 4-OCH3s), 6.58 (1 H, s, 2”-H), 6.99 (2 H, t, ) = 8.44 Hz, 5,
5’-H), 7.66 (2 H, dd, J =12.02 Hz, 2.15 Hz, 6, 6’-H), 7.71 (2 H, d, ) = 8.68 Hz, 2,2’-H), 16.83 (1 H,

s, enolic).

8¢ (CDCls, 100 MHz): 56.3 (2 C, OCHs, 4, 4’), 91.8 (1 C, 2”), 112.7 (2 C, d,J = 2.10 Hz, 5, 5'),
115.0 (2C, d,J =19.60 Hz, 2, 2’), 124.1 (2 C, d, ) =3.21 Hz, 6, 6), 128.4 (2 C, d, ) = 5.93 Hz, 1,
1'),151.4 (2 C, d,) = 10.6 Hz, 4, 4), 153.4 (2 C, d, ) = 247.4 Hz, 3, 3’), 183.7 (2 C, d, J = 2.11 Hz,
17, 3").

m/z HRMS (ESI) [M + H]: Calculated for C17H14F204321.0933 found 321.0934 (AMs=0.41 ppm)

IR Umax: 3084 (enol OH), 1614 (C=0).
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3-(3,4-Dichlorophenyl)-1-(3,4,5-trimethoxyphenyl)-1,3-propanedione (25)

Compound (25) was synthesised from 3,4-dichloroacetophenone (0.50 g, 2.64 mmol) and
methyl-3,4,5-trimethoxybenzoate (0.50 g, 3.33 mmol) and sodium hydride (0.20 g, 7.93
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8.5:1.5), recrystallisation from ethanol afforded the title dichloro compound (25) as a yellow

powder (0.32 g, 0.83 mmol, 30 %).

M.P: 146 — 148 °C; Rs:0.35; (Hex:EtOAc 8.5:1.5);

84 (CDCls, 400 MHz): 3.87 (3 H, s, 4-OCHs), 3.90 (6 H, s, 3',5’-OCHs), 6.62 (1 H, s, 2”), 7.15 (2
H,s, H-2" and 6'), 7.51 (1 H, d, ) = 8.6 Hz, H-5), 7.74 (1 H, dd, J = 8.6 Hz, 2.0 Hz, H-6), 7.98 (1 H,
d, J = 2.0 Hz, 2-H), 16.78 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 56.5 (2 C, OCHs-3’, 5), 61.1 (1 C, OCHs3,4’), 92.9 (1 C, 2”), 104.8 (2 C, 2,
6'), 126.1 (1 C, 6), 128.9 (1 C, 2), 130.5 (1 C, 1’), 130.8 (1 C, 5), 133.3 (1 C, 1),135.3 (1 C, 4),
136.7(1C, 3), 153.3 (2 C, 3, 5'), 158.3 (1 C, 4), 181.9 (1 C, 3”), 186.6 (1 C, 1”).

m/z HRMS (ESI) [M + H]: Calculated for CisH16Cl.0s 383.0488 found 383.0448 (AMs=0.19

ppm)

IR Umax: 3087 (enol OH), 1651 (C=0).
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1-(3,4-Dichlorophenyl)-3-(3-fluoro-4-methoxyphenyl)-1,3-propanedione (26)

26

Compound (26) was synthesised from 3,4-dichloroacetophenone (0.60 g, 3.17 mmol) and
methyl-3-fluoro-4-methoxybenzoate (0.74 g, 4.00 mmol) and sodium hydride (0.23 g, 9.52
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex: EtOAc
8:2), recrystallisation from ethanol afforded the dichloro compound (26) as a bright yellow

solid (0.7 g, 2.05 mmol, 64 %).

M.P: 155 - 157 °C; Rs: 0.24; (Hex:EtOAc 8:2);

84 (CDCls, 400 MHz): 4.01 (3 H, s, 4-OCHs), 6.71 (1 H, s, 2”-H), 7.09 (1 H, t, J = 8.40 Hz, 5'-H),
7.60 (1 H, d, ) = 8.47 Hz, 5-H), 7.78 (1 H, dd, J = 12.01 Hz, 2.26 Hz, 2’-H), 7.82 (2 H, dd, J = 8.43
Hz, 2.03 Hz, 6, 6’-H), 8.07 (1L H, d, ) = 1.98 Hz, 2-H), 16.76 (1 H, s, enolic H)

6c (CDCl3, 100 MHz): 56.4 (1 C, OCHs, 4°),92.5(1C, 2”),112.7 (1 C, d,J=2.18 Hz, 5'), 115.2 (1
C,d,J=20.01Hz, 2"),124.4(1C,d,J=3.19Hz,6'),1253(1C,d,J=7.51Hz, 1’),126.1 (1 C,
6),129.1(1C,2),130.8(1C,5),133.3(1C,1),135.2(1C,4),136.7(1C, 3),151.8(1C,d, 10.01
Hz, 4’),153.4(1C,d,J=247.5Hz, 3’),181.7(1C, 3”),185.3(1 C,d, J =2.08 Hz, 1”).

8¢ (CDCls, 564 MHz): -133.8 (1 F, dd, J = 8.3 Hz, 3.9 Hz, 3')

m/z HRMS (ESI) [M + H]: Calculated for Ci6H11Cl,FO3 341.0142 found 341.0142 (AMs=0.16

ppm)

IR Umax: 3092 (enol OH), 1613 (C=0).
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1-(3,4-Dichlorophenyl)-3-(3,4-dimethoxyphenyl)-1,3-propanedione (27)

27

Compound (27) was synthesised from 3,4-dichloroacetophenone (0.50 g, 2.65 mmol) and
methyl-3, 4-dimethoxybenzoate (0.65 g, 3.33 mmol) and sodium hydride (0.19 g, 7.93 mmol)
as in procedure E. After completion of the reaction was confirmed by TLC (Hex: EtOAc 9:1),
recrystallisation from ethanol afforded the title dichloro compound (27) as a bright yellow

solid (0.76 g, 2.15 mmol, 81 %).

M.P: 97 —99 °C; R: 0.18; (Hex:EtOAc 9:1);

64 (CDCl3, 400 MHz): 3.99 (3 H, s, 4-OCHs), 4.01 (3 H, s, 3’-OCH3s), 6.75 (1 H, s, 2”-H), 6.97 (1
H,d,)=8.4,H-5),7.58(1H,d,J=2.20Hz H-2’),7.59 (1 H, d, )] =8.4 Hz, H-5), 7.66 (1 H, dd, J
=8.4 Hz, 2.2 Hz, H-6"), 7.83 (1 H, dd, ) = 8.4 Hz, 2.20 Hz H-6), 8.07 (1 H, d, J = 2.1 Hz, H-2), 16.90
(1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 56.11 (1 C, OCH3, 4’), 56.14 (1 C, OCH3, 3’), 92.6 (1 C, 2”), 109.8 (1 C, 2'),
110.5(1C,5'),121.6 (1 C, 6’), 126.0 (1 C, 6), 128.2 (1 C, 3), 128.9 (1 C, 2), 130.7 (1 C, 5), 133.3
(1C,1'),135.3 (1C, 1), 136.5 (1 C, 4), 149.2 (1 C, 3’), 153.4 (1 C, 4'), 180.6 (1 C, 3”), 187.1 (1
C, 1”).

m/z HRMS (ESI) [M + H]: Calculated for C17H14Cl204 353.0347 found 353.0340 (AMs=2.00

ppm)

IR Umax: 3102 (enol OH), 1591 (C=0).
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1-(3,4-Dichlorophenyl)-3-(4-methoxyphenyl)-1,3-propanedione (28)

28

Compound (28) was synthesised from 3,4-dichloroacetophenone (0.70 g, 3.70 mmol) and
methyl-4-methoxybenzoate (0.78 g, 4.67 mmol) and sodium hydride (0.27 g, 11.1 mmol) as
in procedure E. After completion of the reaction was confirmed by TLC (Hex: EtOAc 8:2),
recrystallisation from ethanol afforded the title dichloro compound (28) as a yellow product

(0.24 g, 0.74 mmol, 20 %).

M.P: 124 — 126 °C; Rs: 0.23; (Hex:EtOAc 8:2);

61 (CDCl3, 400 MHz): 3.92 (3 H, s, 4’-OCH3s), 6.75 (1 H, s, 2”-H), 7.02 (2 H, d, ] = 8.2 Hz, H-3’,
5’),7.59(1H,d,J=8.45Hz, H-5), 7.83 (1 H, dd, J = 8.45 Hz, 2.14 Hz, H-6),8.01 (2 H, d, ] = 8.3
Hz), 8.07 (1 H, d, ) =2.13 Hz), 16.90 (1 H, s, enolic H)

8¢ (CDCl3, 100 MHz): 56.6 (1 C, 4'-OCHs), 92.4 (1 C, 2”), 114.1 (2 C, 3, 5'), 126.0 (1 C, 6), 127.7
(1C,1’),129.0(1C,2'),129.5(2C,2,6),130.7 (1C,5),133.2(1C, 3), 135.5 (1 C, 1), 136.4 (1
C,4),163.6 (1C, &), 181.5(1C, 3”), 186.4 (1 C, 1”).

m/z HRMS (ESI) [M + H]: Calculated for C16H12Cl203 323.0236 found 323.0236 (AMs=0.06

ppm)

IR Umax: 3081 (enol OH), 1646 (C=0).
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3-(3-Chloro-4-fluorophenyl)-1-(3,4,5-trimethoxyphenyl)-1,3-propanedione (29)

29

Compound (29) was synthesised from 3,4-dichloroacetophenone (0.40g, 2.32 mmol) and
methyl-3,4,5-trimethoxybenzoate (0.66 g, 2.92 mmol) and sodium hydride (0.20 g, 6.95
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
9:1), recrystallisation from ethanol afforded the trimethoxy compound (29) as a yellow solid

(0.71 g, 1.94 mmol, 83 %).

M.P: 128 — 130 °C; R¢: 0.29; (Hex:EtOAc 9:1);

64 (CDCl3, 400 MHz): 3.93, 3.95, 3.98 (9 H, 3s, 3 x OCH3s), 6.68 (1 H, s, olefinic H), 7.04 (1 H, d,
J=8.4Hz,H-5"),7.23(2H, s, H-2" and 6’), 7.95 (1 H, dd, ] = 8.4 Hz, 2.0 Hz, H-6""), 8.03 (1 H, d,
J=2.0Hz, H-2"), 17.04 (1 H, s, enolic H)

8¢ (CDCl3, 100 MHz): 55.55 (1 C, OCHs,4’), 92.42 (1 C, 2), 114.10 (2 C, 2” and 6”'), 126.04 (1 C,
6), 127.67 (1 C, 5'), 128.92 (1 C, 5'), 129.49 (2 C, 3 and 5”), 130.70 (1 C, 2’),133.23 (1 C, 4'),
135.59 (1 C, 1’), 136.36 (1 C, 1”), 163.57 (1 C, 4”), 181.49 (1 C, 3”"), 186.41 (1 C, 1").

6 (CDCl3, 564 MHz): -108 (1 F, m, 4’)

m/z HRMS (ESI) [M + H]: Calculated for CisH16CIFOs 367.0743 found 367.0743 (AMs=0.05

ppm)

IR Umax: 3546.8 (enol OH), 1580.9 (C=0).
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1-(3-Chloro-4-fluorophenyl)-3-(3-fluoro-4-methoxyphenyl) propane-1,3-dione (30)

30

Compound (30) was synthesised from 3-fluoro-4-chloroacetophenone (0.30 g, 1.72 mmol)
and methyl-3-fluoro-4-methoxybenzoate (0.40 g, 1.72 mmol) and sodium hydride (0.13 g,
5.17 mmol) as in procedure E. After completion of the reaction was confirmed by TLC
(Hex:EtOAc 9:1), recrystallisation from ethanol afforded the title compound (30) as a bright-
yellow solid (0.47 g, 1.48 mmol, 67 %).

M.P: 157 — 159 °C; Rs: 0.26; (Hex:EtOAc 9:1);

84 (CDCls, 400 MHz): 3.88 (3 H, s, 4-OCHs), 6.64 (L H, s, 2”"), 7.07 (2 H, m, 5, 5'), 7.73 (1 H, dd,
J=12.20Hz, 2.13 Hz, 6'),7.77 (1 H,d, ] =8.98 Hz, 2’), 7.87 (1 H, dd, J = 8.70 Hz, 2.25 Hz, 6),
799 (1H,J=2.25Hz, 2),16.90 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 56.2 (1 C, 4’-OCHs), 91.7 (1C, 2”"), 11.6 (1 C, 2), 112.7 (1 C, d, J = 1.69 Hz,
5), 114.9 (1 C, d, ) = 19.9 Hz, 2’), 122.9 (1 C, 3), 124.1 (1 C, d, J = 3.24 Hz, 6'), 127.5 (1 C, 5),
128.4(1C,d, )= 7.8 Hz, 1”),128.6 (1 C, 1), 129.2 (1 C, 6), 151.4 (1 C, d, J = 10.8 Hz, 4’) 153.3
(1C,d,J—247.7 Hz, 3’),158.3 (1 C, 4), 183.6 (1 C, 3”"), 183.7 (1 C, d, J = 2.36 Hz, 1”).

m/z HRMS (ESI) [M + H]: Calculated for Ci16H11CIF203 325.0438 found 325.0446 (AMs=2.61

ppm)

IR Umax: 3074.6 (enol OH), 1615.5 (C=0).
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1-(3,4-Dimethoxyphenyl)-3-(3-iodo — 4-methyl)-1,3-propanedione (31)

Compound (31) was synthesised from 3,4-dimethoxyacetophenone (0.49 g, 2.71 mmol) and
methyl-3-iodo-4-methylbenzoate (0.56 g, 3.41 mmol) and sodium hydride (0.19 g,8.09 mmol)
as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc 8:2),
recrystallisation from ethanol afforded the title iodo compound (31) as a dark brown solid

(0.78 g, 1.88 mmol, 54 %).

M.P: 103 — 105 °C; Rs: 0.27; (Hex:EtOAc 8:2);

81 (CDCls, 400 MHz): 2.49 (3 H, s, 4-CHs), 3.96 (3 H, s, 4’-OCHs), 3.98 (3 H, s, 3’-OCHs), 6.73 (1
H, s, 2”-H), 6.94 (1 H, d, J = 8.4 Hz, H-5’), 7.35 (1 H, d, J = 8.0 Hz, H-5), 7.57 (1 H, d, J = 2.0 Hz,
H-2), 7.64 (1 H, dd, J = 8.4 Hz, 2.0 Hz, H-6"), 7.86 (1 H, dd, J = 8.0 Hz, 1.6 Hz, H-6), 8.40 (1 H, d,
J=1.6 Hz, H-2), 16.96 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 28.3 (1 C, 4-CHs), 56.1 (2 C, 3, 4-OCHs), 92.3 (1 C, 2”), 101.2 (1 C, 3),
109.8 (1 C,2'), 110.4 (1 C, 5), 109.8 (1 C, 6'), 110.4 (1 C, 6), 128.4 (1 C, 1), 129.8 (1 C, 5), 134.7
(1C, 1),137.4(1C, 2), 146.0 (1 C, 4), 149.1 (1 C, 3'), 153.0 (1 C, 4’), 181.7 (1 C, 3”), 186.6 (1
c, 1)

m/z HRMS (ESI) [M + H]: Calculated for C1gH17104 425.0244 found 425.0246 (AMs=0.40 ppm)

IR Umax: 3076.2 (enOI OH), 1674.4 (C=O)
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1-(3-Chloro-4-methylphenyl)-3-(3,4-dimethoxyphenyl)propane-1,3-dione (32)

32

Compound (32) was synthesised from 3,4-dimethoxyacetophenone (0.50 g, 2.77 mmol) and
methyl-3-chloro-4-methylbenzoate (0.57 g, 3.41 mmol) and sodium hydride (0.19 g,8.10
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
7:3), recrystallisation from ethanol afforded the title chloro compound (32) as a yellow solid

(0.78 g, 2.34 mmol, 68 %).

M.P: 106 — 108 °C; Rs: 0.29; (Hex:EtOAc 7:3);

8k (CDCl3, 400 MHz): 2.47 (3 H, s, CH-4), 3.99 (3 H, s, 4-OCH3), 4.01 (3 H, s, 3’-OCHs), 6.76 (1
H, s, 2”-H), 6.96 (1 H, d, J = 8.4 Hz, H-5"), 7.36 (1 H, d, J = 8.23 Hz, H-5), 7.58 (1 H, d, J = 2.12
Hz, H-2), 7.65 (1 H, dd, J = 8.4 Hz, 2.11 Hz, H-6’), 7.79 (1 H, dd, J = 8.23 Hz, 2.11 Hz, H-6), 7.96
(1H,d,)=2.12 Hz, H-2’), 16.96 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 20.3 (1 C, 4-CHs), 56.1 (2 C, 3’, 4-OCHs), 92.31 (1 C, 2”), 109.74 (1 C, 2'),
110.74 (1 C, 5'), 121.45 (1 C, 6’), 125.11 (1 C, 6), 127.55 (1 C, 2) 128.41 (1 C, 1’), 131.15 (1 C,
5), 134.69 (1 C, 4), 134.92 (1 C, 3), 140.62 (1 C, 1), 149.14 (1 C, 3'), 153.05 (1 C, 4’), 182.06 (1
C,3”),186.6 (1C, 1”).

m/z HRMS (ESI) [M + H]: Calculated for C1gH17ClO4 333.0888 found 333.0889 (AMs=0.20 ppm)

IR Umax: 3099.7 (enol OH), 1718.3 (C=0).
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1-(3-Bromo-4-methylphenyl)-3-(3,4-dimethoxyphenyl)propane-1,3-dione (33)

Compound (33) was synthesised from 3,4-dimethoxyacetophenone (0.50 g, 2.77 mmol) and
methyl-3-bromo-4-methylbenzoate (0.57 g, 3.41 mmol) and sodium hydride (0.20 g, 8.12
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
7:3), recrystallisation from ethanol afforded the title bromo compound (33) as a yellow solid

(1.15 g, 3.04 mmol, 89 %).

M.P: 128 — 130 °C; Rs: 0.33; (Hex:EtOAc 7:3);

84 (CDCl3, 400 MHz): 2.45 (3 H, s, 4-CHs), 3.95 (3 H, s, 4-OCH3), 3.97 (3 H, s, 3’-OCHs), 6.72 (1
H,s,2”),6.93 (1H,d,J=8.37Hz, 5-H), 7.32 (1 H, d, ] = 8.00 Hz, 5-H), 7.54 (1 H, d, J = 2.00 Hz,
2’-H), 7.62 (1 H, dd, J = 8.37 Hz, 1.97 Hz, 6’-H), 7.80 (1 H, dd, J = 8.00 Hz, 1.65 Hz, 6-Hz, 6-H),
8.11 (1 H, d, ) = 1.65 Hz, 2-H), 16.9 (1 H, s, enolic H).

8¢ (CDCls, 100 MHz): 23.2 (1 C, 4-CHs), 56.1 (2 C, 3’,4’-OCHs), 92.3 (1 C, 2”), 109.6 (1 C, 2'),
110.4(1C,5),121.5(1C, 6'),125.3 (1C, 3), 125.8 (1C, 6), 128.3 (1 C, 1), 130.8 (1 C, 5), 130.9
(1C,2),134.8(1C,1),142.4(1C, 4),149.1(1C, 3),153.1(1C, 4), 181.8 (1C, 3”), 186.6 (1 C,
1”).

m/z HRMS (ESI) [M + H]: Calculated for C1gH17BrO4 377.0383 found 377.0380 (AMs=0.71 ppm)

IR Umax: 3079 (enol OH), 1679 (C=0).

96



1-(3-Bromo-4-methylphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (34)

Compound (34) was synthesised from 3’,4’,5’-trimethoxyacetophenone (0.49 g, 2.72 mmol)
and methyl-3-bromo-4-methylbenzoate (0.56 g, 3.41 mmol) and sodium hydride (0.20 g, 8.15
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2), recrystallisation from ethanol afforded the title bromo compound (34) as yellow crystals

(0.38 g, 0.90 mmol, 28 %).

M.P: 108 — 110 °C; Rs: 0.29; (Hex:EtOAc 8:2);

84 (CDCls, 400 MHz): 2.47 (3 H, s, 4-CHs), 3.93 (3 H, s, 4-OCHs), 3.96 (6 H, s, 3', 5’-OCHs), 6.69
(1H,s,2”),7.22 (2 H,s, 2, 6-H),7.35 (1L H, d, J = 8.13 Hz, 5-H), 7.87 (1 H, dd, J = 8.13 Hz, 2.01
Hz, 6-H), 8.40 (1 H, d, J = 2.01 Hz, H-2), 16.9 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 23.2 (1 C, 4-CHs), 56.4 (2 C, 3',4’-OCHs), 61.0 (1 C, 4-OCHs), 92.7 (1 C,
2”),104.7 (2C, 2, 6), 125.3 (1 C, 4), 125.9 (1 C, 6), 130.8 (1 C, 1’), 131.0 (1 C, 5), 131.0 (1 C,
1), 134.8 (1 C, 1), 140.5 (1 C, 4’), 142.8 (1 C, 3), 153.3 (2 C, 3’ ,5), 183.1 (1 C, 3”), 186.1 (1
c,1).

m/z HRMS (ESI) [M + H]: Calculated for C19H19BrOs 407.0489 found 407.0486 (AMs=0.58 ppm)

IR Umax: 3065.7 (enol OH), 1678.6 (C=0).
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1-(3-lodo-4-methylphenyl)-3-(3,4,5-trimethoxyphenyl)propane-1,3-dione (35)

Compound (35) was synthesised from 3’,4’,5’-trimethoxyacetophenone (0.50 g, 2.38 mmol)
and methyl-3-iodo-4-methylbenzoate (0.83 g, 3.00 mmol) and sodium hydride (0.17 g, 4.14
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
9:1), recrystallisation from ethanol afforded the title iodo compound (35) as a brown solid

(0.95 g, 2.10 mmol, 88 %).

M.P: 107 — 109 °C; Rs: 0.25; (Hex:EtOAc 9:1);

84 (CDCl3, 400 MHz): 2.51 (3 H, s, 4-CHs), 3.95 (3 H, s, 4'-OCHs), 3.98 (6 H, s, 3’,5’-OCH3), 6.67
(1H,s,2”),7.20(2H,s,2,6"-H), 7.32 (1L H, d, J = 8.06 Hz, 5-H), 7.84 (1 H, dd, J = 8.06 Hz, 1.88
Hz, 6-H), 8.37 (1 H, d, J = 1.87 Hz, 2-H), 16.9 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 28.4 (1 C, 4-CHs), 56.4 (2 C, 3',5'-OCHs), 61.0 (1 C, 4-OCHs), 92.7 (1 C,
2”),101.2 (1 C, 3), 104.8 (2 C, 2’ 6'), 126.8 (1 C, 6), 129.8 (1 C, 5), 130.8 (1 C, 1’), 134.6 (1 C,
1),137.5(1C, 2),142.2 (1C, 3),146.2 (1 C, 4'), 153.2 (2 C, 3, 5), 182.9 (1 C, 3”), 186.1 (1 C,
1”).

m/z HRMS (ESI) [M + H]: Calculated for C19H19ClOs 455.0350 found 455.0352 (AMs=0.47 ppm)

IR Umax: 3099.1 (enol OH), 1676.3 (C=0).
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1-(3-Chloro-4-methylphenyl)-3-(3,4,5-trimethoxyphenyl) propane-1,3-dione (36)

Compound (36) was synthesised from 3’,4’,5’-trimethoxyacetophenone (0.50 g, 2.38 mmol)
and methyl-3-chloro-4-methylbenzoate (0.83 g, 3.00 mmol) and sodium hydride (0.17 g, 7.14
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
7:3), recrystallisation from ethanol afforded the title chloro compound (36) as a yellow solid

(0.83 g, 2.29 mmol, 76 %).

M.P: 108 — 110 °C; Rs: 0.42; (Hex:EtOAc 7:3);

84 (CDCls, 400 MHz): 2.47 (3 H, s, 4-CHs), 3.96 (3 H, s, 4-OCHs), 3.98 (6 H, s, 3’, 5-OCH3), 6.72
(1H,s,2”),7.24 (2H, s, 2, 6'-H), 7.37 (1 H, d, J = 7.80 Hz, 5-H), 7.80 (1 H, dd, J =7.89 Hz, 1.82
Hz, 6-H), 7.96 (1H, d, J = 1.82 Hz, 2-H), 16.9 (1 H, s, enolic H)

8¢ (CDCls, 100 MHz): 20.4 (1 C, 4-CHs), 56.4 (2 C, 3',5’-OCH3), 61.0 (1 C, 4’-OCHs), 92.7 (1 C,
2”),104.7 (2 C, 2',6'), 125.2 (1 C, 5), 127.7 (1 C, 6), 130.8 (1 C, 1’), 131.2 (1 C, 2), 134.6 (1 C,
1), 134.9 (1 C, 3), 140.9 (1 C, 4), 142.5 (1 C, 4), 153.3 (2 C, 3,5), 183.2 (1 C, 3”), 186.1 (1 C,
1”).

m/z HRMS (ESI) [M + H]: Calculated for C19H19ClOs 363.0994 found 363.0994 (AMs=0.05 ppm)

IR Umax: 3065.6 (enol OH), 1674.0 (C=0).
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1-(4-(Ttrifluoromethyl)phenyl)-3-(3,4,5-trimethoxyphenyl)propane-1,3-dione (37)

37

Compound (37) was synthesised from 3’,4’,5’-trimethoxyacetophenone (0.50 g, 2.38 mmol)
and methyl-4-(trifluoromethyl) benzoate (0.83 g, 3.00 mmol) and sodium hydride (0.17 g, 7.14
mmol) as in procedure E. After completion of the reaction was confirmed by TLC (Hex:EtOAc
7:3), recrystallisation from ethanol afforded the title trifluoromethyl compound (37) as a

yellow solid (0.81 g, 3.29 mmol, 89 %).

M.P: 98 — 100 °C; Ry: 0.38; (Hex:EtOAc 7:3);

84 (CDCls, 400 MHz): 3.87 (3 H, s, 4-OCHs), 3.89 (6 H, s, 3, 5-OCHs), 6.70 (1 H, s, 2), 7.16 (2 H,
s,2,6-H),7.69 (2 H, d, J=8.19 Hz, H-3’,5), 8.01 (2 H, d, J = 8.19 Hz, H-2",6"), 16.7 (1 H, s, enolic
H).

8¢ (CDCls, 100 MHz): 20.4 (1 C, 4-CHs), 56.4 (2 C, 3, 5-OCHs), 61.0 (1 C, 4-OCH3), 93.5 (1 C, 2”),
104.9 (2 C, 2,6), 125.7 (2C, q, ) =3.4 Hz, 3',5'), 127.4 (1C, 2, 6'), 127.8 (1C, q, ) = 274.4 Hz,
C-Fs),130.7 (1 C, 1), 134.1 (1 C, q,J = 33.5 Hz, 4'), 138.5(1C, 4), 142.5(1C, 1), 153.3 (2 C, 3,
5), 182.0 (1 C, 3”), 187.4 (1 C, 1”).

8¢ (CDCls, 564 MHz): -63.2 (3 F, s, 4-CF3).

m/z HRMS (ESI) [M + H]: Calculated for C19H17F305 383.1101 found 383.1103 (AMs=0.66 ppm)

IR Umax: 3076.6 (enol OH), 1667.3 (C=0)
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1-[3-(tert-Butyldimethylsilanoxy)phenyl]ethanone (38)

CH;

H3C—|3—"CH3
HyC—Si—CH; O

(38)
To a solution of 3-hydroxyacetopheone (1 g, 6.57 mmol) in dry DMF (15 mL) and N,N-
diisopropylethylamine (0.85 g, 6.57 mmol) was added t-butyldimethylsilyl chloride (1.89 g,
7.88 mmol) according to procedure B. A crude oily product was obtained which was purified
by column chromatography (Hex:EtOAc 8:2, Rf= 0.3) to give the title ketone (38) as a
colourless oil. (1.21 g, 5.40 mmol, 84 %)

84 (CDCl3, 400 MHz): 0.0 (6 H, s, 2”’-CHs), 0.78 (9 H, s, 3”’-CHs), 2.34 (3 H, s, 0=C-CHs), 6.83 (1
H, dd, J = 8.12 Hz, 2.55 Hz, 4), 7.11 (1 H, t, ) = 7.44 Hz, 3), 7.20 (1 H, t, J = 2.04 Hz, 6), 7.33 (1
H, dt, J = 7.85 Hz, 0.86 Hz, 2) (Aggarwal et al., 2003).

8¢ (CDCls, 100 MHz): -4.18 (2 C, 2”’-CHs), 18.2 (1 C, 3”), 25.6 (3 C, 3”), 25.6 (3 C, 3""-(CHs)3),
26.7 (1C, 1”-CHs), 119.4 (1 C, 4), 121.6 (1 C, 3), 124.9 (1 C, 6), 129.5 (1 C, 2), 138.6 (1 C, 1),
155.9 (1 C, 17).

IR Umax: 1683.2 (C=0), 1550.8 (C=C)
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(2)-1-(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-3-hydroxy-3-(3,4,5-
trimethoxyphenyl)prop-2-en-1-one (39)

(39)

LIHMDS (1M, 0.5 g, 2.98 mmol) was added to 3,4,5-trimethoxyacetophenone (0.3 g, 1.48
mmol) in THF (15 mL) according to procedure C. After 30 minutes a solution of methyl-3-[(t-
butyldimethylsilyl)-oxy] benzoate (0.44 g, 1.48 mmol) in THF (8 mL) was added and stirring
continued for 60 minutes at -78 °C and at room temperature for 48 hours. After completion
of the reaction was confirmed by TLC (Hex:EtOAc 7:3) column chromatography gave the title

compound (39) as a yellow oil (0.11 g, 0.23 mmol, 5 %).
Rf: 0.29; (Hex:EtOAc 7:3);
6H(CDCl3, 400 MHz): 0.0 (6 H, s, Si-CH3), 0.83 (9 H, s, C-(CH3)3), 3.70 (3H, s, 4’-OCH3), 3.73 (3H,

s, OCHs, 4), 3.76 (6 s, OCH3 3,5), 6.47 (1H, s, 2”"), 6.73 (1H, d, ) = 8.4 Hz, 5’), 7.0 (2 H, s, 2, 6-H),
7.31(1H, d, ) =2.29 Hz, 2’), 7.43 (1H, dd, J = 2.29 Hz, 8.4 Hz, 6') 16.79 (1 H, s, enolic)

13¢ NMR (CDCls, 100 MHz): -4.6 (2 C, 4”), 18.5 (1 C, 5”), 25.7 (3 C, C(CHs)3), 55.5 (1 C, OCHs,
4) ,56.3 (2 C, OCHs, 3,5), 61.0 (1 C, OCHs, 4'), 92.3 (1 C, 2”"), 104.5 (2 C, 2, 6), 111.2 (1 C, 5'),

119.6 (1 C, 2”), 121.9 (1 C, 6'), 128.3 (1 C, 1), 131.1 (1 C, 1), 141.8 (1 C, 3'), 145.1 (1 C, &),
153.2(1C, 4),155.0 (2 C, 3,5), 184.4 (1 C, 3”),185.1 (1 C, 1”)

IR Umax: 3021.6 (enol OH), 1649.1 (C=0)
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BENZOYL THIOUREA ANALOGUES
N-((4-(trifluoromethyl)phenyl)carbamothioyl)benzamide (40)

3

2 4 CF3
" . 5

40

Compound (40) was synthesised from benzoyl chloride (0.5 g, 3.56 mmol) and 4-methyl-
trifluoroaniline (0.57 g, 3.56 mmol) and ammonium isothiocyanate (0.27 g, 3.56 mmol) as in
procedure F. After completion of the reaction was confirmed by TLC (Hex:EtOAc 8:2),
recrystallisation from methanol afforded the title amide (40) as white crystals (0.69 g, 2.13
mmol, 59 %).

M.P: 108 — 110 °C; lit. (107-108 °C) (Rauf et al., 2013), R:0.38; (Hex:EtOAc 8:2);

8H(CDCls, 600 MHz): 7.56 — 7.60 (2 H, m, Ar-H), 7.68 — 7.72 (3 H, m, Ar-H), 7.91 — 7.96 (4 H,
m, Ar-H), 9.13 (1 H, s, 2”"), 12.9 (L H, s, 4”).

13C NMR (CDCls, 150 MHz): 123.7 (2 C, 2,6), 126.1 (2 C, g, ) = 3.67 Hz, 3, 5), 127.1(1C, q,J =
270.1 Hz, 4-CFs), 127.5 (2 C, 2', 6'), 128.9 (1 C, g, 33.7 Hz, 4), 129.3 (2 C, 3',5'), 131.3 (1 C, 1),
134.0 (1C, 4'), 140.6 (1 C, 1), 167.7 (1 C, 1”), 178.4 (1 C, 3").

19 NMR (400 MHz): -62.4 (3 F, s, 4-CFs).

IR Umax: 3227.7 (NH), 1673.5 (C=0), 1236.2 (C=S).
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4-Methoxy-N-((4-methoxyphenyl)carbamothioyl)benzamide (41)

2 _OCH,

Compound (41) was prepared from 4-methoxybenzoyl chloride (2.0 g, 11.7 mmol) and p-
anisidine (4-methoxyaniline) (1.44 g, 11.7 mmol) and ammonium isothiocyanate (0.88 g, 11.7
mmol) as in procedure F. After completion of the reaction was confirmed by TLC (Hex:EtOAc
8:2),recrystallisation from methanol afforded the title benzamide (41) as white crystals (3.26

g, 10.3 mmol, 87 %).

M.P: 159 - 161 °C; lit: 152 — 155 °C (Huang et al., 2013) R#:0.31; (Hex:EtOAc 8:2);

84(CDCls, 400 MHz): 3.82 (3 H, s, 4'-OCHs), 3.88 (3 H, s, 4-OCHs), 6.94 (2 H, d, J = 8.9 Hz, 3, 5),
7.00 (2 H,d,)=8.8Hz,3,5),7.57(2H,d,)=89Hz,2,6),7.86 (2H, d, ) = 8.8 Hz, 2’, 6'), 9.06
(1H,s,1”),12.5(1H,s, 3").

8¢ (CDCls, 100 MHz): 55.5 (1 C, 4-OCHs), 56.7 (1 C, 4-OCHs), 114.1 (2 C, 3',5’), 114.5 (2 C, 3,
5),123.5(1C, 1),128.9(2C, 2, 6), 129.7 (2 C, 2, 6), 130.7 (1 C, 1’), 158.2 (1 C, 4), 164.0 (1 C,

4),166.4(1C,1”),178.9(1C, 3”)

IR bmax: 3413 (NH), 16545 (C=0), 1233 (C=S).
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4-Methoxy-N-((4-(trifluoromethyl)phenyl)carbamothioyl)benzamide

Compound (42) was prepared from 4-methoxybenzoyl chloride (0.50 g, 2.93 mmol) and 4-
methyl-trifluoroaniline (0.47 g, 2.93 mmol) and ammonium isothiocyanate (0.22 g, 2.93
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex : EtOAc
7:3), recrystallisation from methanol afforded the title benzamide as yellow crystals (0.71 g,

2.00 mmol, 68 %).

M.P: 144 - 148 °C, lit. 154 — 156 °C (Qiao et al., 2017); Rf:0.25; (Hex : EtOAc 7:3);

84(CDCls, 400 MHz): 3.90 (3 H, 4’-OCHs), 7.03 (2 H, d, ) = 8.86 Hz, 3’ 5'), 7.68 (2 H, d, J = 8.60
Hz,2,6),7.88 (2 H,d, ) =8.86 Hz, 2’,6), 7.93 (2 H, d, ) = 8.60 Hz, 3, 5), 9.06 (1 H, s, 2”"), 12.9
(1H,s,4”).

8¢ (CDCls, 100 MHz): 55.7 (1 C, 4'-OCHs), 114.6 (2 C, 3',5), 123.1 (1 C, 1), 123.7(2C, q,) = 2,
6),126.1(2C, q,) =3.53 Hz, 3,5), 127.9 (1 C, q, J = 268.8 Hz, CF3), 128.8 (1 C, g, 32.8 Hz, 4),
129.8(2C, 2, 6'), 140.8 (1 C, 1), 164.3 (1 C, 4’), 166.5 (1 C, 1”), 178.6 (1 C, 3”).

8¢ (CDCl3, 564 MHz): -62.3 (3 F, s, 4-CF3)

IR bmax: 3184 (NH), 1678 (C=0), 1212(C=S)
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N-((4-methoxyphenyl)carbamothioyl)-4-(trifluoromethyl)benzamide (43)

2 _OCH;

43

Compound (43) was prepared from 4-(trifluoromethyl) benzoyl chloride (0.50 g, 2.40 mmol)
and p-anisidine (4-methoxyaniline) (0.30 g, 2.40 mmol) and ammonium isothiocyanate (0.18
g, 2.40 mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex:
EtOAc 6:4), recrystallisation from methanol afforded the title benzamide (43) as yellow

crystals (0.80 g, 2.24 mmol, 94 %).

M.P: 132 — 134 °C; Rf:0.37; (Hex: EtOAc 6:4).

84(CDCls, 600 MHz): 3.86 (3 H, s, 4-OCHs), 6.99 (2 H, d, J = 8.70 Hz, 3, 5), 7.60 (2 H, d, J = 8.70
Hz, 2,6),7.85 (2H,d,) =8.24 Hz, 3", 5'), 8.04 (2 H, ) = 8.24 Hz, 2’ 6), 9.08 (1 H, s, 2”), 12.3 (1
H, s, 4”).

8¢ (CDCls, 150 MHz): 55.2 (1 C, 4-OCHs), 114.1 (2 C, 3, 5), 126.3 (2 C, 2,6), 127.3(2C, q,J =
3.41Hz, 3,5),127.9.1 (1C, g, J = 266.3 Hz, CF3), 128.7 (1 C, g, J = 1.23 Hz, 2, 6), 131.2 (1 C,
1),132.4(1C, q,)=31.6 Hz, 4), 136.7 (1 C, 1’), 156.6 (1 C, 4), 167.3 (1 C, 1”), 177.4 (1 C, 3”).

8¢ (CDCl3, 564 MHz): -62.3 (3 F, s, 4-CF3)

m/z HRMS (ESI) [M + H]: Calculated for C16H13F3N20,S 355.0723 found 355.0721 (AMs=0.47

ppm)

IR Umax: 3083 (NH), 1622 (C=0), 1243 (C=S)
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4-Methoxy-N-((3,4,5-trimethoxyphenyl)carbamothioyl)benzamide (44)

HaCO™ 4™

44
Compound (44) was prepared from 4-methoxybenzoyl chloride (1.00 g, 4.34 mmol) and 3,4,5-
trimethoxyaniline (0.47 g, 4.34 mmol) and ammonium isothiocyanate (0.33 g, 4.34 mmol) as
in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 8:2),
recrystallisation from methanol afforded the title benzamide (44) as yellow crystals (0.98 g,

2.60 mmol, 60 %).

M.P: °C; R::0.29; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.88 (3 H, s, 4'-OCHs), 3.89 (6 H, s, 3, 5-OCHs), 3.92 (3 H, s, 4'-OCHs), 7.03
(2H,d,)=8.88Hz,3,5),7.09 (2 H,s,2,6),7.89 (2H,d, ) =8.88 Hz, 2, 6),9.02 (L H, s, 2”), 12.7
(1H,s,4").

8¢ (CDCl3, 100 MHz): 55.7 (1 C, 4-OCHs), 56.2 (2 C, 3, 5- OCHs), 60.9 (1 C, 4- OCHs), 101.2 (2 C,
2,6),114.5(2C, 3, 5),123.4 (1C, 1), 129.7 (2 C, 2, 6'), 133.4(1C, 4), 136.4 (1 C, 1), 153.2
(2C,3,5),164.2 (1C,4'),166.4 (1C,1”), 177.8 (1C, 3").

m/z HRMS (ESI) [M + H]: Calculated for C1gH20N20sS 377.1166 found 377.1164 (AMs=0.42

ppm)

IR Umax: 3132 (NH), 1656 (C=0), 1219 (C=S5)

107



3,4,5-Trimethoxy-N-((4-methoxyphenyl)carbamothioyl)benzamide (45)

2 _OCH,

Compound (45) was prepared from 3,4,5-trimethoxybenzoyl chloride (1.20 g, 5.20 mmol) and
4-methoxyaniline (0.64 g, 5.20 mmol) and ammonium isothiocyanate (0.39 g, 5.20 mmol) as
in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 7:3),
recrystallisation from methanol afforded the title benzamide (45) as white needle (1.06 g,

2.82 mmol, 54 %).

M.P: 165 - 168 °C; lit (Saeed et al., 2010); R¢:0.33; (Hex: EtOAc 7:3);

84(CDCls, 400 MHz): 3.84 (3 H, s, 4-OCHs), 3.95 (3 H, 4’-OCHs), 3.96 (6 H, s, 3’, 5’-OCHs), 6.97
(2H,d,J=858Hz3,5),7.10 (2 H, s, 2/, 6'), 7.60 (2 H, d, J = 8.58 Hz, 2, 6), 9.08 (1 H, s, 2”),
12.4 (1H,s, 4”).

8¢ (CDCl3, 100 MHz): 55.5 (1 C, 4-OCHs), 56.5 (2 C, 3’, 5’- OCH3), 61.1 (1 C, 4’- OCHs), 104.9 (2
C,2,6),114.1(2C,3,5),125.8(2C, 2,6), 126.6 (1 C, 1), 130.5 (1 C, 1), 142.9 (1 C, #), 153.6
(2C,3,5),158.43 (1C, 4), 166.7 (1 C, 1”), 178.6 (1 C, 3”).

IR Umax: 3234 (NH), 1665 (C=0), 1214 (C=S)
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N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)carbamothioyl)-3,4,5-trimethoxybenzamide (46)

(46)

Compound (46) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.50 g, 2.18 mmol) and
2,3-dihydro-1,4-benzodioxin-6-amine (1.20 g, 2.18 mmol) and ammonium isothiocyanate
(0.17 g, 2.17 mmol) as in procedure F. The completion of the reaction was confirmed by TLC
(Hex: EtOAc 8:2), recrystallisation from methanol afforded the title benzamide (46) as white

crystals (0.59 g, 1.46 mmol, 67 %).

M.P: 184 - 186 °C; Rs:0.21; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.95 (3 H, s, 4-OCHs), 3.96 (6 H, s, 3’, 5’-OCH3), 4.30 (4 H, s, 6, 7), 6.93 (1
H, d, ) =8.63 Hz, 3), 7.08 (1 H, dd, J = 8.63 Hz, 2.45 Hz, 2), 7.10 (2 H, s, 2’, ), 7.35 (1 H, d, J =
2.45 Hz, 10),9.05 (1 H, s, 1”), 12.43 (1 H, s, 4”).

8¢ (CDCls, 100 MHz): 56.5 (2 C, 3, 5'-OCHs), 61.1 (1 C, 4-OCHs), 64.3 (2 C, 6. 7), 104.9 (2 C,
3,5'),113.7 (1 C, 10), 117.3 (1 C, 2), 117.7 (1 C, 3), 126.6 (1 C, 1’), 131.0 (1 C, 1), 142.4 (1 C,
9),142.9 (1 C, &), 143.4 (1C, 4), 153.6 (1C, 2, 3, 5"), 166.6 (1 C, 1”), 178.4 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C19H20N206S 405.1115 found 405.1113 (AMs=0.48
ppm)

IR Umax: 3221 (NH), 1628 (C=0), 1198 (C=S)
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N-((2,4-Dimethoxybenzyl)carbamothioyl)-3,4,5-trimethoxybenzamide (47)

OCH,

(47)

Compound (47) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.50 g, 2.17 mmol) and
2,4-benzylamine (1.20 g, 2.17 mmol) and ammonium isothiocyanate (0.16 g, 2.17 mmol) as in
procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 8:2),
recrystallisation from methanol afforded the title benzamide (47) as orange crystals (0.45 g,
1.07 mmol, 49 %).

M.P: 154 - 156 °C; R:0.28; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.82 (3 H, s, 4-OCHs), 3.91 (3 H, s, 4-OCHs), 3.92 (3 H, s, 5-OCHs), 3.93 (6
H,s, 3’,5'-OCHs), 4.87 (2 H, d, ) = 5.26 Hz, 5”), 6.50 (1 H, dd, J = 8.38 Hz, 2.20 Hz, 3), 6.51 (1 H,
d,J=2.21Hz,5),7.02(2H,s,2,6),7.34 (1 H,d,J =820Hz 2),892 (1H,s,2"”),11.03 (1 H,
s, 4”).

8¢ (CDCls, 100 MHz): 45.5 (1 C, 5”), 55.4 (1 C, 6-OCHs), 55.5 (1 C, 4-OCHs), 56.5 (2 C, 3’,5'-
OCHs), 61.0 (1 C, 4-OCHs), 98.7 (1 C, 5), 103.9 (1 C, 3), 104.8 (2C, 2, 6'), 116.8 (1 C, 1), 127.1
(1C,1),131.0(1C, 2), 142.5 (1 C, 4), 153.5 (2 C, 3, 5), 158.7 (1 C, 4), 161.0 (1 C, 6), 166.2 (1
C,3”),178.9(1¢, 3”).

m/z HRMS (ESI) [M + H]: (not found)

IR Umax: 3221 (NH), 1628 (C=0), 1198 (C=S)
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N-((3-Chloro-4-fluorophenyl)carbamothioyl)-3-fluoro-4-methoxybenzamide (48)

(48)

Compound (48) was prepared from 3-fluoro-4-methoxybenzoyl chloride (1.00 g, 5.30 mmol)
and 3-chloro-4-fluoroaniline (2.66 g, 5.33 mmol) and ammonium isothiocyanate (0.40 g, 5.33
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
7:3), recrystallisation from methanol afforded the title benzamide (48) as orange crystals

(1.55 g, 4.34 mmol, 81 %).
8, ,

M.P: 205 - 207 °C; Rs:0.21; (Hex: EtOAc 7:3);

84(DMSO-600 MHz): 3.95 (3 H, s, 4-OCHs), 7.34 (1 H, t, J = 8.56 Hz, 5'), 7.49 (1 H, t, J = 9.03
Hz,5), 7.61 (1 H, m, 6), 7.93 (2 H, m, 2, 6’), 8.00 (1 H, dd, J = 8.55 Hz, 2.23 Hz, 2), 11.6 (1 H, s,
27),12.5(1H,s, 4”).

8¢ (DMSO-150 MHz): 56.3 (1 C, 4-OCHs), 113.2 (1 C, d, J = 1.54 Hz, 5), 116.3 (1 C, d, J = 20.4
Hz,2’),116.8 (1C,d,J=22.0 Hz, 5),119.0 (1C, d,J = 19.0 Hz, 3), 123.9 (1 C, d, J = 5.86 Hz, 1’),
125.8 (1 C, d,J = 8.65 Hz, 6), 126.5 (1 C, d, J = 3.34 Hz, 2), 126.8 (1 C, 6'), 135.2 (1 C, d, J=3.38
Hz, 1), 151.3 (1 C, d, ) = 9.81 Hz, 4), 151.7 (1 C, d, ) = 247.8 Hz, 3'), 156.3 (1 C, d, J = 246.1 Hz,
4),166.2 (1 C, 1”),179.8 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C1sH11CIF2N20,S 357.0271 found 357.0270 (AMs=0.11

ppm)

IR Umax: 3206 (NH), 1673(C=0), 1216 (C=5)
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3,4,5-Trimethoxy-N-((3,4,5-trimethoxyphenyl)carbamothioyl)benzamide (49)

OCH;

3 _OCH;
4

¥ ° OCH,3

Compound (49) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.50 g,2.17 mmol) and
3,4,5-trimethoxyaniline (0.40 g, 2.17 mmol) and ammonium isothiocyanate (0.16 g, 2.17
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
7:3) and recrystallisation from methanol afforded the title benzamide (49) as a white solid

(0.92 g, 2.11 mmol, 97 %).

M.P: 169 — 171 °C; Rs: 0.24; (Hex : EtOAc 7:3);

84(CDCls, 400 MHz): 3.87 (3 H, s, 4-OCHs), 3.89 (6 H, s, 3, 5-OCHs), 3.95 (3 H, s, 4'-OCHs), 3.96
(6 H,s,3,5-0CHs), 7.08 (2 H,s, 2,6),7.09 (2 H,s, 2’ 6),9.01 (LH, s, 2), 12.66 (1 H, s, 4”).

8¢ (CDCl3, 100 MHz): 56.3 (2 C, 3, 5 -OCHs), 56.5 (2 C, 3’, 5’-OCHs), 60.9 (1 C, 4-OCHs), 61.1 (1
C, 4-OCHs), 101.2 (2 C, 2, 6), 104.9 (2 C, 2’, 6'), 126.4 (1 C, 1), 133.3 (1 C, 1), 136.5 (1 C, 4),
143.1(1C, 4),153.2(2C, 3, 5'),153.6 (2C, 3, 5), 166.7 (1 C, 1”), 177.6 (1 C, 3").

m/z HRMS (ESI) [M + H]: Calculated for Cy0H24N207S 437.1377 found 437.1375 (AMs=0.39

ppm)

IR Umax: 3212 (NH), 1665 (C=0), 1215 (C=S)
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3,4,5-Trimethoxy-N-((3,4,5-trimethoxybenzyl)carbamothioyl)benzamide (50)

(50)

Compound (50) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.24 g,1.01 mmol) and
3,4,5-trimethoxybenzylamine (0.20 g, 1.01 mmol) and ammonium isothiocyanate (0.08 g,
1.01 mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex:
EtOAc 7:3), recrystallisation from methanol afforded the title benzamide (50) as orange

crystals (0.22 g, 0.49 mmol, 48 %).

M.P: 159 — 161 °C; Rs: 0.25; (Hex: EtOAc 7:3);

84(CDCls, 400 MHz): 3.78 (3 H, s, 4-OCHs), 3.81 (6 H, s, 3, 5-OCHs), 3.85 (9 H, s, 3’,4’, 5’-OCHs),
4.77 (2H,d, ) =5.09 Hz, 5”), 6.56 (2 H, s, 2, 6),6.93 (2 H, s, 2’, 6'), 8.97 (L H, s, 2”"), 10.92 (1 H,
s, 47).

8¢ (CDCls, 100 MHz): 45.8 (1 C,5”), 56.1 (2 C, 3, 5-OCHs), 56.3 (2 C, 3’, 5’-OCHs), 60.7 (1 C, 4'-
OCHs), 60.8 (1 C, 4-OCHs), 104.9 (2 C, 2, 6), 105.1 (2 C, 2, 6'), 129.8 (1 C, 1’), 135.3 (1 C, 1),
136.2(1C, 4),141.7 (1C, 4'), 1523 (2C, 3, 5'), 153.8 (2 C, 3, 5), 165.9 (1 C, 1), 178.1 (1 C,
3”).

m/z HRMS (ESI) [M + H]: Calculated for C1H26N207S 451.1533 found 451.1511 (AMs=4.95

ppm)

IR Umax: 3233 (NH), 1665 (C=0), 1208 (C=S5)
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3,4,5-Trimethoxy-N-((4-(trifluoromethyl)phenyl)carbamothioyl)benzamide (51)

(51)

Compound (51) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.40 g,1.73 mmol) and
4-(trifluoromethyl)aniline (0.23 g, 1.73 mmol) and ammonium isothiocyanate (0.13 g, 1.73
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
7:3), recrystallisation from methanol afforded the title benzamide (51) as orange crystals

(0.45 g, 1.09 mmol, 63 %).

M.P: 109 — 111 °C; Rs:0.28; (Hex: EtOAc 7:3);

84(CDCls, 400 MHz): 3.97 (3 H, s, 4-OCHs), 3.98 (6 H, s, 3’, 5'-OCHs), 7.10 (2 H, s, 2’, 6'), 7.72
(2H,d,)=833Hz3,5),7.95(2H,d,J =833 Hz, 2,6),9.08 (LH,s,2”),12.89 (1 H, s, 4”).

8¢ (CDCls, 100 MHz): 56.3 (2 C, 3’, 5’-OCHs), 60.8 (1 C, 4’-OCHs), 105.2 (2 C, 2’, 6'), 123.4 (2 C,
q,1=1.23Hz,2,6),125.6 (1C,q,) =31.8 Hz, 4), 126.1 (2 C, g, ) =3.81Hz, 3,5), 127.8 (1 C, q,
J =269.2 Hz, CFs), 129.2 (1 C, 1’), 139.4 (1 C, 1), 141.1 (1 C, 4'), 152.2 (2 C, 3, 5’), 168.3 (1 C,
1”),175.3 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C1gH17FsN204S 415.0934 found 415.0935 (AMs=0.31)

IR Umax: 3237 (NH), 1670 (C=0), 1209 (C=S)
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3,4,5-Trimethoxy-N-((4-(trifluoromethyl)phenyl)carbamothioyl)benzamide (52)

OCH,

3_ _OCH,
4

5 ~OCH;,4

52

Compound (BTU-13) was prepared from 4-(trifluoromethyl)benzoyl chloride (0.60 g, 2.88
mmol) and 3,4,5-trimethoxyaniline (0.51 g, 2.88 mmol) and ammonium isothiocyanate (0.22
g, 2.88 mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex:
EtOAc 7:3), recrystallisation from methanol afforded the title benzamide (52) as orange

crystals (1.15 g, 2.76 mmol, 96 %).

M.P: 188 — 190 °C; Rs:0.26; (Hex: EtOAc 7:3);

84 (CDCl3, 600 MHz): 3.87 (3 H, s, 4-OCHs), 3.89 (6 H, s, 3, 5-OCHs), 7.08 (2 H, s, 2, 6), 7.85 (2
H,d,)=8.57Hz 3,5),8.05(2H,d,J=857Hz 2,6),9.17 (1LH,s, 2”), 12.50 (L H, s, 4”).

8¢ (CDCls, 150 MHz): 56.2 (2 C, 3, 5-OCHs), 60.9 (1 C, 4-OCHs), 101.6 (2 C, 2, 6), 126.5 (2 C, g,
1=3.70Hz, 3, 5'),127.4(2C, 2, 6'), 127.6 (1 C, q, ) = 270.9 Hz, CFs), 132.9 (1 C, 4), 134.1 (1 C,
q,)=33.1Hz 4),135.2(1C, 1), 138.2 (1 C, 1'), 153.2(2C, 3,5), 163.8 (1 C, 3”), 177.0 (1 C,
1)

8¢ (CDCl3, 564 MHz): -63.6 (3 F, s, 4'-CF3)

m/z HRMS (ESI) [M + H]: Calculated for C1gH17FsN204S 415.0934 found 415.0939 (AMs=1.21)

IR Umax: 3140 (NH), 1679 (C=0), 1225 (C=S)
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3,4,5-Trifluoro-N-((3,4,5-trimethoxyphenyl)carbamothioyl)benzamide (53)

OCH,

3_ _OCH,
4

¥~ ° “OCHj3

53

Compound (53) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.50 g, 2.57 mmol) and
3,4,5-trimethoxyaniline (0.47 g, 2.57 mmol) and ammonium isothiocyanate (0.22 g, 2.88
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
7:3), recrystallisation from methanol afforded the title benzamide (53) as orange crystals

(0.98 g, 2.45 mmol, 96 %).

M.P: 189 — 191 °C; Rs:0.26; (Hex : EtOAc 7:3);

84(CDCls, 400 MHz): 3.79 (3 H, s, OCHs, 4'), 3.81 (6 H, s, OCHs, 3',5’), 6.96 (2 H, s, 2',6'), 7.53
(2H,t,1=6.72Hz, 2,6),9.02 (1 H, s, 2”), 12.27 (1 H, s, 4).

8¢ (CDCls, 100 MHz): 56.3 (2 C, OCHs, 3’ 5’), 60.9 (1 C, OCHs, 4’), 92.42 (1 C, 2), 101.3 (2 C,
2’,6'),112.7 (2 C, dd, J = 16.5 Hz, 6.4 Hz, 2,6), 127.4 (1 C, m, 1), 133.0 (1 C, 1'), 136.7 (1 C, 4'),
143.4 (1C, dt, J = 263.3 Hz, 15.3 Hz), 152.8 (1 C, ddd, J = 254.41 Hz, 10.5 Hz, 3.6 Hz, 3, 5), 153.2
(2¢,3,5),163.9(1C,17),176.9 (1 C, 3”)

8¢ (CDCls, 564 MHz): -154.3 (1 F, s, 4'),-133.2 (2 F, s, 3, 5)

m/z HRMS (ESI) [M + H]: Calculated for C17H15F3N»04S 401.0777 found 401.0776 (AMs=0.35)

IR Umax: 3137.7 (NH), 1678.7 (C=0), 1225.4 (C=S)
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N-((4-Hydroxyphenyl)carbamothioyl)-3,4,5-trimethoxybenzamide (54)

54

Compound (54) was prepared from 3,4,5-trimethoxybenzoyl chloride (1.00 g, 4.35 mmol) and
4-aminophenol (0.47 g, 4.35 mmol) and ammonium isothiocyanate (0.33 g, 4.35 mmol) as in
procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 8:2),
recrystallisation from methanol afforded the title phenol (54) as grey crystals (1.24 g, 3.42
mmol, 79 %).

M.P: 180 — 182 °C; Rs:0.31; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.87 (9 H, s, OCHs), 5.68 (1 H, OH, 4), 6.82 (2 H, d, J = 8.4 Hz, 3, 5), 7.03
(2H,s,2,6),7.43(2H,d,)=8.4Hz,2,6),9.10 (LH, s, 2”), 12.35 (1 H, s, 4”).

8¢ (CDCl3, 100 MHz): 56.5 (2 C, 3’,5’-OCHs,), 61.6 (1 C, 4-OCHs), 105.5 (2 C, 2',6'), 115.7 (2 C,
3,5),126.1(2C, 2, 6),126.6 (1 C, 1’), 130.4 (1 C, 1), 142.9 (1 C, 4’), 154.7 (1 C, 4), 155.5 (2 C,
3,5), 166.6 (1 C, 1), 178.8 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C17H1sN20sS 363.1009 found 363.1010 (AMs=0.31)

IR bmax: 3213.3 (NH), 1606.1 (C=0), 1241.6 (C=S)
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N-((2-Bromophenyl)carbamothioyl)-3,4,5-trimethoxybenzamide (55)

OCH,

(55)

Compound (55) was prepared from 3,4,5-trimethoxybenzoyl chloride (1.20 g, 5.20 mmol) and
4-bromoaniline (0.90 g, 5.20 mmol) and ammonium isothiocyanate (0.39 g, 5.20 mmol) as in
procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 8:2),
recrystallisation from DMF/methanol (1:9) afforded the title bromo compound (55) as brown

crystals (1.45 g, 3.41 mmol, 65 %).

M.P: 154 — 156 °C; Rs:0.28; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.97 (9 H, s, 3, 4, 5'-OCHs), 7.14 (2 H, s, 2, 6'), 7.22 (1 H, dt, J = 7.65Hz,
1.33 Hz, 4), 7.44 (1 H, dt, ) = 7.65 Hz, 1.11 Hz, 3), 7.70 (1 H, dd, J = 8.04 Hz, 1.33 Hz, 5), 8.29 (1
H, dd, ) = 7.65 Hz, 1.11 Hz, 2), 9.14 (1 H, s, 2”"), 12.63 (1 H, s, 4”)

8¢ (CDCl3, 100 MHz): 56.6 (2 C, 3’, 5'-OCHs), 61.1 (1 C, 4-OCHs), 105.1 (2 C, 2’ 6'), 118.64 (1 C,
6), 126.4 (1 C, 1), 127.2 (1 C, 2), 127.6 (1 C, 4), 128.3 (1 C, 3), 133.0 (1 C, 5), 136.4 (1 C, 1),
143.0(1C, 4),153.6 (2C, 3/, 5"), 166.4 (1 C, 1), 179.0 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C17H17BrN,04S 425.0165 found 425.0166 (AMs=0.10)

IR bmax: 3294 (NH), 1667 (C=0), 1238 (C=S)
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N-((3-Hydroxy-4-methoxyphenyl) carbamothioyl)-3,4,5-trimethoxybenzamide (56)

3

2 4 OCH3
X
5 OH

Compound (56) was prepared from 3,4,5-trimethoxybenzoyl chloride (2.00 g, 8.67 mmol) and
5-amino-2-methoxyphenol (1.21 g, 8.67 mmol) and ammonium isothiocyanate (0.65 g, 8.67
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
8:2), recrystallisation from methanol afforded the title phenol (56) as white crystals (3.20 g,
8.15 mmol, 94 %).

M.P: 174 - 176 °C; Rs:0.33; (Hex: EtOAc 8:2);

61(CDCl3, 400 MHz): 3.93 (3 H, s, 4’-OCH3s), 3.95 (3 H, s, 4-OCH3), 3.96 (6 H, s, 3’, 5’-OCH3), 5.79
(1H,s,0H,5),6.91(1H,d,J=8.61Hz,3),7.09(2H,s,2,6),7.19 (1 H, dd, ) =8.61 Hz, 2.51
Hz,2),7.29(1H,d,)J=251Hz6),9.09(1H,s,2”),12.43 (1H,s, 4”)

8¢ (CDCls, 100 MHz): 56.1 (1 C, 4-OCH3), 56.5 (2 C, 3’, 5’-OCHs), 61.1 (1 C, 4-OCH3), 104.92 (2
C,2,6),110.5(1C, 6), 111.4 (1 C, 3),116.2 (1 C, 2), 126.7 (1 C, 1), 131.16 (1 C, 1”), 142.9 (1
C,4'),145.5(1C,5), 1458 (2C, 3/, 5),153.5(2C, 3,5),166.7 (1 C, 1”), 178.5 [1 C, 3").

m/z HRMS (ESI) [M + H]: Calculated for C1gH20N206S 393.1115 found 393.1114 (AMs=0.41)

IR Umax: 3123 (NH), 1608 (C=0), 1212 (C=5)
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N-(H-hydroxy-4-methoxyphenyl)carbamothioyl)-3,4,5-trimethoxybenzamide (57)

s 2N OH
A

FINT TP ocH,
(57)

Compound (57) was prepared from 3,4,5-trimethoxybenzoyl chloride (0.50 g, 2.17 mmol) and
4-amino-2-methoxyphenol (0.30 g, 2.17 mmol) and ammonium isothiocyanate (0.16 g, 2.17
mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc
6:4), recrystallisation from methanol afforded the title phenol (57) as brown crystals (0.77 g,

1.96 mmol, 90 %).

M.P: 164 — 166 °C; Rf:0.37; (Hex: EtOAc 6:4);

84(CDCls, 400 MHz): 3.95 (3 H, s, 4-OCHs), 3.96 (3 H, s, 4'-OCHs), 3.97 (6 H, s, 3, 5-OCH3), 5.73
(1H,s,4-OH),6.97 (1 H, d, ) =7.67 Hz, 3), 7.06 (1L H, dd, J = 7.67 Hz, 2.26 Hz, 2), 7.11 (2 H, s,
2,6'),7.50 (1 H,d,J=2.26 Hz, 5),9.06 (L H, s, 2”"), 12.6 (1 H, s, 4”).

8¢ (CDCls, 100 MHz): 56.1 (1 C, 5-OCHs), 56.5 (2 C, 3, 5’-OCHs), 61.1 (1 C, 4-OCHs), 104.9 (2
C,2',6),107.7 (1C, 6), 114.4 (1 C,3) 117.2 (1 C, 2), 126.6 (1 C, 1), 130.1 (1 C, 1), 144.5 (1 C,
4),146.2 (1C,5),153.6 (2C,3'5), 166.7 (1 C, 1), 178.1 (1 C, 3").

m/z HRMS (ESI) [M + H]: Calculated for C1gH20N206S 393.1115 found 393.1114 (AMs=0.27)

IR Umax: 3178.3 (NH), 1658 (C=0), 1213 (C=5)
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N-((2-Bromophenyl)carbamothioyl)-3-fluoro-4-methoxybenzamide (58)

(58)

Compound (58) was prepared from 3-fluoro-4-methoxybenzoyl chloride (0.70 g, 3.71 mmol)
and 2-bromoaniline (0.64 g, 3.71 mmol) and ammonium isothiocyanate (0.28 g, 3.71 mmol)
as in procedure F. The completion of the reaction was confirmed by TLC (Hex: EtOAc 7:3),
recrystallisation from methanol afforded the title bromo compound (58) as a white powder

(0.33 g, 0.86 mmol, 23 %).

M.P: 196 — 198 °C; R#:0.35; (Hex: EtOAc 7:3);

84(CDCls, 400 MHz): 4.02 (3 H, s, 4-OCHs), 7.12 (1 H, t, J = 8.15 Hz, 3’), 7.22 (1 H, t, ) = 7.61
Hz, 4),7.44 (1 H,t,) = 8.05 Hz, 3), 7.75 (3H, m, 2,5, 2’), 8.27 (1 H, d, J = 8.25 Hz, 6’), 9.07 (1 H,
s,2”),12.58 (1 H, s, 4”)

6c (CDCls, 100 MHz): 56.5 (1 C, 4'0OCHs), 113.0(1 C, d, J =2.22 Hz, 3’),116.1 (1 C, d, ) = 20.5
Hz, 6’), 118.7(1,6),123.91C,J=5.96 Hz, 1’),124.4(1C,d,)=2.47 Hz), 127.1(1C, 2), 127.6
(1¢ 4),1283(1C,3),133.0(1¢C,5),136.4(1C,1),151.3(1C,d,J)=10.3 Hz, 4’),151.8 (1 C,
d,J=245.4Hz,5),166.7(1C, d,J =198 Hz, 1”), 180.4 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for C15H12BrFN20,S 382.9860 found 382.9862 (AMs=0.53)

IR Umax: 3100.4 (NH), 1613.8 (C=0), 1202.7 (C=S)
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3-Fluoro-N-((3-fluoro-4-methoxyphenyl)carbamothioyl)-4-methoxybenzamide (59)

3

2 4 OCH3
X
5 F

59

Compound (59) was prepared from 3-fluoro-4-methoxybenzoyl chloride (1.20 g, 6.36 mmol)
and 3-fluoro-4-methoxyaniline (0.90 g, 6.36 mmol) and ammonium isothiocyanate (0.48 g,
6.36 mmol) as in procedure F. The completion of the reaction was confirmed by TLC (Hex:
EtOAc 8:2), recrystallisation from methanol afforded the title benzamide (59) as white crystals

(1.10 g, 3.12 mmol, 49 %).

M.P: 114 °C; Rt:0.27; (Hex: EtOAc 8:2);

84(CDCls, 400 MHz): 3.85 (3 H, s, 4-OCHs), 3.92 (3 H, s, 4'-OCHs), 7.00 (1 H, t, J = 8.91 Hz, 3),
7.08 (1H,t,J=8.51Hz, 5),7.32(1H,d,) =8.76 Hz, 2), 7.68 (3H, m, 2/, 6, 6),9.04 (1 H, s, 2),
12.46 (1 H, s, 4”).

8¢ (CDCls, 100 MHz): 56.4 (1 C, 4’-OCHs), 56.5 (1 C, 4-OCHs), 113.1 (3 C, dd, J = 20.5 Hz, 2.53
Hz, 3,6,5'),116.0 (1C, d,J =20.3 Hz, 2’), 120.2 (1 C, d, ) = 3.54 Hz, 2), 124.3 (1 C, d, ) = 3.54
Hz, 6'),123.9 (1C, d, ) = 6.65 Hz, 1), 130.6 (1 C, d, J = 9.25 Hz, 1), 146.5 (1 C, d, J = 10.7 Hz, 4),
152.6 (1 C, d, J = 10.9 Hz, 4), 152.9 (1 C, d, J = 246.6 Hz, 3'), 153.5 (1 C, d, J = 250.0 Hz, 5),
165.4 (1C, d,J = 1.90 Hz, 1”), 178.5 (1 C, 3”).

m/z HRMS (ESI) [M + H]: Calculated for Ci6H14F2N203S 353.0766 found 353.0766 (AMs=0.01)

IR Umax: 2098 (NH), 1621 (C=0), 1220 (C=5)
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2.2 Biological activity of B-diketones

Materials and methods

2.2.1 Cell lines profiles and culture tips:

A549

The lung carcinoma cell line, A549 was obtained from the University of Salford cell bank
located at Cockcroft building. It was isolated for the first time in 1973 during an attempt to
establish a guideline for morphological continuity from 200 human tumours. It specimens
were collected from different hospitals and medical centres including University of Colorado
Medical Centre and University of Minnesota medical school (Giard et al., 1973). The key
feature of the cell line can be characterised by their ability to synthesis and accumulate lipid
products in the cytoplasm by the cytidine diphosphocholine pathway. Subculturing of the cell
line can be maintained under physiological condition of commercially available medium of

RPMl at 37 °C /5 % CO2 (Cooper, 2012).

HepG2

HepG2 cell line was also obtained from the University of Salford cell bank. It was originally
isolated from a liver tissue of a hepatocellular carcinoma patient in a 15-year-old Caucasian
male (Qiu et al., 2015). They are mainly characterised as adherent epithelial cells that form a
single layer during replication and growth, each having 55 pair of chromosomes. One of their
key feature also include the secretion of plasma proteins such as albumins and fibrinogen
(ECACC, 2017). They are physiologically stable condition for in vitro studies in RPMI at 37 °C /

5 % CO; and normally takes 5 to 6 days to attain confluency when seeded at seeded at 1:4.

A-204

Also obtained from the University of Salford cell bank. A-204 is a solid tumour epithelial cell
line of Human muscle Rhabdomyosarcoma tissue was isolated by D. J. Giard (Giard et al.,
1973). It originates from the abnormal tissues of skeletal muscles in children and dominates
about 5 — 6% of neoplasia cases in paediatric patients (Pappo, 1995) and there is expected 90
% chances of survival for up to 5 years in patients with low risk conditions (Dawson et al.,

2020). The main feature of this A 204 cell lines is associated with the loss of heterozygosity in
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the region of chromosome at 11p15.5 and abnormal regulation of PAX3 and PAX7
transcription factors that are associated with different types of disorders such as Beckwith-
Wiedemann syndrome (Scholl et al., 2000; Scrable et al., 1987). As in many cell lines, A-204
can be cultured for in vitro studies in RPMI at 37 °C/ 5 % CO,.

Hela

Hela is a cancerous cervical tissue cell originated from Henrietta Lacks, a patient at John
Hopkins Hospital; and ever since, contributed to a data of over 60,000 publications of
biological research. One of the important roles contributed by Hela is in the development of
polio vaccine and its corelation between the papilloma virus and cervical cancer. The cell line
has also contributed to the mechanistic basis of telomerase in controlling chromosome
degradation (Landry et al., 2013). They have a characteristic of rapid division that doubles
the amount within a period of 24 hours. Hela cells are cultured in vitro in DMEM media
supplemented with serum and incubated at 37 °Cand 5 % CO.. This cell line was also collected

from the University of Salford cell bank.

u20s

U20S is a human bone osteosarcoma epithelial cells, cultivated from the tissue of a fifteen-
year-old girl with differentiated sarcoma of the tibia. The cancer is found in 3 =5 % children
and is linked with various syndromes such as bloom syndrome and Diamon Blackfan anemia
(Liu, 2018). Like most cell lines, U20S are cultured RPMI with serum and incubated at 37 °C
and 5 % CO..

CCRF-CEM

CCFR is obtained from C.E.M, a 2-year-old patient diagnosed with an acute lymphosarcoma
by lymph node biopsy at C.C.R.F. For the experiments in this thesis, the cells were obtained
from University of Salford cell bank. It grows on suspension in different growth medium
including RPMI and EME with 2mM glutamine and 20% foetal bovine serum (FBS). Like most
of the cell lines tested, CCRF-CEM are cultures for invitro studies in RPMI-1640 at 37°C / 5%
and COa,.
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K562

K562 cell lines are lymphoblasts that were isolated from a 53-year-old female patient
diagnosed with chronic myelogenous leukaemia (CML) in blast crisis. The cells are
characterised as non-adherent with fully rounded shapes (Anderson, Nilsson and Gahmberg,
1979). K562-cells are maintained for invitro studies in a RPMI-1640 media at 37 °C / 5% and
CO,.

MOLT-4

This cell line was isolated from a 19-year-old patient in relapse, suffering with acute
lymphoblastic leukaemia. The cell line is characterised with a hypertetraploid number of
chromosomes (Josh et al., 1988). It is also classified as a suspension cell and can be maintained

for invitro studies in RPMI-1640 medium at 37 °C with 95%, 5% air and CO3 respectively.
2.2.2 Cell conditioning maintenance

Cell medium

Cell media (RPMI-1640) without L-Glutamine catalogue number 12-167F, ordered from
BioWhittaker Lonza was used for cell growth and maintenance of all cell lines in the bioassays.
It was prepared by enriching 440 ml of the media with supplements that contains 10 % foetal
bovine serum (FBS), 1 % L-glutamine and 1 % penicillin /streptomycin (BioWhittaker catalogue

number DE 17-602E). The prepared media is always stored at 4 °C to a maximum of 3 weeks.

Cell thawing and subculturing

Prior to the thawing of cells in the cryovial, the culture media (RPMI) was warmed in a 37 °C
water bath for a period of about 30 minutes. A T-75 flask was prepared in the sterile hood
with the appropriate volume of media (10 — 30 ml for T-75 flask). The frozen cells contained
the cryovial was removed from the cryogene and gently warmed in a water bath to defreeze
at least within 2 minutes. Vial was quickly decontaminated with 70 % ethanol and moved into
the sterile hood. The cell content in vial was transferred into 10 ml sterile centrifuge tube
containing 9 ml of media and centrifuged for 5 minutes at 1500 rpm. The media and DMSO
content were carefully discarded without disturbing the coagulated cell at the bottom and
media (2 ml) was added to suspend the cells. The content was transferred to the previously

prepared T-75 flask and thoroughly mixed by gently tilting the flask sideways. The flask was
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kept in incubator at 37 °C / 5 % CO; and regularly checked for confluency and changing of

media. The procedure was applied for thawing of all cell lines used in the bioactivity tests.

T —r

Figure 60: Haemocytometer reading plate. Obtained from Invitrogen Cell culture basics
Handbook.

The cells were counted by Haemocytometer method. 10 ul of trypan blue was added to a 10
ul of cell suspension and mixed gently. 10 pl of the mixture was carefully transferred to the
of the thin plate on the haemocytometer (Figure 60). Only the cells in the 4 sets of 16 corner
squares are counted, cells that touch the margin of the dotted lines are excluded from the
count. The average cell count was then calculated, multiplied by the dilution factor, and

multiplied by 10* to represent number of cells per millilitres.

2.2.3 Cell viability

MTT is an assay that is used to measure the viability of cells based on their metabolic activity.
The main aspect relies on the chemical reduction and ring opening of tetrazolium salt (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT) which is converted to
formazan. During the reduction process there is a resulting colour change from a yellow MTT
to purple which its intensity depends the metabolic activity of nicotinamide adenine
dinucleotide phosphate (NADPH)-dependent enzymes in the mitochondria of living cells that
catalyse the reduction process. This idea can be used to determine the cytotoxicity of drugs
on cells, because only healthy cells are capable of metabolic reduction which result in colour
change. The intensity of the purple colour is proportional to the viability of cells that reduce

the MTT salt to formazan (Bahuguna et al., 2017; Rai et al., 2018).
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Scheme 10: Reduction and ring opening of MTT to formazan

The reduced formazan salt is dissolved in DMSO which can be easily quantified by measuring
the absorbance between at the range between 500 and 600 nm (Bahuguna et al., 2017).
Viability of the cells can be measured based on the absorbance values of formazan

concentration.

The MTT stock solution (Thiazolyl Blue tetrazolium bromide, 98%, L11939.06 Alfa Aesar, Thermo
Fisher Scientific) was prepared by dissolving 500 mg solid MTT in 10 ml phosphate buffer
solution. The solution is stirred with a magnetic stirrer for 15 minutes in the dark because the
MTT sensitivity to light. The stock solution was kept in a glass vial and stored at a temperature
below 6 °C. A solution of 5 mg / ml was prepared from the stock prepared for all the

experiments carried out during the assay.

Cell viability MTT assay for the five cell lines (A549, HepG2, A-204, HelLa and U20S) was carried
out in a 96-well plate by seeding cells with a density of 5 x 10% in each well according to cell
culture procedure mentioned in section 2.2.1 and 2.2.2. Prior to seeding on 96-well plates, all
cell lines attained a confluence of 70 — 80 %. After cell seeding and incubation for 24 hours
at 37 °Cin a CO; incubator, cells were treated with drugs of 6 different concentrations 6.25
UM, 12.5 uM, 25.0 uM, 50.0 uM, 100.0 uM and 200.0 uM. Concentrations for each drug used
for testing was prepared by serial dilution from a 5 mM stock solution of drug in DMSO. The

cells treated with drug were incubated for 120 hours.

After the incubation period, 50 ul MTT solution was added to each well and incubated for
additional 4 hours. The liquid mixture was carefully aspirated without disturbing the purple

layer of reduced formazan. Following the aspiration, 200 ul of DMSO was added to each well
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and the plate was placed on the Ascent plate reader for thorough shaking and measurement
of absorption values. The actual absorbance was obtained by subtracting the background
intensity values (690nm) from the main intensity (540nm). These values were normalised by
taking the ratio of actual absorbance values to the absorbance value of positive control and

multiplied by 100%.

. Absorbance value
Normalised value = — x 100%
positive control

The formula was applied on an excel worksheet to determine the normalised value. The
normalised values were transferred to the software to produce the calibration curve (Log of
concentration against %viability) along with the computed ICso values for each compound
(Swinney, 2011). The experiment is repeated three times in triplicates and then averaged to
obtain the final values for analysis. GraphPad Prism 6 and OriginPro 2019 was used for

graphing and generation of graphical charts and ICsp values.

2.2.4 Ligand Docking Studies

The procedure for ligand docking and analysis was carried out according to the procedure
reported by Khan et al. (2019). The three-dimensional structure of tubulin (PDB ID: 1 SAO) was
downloaded from in a PDB format from the protein data bank. The structures were prepared
for docking using UCSF Chimera Version 1.14 (build 42094) and Protein preparation wizard of
Maestro Schrodinger suite (Version 12.5). The receptor grid was generated based on
colchicine area in the tubulin receptor site using the Glide tool. The Van der Waals radius was
set to a scaling factor of 1.0 and partial charge cut off with 0.25 C. The 3D conformation of
ligands was drawn using a ChemDraw software and the file was saved in .mol file format. The
ligand structures (B-diketones) were prepared using the LigPrep tool accompanied with the
Maestro Schrodinger suite. Empirical pKa (Epik 2.2) was used to determine the bioavailability
profile and within a pH 7.0 +/- 2.0 to obtain the required ligand output. Glide extra precision
(XP) parameters was carefully selected for the ligand docking to obtain the best docking score

between ligand and receptor.
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CHAPTER THREE

Results and Discussions
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Chapter three

3.0 Results and discussion

3.1 Synthesis and characterisation of B-diketones:

Different methods have been employed in synthesising B-diketones. Among these methods,
Claisen condensation is considered the oldest one and has been known since 1887. It is a the
frequently used reaction for obtaining diketones by condensation between a ketone and
esters in the presence of a suitable base in order to promote the reaction forward (Shokova,
Kim and Kovalev, 2015). It is one of the most popular methods of synthesis for compounds
that involve C-C formation (Kljun and Turel, 2017).

The method of synthesis for B-diketone compounds bearing three methoxy groups on the A

ring was carried out as in Scheme 11 below:

Q o]
Ri_\ CH,4 +R'—\ OCHs Base
= ! — THF

(Reflux, 12-18 h)

Scheme 11: Claisen condensation of ketone and ester to form B-diketone

The reactions were carried out under basic conditions (with base serving as catalyst.) The first
stage of the reaction was to form the enolate ion from the ketone with sodium hydride as
base (according to the procedure adapted from (Jin et al., 2011)).

Sodium hydride served as a nucleophile in the reaction and attempt to carry the reaction as
to adding the ester or the ketone first, the reaction gave the same product because the
nucleophilic centre in both starting materials is the carbonyl group. The mechanism is

highlighted in the Scheme 12 below:

:0:

B: + I A CH, =—= | X CH, | AN CH,
R_| I R_I —~— p
= H = -

Scheme 12: Resonance stabilised formation of enolate ion

From the scheme above (Scheme 12), the nucleophilic base attacks the acidic hydrogen on

the a carbon centre of a ketone which ionises to give a resonance stabilised enolate ion.
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Following the generation of enolate ion, formation of the diketone is a two-step process;
firstly, carbon centre of the ester is attacked by the enolate ion which is accompanied by the
formation of a reversible tetrahedral intermediate and loss of a leaving group as shown in

Scheme 13.

o afo 08,

enolate ester tetrahedral intermedia

ﬂ -OCHj

O 0]

diketone
I N
R | R
P4 P4

Scheme 13: Mechanism of formation of B-diketone

The equilibrium of the reactions in the formation of diketone generally favoured to the side
of the reactants as most B-keto esters have lesser stability than corresponding esters from
which they are obtained. In aqueous medium, the proton at the alpha position of diketone is
acidic (pKa = 9) with the methoxy anion removing the proton to form a conjugate basic

product:

- + o
—_ X AN
_ R +CH;0 +Na?R_, CH A + CH30H

Scheme 14: Equilibrium of B-diketone in the basic medium

From Scheme 14, the reaction favours the formation of the species on the right as the
methoxide anion removes the acidic proton in diketone to form an alcohol (methanol has a
pKa value of 15.5). To isolate the product from the ionic state, an equivalent of amount 1

molar HCl is added to neutralise the base and precipitate the un-ionised diketone.
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3.1.1 Optimisation of reaction parameters (temperature and base equivalents):

As mentioned in the experimental part, one of the procedures employed for the synthesis of
the B-diketones was adapted from (Jin et al., 2011). To optimise the yield of compounds, the
effect of varying reflux period, bases and catalyst equivalent in the reactions was considered.
Four compounds (4, 5, 6 and 7) were selected, and different conditions were considered with
respect to time and type of base. Table 3 summarises the outcome of the reaction time and

yield when base and temperature were altered.
0 0

(0] (0]
R Yo *R@)L ooty e R N
|
& F (Reflux, 12-36 h) Y =

Scheme 15: Synthesis of B-diketones

Table 3: Yields of optimisation of B-diketones with different reaction conditions.

Compound Base Equivalent Refluxing Solvent % Yield
time

=46

NaH / =35

3.0 mmol 12 hrs
NaOMe =32

~ 51
THF

NaH 3.5 mmol 36 hrs = 65

=73

=49

N oju|bh|Jd|O|U| b

=70

* All reactions were carried out under inert conditions (Argon atmosphere).

Owing to the high yields of products, subsequent B-diketones bearing 3-methoxy groups on
the A or B ring were produced using the optimised procedure (Table 3). As it can be seen from
Table 3 (above), the reaction conditions in the second group having higher equivalents of base
and prolonged reaction time of 36 hours and gave higher yields compared to the first group

with reaction time of 12 hours and lower equivalent of bases.

Compounds 13 and 15 bearing a nitrile group (C=N) on one of the aromatic rings were
efficiently prepared at room temperature. The procedure for obtaining these two B-

diketones required the same molar equivalent of starting materials and base. The product
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was directly recrystallised without column purification, and the final product yields were

above 70 %.

3.1.2 Effect of reaction time on irradiation under microwave

Microwave assisted reactions are considered a widely used technique in green chemistry. One
of the important features of performing reactions in microwave is because of its efficient heat
transfer. It also enables reactions to take place at a higher temperature than a solvent’s
boiling point. Commonly known reactions such as Diels-Alder, Huisgen Cu-catalysed
cycloaddition, condensation and Claisen rearrangement can be successfully achieved much
faster using a microwave reactor compared to conventional methods and in higher yields

(Ondruschka, Bonrath and Stuerga, 2013).

Owing to this advantage, a microwave assisted condensation strategy for synthesising B-
diketones with optimal microwave reaction conditions was explored, to see if this could

greatly enhance reaction time and yield compared to conventional methods.

Elucidating important factors such as the reaction solvent and finding a suitable relaxation
time is essential for carrying a microwave assisted reaction, especially when there is no

literature available to describe a method for particular compound (Wiles et al., 2002).

o) 0] 0]
REYY CHy  * "N NocH, _NaH@eq) X X
| R ] 5 min, microwave R | | R
F = THF, 100 °C
0
(1 eq) (1.1 eq) 55 %

Scheme 16: Microwave assisted synthesis of 6-diketones:

Therefore, different reactions parameters have been tested according to (Table 4 below) to
find a suitable reaction condition using a microwave reactor. However, the reacting
equivalents were assumed to have no impact on the reaction and therefore, the same

equivalents as in the conventional method were employed.
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Table 4: Attempted microwave assisted synthesis of B-diketone:

Temperature (°C) Time Volume of THF % yield
(minutes) (em3)
100 5 15 55%
100 20 (>40 %) Unknown impurities
65 60 (>40) Starting materials present
60 30 (>40) Starting materials present
50 20 (>40) Starting materials present

Compound 12 was isolated by optimising the temperature and reaction time according to
Table 4 (above). Keeping the temperature at 100°C and microwave reaction time for 5
minutes brought the reaction to completion with no starting materials present. Although, the
purification was difficult because of unwanted products formed during the reaction before

isolating the final compound.

3.1.3 Attempted synthesis of B-diketones mimicking combretastatin-A4

One of the targets of this thesis is to synthesise a B-diketone that mimics combretastatin CA-
4 (Scheme 17). CA-4 was used as drug control in the cell viability experiments (Table 7). Many
reports have shown that CA-4 is highly toxic to several cancer cells and effectively inhibits the
polymerisation of microtubules. This urged the attempt to develop of a synthetic route to
obtain B-diketones bearing similar substituents as CA-4. The first attempt to make a B-
diketone mimicking combretastatin-A4 was carried out according to the method in procedure
A. However, the compound was not formed, since the 'H NMR characteristic enolic proton

signal between 15 ppm to 17 ppm was not present, which is not consistent with B-diketones.

O

0
HsCO oy HO oCH, — _NaH  HO OCH,
DO O O
HCO H.CO (Reflux, 12-36 h) oCH
OCHj OCHj

Scheme 17: Proposed synthesis of CA-4 analogue of B-diketone

The NMR data according to reaction in (Scheme 17) indicate the formation of a high amount
of an aromatic ester product; suggesting that the ketone reacted with the hydroxyl ester at

the meta position (Scheme 18):
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Scheme 18: Product during the first attempted synthesis of CA4- analogue of B-diketone

The reaction is competitive between Sy2 and proton transfer. The methylene anion
simultaneously acts as nucleophile and a base, thus deprotonating the OH group and
displaces the acidic proton on the ester group. And because the rate of proton transfer is
faster than the rate of substitution nucleophilic reaction, the reaction formed the aromatic

ester (Scheme 18) instead of the expected B-diketone.

Further attempt to employ Baker-Venkataraman rearrangement (Kalinin et al., 1998) was
suggested, although, the strategy did not work, as the rearrangement requires the presence
of ester group to be at the ortho position to the ketone group (Scheme 19). The difficulty in
obtaining the B-diketone analogue of combretastatin-A4 by the Baker-Venkataraman
rearrangement is hypothetically attributed to the ester group being located meta to the
ketone group, instead of in the ortho position, and this could make it difficult to undergo

rearrangement and cyclisation (Scheme 20).
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Scheme 19: Ester group at ortho-position is essential for baker-Venkatraman rearrangement

HsCO

) —
==CH;

=t

OH

H5CO

X

Scheme 20: Formation of product fails when ester group is at meta-position from ketone (R
= OCHs at position 3, 4, and 5)

Protection with a silyl group:

A different strategy was attempted by introducing to overcome the synthetic trap, that is to
introduce a protecting group on the hydroxyl group. The ester in the reaction was protected
with a silyl group followed by condensation with LIHMDS (Scheme 21) (Nagarathnam and
Cushman, 1991).
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Scheme 21: Formation of silyl-protected B-diketone

The protected B-diketone according to (Scheme 21) was obtained in low yield despite
increasing the reaction time from 24 to 68 hours, with >90 % of starting materials present.
The use of strong base as sodium hydride (NaH) was used instead but the yield did not
improve any further. Attempts to deprotect the silyl group in the compound was not carried

as the amount would be difficult to isolate the expected B-diketone CA-4 analogue.

Protection with 3,4-dihydro-2H-pyran:

Following the earlier discussion on the attempted synthesis of a B-diketone CA-4 analogue, it
was possible that the protection of the phenol with a silyl group was not yielding the required
product due to the bulk and steric nature of silyl group. Instead, a less bulky protecting group
such as 2,4-dihydropyran (Scheme 22) was suggested. This groups is expected to be more
stable under basic reaction conditions (Wuts, 2014). The protection takes place under acidic
conditions. Following the activation of dihydropyran, the electrophilic addition of the

hydroxylated ester is converted into a pyran protected ester.

H 47\
I -
. N
8 R =ester group
—OH/-\ \g » R\ /O
e 9

() (@)

Scheme 22: Mechanism of pyran protected ester
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The protected ester was used in the next step to form the B-diketone according to modified
procedure A (mentioned in section 2.1.1). The expected diketone did not form either, instead

NMR confirms only the presence of a deprotected ester and the starting ketone.

3.1.4 Attempted thionation of B-diketones

As part of the plan of the research to investigate anticancer activity of B-diketones, thionation
of a non-substituted B-diketone have been attempted as a model to see if different series of
substituted thionated analogues of dithiones can be formed. The first attempt at thionation
of B-diketone was carried out under laboratory conditions according to the method of
Almelah et al., 2016. The procedure according to this method consisted of molar amounts of
both diketone and a Lawesson’s reagent (2,4-bis(p-methoxyphenyl)-1,3-dithiaposphetane-
2,4-disulfide, LR) in toluene with heating under reflux overnight (Almelah et al., 2016). After
solvent evaporation, an orange coloured crude product was obtained which did not show the
presence of expected product (Scheme 23) on the TLC. The reaction was unsuccessful despite
changing different conditions such as prolonging reflux time, carrying out the reaction at
room temperature and doubling the equivalents of the LR. The second attempt was carried
out under microwave conditions with an equivalent amount of reagents subjected for 20

minutes at temperature of 115 °C.

1st attempt

O O
(Reflux, overnight)

X :
Toluene
S S
+ 2nd attempt —_— O O
s MW, 110-120 oC

1] 20 min
—P OCH3 > o
I Toluéne

H3CO S

Scheme 23: Proposed thionation of B-diketones

(D:'lﬂ—(/)

Different fractions of the components was collected by column chromatography and
characterised by NMR which showed characteristics of different aromatic fragments that

were not consistent with the expected product. Some of them could possibly be stable
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methoxyphenyl intermediates that are energetically more favourable to form than the
desired product. The scheme proposed for the thionation by LR (Scheme 24) is typically
employed for single carbonyl containing compounds and is a widely accepted reaction
mechanism and is supported by DFT calculations (Legnani et al., 2016). So far, there is no
evidence in the literature apart from Almelah et al., 2016 on thionation of B-diketone by LR
or any thionating agent. However, lack of success in thionating B-diketones could be related

to steric hindrance involved with the coupled of stable adducts during the reaction process.
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Scheme 24: Proposed mechanism for the thionation of B-diketones with Lawessons reagent,
(Polshettiwar and Kaushik, 2006)

3.1.5 Position of the enolic protons on the proton NMR:

The enol proton peak on the B-diketone is of great significance in confirming the formation
of the compound. According to (Zawadiak and Mrzyczek, 2013), it represents one of the
unique peaks that appears in B-diketones including the ones that have been recorded in this
thesis. The chemical shift of both the enolic and acidic protons of B-diketones, according as
postulated by du Plessis, depends on two factors: the substituent electronegativity of the
group neighbouring either of the adjacent carbonyl groups and their resonance stability (du
Plessis, Vosloo and Swarts, 1998). The peaks of the enolic protons normally have a chemical

shift between 15.05-17.20 ppm (

Table 5) whereas the acidic proton between the two B-carbonyls appear at 6.20 — 7.10 ppm.
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Table 5: 'H-NMR Chemical shifts of enolic protons in prepared B-diketones

Compound Enolic protons Olefinic protons

(ppm) (ppm)

1. DBM 16.93 6.89
(dibenzoylmethane)

2. 4 16.91 6.68
3. 5 17.03 6.67
4. 6 17.09 6.76
5. 7 17.11 6.64
6. 8 17.15 6.74
7. 9 16.25 6.59
8. 10 16.90 6.73
9. 11 16.91 6.79
10. 12 16.35 6.35
11. 13 16.35 6.79
12. 14 16.93 7.18
13. 15 16.79 6.81
14. 16 16.79 6.71
15. 17 17.03 6.72
16. 18 17.06 6.73
17. 19 17.04 6.84
18. 20 17.02 6.80
19. 21 16.96 6.75
20. 22 17.05 7.14
21. 23 17.01 7.09
22. 24 16.93 6.58
23. 25 16.78 6.62
24, 26 16.76 6.71
25. 27 16.90 6.75
26. 28 16.90 6.75
27. 29 17.04 6.68
28. 30 16.90 6.64
29. 31 16.96 6.73
30. 32 16.96 6.76
31. 33 16.90 6.72
32. 34 16.90 6.69
33. 35 16.90 6.67
34, 36 16.90 6.92
35. 37 16.70 6.70
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3.1.4 NMR couplings of fluorinated B-diketones:

The inclusion of fluorine in drug molecules offers a very important role in improving
bioactivity of essential drug molecules. Due to its polarity, size, and steric properties, a single
fluorine substituted in a molecule can contribute to a large changes to the physical and
chemical properties of a molecule (Dolbier, 2009). One of it medicinal features is its ability to
contribute to enhanced metabolic stability; especially in lipophilic drugs which are prone for
oxidation by p450 in the liver (Shah and Westwell, 2007). As a result, most of the compounds
prepared in this thesis have been prepared by considering the importance of fluorine related
to the properties mentioned above. However, worthy to mention also, is the characteristic

couplings of fluorine substituents in some of the prepared B-diketones and benzoyl thiourea.

The chemical shift scale for most reported '°F values typically appear between maxima and
minima values from -500 ppm to 600 ppm (Reich, 2005). The position of the shifts, like the H
and 13C chemical shifts depends on the chemical environment where the fluorine atom is
present. For most fluoroaromatics with fluorine directly attached to the benzene ring, their
shifts are found between -200 ppm and -95 ppm. For aromatic methyl fluorides such as -CFs,
the shift goes further downfield from -70 ppm — 0 ppm; with slight variations depending on
the solvents used to dissolve a sample. Fluorine can couple with neighbouring protons and
their characteristic large coupling constants can be used to identify the couplings between
the *H-'°F. Furthermore, unlike hydrogen, oxygen, and chlorine, when the proton decoupler
is switched off, the signals appear as singlets on *3C the spectrum, the 13C- *°F can be observed
even with the proton decoupler is disabled. Although, as in the proton couplings, the n +1 rule
suitably applies in determining the characteristic couplings of 3C peaks. Most of the
fluorinated B-diketones prepared in this thesis are categorised as fluorine atoms directly

substituted on the ring; or a trifluoromethyl (CFs) group (Figure 61).
: A

3

Figure 61: Substitution of fluorine or trifluoromethyl at position numbered 1, 2 or 3
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Chemical shifts of fluorine on 13F NMR

The chemical shift fluorine in 4 and 17 and similar B-diketones for instance appear at -134.2
ppm which is an indication that the fluorine atom directly substituted to the ring. The same
chemical shift applies for the benzoyl thiourea series. Chemical shift of some fluoro-

substituted compounds is highlighted in Table 6 (below):

Table 6: Chemical shifts of some fluoro-substituted B-diketones

Compounds Chemical shift (ppm)
1. 4 -134.17
2. 17 -134.31
3. 18 -109.23
4. 23 -134.62
5. 26 -133.81
6. 29 -108.78

From the table Table 6 (above), 18 and 29 have chemical shifts downfield due to the presence

of chlorine, an electron withdrawing group neighbouring the fluorine atom.

13C Chemical shifts and *°F-13C couplings:

Fluorine couplings of 1°F splits carbons that are up to four bonds apart. The couplings of the
carbons in aromatic rings normally varies depending on the distance of the carbon from the
fluorine atom. The coupling constants vary from 245.3 Hz to 3.3 Hz depending on the bond

proximity (Dolbier, 2009).

However, these couplings of carbon substituted to the fluorine (ipso carbon) may vary slightly
depending on the substituents attached to the ring. Likewise, coupling constants for the
carbon of trifluoromethyl group (-CF3) as it can be split into a quartet (1:3:3:1), and because
of the amplified electronegative effect of the three directly bonded fluorine (Figure 62), the

coupling constants may extend up to 271 Hz (Pretsch, Buhlmann and Badertscher, 2009).
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Figure 62:Coupling of carbon in the trifluoromethyl group (CF3) and aromatic ipso carbon.

Weak signals in the red dotted box (highlighted grey) represent 3 identical fluorine atoms
coupling with an aromatic ipso carbon (31-33 Hz) neighbouring a -CFs. The grey highlighted
signals represent coupling of the 3 fluorine atoms bonded directly to the carbon (271-272 Hz).

From (Figure 62) couplings of quaternary carbon that are completely substituted with fluorine
appeared as weak signals, and due to the slow relaxation time splits the peaks into many
peaks that disappear in the noise or overlap on larger signals that can be difficult to detect.
However, altering some parameters such as increasing the concentration of the sample,
number of scans and frequency of hardware, the signals can be improved to more easily

detected signals.
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3.2 Discussion of biological activity of B-diketones

3.2.1 Effects of B-diketones on cancer cells

30 B-diketones were tested on different cancer cell lines. All the compounds in the entry have
shown ICsp values greater than combretastatin CA-4 which was used as a control for the test.
Results of tested compounds were presented below in (Table 7) and (Table 8) along with their
cell viability graphs and bar chart of compounds tested for each cell line. Most of the
compounds have shown inhibitory activity with ICso ranging between 3 uM to 125 uM.
Combretastatin-A4 (CA-4) is a compound with strong antiproliferative activity on different cell
lines and was used as a positive reference in the assay. ICso for some compounds were not

detected and are represented with an asterisk in the table.

Table 7: ICso values of synthesised benzoyl thiourea (BTU) series determined by MTT assay
after 120 hours of drug exposure. The experiments were carried out in triplicates

Compound 1Cs0 (LM)
STRUCTURE
D A204 A549 Hela HepG2 U208

H;CO O XN

CA-4 HaCO O 0.053+0.45 | 0.048+3.03 | 0.045%1.53 5.90+2.01 0.008+0.06
OCH3
OH
OCH3
O OH
H;CO = F
4 O O 14.3246.80 10.80%5.09 28.27+13.63 49.53+24.03 32.82+15.80
H;CO OCH3
OCH,4
O OH
H3;CO P OCH;
5 O O 13.4046.15 29.7249.26 57.01+24.04 108.10+11.85 10.80+4.89
H;CO OCH3
OCHjs OCHjs
0} OH

H3CO 7

6 O O 4.89+1.91 72.10+24.14 19.80+7.80 41.88+15.39 12.3943.30
H3;CO
OCHj3
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(6] OH
H,CO pZ OCHjy
O O 6.65+3.44 35.69+30.32 45.22+431.41 44.94+18.32 43.18+15.76
H,CO OCHjy
OCHj
(6] OH
H,CO pZ OCHjy
O O 8.4243.51 42.92+10.82 64.67+29.26 57.35+24.64 4.83+1.29
H,CO H,CO
OCHj
(0] OH Br
H;CO P
7.3743.76 83.92+28.04 18.2615.08 17.76+23.50 3.38+2.23
H;CO
OCHj,
0 OH
H;CO =
4.62+1.65 88.13+37.07 24.3+19.53 35.51+15.43 33.76+17.20
H;CO Br
OCH,4
O OH OCH;
H;CO =
O O 6.47+4.99 45.53+39.86 113.40+40.66 112.60+31.21 20.27+9.54
H,CO H;CO OCHj,4
OCH,
(0] OH
= OCH3
OCHj,
0 OH OCH;
H3C P4
20.68+15.72 44.94+18.32 43.81+25.60 35.51+3.40 7.57+2.29
H;C
OCHj,
o OH
= OCH,
O O * * 38.61+27.74 * 7.81+1.23
N// OCHg
0 OH
F S
6.33+2.61 34.08+16.35 66.54+69.41 47.17+20.01 21.03%7.12
H5CO OCH;
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o
o
T

H;CO = Cl
18 18.73£11.62 62.35+30.36 82.96+37.61 120.50430.22 | 44.47+18.34
H;CO F
(0] OH OCH;
H3;CO 7
22 O O 23.82+17.75 25.56+20.47 38.93+25.03 116.803.75 34.47+19.95
H5;CO OCH3
OCH3
0 OH OCH;
F. P
23 8.61+5.01 44.32+38.63 33.35¢22.39 86.81+29.80 42.97+15.25
H;CO OCHs
(0] OH
F. = F
24 O O 5.99+3.54 27.5+10.59 84.69+22.36 37.85+18.08 27.0646.89
H3CO OCH;
(0] OH
H;CO = Cl
25 5.3743.73 17.26+16.35 * 115.50412.39 | 23.72+16.54
H;CO Cl
OCH3
O OH
F. = Cl
26 O 4.81+1.80 35.85+10.35 33.00+16.33 * 6.49+2.39
H;CO Cl
(0] OH
H;CO = Cl
27 O 7.36+4.50 58.05+27.71 82.4120.09 79.22+39.61 29.46+25.60
H;CO Cl
(0] OH
28 O 9.79+3.16 117.00£2.30 54.32+13.20 61.16+27.24 55.82428.14
H;CO Cl
(0] OH
H3;CO
29 6.9845.03 32.68+14.95 * 44.25+14.85 30.23+10.60

HsCO

ZE\
0

OCH,
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(0] (0]
FWCI
30 O O 3.87£2.56 92.07+13.64 31.58+19.05 85.20415.35 29.39+13.11
H;CO F
O OH
31 O O 3.61£2.02 18.2849.15 64.98+29.54 * 7.7643.33
H5CO
O OH
H;CO = Cl
32 O O 3.63:2.44 99.1521.45 19.60£5.96 * 8.5443.39
H;CO
(0] OH
H3CO 7 Br
33 O O 7.5643.43 44.94+13.36 55.06£12.17 68.02428.75 22.5149.01
H;CO
(0] OH
H3CO = Br
34 O O 3.78:1.23 52.74+11.84 60.76+10.64 50.57+16.36 23.7749.38
H3;CO
OCH;
(0] OH
H5CO = |
35 O O 9.56+14.29 37.18+18.81 33.51#8.82 57.0114.96 22.3247.40
H5CO
OCH3
(0] OH
H;CO = Cl
36 O O 7.25¢4.75 73.79+27.37 48.45+15.70 * 44.18+11.25
H;CO
OCH3
O OH
H;CO =
37 O O 9.2815.77 71.86$26.13 | 111.304#21.78 | 50.19+10.66 77.77+11.67
H3CO CF3
OCHj;

Results recorded represent mean of three experiments
Asterisks denotes compounds whose ICsp have not been determined.
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B-diketone series treated on different cancer cells:

Chart A
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Figure 67: ICs5o of B-diketones tested on U20S cell line.
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Table 8: ICs5o values of synthesised benzoyl thiourea (BTU) series determined by MTT assay
after 120 hours of drug exposure. The experiments were carried out in triplicates.

Cs0 (UM)
Compound
STRUCTURE
D
A204 A549 Hela HepG2 U20s
40 CFs
(@] S
N)J\N 6.59+1.61 26.46+11.99 9.63£5.81 33.39£23.88 | 23.9248.99
H H
41 OCHs
(0] S
NJ\N 5.53£1.82 11.60£2.48 | 20.86+11.90 6.53£2.44 10.7545.29
H H
H,CO
42 CFs
SV}
N N * * * * *
H H
H,CO
43 OCH,
SVe;
N)J\N 6.56+2.28 16.84£3.56 8.73£2.37 7.26£1.55 8.223.25
H H
Fs;C
a4 OCHj
OCHs
(0] S
)J\ 4.32£1.43 10.90£4.03 9.76:22.72 | 81.73:31.12 | 28.88+14.23
N N OCH
H H 3
H,CO
45 OCHs
(0] S
HyCO L
” ” 5.773.85 10.64+4.70 5.06:£4.72 | 117.70£27.90 | 18.56+13.63
H,CO
OCH,
46 o)
O S
HsCO M
H H 0 5.49:4.04 5.5112.73 8.06+13.60 * 6.17+3.62
HsCO
OCH,
47 (0] S
H4CO . J\N
H H/D\ 5.642.72 6.75£2.99 6.534.76 | 115.60$31.23 | 11.56+12.21
HsCO H4CO OCHj4
OCHs
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48

3.7611.44 5.99+0.99 4.89+5.03 27.34+14.11 15.47+6.08
H H
HCO
49 OCHs
OCHs
0 s
H3CO N)J\N OCH 4.8612.76 7.411£3.42 8.04+4.27 89.38+23.35 22.93+15.96
H H 3
H,CO
OCH;
50 (6]
HsCO NJ\N OCH;
H H 9.3613.54 19.86+14.15 25.49+8.83 18.37+9.19 39.24+14.25
HyCO OCH;
OCHj OCHj
51 CF3
o s
HCO J\
H H 5.06%£1.53 26.24+15.45 73.98+23.41 141.30+35.25 11.18+5.48
HCO
OCH;
52 OCH;
OCH,4
o s
)I\ 5.7314.78 35.02+23.82 3.64+28.29 112.80+18.14 47.70+11.02
N~ N OCH,4
H H
53 OCH,
OCHs
o s
F NJJ\N OCH3 3.97£1.43 20.02+11.72 6.28+5.29 55.09+15.47 40.15+15.34
H H
F
F
54 OH
0O s
HaCO I
m ” 4.58+2.09 28.12+7.62 * 24.29+14.97 8.7043.15
H5CO
OCH;
55
o s
Ha,CO P
H ” 4.32+1.43 10.90+4.03 9.76122.72 81.73+31.12 28.88+14.23
H,CO Br
OCH,
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56

OCH,4
H,CO
: N7 N OH

N N 3.65+1.38 15354815 | 18.56+13.56 | 71.93+21.23 | 14.033.69
HaCO
OCH,
57 OH
(0] S
HsCO 'S
” H OCH3 | s5.48:+15.40 7.393.69 4.37+4.70 48.53+20.05 | 52.21+18.60
HaCO
OCHs
58 o S
H N * * * * *
Br
H,CO
F
59 OCHj3
14X
F N)]\N E 5.5242.14 11.06:1233 |  4.44:2.22 12.61+7.24 | 18.44+13.44
H H
HaCO
60 OCH;
OCH;4
(0] S
E J\ 3.7640.95 6.83+1.85 3.1749.11 21.06£16.34 | 10.55£4.03
N7 N OCH;4
H H
HaCO
61 F
OCH;4
(0] S
H;CO NJ\N 3.75:2.83 9.14+2.00 12.67412.86 | 113.20427.75 | 16.20£9.95
H H
H4CO
OCH,
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Benzoyl thiourea (BTU) series treated on different cancer cells:

ChartB

[ A204

0 .meu Te-nlg
0 |- (ev) n1g

9¢'6 - (05) €T-n14
659 [ (ov) T-nug
959 [} (ev) €-nlg
crs [F (sv) £-nug
ers [ (es) o1-nug
os [} («w) 01-nig

£5°5 _Hl (1¥) T-nL8
756 ml (65) vz-NLE
6v's [ |- (ov) 8-n1g
8's _Hl (£5) 6-n18
90's [} (19) p1-n18
g [ (6v) z1-n1g
85y [} (bs) 81-n18
zer [} ) 61018

'€ [} (es) £1-nu8

oce [} (8v) 11-n18

ore [T} (09) S-nig

sce [ (19) 9-nus

so°g _Hl (95) zz-n1g

6e'c [} (s9) oz-nig

100 -

I I I I I
o o o o o
» [co} M~ © Te)

|
o
<

(ln) sanjea %91

I I I
o o o o
o (9] ~

Compounds

Figure 68: ICso of benzoyl thiourea tested on A204 cell line. 0 indicate compounds with

undetermined activity.
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Figure 69: ICso of benzoyl thiourea tested on A549 cell line. 0 indicate compounds with
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157



86'€L

I Hela

80 ~

70 H

60 -

1 1 | 1 1
o o o
n < o™

(Wn) sanjea %591

(85) Tz-nld
(¥S) 81-n19
(z¥) n1g
(18) #1-N19
(0S) £1-nL4
(1¥) z-n19
(99) zz-nL4
(19) 9-n19
(v¥) 61-NL9
(o¥) T-nLg
(ev) e-n1g
(9¥) 8-n14
(6¥) Z1-n19
(Z¥) 0T-NL8
(€9) £1-n14
(S¥) £-n1q
(8%) TT-NLd
(65) #z-nlg
(£9) 6-n19
(5S) 0Z-n.g
(zs) 91-n19
(09) s-n.1q

Compounds
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B-diketones and benzoyl thioureas showed significant activity on A204 cells:

A204 tested with series of prepared compounds have shown an impressive cytotoxicity
compared to the other cell lines tested. Both BDKT and BTU series of compounds have shown
an inhibiting activity ranging from 3.3 — 23.8 uM. However, the BTU series appear to be more
active than BDKT series. Three among the BDKT compounds 30, 31, 32 and 34 showed an ICs
vales of 3.61 uM, 3.63 uM, 3.78 uM and 3.87 uM respectively, table 7 and (Figure 73). The

presence of halogen groups as substituents has greatly contributed to their better activity.
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Figure 73: Sensitivity of the most active BDKT analogues on A204 cells

Compound 22 has shown the highest ICso value among the BDKT series bearing methoxy
groups only. It is expected that absence of halogen groups in the rings is contributing to its
reduced activity. Although, the insertion of a methoxy group (OCH3) at position 2 of ring B is
attributed to the reduced activity, and the same applies to 18 bearing the same group at ortho

position (Figure 74). However, the presence of OCHs at position 3, 4 and 5 on ring B of
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compound 5 has slightly improved the activity. Whereas restricting the OCHs group of

aromatic positions to only 3 and 4 of ring B as in 7 even led to better activity (Figure 74).
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Figure 74: improvement of B-diketone activity on A204 by changing the positions of methoxy

groups on the aromatic ring

The BTU analogues tested on A204 cells showed ICso range between 3.39 to 9.36 uM. Six

among the 22 of these compounds (55, 56, 61, 60, 48 and 53) have ICsp values below 4 uM.

Except 48, the interesting trend among these compounds is the presence of a hydroxyl group

(OH) or a halogen group along with bulk of -OCHs groups present on the second aromatic ring

at positions 3, 4, and 5 (Figure 75). 55 has higher activity on A204 (ICso = 3.39 uM). It is

expected that the electron density of bromine atom at the ortho position contributes to its

greater activity. Likewise, the electronegative hydroxyl group at the meta position of 56 also



contributed to activity (3.65 uM). Changing the position to para position as in 57 slightly
reduced the activity (ICso = 5.48 uM). Modification of 60 and 61 by flipping the substituents

on the ring did not improve the activity of the compounds (Figure 75).
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Inhibitory effect of B-diketones and benzoyl thiourea on A549 cells

From the results in table (Table 7) and Figure 63, the inhibitory activity of tested compounds
ranged from lower ICso values of 10.8 uM to 117.0 uM for the B-diketones and 5.51 uM to
35.02 uM for the benzoyl thiourea series (Table 8). Compounds 4 and 25 and 31 (Figure 76)
have presented an ICsp values 10.8 uM, 17.26 uM and 18.28 respectively, which is relatively
nearer to the ICso value of a B-diketone analogue, curcumin that was reported by Wu et al.,
2015 . Compound 60 and 61 bearing the same substituents on the rings as 4 has shown
inhibitory activity of 9.14 uM. It was expected that the presence of halogen atoms and the
presence of 3 methoxy groups at positions 3,4 and 5 in the aromatic ring is contributing to

their activity.
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Figure 76: Inhibitory effect of the most active compounds tested on A549 cells

It was expected that the presence of the methyl group in the structure contributes to better
solubility in cell media than the non-substituted diketone, dibenzoylmethanes. This is due to
the presence of many polar groups present in most of the synthesised compounds and is likely
anticipated to contribute to its solubility in the media. A modification was attempted on both
ring A and B of the B-diketone scaffold to see if the number of methoxy groups in ring A with
different halogen groups on B will slightly enhance the activity of the compound. Introducing
a methyl group to ring B at the 3 and 4 positions in compound 6 decreased the activity on
cells (Figure 77), thus showing an ICso value of 72.1 uM. Changing the positions of methoxy
groups on ring A bearing 2 methoxy groups at position 3’, 5’ positions and a methyl group on

ring B at position 3 and 4 in 14 increased the activity slightly, giving an ICso value of 44.94 uM.
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Figure 77: Trend in activity of compound by modification of ring substituents
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31 bearing an iodo group (Figure 78) showed an activity better than 32 and 33 substituted
with chlorine and bromine, respectively, which could be due to the difference in the electron
densities of the corresponding atoms. No significant increase in activity was observed by
introducing an additional methoxy group at 5’, as in 34, 35, 36. However, their ICs is
maintained within 20-30 uM range. Increasing the number electronegative substituents in the
molecules by adding chlorine and fluorine in 26 did not lead to significant activity.

Furthermore, to explore role of the ring substituents and observe whether the 1,3-diketone
bridge replacement will contribute to change in the cytotoxicity on the A549 cell lines, a series
of benzoyl thioureas were synthesised for the purpose of comparison. Most of the
substituents in the ring bear the same atoms as in the B-diketone series listed earlier (Table

7).
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Figure 78: Sensitivity of 31, 32 and 33 bearing halogen groups on A549 cells

From table (Table 7) and table (Table 8) of the ICso results, a simple comparison of activity
between the compounds with similar substituents from each series have been selected. The
ICso gave smaller values signifying increase in activity of the benzoyl thiourea (40-59) tested
on A549 cells than the compounds 4-37. For instance, from 60 and 61 among the
benzoylthiourea series have shown a slight improvement in activity than 4 bearing the same

substituent (Figure 79).
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Figure 79: Slight improvement in the activity of B-diketone and benzoyl thiourea series
bearing the same substituents in their rings tested on A549 cells

B-diketones bearing a bromo substitution at ortho and para positions in compounds 9 and 11
increased the activity further above 50 uM (Figure 64). Its corresponding analogue, 55 among
the BTU series showed a good activity with ICso value of 9.65 uM. Whereas activity of 5
according to literature (Lakkakula et al., 2019) that corresponded with data below displayed
low activity (35.69 uM) than 49 (7.41 uM), suggesting that introducing a benzoylthiourea
bridge contributed to improved antiproliferative activity of A549 cells than its corresponding

1,3-diketone bridge (Figure 80).

o 100- ° -~ BDKT-3 (5)
wn
c ® BTU-12 (49
S god (49)
(2]
o
= 60-
R
S 404
g
< 204 R
(=) \
0 T T T o
0.0 0.5 1.0 1.5 2.0 2.5

Log C (uM)

167



H5CO OCH3 OCH,4
H5;CO.
OCH; s NN OCH,

HsCO N
OCH; OCHj H,CO
OCH;
BDKT-3 (5) BTU-12 (49)
35.69 uM 7.41 uM

Figure 80: Analogue BTU-12 (49) bearing methoxy substituents have better activity on A549
(ICs0=7.41 uM) than BDKT-3 (5) (ICs0 =35.69 uM) with the same substituent.
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Figure 81: Comparison between structure activity of BTU and BDKT series bearing the same
ring substituents

Continued attempt to investigate the activity of B-diketone across all cell lines, a nitrile group
was chosen as a substituent on ring A of the B-diketone. The anticipation was that electron
withdrawing effect of the nitrile would increase the activity further than the halogenated
groups. Two analogues bearing a nitrile group on A ring with different number of methoxy

groups on ring B was prepared (Figure 82).
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Figure 82: Activity of B-diketones bearing nitrile group

Unexpectedly, A549 cells treated with 15 did not show any activity (Figure 64). However, one
of the suspected reasons could be due to lack of solubility in the cell media, because
precipitates that resembles compound was observed during the third round of the cell
treatment. Although an ICsp greater than 50 uM was recorded when the drug was tested on
Hela cells. As a result, there is no absolute certainty about its activity on the remaining cell
lines tested. 13 was not treated on cells due to time factor considerations and because of the
observed outcome related with lack of solubility of 15 in cell media and further experiment

and analysis would be required to ascertain this hypothesis.

Sensitivity of Hela, HepG2 and U20S treated with BDKT and BTU series

Hela and HepG2 treated with BDKT have shown higher ICso values. However, 9 has the least
ICs00f 17.76 uM and 18.26 uM for HepG2 and Hela respectively (Figure 83). It is obvious from
the results that these compounds are not significantly sensitive on both cell lines.
Furthermore, 14, 31, 15, 26, 32 and 36 are not active on HepG2, whereas 25 and 29 are not

active on Hela giving higher ICso values (Figure 65 and Figure 66).
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Figure 83: Hela and HepG2 treated with BDKT-7 (9) showing the least value among the BDKT
series

The sensitivity of BTU series is by far better than the BDKT series after treatment on Hela
cells. 60 and 52 are more active, giving an ICso of 3.17 uM and 3.64 uM. Except 51 (ICs0 = 73.98
uM), the remaining compounds in the BTU series have a significant ICsp values ranging from
3 to 26 uM (Figure 70). Excluding 41 and 43, HepG2 cells treated with most of the BTU

analogues did not show a significant trend (Figure 71).

From the comparison between the activity of osteosarcoma cells (U20S) treated with BDKT
and BTU, 9 and 8 appeared to have lowest ICso values 3.38 uM and 4.83 uM respectively.
Whereas compounds 46 and 43 of the BTU series showed an ICso of 6.17 uM and 8.22 uM
(Figure 84).

170



H
8
b

/

§ -e- BDKT-6 (8)
S go- + BDKT-7 (9)
3 R\ —+ BTU-8 (46)
< 60— -+ BTU-3 (43)
= 404
2
S
0
0.0 0.5 1.0 1.5 2.0 25
Log C (uM)
0O O Br 0O O
H,;CO H;CO O O OCH;
H,CO O O H,CO H;CO
OCHj,4 OCHjs
BDKT-7 (9) BDKT-6 (8)
3.38 uM 4.83 uM
CF,4
0O S
H3CO NJ\NOj NJ\N
RS o
H;CO H;CO
OCH,
BTU-8 (46) BTU-3 (43)
6.17 uM 8.22 uM

Figure 84: Chart showing the lowest ICso values of U20S cells treated with 9, 8, 46 and 43

As in the case of A549 cells treated with 46, the bulk of dioxane ring attached to ring B

expected to have contributed to the activity of the compound U20S cells (Figure 84). Except

for 46, 43 and 54 that have shown some activity <10 uM among the BTU, the remaining

compounds in the series treated on U20S fall within ICso values ranging from 10 uM to 53 uM

(Figure 72).
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3.2.2 Assessment of some substituted B-diketones and benzoyl thiourea on leukaemia cells
As mentioned previously, one of the goals of this thesis is to investigate the effect of
compounds bearing electron withdrawing groups such as 15 and 16 on some leukaemia cell
lines. Both analogues of the diketones and benzoyl thioureas were chosen and treated on
chronic myeloid leukaemia (K562) and acute lymphoblastic leukaemia (CCRF-CEM and MOLT-
4) cell lines. Similar procedure as mentioned in section 2.2.3 was carried out for the assay
except that the plates were incubated for 72 hours (3 days) after treating them with the

compounds. The results of the assay have been recorded in (Table 9).
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Table 9: Cytotoxicity some selected B-diketone and benzoyl thiourea analogues tested against
multiple leukaemia cell lines

ICs0 (LM)
Compound Structures
CCRF-CEM K562 MOLT-4
O O
DBM
17.81 59.43 41.57
Dibenzolymethane
(0] OH
H,CO _ F
a4 O O 29.72 | 107.89 | 69.01
H,CO OCH;
OCH;
(@] OH
_ OCHs
13 O O 33.84 37.52 | 113.47
Z OCHs
OCHs
O OH
_— OCHj,
15 O O 34.53 31.29 89.26
N OCH,4
(6] OH
F. OCH
16 O 7 O ’ 17.45 | 12986 | 72.53
H,CO OCH;
(0] OH
F _ F
24 O O 69.74 36.04 | 111.02
H,CO OCH,
(0] OH
H,CO — cl
29 O O 36.97 73.73 72.13
HsCO F
OCH,
40 ©)kNJ\N 73.51 n.d. 107.84
H H
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OCH,4

o s /@iOCHg,
60 FD)kN )LN oon, 84.53 n.d. 128.10
H H
H3CO
F
/©/OCH3
(0] S
61 HyCO Ay 6337 | 2849 | 7457
H H
H,CO
OCHjs
F
11, X
48 FD)LNJLN cl 125.13 | 40.29 26.13
H H
H,CO
OCHj,
OCH,4
(0] S
53 F H*H OCH, 57.80 70.90 101.42

*Results recorded represent mean of three experiments

*ND denotes ICsos that have not been determined.
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The data obtained (Table 9) for the results of the cytotoxicity showed high ICso values with
most of them above 20 uM across the three leukaemia cell lines: CCRF-CEM, K562 and MOLT-
4. Nevertheless, during the cells treatment, it was hypothesised that the parent B-diketone
(DBM) be included for testing. This was considered to see if a significant difference in activity
could be noticed in the substituted compounds than the parent diketone. Unexpectedly, the
results of the showed that the parent B-diketone is more cytotoxic than the prepared
compounds. DBM and 16 showed a relative 1Cso value of about 17 uM on CCRF-CEM, an
activity of 2 — 6 times fold across the selected compounds chosen for the test (Figure 85). DBM

was not expected to show activity whereas the substituted series were expected to be active.
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Figure 85: ICso of B-diketones and benzoyl thiourea treated with acute lymphoblastic
leukaemia (CCFR-CEM and MOLT-4) and chronic myeloid leukaemia (K562) cell lines.

Asterisks (*) indicate compounds with no activity.
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Likewise, most of the compounds tested on MOLT-4 cells have shown sensitivities closer to
the same compounds tested on CCFR-CEM (Figure 85). Although, there is a slight decrease in
activity as compared to CCFR-CEM, except that 48 showed cytotoxicity of about 4-times fold
than the remaining compounds. 13, 15, 44 and 48 showed a significant decrease in
proliferation of K562 than the remaining compounds. It is expected that the nitrile group in
13 and 15 is contributing to the activity of the compound on the K562 cells. Despite the

presence of electronegative groups on 40 and 61, no activity was detected for K562 cells.
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CHAPTER FOUR

Molecular docking of B-diketone in
the colchicine binding site
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Chapter four

4.0 Molecular docking of B-diketone in the colchicine binding site

4.1 Protein preparation:

The three-dimensional structure of tubulin (PDB ID: 1 SAO) was downloaded from in a PDB
format from the protein data bank. The structures were prepared for docking using UCSF
Chimera Version 1.14 (build 42094) and Protein preparation wizard of Maestro Schrodinger
suite (Version 12.5). Assignment of bond orders and additions of hydrogen atoms to the heavy
atoms was carried out; water molecules were also deleted from the atoms, unwanted metal
ions, ligands repeated domains were also removed from the structure. And finally, the
structure was pre-processed, minimised, and optimised using default force field parameters
available on the software known as Optimised Potentials for Liquid Simulations force field

(OPLS_2005)

4.1.1 Generation of Grid in the receptor site:

The receptor grid was generated based on colchicine area in the tubulin receptor site using
the Glide tool. The Van der Waals radius was set to a scaling factor of 1.0 and partial charge
cut off with 0.25 C. When the ligand in the receptor site (Colchicine in this case) is clicked, the
grid box appears, and the dimensions was set to 16 A x 15 A x 10 A to accommodate the
receptor area of the ligand. The remaining parameters are left at their default values and

OPLS_2005 was chosen to generate receptor grid fie.

4.2 Ligand preparation:

The 3D conformation of ligands was drawn using a ChemDraw software and the file was saved
in .mol file format. The ligand structures (B-diketones) were prepared using the LigPrep tool
accompanied with the Maestro Schrodinger suite. Empirical pKa (Epik 2.2) was used to
determine the bioavailability profile and within a pH 7.0 +/- 2.0. The minimization parameter
was again carried out using OPLS_2005 force field with maximum capacity to generate up to
32 stereoisomers depending on number of chiral centres in ligands included for optimization.

Ligand output files was saved in a Maestro file format for compatibility.
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4.3 Glide Extra precision (XP) ligand docking:

Glide extra precision (XP) ligand docking was selected for the docking parameters. The
parameter allows the determination of binding affinity with a higher accuracy (Friesner et al.,
2006). Prior to submission for docking analysis, the Van der Waals scaling factor and partial

charge cut off was set to 0.80 and 0.15 C, respectively.

4.3.1 Discussion of docking result

To investigate the mode of action of B-diketones and identify the amino acid residue that bind with
the drug, a molecular docking analysis was performed using Glide program. The colchicine binding site
in tubulin was chosen for the docking because it is the common site of interaction for most anti-

microtubule drugs (Figure 87).

(a) BDKT-41 (31)
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(b) BDKT-42 (32)

(c) BDKT-44 (34)

CYS 241

2.19

\- »_

Figure 86: 3D view of BDKT-41 (31), BDKT-42 (32) and BDKT-44(34) docking in the binding site
of tubulin (PDB ID: 1SAOQ). Interactions shown with coloured broken lines. The orange circles
points to the essential amino acid residue cys241 that binds with the ligand molecules. This
interaction is present in many active antimicrotubular agents reported from literature.
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Table 10: Different types of interactions exhibited by BDKT-41 (31) and BDKT-42 (32)

Residue Distance (A) Type of interaction

BDKT-41 (31):
- Cys241 2.57 Aromatic hydrogen bonding
- Lys352 5.97 mt-cation
- Ala3l? 2.13 Hydrogen bonding
- Val238 2.52 Aromatic hydrogen bonding
- Val235 2.35 Hydrogen bonding

BDKT-42 (32):
- Cys241 2.25 Hydrogen bonding
- Cys241 2.18 Hydrogen bonding
- Lys352 2.87 Halogen (Cl)
- Asn349 3.27 Halogen (Cl)
- Ala250 2.52 Alkyl

BDKT-44 (34)
- Cys241 2.19 Hydrogen bonding
- Cys241 2.41 Aromatic hydrogen bonding
- Cys241 2.58 Aromatic hydrogen bonding
- Ala250 2.46 Alkyl (hydrophobic interaction)
- Lys352 2.95 Halogen (Br)
- Asn349 3.20 Halogen (Br)

Figure 87:Refined tubulin crystal structure (PDB:1sa0) showing colchicine binding site on
chain B. The encircled region is an interaction with Cys241, an essential interaction in most
anti-microtubular drugs.
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As mentioned before, the crystal structure of tubulin protein, 1SAO was obtained from the
Brookhaven Protein Data Bank (http://www.rcsb.org/pdb). All the BDKT series were docked
into the binding site of the tubulin crystal structure. The first three active molecules on A204
cell line were analysed and their mode of interaction was presented in Table 10 and Figure

87.

The snapshots of the docking presented in Figure 87 shows the three molecules have
interactions with the amino acid residue in the colchicine binding site. As shown from the
three figures for BDKT-41 (31), BDKT-42 (32) and BDKT-44 (34), the molecules adopted a
similar conformation to that of colchicine. The trimethoxy moieties in the molecules formed
hydrogen bonding Ala317 and Cys241 (within relatively shorter bond distances). Val238
formed a hydrophobic interaction with the aromatic hydrogens of the ligand. The aromatic
ring BDKT-41 (31) goes further to form a m-cation interaction with Lys352 (Figure 87a) which
is also expected contribute to its activity. BDKT-42 (32) formed a hydrophobic interaction with
Ala250 and two halogen interactions with Asn349 and Lys352. Likewise, with the bromine
present on BDKT-44 (32), it forms two interactions with the residues Lys352 and Asn349. This
suggests that the mode of interaction of molecules bearing halogen groups are essential for
activity the colchicine binding site of tubulin. Although, colchicine competitive binding assay

will be necessary for future studies to ascertain the activity of these compounds.
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CHAPTER FIVE

Conclusion and future perspective
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Chapter Five

Conclusions and future prospect

Cancer, as defined by the World Health Organization (WHO): is the abnormal and
uncontrolled growth and spread of cells. The most considered method for treating cancer
during the middle of the 20* century was surgery and radiotherapy (Agostinis et al., 2011).
Towards the middle of 20t century, chemotherapy emerged as the most suitable alternative
for treatment of cancer. As a result, research in cancer chemotherapy has become important
in the past decades. Ever since, many compounds with anticancer activity have been
identified and their mode of action has also been explored. For instance, naturally occurring
compounds such as colchicine and combretastatins have been known to inhibit cancer
replication through binding to tubulin, which disrupts the function of microtubules (Ducki et
al., 2009; Ducki et al., 1998). Several modifications and identification of new compounds that
target tubulin have become the interest of many researchers. Curcumin, a naturally occurring
B-diketone with wide range of anticancer activities has also been shown to interact with
microtubules. A study has shown that derivatives of these compounds bearing a B-diketone

group bind to tubulin at 32 A away from the colchicine binding site (Soumyananda, 2011).

This thesis deals with synthesis and characterization of some novel 1,3-B-diketones as
anticancer agents. The synthesised compounds have been substituted with different groups
to improve their physical and chemical properties which should result in improved bioactivity.
Attempts have also been made to introduce substitution of different groups, some which are
present in the aromatic rings of combretastatin CA-4, (e.g: the 3,4,5-trimethoxy groups). The
thesis also explored the synthesis of some benzoyl thiourea (BTU) analogues bearing oxygen
and sulphur atoms in their bridge. In order to compare their activities, some of the BTU series
bear the same ring substituents with B-diketones. Unfortunately, synthesis of B-diketones
that contain exact substituents of CA-4 on the aromatic rings was not successful and is

considered for future research.

Chapter three discussed the cytotoxicity of synthesized B-diketones. The compounds have
been tested on eight different cell lines: A549, U20S, HepG2, A204, HelLa and human myeloid
leukaemia cells: K-562, MOLT-4 and CCRF-CEM. Results of the tests showed that the prepared
compounds are more active on A204 cell lines, with 1Cso values ranging from 3.61 uM to 23.82

puM. B-Diketones 31 and 32 and 34 and 30 have shown the best activity with ICses 3.61 uM,
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3.63 uM and 3.78 uM and 3.87 respectively. B-Diketones 4, 25, 31 have shown moderate ICsg
values lesser than 20 uM, which is relative to ICso values reported from literature for
curcumins (Wu et al., 2015). However, comparison between the activity of B-diketones and
benzoyl thiourea bearing the same substituents show that benzoyl thioureas have better
activity than B-diketones (Table 7 and Table 8). B-Diketones substituted with a nitrile group
(15) showed poor solubility and their ICso was not determined in some cell lines. 9 showed
moderate activity in Hela cells and HepG2, with ICso values 18.26 uM and 17.76 uM
respectively (Figure 83). U20S treated with 9, 8, 46 and 43 showed significant ICsos 3.38 uM,
4.83 uM, 6.17 uM and 8.22 uM respectively (Figure 84).

A general and significant trend observed from the outcome of the results in this research is
the sensitivity of most of the compounds on A204 (Rhabdomyosarcoma cell lines) compared
to other cell lines tested. Table 7 and Table 8 shown that both the series of compounds (BDKT
and BTU) are sensitive on A204 and have lower ICso values. Previous literature has already
revealed that clinically administered treatment for rhabdomyosarcoma patients is the
combination of the three clinically approved drugs: vincristine, dactinomycin and
cyclophosphamide. Although the main challenge with this combination are the resultant side-
effects associated with patients, such as neurotoxicity, hair loss and cause of death in some

patients. Ever since, need for less toxic drugs have become a necessity.

B-diketones and related compounds are known for their anticancer property and because of
their wide importance, most of their analogues have been used in spices (e.g. curcumin) and
for herbal medication (Fukai and Nomura, 1994). Because of the sensitivity of the compounds
tested on A204 cells, further investigation would be needed to understand the genetic and
phenotypic differences that led to their sensitivity than the other cell lines. Because
dibenzoylmethane (DBM) analogue of B-diketone affected the expression of cell cycle
regulatory genes in colon cancer cells (COLO 205) and (HT-29) (Jin-Liern Hong, 2007), real time
PCR and Western Blotting techniques would be considered for future research to identify the

mechanism of these compounds on A204 cells, and the proteins involved in the process.

Molecular docking analysis was presented in chapter four. Molecular docking is an in-silico
structure-based technique that is more often used in drug discovery. It enables the
understanding of how chemical compounds interact with their biological targets, more
especially proteins. It also gives a detailed information about the different types of bonding
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interactions between ligand and its biological target, including the atoms contributing to the
interaction (Singh, 2020). All the synthesized molecules were docked into the colchicine
binding site in tubulin. As summarized in (Table 10), the binding site of the three active
compounds that are sensitive on A204 cell lines were chosen for analysis. The analysis shows
that B-diketones interact Cys241 reside. It is an essential amino acid residue that colchicine
(Figure 87) and related antimicrotubular drugs form different interactions with (Hu et al.,
2019; Shuai et al., 2020). 31 is found to be more active due to the presence of m-cation
interaction from the aromatic ring with Lys352 (Figure 86 a). The general trend derived from
docking results shows that activity 31, 32 and 34 is the to the presence of halogen groups that

interact with most of the residues in the tubulin binding site (Table 10).

Future research is also required to better understand the molecular mechanisms of B-
diketone analogues. As mentioned previously, analogues of these compounds such as
curcumin, inhibit cancer cells through different pathways by inducing G2/M cell cycle arrest
(Hu et al., 2017) and modulation of wnt/B-catenin pathways (Reyhaneh et al., 2018).
Understanding these pathways would be an important for modifying B-diketone scaffolds
that can lead to molecules capable of treating cancers. Cell cycle analysis and tubulin
polymerization assay will be considered an essential work for future research. This will enable

to ascertain if these compounds have a microtubule inhibition property.

Antimalarial activity of B-diketones will also be considered for future research. A more recent
review on medicinal properties of B-diketones (Gonzalo and Alcantara, 2021) have shown that
some of these compounds have shown antimalarial activity against chloroquine-resistant
Plasmodium-falciparum (Dalal et al., 2020). The report has explored B-diketones that have

similarities with scaffolds as the ones recorded in this thesis.
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Compound Spectra
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(Cpd 1: €20 H22 07, 4.410: + F&F Specirum (rt: 4.584-4,707 min) SAL30033.d Subiract
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376.1472
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377.1500
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m
T T T T T T T T T T T T T T T T T T
3735 74 745 375 kT i’ 376.5 37 375 3ra 3785 k] 3795 380 3805 381 3615 362
Counts vs. Mass-to-Charge (m/fz)
Spectrim Peaks
mfz m/z (Calc) Diff {ppm) Abund Helght %  Height % (Calc)  Ion Speches z
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BDKT-06

H1 NMR

Spectrum of BDKT-06 in CDCL3+TMS
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BDKT-7

Hl NMR Spectrum of BDKT-07 in CDCL3+TMS
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JMOD C13 MMR Spectrum of BOKT-07 in CDCL3+TMS
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 1000.0 PPM [ DBE: min =-1.5, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

9 formula(e) evaluated with 1 results within limits (up to 5 closest results for each mass)
Elements Used:

C:0-18 H: 018 O:1-5 Br: 01

AB300321 SAL4

AB300321 SAL4 1117 (2.401) Cm (1066:1130) 1: TOF MS ASAP+
4. 34e+004
1 3930329
392
0338
195.0656
o 57.0380 884.6029 15564043
L] 1 I 1 I I I I ¥ ] L] 1 I 1 I | r ] I T L) 1 I 1 ITI'Z
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Minimum: -1.5
Maximum: 5.0 1000.0 50.0
Mass Calc. Mass mDa PEM DBE i-FIT Horm Conf (%) Formula
383.0329 353.0338 -0.9 -2.3 8.5 253.7 nfa nfa C18 H18 05 Br
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BDKT-08

H1 HME Spectrum of BDET=-08 in CDCL3+THMS
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JMOD C13 MMR Spectrum of BDET=08 Ln CDCL34TMS
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BDKT-13

H1 NMR Spectrum of BDKT-13 in CDCL3+TMS
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8.0 7.8 7.6 T.4 T.2 7.0 F2 [ppm]
Spectrum Peaks
mfz I Abund  Diff (ppm)  Helght %o Ezi Ton Species  Formula

130333 1 544B4 0.16 98,15 9983 (M4H)+  CIBHITBIOS

14,0365 1 10468 .20 1886 1083 (MeH)}+  CLBHITBIOS

W50313 1 88511 4.2 100.00 10000 (MsH)}+  CIBHITBIOS

96,0353 1 10922 149 1968 1061 (MsH)}+  CIBHITBIOS

17.0301 1 1n 492 119 284 (M4H)s  CIBHITBMS

‘ompound Spectra
ctt |Cpd 1 C18 H17 BrOS; 3.966: + FBF Spectrum (rt: 3.675-1898, 4.057-4.080 min) SALS0035.d Subtract
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e
.
3-
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(M+HM

.

T T 1 I T T | T T I | T
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Counts vs. Mass+to-Charge (myz)
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H1 NMR Spectrim of BDET=15 in CDCL3+4TMS
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BDKT-16

BDKT-16
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APT-NMR BDKT-16 in CDC13
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Compound Spactra
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Cpd 1: C21 H24 OB; 3.907: + F&F Spectrum (rt: 3.861-3.976 min) SALB0030.d Subtract
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[
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407.1623
(M+Hp+
1]
T T T T T T T T T T T T T T T T T T
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Counts vs. Mass-to-Charge (myz)
Spectrum Peaks
mfz mifz (Calc) Diff (ppm) Abund Helght % Helght % (Calc)  Iom k4
405.1548 05,1544 BEET4 100,00 100.00 (M+H)+ 1
406.1586 406.1578 23452 2373 331 (M+H+ 1
407.1623 4071602 4980 5.02 424 (M+H)M+ 1
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BDKT-17
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Compound Spectra

g 0 1 C21 H24 08; 3917: + FBF Spectmum (1 3672-3.986 min) SALO0040.A Subtrct
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0.3 A
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-7 T 1t 1 1 r—7T1T 1 1T T 1T T T1~——"T1T T 1T 71
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Counts vs. Mass-to-Charge (myz)
Spectrum Peaks
LTH mjz(Cale) Diff (ppm) Abund Helght %  Helght % (Calc) IonSpecles I
405.1544 4051544 011 5936 100.00 100.00 (M+H)+ 1
405.1564 406.1578 151 M2 151 331 (M+H)+ 1
407.1611 47,1802 124 4703 547 424 (M+H)+ 1
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Compound Spectra

105 JCpd 1: C1B HL7 F O5; 4.051: + FBF Spectrum (rt: 3.914 min) SALL00041.d Subtract
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(MH)+

ki N
(e

1 3351197
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i S A A A
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3318 B2 3318 k] 3335 34 3345 135 3355 ks 1365 17 1[Is [ 3385 [ 335 o
Counts vs. Mass-to-Charge (myjz)
Spectrum Peaks

mjz m/z (Calc) Diff (ppm) Abund Helght %  Helght % (Calc)  Ion Species z

Bi40 ks ANE) 12 B3 100.00 100.00 (MeH)+ 1

3341170 341167 Lo0 124599 18.11 19.87 (M+H)+ 1

3351197 335.1182 La0 19477 182 290 (M+H)+ 1
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13C-APT BOKT-20 in CDCL3
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Compound Spectra

Cpd 1: C17 H15 F O4; 4.100: + FBF Spectrum (= 4.443-5.355 min) SAL110042.d Sulbitract
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{ }+ 305.1080
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Courts vi. Mass-to-Charge (myz)
Spectrum Peaks
miz m/z (Calc) Dift (ppm) Abund Height % Height % (Calc)  Ion Species z
303.1027 303.1027 001 74268 100,00 100,00 (M+HH i
304.1062 3041061 035 14362 1934 1B72 (M+H}H+ 1
305.1080 305.1087 -2.06 2232 301 248 (M+HH i
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H1l NMR Spectrum of BDKT-23 in CDCL3+TMS
PROTOMNG64 CDCl3 {C:\Bruker\TOPSPIN} SAS 5

o
= OO M N ADIN NS NS N Mo o
- PERSRARAp- AR R e A=Y Currese Dita_Farsmarers
e e Emmm e E e . by et
—_ B e e i o Ry P Y e Expuo = 10
1 L o i FRoCHG 1
Vi e esiastion rasmcars
WD 0N A2 D N WD o) e il
OO~ oNtNO O W w0 Ingznm e
S OOV oh O DD D D 0w ~ Fromen 3 mm mso Bain
£ e . Foienoc Sas0
™ seden
L e e e ol e o e ~ frA— 2520
N ,- Ty =
. bs a
; . = sa0z.m17 5=
Fitees oissass
1 g atisveie:
R 362
5 56,350 usee
o2 0 uoce
[ = 2552
By 2.59333550 see
Too 1
—— chsnmz £1
e
f f oy 10.05 usse
| L 2100 am
1 oy = o0 1375808 sate
£2 - Prossssisg pagzmetoss
Wk = <00.1305063 sas
R wm =
- - - o — by o
i kil J La 0.30 uz
¥ i = ]
et S _ _ = 1.0
T T T T T T T T T
8.0 7.8 7.6 7.4 7.2 7.0 6.8 ppm
u o~ e [ o [ o u =1
o = o= o o =1 = . ,
r =1 (=1 — =1 =1 — (=1 '
| — — — — — — —
— L —
T T T T T T T T T T T T T T T
17 16 15 14 13 12 11 10 9 4 3 PPmM

skENeE

z|
i
2D g-HMQC Spectrum of BDKT-23 in CDCL3+TMS
Cl3_APT CDCl3 {C:\Bruker\TOPSPIN} SAS 5 o)
Bzggﬂ
— = ooy e e
o® = oo 55D o o e = o
i ! T = 23 2= Current Data Faramaters
e = o e - L S ot iar ]
== 282 =h=g= o s s =y =
=5 583 3] 903 = EEE ] i :
i | ;
| [ A7 NS N V Y T
- paot
T o e e S
e 552
N =]
fer
Fromes aviesais m
E st
E e
o 25758 maad
= 2573 &
== 1450085083
SERL e
: 233300008 ses
EN 3ot e
[ —
= £
= 135 ees
£ ai3s it
i ey
SroeRaiz udicmme
Shes 1
Thre [ p—
£ 238
I = S E
| | == Ly B
\f xt — remcerning przmyzae
] g
E 1005327258 s
it £
o= H
= s.08
= H
= 208
T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 L] ppm

241



F:\AAM\NMR—Z4—Decommissioning

1

11

SAS BODKT-23

[wdd] 3 02 7L L 9L gL 0

T
F2 [ppm]

g@e &
B B r

7.0

7.5

.@5

20 g-COSY Spectrum of BDKT-23 in CDCL3+TMS
cosygpqgf .SAS CDCL2 (C:\Bruker\TOPSPIN] SAS 5

.,!

Mon Dec 13 08:29:42 2021 |

BDKT-23

0€'069
— S0'69Lc .0 o
— = 69028
818680 pg
€L'810l9z'ggolL
- 02'6501
990V bhoora) 1|
89'L L Zlggasz)
T €5°20€1
= "€6EL
TEBEL sevt
V6 LLYL
. SZ'GLGL
GG'G6G L
97°9v9l
SO0'8PLL
1£°0802
LLISLE
08'6652
v L8
Z6'69G¢
o © o o o o o o o
BOUBNILUSUR ] 9

1000

1500

2000

2500

3500

4000

Wavenumbers (em-1)

242



Compound Spectra
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Cpd 1. C17 H14 O F O4; 4.375¢ + FBF Spedtrum (rt: 4.352-4.467 min) SAL140045.d Subtract

337.0638
(Mt
3(2‘9.0614
+H)+
33B.0672
(M}
34000642
ﬂ] (R
m
T T T T T T T T T T T T T T T T T T
3355 336 3365 337 3375 33 3385 339 3395 340 305 341 LS M2 M5 343 3435 344 3445
Counts vs. Mass-te-Charge (mfz)
Spectrum Peaks
mjz m/z (Calc) IDiff {ppm) Abund Height %  Height % (Calc)  Ion Species z
337.0638 337.0637 020 SB682 100,00 100.00 (M+H}+ 1
33B.0672 338.0671 008 42B 20.70 1871 (M+H}+ 1
3390614 339.0614 0.2 33E89 34.34 3447 (M+H)+ 1
3400642 340.0645 -L00 &053 G613 623 (M+H)+ 1
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PROTONG64 CDC1l3 {[C:\Bruker\TOPSFIN} AAM 8

o
w OO M N O M0 0D 00O ==
2 S T L N e = RUKER
. A OO O 0o MmN OO (=2}
o L mm I m e = . .
— B T e e e e e e i ol RN ) o Lx)
oo WM, [N ] @ o o ===, -
MO 0= NN OO ) o ao o o ™
— O Oh OO 0O S0 OO a0 o 0N oo [and Curraat Dala Pariscrars
- tt - - - N N - N N - - ' HAME DacOl-2020-AAM
@ o~ M~ I~ = Ll ] w0 - o 1
L . FRacin
F2 - Aoquisition Parimstars
Data_ Z0z012010
| Tina .53
InSTame ipact
PPOSHD 5 mm EBQ BB-1H
2330
™ seis0
i 1 SOLVENT coels
1 = ]
i i I.'
1 |
1 1
¥ - - —
[ s
T |
M
|
T T T T T T T
B.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 ppm 1
— e w u o[ 7
@ — ~ — o i
(=3 ] a0 o (=3 ] a0 an
o — o o — = 1
I |
I i I"
' ‘l' h
11 | - -
T T T T T T T T T T T T T T T T T T
17 16 15 14 13 12 11 10 9 a8 7 6 5 4 3 2 1 ppm
o —i [0 |10 o |eo e o
— @ 1~ I~ = | 0 ~ =
o o Q0 (O (Oh (D O (== o
(=) oo o -H O o™~ o

Dec0l=2020=AfrM 11 1 C:\Usershuser\Documents\Decll=2020=ARAM |

- P —

—_— Nl P
COSY MNMR BDKT-26 FULL SCAN [
cosygpgf.SAS CDCL3 {C:\Bruker\TOPSPIN} AAM 8 =
- -
-
T T T T T T T T T T T T T T T T T T T T T T T T T T T T —
8.5 8.0 7.5 7.0 6.5 F2 [ppm]

244

70 F1 [oom]

75

80

85



APT NMR BDKT—-26 FULL SCAN
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Spectrurm Peaks

mjz Z Abund Diff (ppm}) Helght % ht % Ion Species Formula
Calc)
347.0277 1 184601 -0.14 100.00 100.00  (M#Hp+  C17HISE0S
348.0308 1 36431 -0.95 18.72 1869 (M#Hp+  CLTHIS803
349.0258 1 193324 -0.33 99,34 99,54  (M#H)+  CITHISEMO3
3500288 1 35145 -0.89 18.09 1838 (M#H}+  C1ITH1S803
3510315 1 3882 -102 159 222 (MsH}s  CI7HISEAOS
3520318 1 458 -7.49 (¥ 020 (MsH)s  CI7HISE0S
Compound Spectra
w105 |Cpd 11 C17 HIS Br O3; 4.699: + FBF Spectrum (it: 4.517-4.565, 5.042-5.201 min) SAL150046.d Subtract
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BDKT-27

H1 MMR Spectrum of BDKT-27 in CDCL3+TMS
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BDKT-28

Hl NMR Spectrum of BDKT-28 in CDCL3+TMS
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SAS BDKT=-28 11 1 F:\AAM\NMR=24=-Decommissioning

20 g-COSY MMR Spectrum of BDKT-28 in COCL3+THS

F1 [ppm]
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Spectrum Peaks

mjz Z Abund Diff {ppm) Height % Eﬂdﬁg Ion Species  Formula
c
3331133 1 281075 -0.01 100.00 100.00 (M+H)+ C18H17FOS
3341164 1 55402 -0.83 19.71 19.87 (M+H)}+ C18H17FO5
335.1190 1 G166 -0.62 3326 290 (M+H)+ C18H17FO5
3361227 1 s 252 0.33 oz {M+H)+ C18H17FO5
Compound Spectra
gt JORd 1 C16 HI7 F OS] 4.620: + FBF Spectrum (rt: 5.395-5.646 min) SALL7004E.d Subtract
3331133
y M)+
2549
—
1.5
= 334.1164
(MaH)+
0.5+ 335.1190 336.1227
(M+H)+ (M+H)+
= o
T T T T T T T T T T T T T T T T T T
33LS 3: 3325 33 3335 334 3345 335 3355 338 3355 337 3375 338 3385 339 3395 3405 M1

Counits vs. Mass-to-Charge (m/z)
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BDKT-29

1H-NMFE BDET=-2% in CDCl3 (Correctead)
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13C-JM00 BIKT-29 im CDCLY [Corractad)
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Compound Spectra

4105 |CPd 1: C17 H14 F2 04; 4.084: + FEF Spectrum (rt: 4.048-3.208 min) SALLBOD43.d Subtract

b 3200834

2 M=

18

16

1.4

1.2

1

05

(M+H)+

04 123 0004 3240968

0.2+ [ M)+

[ o

T T T T T T T T T T T T T T T T T T T
385 3W  3WS  IM IS 3 3WS 3B IAS 4 IMS5 WS 355 I IS 37 IWS 3B5 39
Courts va. Mass-ta-Charge (myz)
Spectrum Peaks

mjz m/z [Cale) DiFF (ppm) Abund Height % Height % [Cale)  Ion Species z
3210034 321.0833 0.41 197899 100.00 100,00 [M+HH 1
3220966 3220867 014 36604 18.54 1B.71 [M+HH 1
2I0004 3730002 043 5000 153 247 (Ms+H} 1
324.0068 324.1019 -15.65 766 039 024 [M+HH 1
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BDKT-31

1H=-HME BDET=-31 im CDC13
E‘mgd cocli {C:\Bruker\TOFSFIN} ARM 24
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13C=-JMOD BOKT=31 in CDCL3
C13_APT CDC13 {C:\Bruker\TOPSPIN} ARM 24
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Spectrum Peaks

mfz Z Abund Diff (ppm) Height % Height % Ion Species Formula
Calc)
383.0448 1 100771 0.19 100.00 100.00 (M+H)+ C18H16C1205
384.0479 1 20917 -0.73 20.76 19.85 (M+H)+ C18H16CI1205
385.0421 1 65058 -0.31 64.56 66.88 (M+H)+ C18H16CI205
386.0453 1 12440 -0.21 12.35 13.02 (M+H)+ C18H16CI205
387.0398 1 11033 -1.19 10.95 12.12 (M+H)+ C18H16CI205
388.0427 1 1984 -0.79 1.97 224 (M+H)+ C18H16CI205
Compound Spectra
x10° |Cpd 1: C18 H16 CI2 05; 4.618: + FBF Spectrum (rt: 4.481-4.549, 4.869-5.416 min) SAL190050.d Subtract
- 383.0448
(M+H)+
1
0.9+
0.8+ 385.0421
0.7 (M+H)+
0.6
0.5
0.4
0.3 384.0479
: (M+H)+ 386.0453 387.03%
0.2 (M+H)+ (M+H)+ 388.0427
0.1 |]] |I| (M+H)+
o o

T T T T T T T T T T T T T T T T T T T T T T
3815 382 3825 383 3835 384 3845 385 3855 386 3865 387 3875 388 3885 389 3895 390 3905 391 3915 392 3925

Counts vs. Mass-to-Charge (m/z)
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BDKT-32

1H=-HME BDET=-32 im CDC13
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Title: Fri Jan 22 12:31:26 2021 (GMT+00:00): BDKT-32 Thu Jan 20 08:55:13 2022 (C
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5] 3 S 1 e
1 -|| e 7ol =- -~
- [ =
E 60 ! 5| 2 g & o
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‘Wavenumbers (cm-=1)
Spectrum Peaks
mjz Z Abund  Diff (ppm) Height % Hei m;‘; Ion Species  Formula
3410142 1 161795 .16 100.00 10000 (M+H)+  CLEHIIO2FO3
2072 1 29024 10 17.04 1756  [M+H)+  CIEH1IOFO3
3430114 1 105004 D44 64.90 66.06  (M+H)+  CLGH11012FO3
440146 1 18707 045 11.56 1142 (M+H)+  CIEHIIO2FO3
3450080 1 18346 133 11.34 1157 [M+H)+  CIEH1I0FO3
3460118 1 2990 437 185 191 (M+H)+  CIGH1102F03
Compound Spectra
4105 |CPd 1: C16 K11 O2 F O3; 4.657: + FEF Spectrum (rt: 4.651, 47434811 min) SALZD0051.d Subtract
E 10142
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1.2 [
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T T T T T T T T T T T T T T T T T T T
3305 30 305 31 3415 M2 3425 343 M35 34 345 M5 M55 M6 MES5 347 3475 348 34BS 349 3495 350 3505

Counts vs. Mass-to-Charge (m/z)
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BDKT-33

H1l NMR Spectrum of BDKT-33 in CDCL3+TMS
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SA% BOKT=33 11 1 F:\AAM\NMA-Z4-Decommissioning |

20 g-COSY NMR Spectrum of BDKT-33 in CDCL3+TMS
cosygpgf.SAS CDCL3 {C:\Bruker\TOPSPIN} SAS & 3
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Meonoisotopic Mass, Even Electron lons

11 formula(e) evaluated with 1 results within limits (up to 5 closest results for each mass)
Elements Used:

C:0-17 H:015 0O:14 Cl0-2

AB300321 SAL 21

AB300321 SAL 21 1205 (2.608) 1: TOF MS ASAP+

8.226+003
" 353.0340
3550318
9%
319.0731
0341
185.0545 .214.8644 004913710542 gh3 G504 7671369 1076.1714 11346670 13008093
E ¥ 1 1 L L 1 1 I I I L 1 I 1 1 T 1 L 1 1 1 L L 1 L 1 Z
100 200 300 400 500 600 700 800 800 1000 1100 1200 1300
Minimum: -1.5
Maximum: 5.0 1000.0 50.0
Mass Calc. Mass mDa EFEM DEE i-FIT Norm Conf (%) Formula
353.0340  353.0347 0.7 -2.0 9.5 49.0 n/a n/a C17 H15 04 €12
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BDKT-34

H1l NMR Spectrum of BDKT-34 in CDCL3+TMS
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ThermoFisher Mon Dec 13 18:26:36 2021 (

S EERNTHFrE Fri Jan 22 12:43:37 2021 (GMT+00:00):BDKT-34
90
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g ] [N
£ 60 S 3
£ g < g
g ] —
& 50 2
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= ] o
40 ~
30
20
4000 3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)
Spectrum Peaks
Abund Diff Height ht la
mfz Z (ppm) ght % Ilellm:(i Ion Specles  Formul
3330236 1 240202 0.06 100.00 100.00 (M+H}+ C16H 1201203
3240271 1 43222 023 17.88 17.57 (M+H)+ C16H 1201203
3250208 1 158847 -0.58 B6.08 B6.06 (M+H}+ C16H 1201203
3360242 1 30152 0.15 1254 1143 (M+H)+ C16H 1201203
3370183 1 27452 -145 11.42 11.57 (M+H)+ C16H 1201203
32\.0216 1 494 -0.06 2.08 192 (M+H)+ C16H 1201203
Compound Spectra
4105 |Epd 1: C16 H12 (2 03; 4.710: + FBF Spectrum (t: 4665, 4.916-4.961 min) SALI20053.d Subtract
7 3230036
25 [
2.257
o 325.0208
175 (M+H)+
1.5
1.2549
-
0.757] 324.0271
326.0242
057 (i (M=H)+ it LEOZIE
0.25-7 [I] [I] |]] (M+H)+
o B
1 1 I 1 1

1 ) 1 I 1 I 1 1 I 1 1 I 1 I I I T 1
3215 322 3225 323 3235 324 3245 35 3255 326 3265 327 322S LB 3285 329 3205 330 3305 331 335 332 3325
Counts vs. Mass-to-Charge (miz)
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BDKT-35

1H-NMR—-BDKT—35 in CDCLl3
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Compournd Spectra

x105_|CPd 1: C18 HIE F2 05; 4.300: + FBF Specirum (rt: 4.391 min) SAL230054.d Sublract
351.1040
3.5 (M+H)+
s
157
21
1.57
1 3521074
(MeH)+
0.5 353.1102 354.1096
(M+H)}+ (M+H)+
o_ =]
T T T T T T T T T T T T T T T T T T T T
349.5 350 3505 351 3515 352 3825 353 353.5 354 3545 355 355.5 356 3555 357 3575 358 358.5 359
Counts vs. Mass-to-Charge (myz)
Spectrum Peaks
mjz my/z (Calc) DY (ppm) Abund Height %  Height % (Calc) Ion Spedes z
3511040 3511039 0.46 342592 100.00 10000 (MsH)+ 1
3521074 352.1072 0.52 BE9IY 19,56 19,85 (M+H)+ 1
3531102 3531007 122 9543 279 289 (M+H)+ 1
354109 3541124 -7.96 1418 041 031 (M+H)+ 1
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H1 MMR Spectrum of BDKT-36 in CDCL3+TMS
{C

BDKT-36
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BDKT-37

H1 NMR Spectrum of BDKT-37 in CDCL3+TMS
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(ompound Spectra

m‘l

1.4
1.7

1
0.5
0.6
0.4

Cpd 1: C16 H11 O F2 03; 4.758: + FBF Spectrum (rt: 4.690-8 918 min) SAL250056.d Subtract

0.
o

325.0446
(kR
326.0480
(MH)+
T T T T T T T T T T T T T T
3135 324 3245 35 3155 38 3265 327 3275 s 3285 39 3295 in
Counts vs. Mass-to-Charge (m/z)
Spectrum Peaks
m/z mi/z (Calc) DT (ppm) Abund Height %  Helght % (Calc)  Ion Species
3250446 3250438 261 13506 100.00 100.00 (M+H)+
326.0480 326.0471 37 3505 26.42 17.56 (M+H)+
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BDKT-41

H]1l NMR Spectrum of BDKT-41 in CDCL3+TMS
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Compound Spectra

x105 JOpd 1: C18 HI7 1 O4; 4.551: + FBF Spectrum (rt: 4.368-4.391 min) SAL260057.d Sublract
- 4350246
M)+
&
5]
+
3
4260278
e (M+HM
1 427.0301 428.0350
(M+H)+ (M+H)+
o— 1~ -]
T T T T T T T T T T T T T T T T T
4235 424 4245 425 4355 426 436.5 427 4275 428 429 430 4305 431 4315 432 4325
‘Counts vs. Mass-to-Charge (myfz)
Spectrum Peaks
mfz mjz (Calc) Diff (ppm) Abund Height %  Helght % (Calc)  Ion Species z
4250046 4250244 0.40 51719 100.00 100.00 (M+Hp 1
426.0278 426.0278 004 128655 19.74 1963 (M+H} 1
427.0301 427.0304 072 15560 220 258 (M+HH 1
42B.0350 428.0331 455 1763 o.z7 027 (M+HH 1
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BDKT-43

H1l NMR Spectrum of BDKT-43 in CDCL3+TMS
{C:\Bruker\TOPSPIN} SAS 5
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20 g-COSY MMR Spectrum of BDKT-43 in ©DCL3
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Spectrum Peaks

mjz Z Abund Diff (ppm) Height % {":I‘:i; Ion Species  Formula
377.0380 1 114795 071 100,00 100.00 (M+H}H C18H17BrO4
7RIS 1 13434 -0.55 2042 19.83 (M+HH C18H17Br04
30363 1 113853 -0.46 9918 99.96 (M+H}B C18H17BrO4
3800394 1 3735 -0.90 024 1956 (M+HH C18H17B8r04
3HLM2 1 2548 063 2.57 263 (M+H}M C18H17Br04
Compound Spectra
x10% (Cpd 1: C18 H17 Br O4; 4.586: + FBF Spectrum (rt: 4.951-5.430 min) SAL2B0059.d Subtract
377.0380 379.0363
L2 (MHM (M+H)+
1
0.5
0.67
[y 378.0415 3800394
(M+H}+ (MaH)+
0.2 3810421
(M+HH
i o]
. T T T

T T T T T T T T T T T T T T
3755 3% 3PeS 37 37IS 3™ IFES 379 3795 380 3OS 381 3815 382 3825 383 335 384 3845
Counts vs. Mass-to-Charge (mfz)
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BDKT-44

H1 NMR Spectrum of BDKT- 44 in CDCL3+TMS
FPROTONG64 CDCl3 {C:\Bruker\TOFSFPIN} SAS 2
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2D g-COSY NMR Spectrum of BDKT-44 in CDCL3 E_
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Spectrum Poaks

mfz Z Abund DIt (ppm) Helght % Hal.llétn;ha Ion Species  Formula
4070486 1 FB130 -058 100.00 5961 (M+H)+ C19H198r05
408.0520 1 17422 -0ES 2230 089 (M+H)+ C19H198r05
4090468 1 77993 -0ED 9.3 100.00 (M+H)+ CL9H198r05
4100499 1 17177 -0.98 2199 2056 (M+H)+ C19H198r05
4110517 1 2663 -172 341 305 (M+H)+ C19H198r05
Compound Spectra
ag® Cpd 1: €19 H19 Br O5; 4.645: + FBF Spectrum (rt: 4.918-5.626 min) SAL290060.d Subtract

T 4070486 409.0468

. (MHp (Mdi)+

7

6_

5

4
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| 4110517

¥ (M+H)+

m
- T T T T T T T T T T T T T T T T T T T
405.5 406.5 407 4075 408 40B.5 409 2095 410 410.5 411 411.5 412 412.5 413 413.5 414 414.5 415 4155

Counts vs. Mass-to-Charge (myfz)
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BDKT-45

H1 NMR Spectrum of BDKT-45 in CDCL3+TMS
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ThermoFisher Sun Dec 12 18:27:04 2021 (i

SEERNTAHFrS Thu Jan 21 11:57:09 2021 (GMT+00:00):BDKT-45
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BDKT-47

H1 NMR Spectrum of BDKT—-47 in CDCL3+TMS
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Comipoiing Spectra
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BTU-02

H1 MMR Spectrum of BTU-02A in CDCL3+TMS
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BTU-03

H1 NMR Spectrum of BTU-03 in CDCL3+TMS
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BTU-08

H1 HMR Spectrus of BTU=08 in CDCL3+TMS
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BTU-09

H1 NMR Spectrum of BTU-09 in CDCL3+TMS
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x10°,

1671
147
12

1
0.8+
.5
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0.2

ompound Specira

[Cpd 1: €18 H20 N2 06 §; 3.736: + FEF Spectrum (rt: 4.124-4.717 min) SAL370068.d Subtract

3931114
(MH)+

3951112
(M+H)+ ﬁ_{'ﬁ?

T T T T T T T
392 35 393 b R 5 s 3955 396 3%.5 397 975 o 3965

Counts vs. Mass-tio-Charge (myiz)
Lpectrum Peaks
mjz mjz (Calc) Diff (ppm) Abund Helght % Hedght % (Calc)
303.1114 3093.1115 -0.27 155989 100.00 100.00
394.1141 394.1145 -1.01 34079 21.85 21.46
3951112 305.1114 -0.70 10858 6.96 7.90
395.1137 396.1132 141 1994 1.28 1.33
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H1 MMR Spectrum of BTU 14 in CDCL3+TMS

BTU-14

304

i 5
i
808 [a=]
: §oalt &
Y/ 2
{ o N
u it Phleed cuntane Lo = .
v © 0Z'L66 - g
o Uys001 |F
1] 3 I1'gzLl
- .
2 SO0V 21
= ez'zzel
= LV9LEL.
= S €SPl _ .
m z8e6Yl | g
= “fFbes  [€
" W
Qe
0L6° €~ | B —
m:..m‘\ o =L m m
o |
E - o~ m
& Fo o 5
K ®
e 2
[=] — m
- Lo -4 2
@
) e >
E0T°L = 000°¢ e 82
o
0T L~ Lo ~ Fe — .M
592" L~ [+ — <z £
Lt — <
S1 (%6 L B ] Slee i GE2£82
mﬁ_gﬂ. _ T e b o
056" ¢ | = = v9'LY62
_ [
8L0°6— _ — fo Lﬁ
o
BiG .
I \ -
oLt R 602°2
91L°L _ / g
DS Fe ]
||
| Mc
9g6°L I . o =
ot = Lo ¢ B
* @ ro.T o
. I.,[. N =]
£98°21— | FJ_ Lo 90 L L L L NI LR N LR N S a1
| R - Eu [87R78 8 ¢ 8 & 2%
2o
= BOUBWISUE | %




Compauind Spectra

il

Cpd 1: C18 H17 F3 N2 D4 5; 4.265: + FBF Spectrum (rt: 4.447-4.972 min) SAL420073.d Sublract

a
415.0935
I (MeH)+
.
5
41
3
< o
M+ H)+
417.0927
1 (M+H)+
o i
T T I 1 1 I T 1 1 I I 1 T 1 I 1
4135 414 4145 415 4155 416 416.5 417 4175 4185 419 4155 420 4205 471 4215
Counts vs. Mass-to-Charge (m/z)
Spectrum Peaks
myjz m/z(Calkc) Diff {ppm) Abund Height % Height %o (Calc) Ion Specdes z
415.0935 415.0934 031 65922 100.00 100.00 (M+H)+ 1
416.0964 416.0964 -0.08 14760 1239 2135 (M+H)+ 1
417.0927 417.0931 -L05 5479 84 7.47 (M+H)+ 1
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BTU-16

1H NMR BTU-16 in CDC13
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13C NMR BTU—-16 in CDCL1
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307




BTU-17

1H-—NMR BTU—17
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13C-NMR BTU-17 in CDC13
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Thu Dec 16 18:10:11 2021 (!
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13C-APT-HBME ETU-18 in ODCL13

C13 APT CDC13 [C:\Bruker\TOFSPIN) AAM B
y A S, C><)
£ £ <e on Sud 4 ASE B9 !IE:.)IzSR
L 5 43 7 °88 3 8 FEE =2
.-. ..- '\\/'
P
i_
o
:-H—. T
08 86 160 140 420 d60 8@ & P 28 0 gy
ThermoFi Thu Jan 20 08:08:00 2022 ((
SCIENTIFIC BTU-18-Thu Feb 25 16:25:54 2021 (GMT+00:00)
m-
m_
@ 707
5
E ™
-
-— - o
E 50 ] o g -
- 5 y B e 5\ 8|5
%8 g © 5 QQr
40 - HE ? el =
g = 3 Foiel T o
3 3 B EBIET &
30 ﬁ - = -
4000 3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)

312



Compound Spectra
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BTU-19

H1 NMR Spectrum of BTU 192 in CDCL3+TMS
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BB H1 Decoupled Cl13 NMR Spectrum of BTU-192 in CDCL3
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BTU-21

H1 NRM SPECTRUM BTU—21 IN CDC13
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13 APT NMR Spectrum of BTU-21 IN CDCLl3
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Spectrum Peaks

mfr Z Abund Diff (ppm) Height % deit% Ion Species  Formula
Cabe)
3829862 1 325577 053 96.66 95.45 (MeH)+  CISHIZBrFN202S
3839698 1 59759 227 17.74 17.33 (MeH)+  CISHIZBrFN202S
3849843 1 336822 0.90 100,00 100,00 (M+H) C15H1ZBrFNZ2025
3859672 1 38935 0E3 17.50 17.75 (M+H) C15H1ZBrFN2025
3869627 1 19025 oo 5.65 611 (MeH)+  CISHIZBrFM202S
387.9631 1 3475 335 1.03 087  (MsH)}+  CISHIZBrFN202S
Compound Spectra
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o I -

T T T T T T T T T T T T T T T
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Counts vs. Mass-to-Change (m/fz)

319

T
3915

T
3oz

T
3925




m m_ B _ TR

1H HMR BTU=22 in CDC13
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‘{Compound Specira
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BTU-24
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Compound Spectra
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Counts vs. Mass-to-Charge (myz)
Spectrum Peaks
mjz mjz (Calc) Dilff (ppm) Abund Height % Height % (Calc)  Ion z
353.0766 353.0766 0.0t 67316 100.00 100.00 (M+H)+ 1
354.0793 354.0796 a7 13229 19.65 1911 (M+H)+ 1
3550716 3550757 -11.54 11247 16.71 6.62 (M+H)+ 1
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