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Abstract A research into congestion propagation mechanism of urban rail transit passenger flow

in train delay scenario is of great significance to the formulation of coordinated limitation measures

of passenger flow among the operation lines in urban rail transit networks. This paper presents a

methodology for modelling cascade dynamics of passenger flow congestion. In this method, firstly,

a computing method of network passenger flow states based on load entropy is proposed to describe

the overall load conditions of passenger flow in the network. Secondly, a rail transit network is

developed and the computation formulas of load and capacity of nodes have been established com-

bining with a comprehensive consideration of nodes’ topological passenger flow attributes. Thirdly,

Trip Betweenness Centrality of nodes is proposed and calculated. Considering the function of rail

transit line capacity and load distribution strategy, the passenger flow congestion in train delay sce-

nario is established to calculate cascade dynamics of congestion and the state transition of urban

rail transit network. A real case study on Beijing Metro Line 10 is used to demonstrate the proposed

methodology. The results show that the load values of nodes and the distances from the initial fail-

ure nodes can be determined for the spreading scope of passenger flow congestion in disrupted

metro line and adjacent metro lines.
� 2022 Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urban rail transit (URT) has become people’s first choice of
commuting and travel and developed into a networked

operation mode in largest cities around the world due to its
convenience, efficiency and safety.
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With the operation mileages of URT networks constructed,
the complexity of correlation among stations and rail lines has
been increasing, and disruptive incidents such as train delays,

passenger congestion problems have become as significant
issues to be solved to avoid accidents and improve passenger
service level. URT network congestion of passenger flow is

an important issue concerned by the public, the government
and the operation management department, especially under
the oversaturated conditions. Congestion control and relief

strategies are effective means to ensure the normal operation
of URT. Here, cascading congestion refers to a functional fail-
ure of a series of stations due to passenger flow congestion
caused by train delay at one station. Therefore, it is essential

to conduct an in-depth analysis of congestion propagation
mechanism of the network and reduce the impact in train delay
scenario, which will provide the effective measures of passen-

ger control in urban rail transit operation.
There are many studies on urban rail transit networks and

passenger flow congestions, for example, study on network

performance, network cascading failure analysis, the load
states of stations, the distribution characteristics of passenger
flows, metro disruptions. However, researches on congestion

evolution modeling are relatively scarce due to dynamics and
randomness.

A few studies have been carried out with the topographical
mapping modelling in network performance analysis, which

passenger betweenness centrality (PBC) is introduced to mea-
sure network performance [1]. Huang et al. [2] used entropy-
TOPSIS method to evaluate urban rail transit system opera-

tion performance. Feng et al. (2017) analyzed weighted com-
plex network of the Beijing subway system considering both
train and passenger flow. Xu et al. [3] utilized trip data

obtained from the Beijing Subway System to characterize indi-
vidual passenger movement patterns.

Referring network cascading failure analysis, most studies

typically focused on the complex network topology analysis
of metro systems without network flows. As the basis for
research on cascade failure, some scholars have proposed the
concept of Node Load and then use degree or Betweenness

or shortest paths [4–8] to define node load, or using the actual
flow through nodes as Node Load in a direct manner [9] to
describe cascading failure in the network. A new mitigation

strategy was introduced to prevent or mitigate the cascading
propagation on complex networks more efficiently [10]. The
load redistribution strategies [11,12] of load mainly involve

those in the nearest neighborhood, overall the network, and
the remaining capacity according to nodes.

With respect to the description of the flow load state in the
nodes and cascading failure in the network, the density of sta-

tions and the load index of sections regarding the passenger
flow was presented. Some scholars proposed the definition of
node load to characterize the significance of nodes in the net-

work [13–15] as well as the flow load of nodes. The analysis of
passenger flow distribution of urban rail transit is mainly
aimed at the network characteristics [16–18]. Jianhua Zhang

et al. have studied the topological characteristics and proposed
two novel parameters called the functionality loss and connec-
tivity for measuring the transport functionality and the con-

nectivity of subway lines [16], and then calculated the
average degrees of nodes, the average shortest path lengths
and the average betweenness of nodes and edges of urban rail
transit networks [17]. Sybil Derrible et al. [18]. have developed
a specific method to analyze metro systems as networks,
explained the concepts of scale-free and small-world networks
and adapt them to metro systems. The imbalance and spatial

distribution regarding the passenger flow are studied in Ref.
[19].

As for passenger flow behavior, an evacuation strategy of

metro station is investigated and proposed, a calculation for-
mula is proposed for the metro station evacuation time [20].
Referring to unbalanced urban traffic network, a coordinated

multimodal dynamic freight load balancing system was pro-
posed to balance freight loads [21]. And after that a multi-
modal freight routing system based on optimization was
evaluated with hard vehicle availability and capacity con-

straints [22].
Researches related to disruptions gradually increase. As

discussed by Sun et al. [23], a novel approach was proposed

to identify such disruptions and evaluate their influence on tra-
vel times and delays. Then abnormal passenger flow was
divided into three characteristic types and analyzed in this

paper. Cadarso et al. [24] studied the disruption management
problem and explicitly dealt with the effects of the disruption
on the passenger demand in rapid transit rail networks. In

the paper [25], the resilience of a metro network is associated
to the network performance loss triangle over the relevant
timeline from the occurrence of a random or intentional dis-
ruption to full recovery.

As stated above, the previous researches on network perfor-
mance analysis, network cascading failure analysis, the load
state of station analysis, the distribution characteristics of pas-

senger flows analysis, and metro disruption analysis have some
problems in the analysis process, which can be summarized
below.

a) Some scholars have presented the node load concept to
describe the importance of node considering its topological
attributes such as degree and Betweenness Centrality. But

how to quantify and analyze the network global state based
on both nodes’ topological and passenger flow attributes, from
the perspective of network decision maker?

b) Some researchers have established cascading propaga-

tion models of passenger flow such as Susceptible Infected
Recovered (SIR)model, Cellular Automata (CA)model. While
there are few studies on the evolution mechanism of passenger

flow congestion with the employment of point congestion (the
overloading state of passenger flow at stations) as key elements
in the model. Only few studies on the evolution mechanism of

passenger flow congestion considered point congestion (the
overloading state of passenger flow at stations) in their models,
which is insufficient.

The load definition of node and the passenger flow conges-

tion model are presented in this paper, which the research can
contribute:

a) For describing the congestion in stations, the load defini-

tion of node is proposed considering not only its topological
attributes, but also its flow attributes and neighbors’ topolog-
ical attributes. The load entropy is developed to describe the

whole network, which can be used to represent the overall
characteristics of passenger flow in the network.

b) For revealing the congestion mechanism of passenger

flow in URT network in train delay operation scenario, we
have presented the passenger flow congestion model, consider-
ing both the distance between the functional abnormal node
and normal node, and the function of throughput of normal
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nodes under normal conditions. And then the transitions of
network passenger flow states are depicted.

The rest of this paper is organized as follows: Section 2

describes the calculation of network passenger flow state based
on load entropy and the cascade dynamics of passenger flow
congestion of URT network in train delay scenario. Section 3

depicts the simulation results and explains the characteristics
of cascading propagation. In the first part of this section, the
source of the data and the background of train delay event

are introduced. In the second part, comparative analysis of
the actual situation and the simulation results of network pas-
senger flow state are established. Conclusions are provided
based on the two cases of state transitions of cascading failures

in networks in Section 4.

2. Methodology

2.1. Urban rail transit topological network

Urban Rail Transit Network (URTN) consists of metro lines
which are composed of stations and sections. Considering
the directions of trains, the topological network, named Urban

Rail Transit Topological Network (URTTN) as shown in
Fig. 1. In Fig. 1, blue, orange and purple indicate three oper-
ating lines, with different arrow types indicating the direction

of train running, black spot indicating transfer station.
Station i is defined as node vi. Stations i and j are connected

by an edge that is represented by eij ¼ fvi ! vjg. URTTN can

be presented as

URTTN ¼ fV;E;Tv;Fv;Peg ð1Þ
V ¼ fv1; v2; � � � ; vng
E ¼ feijji; j 2 ng

Tv ¼ fki;BCi;TBCi; � � � ji; j 2 ng
Fv ¼ Ii tð Þ;Ei tð Þ;Ti tð Þ; � � � ji 2 nf g

Pe ¼ fweij ; dij; � � � ji; j 2 ng

8>>>>>><
>>>>>>:

ð2Þ

where, V, E, Tv, Fv, and Pe are the set of nodes, edges, topol-
ogy attributes, flow attributes and path attributes, respectively.
ki is the i-th node degree. weij is the weight of edge eij, BCi is the
Fig. 1 An examp
Betweenness Centrality of vi based on shortest path with

weij ¼ 1. TBCi is the Trip Betweenness Centrality of vi based

on Most Selective Path (MSP). Ii(t), Ei(t) and Ti(t), represent
the ingress passenger flow volume of the station, the egress

passenger flow volume of station and the transferring passen-
ger flow volume, respectively. dij is the Most Selective Path
(MSP).

Definition 1 (The Most Selective Path (MSP)). In the actual

operation of the metro lines, a passenger does not simply
choose the shortest path as his travel route. A passenger
usually weighs both the transfer times and the length of path.

The Most Selective Path (MSP) refers to the path with the
smallest weij from vi to vj in the metro network, with the

mathematical formula as follows,

dij ¼ min weij ð3Þ

weij ¼ j1rij þ j2Ntrij ð4Þ
where, dij is the Most Selective Path (MSP). Ntrij is the transfer

times from vi to vj. rij is the distance from vi to vj and it is

defined as the minimum number of nodes between vi and vj
with the expression of rij ¼ ji� jj. j1 and j2 are the weight

coefficients that satisfy j1 þ j2 ¼ 1.

Definition 2 (The Trip Betweenness Centrality (TBC) based on
MSP). The betweenness centrality of nodes reflects the degree
of topological significance and takes the Most Selective Path

(MSP) into consideration. A BC index, namely Trip Between-
ness Centrality (TBC), is proposed to represent the relation-
ship between MSP and TBC. Compared to BC, TBC can be
used more effective to measure the attraction capacity of a

node i.e., station in passenger flow. In other words, the higher
TBC of a node is, the more attractive for passengers at this
station is. TBCi of the i-th node can be calculated by

TBCi ¼
PR

j;k2G;j–k
djk við ÞPR

j;k2G;j–k
djk

8j; k�URTTNj–k ð5Þ

where djk is the total number of MSP between nodes vj and vk,

djk við Þ is the total number of MSP passed through node vi.
le of URTTN.
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2.2. Calculation of network passenger flow states based on load
entropy

2.2.1. The loads of nodes

The importance of a node is determined not only by topology
location in the network and availability of appropriate alterna-
tives, but also from the load of passengers. It is necessary to
define node load from the perspective of the actual flow and

topology properties to describe the importance of node in
the network. In the meanwhile, the load, as an important
parameter in calculating the characteristics of the entire net-
Fig. 2 The topological diagram of operatio

Fig. 3 The TBCi and BCi o
work flow, offers a basic index to describe the cascading failure
mechanism of the overload of network flow from the perspec-
tive of dynamic behavior, which also needs to be defined.

(1) The node load Li t0ð Þ and capacity Ci t0ð Þ of URTTN
The node load Li t0ð Þ describes the load state of a passenger

flow, which is related to the topological parameter of a node,

the topological parameter of neighbor nodes and the passenger
flow, which can be defined as

Li t0ð Þ ¼ uðTBCi � fli t0ð ÞÞb0 ðTBCi � TBCi1 �
X
i12Ci

fli1 ðt0ÞÞ
b1 ðTBCi1 � TBCi2 �

X
i22Ci1

fli2 ðt0ÞÞ
b2

ð6Þ
n network regarding Beijing rail transit.

f Beijing Metro Line 10.
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fli t0ð Þ ¼ f � ki � Ii tð Þ þ Ei tð Þ þ Ti tð ÞP
Ii tð Þ þ Ei tð Þ þ Ti tð Þ ð7Þ

where fli t0ð Þ is the parameter of passenger flow at time t0 and
Ii tð Þ;Ei tð Þ; andTi tð Þ represent the ingress passenger flow vol-
ume of the station, the egress passenger flow volume of a sta-

tion, i.e., a node and the transferring passenger flow volume,
respectively.ki is node degree.Ci is the neighbor set of vi.
b0; b1; b2 are the influencing and controlling parameters of
nodes themselves, their neighbors and the next neighbors, with

u; f as the adjustment parameter of load.
The capacity of a node is affected by cost constraints, deter-

mining the load capacity of these nodes is often ‘‘according to

effective volume,” therefore, the node capacity and the initial
load Li t0ð Þ can be directly proportionally calculated

Ci t0ð Þ ¼ 1þ sað ÞLi t0ð Þ ð8Þ
where sa is the ‘‘tolerance parameter,” the redundant capacity

for node i, and at the same time, it reflects the additional cost
of node i, the additional burden on capacity and protection for
node i. sa means the maximum allowance ratio for a station

load in URTN.
(2) The description of cascading congestion propagation of

passenger flow
The passenger flow congestion propagation in URTTN can

be modelled based on the relationship between node load
Li t0ð Þ and capacity Ci t0ð Þ of a node.
Table 1 The top 10 stations of Line 10 after sorting by TBCi

and.BCi

Station Number TBCi Station Number BCi

L10S17 0.10553 L10S37 0.177016

L10S15 0.10081 L10S30 0.080753

L10S14 0.09912 L10S34 0.079279

L10S13 0.09787 L10S28 0.078948

L10S26 0.09704 L10S27 0.078156

L10S27 0.09663 L10S26 0.078045

L10S28 0.09655 L10S31 0.076737

L10S11 0.09604 L10S33 0.07554

L10S19 0.09118 L10S32 0.07449

L10S30 0.08999 L10S2 0.071967

Fig. 4 The train dela
The functional abnormal node in URTTN is related to the
crowding degree of passengers in station. From a perspective
of crowding in station, a node has three status, which cascad-

ing congestion scenario is defined as:

Li tð Þ � Ci; normalnodevi

Ci < Li tð Þ < nCi; partialfunctionalfailureofnodevi

Li tð Þ > Ci; thoroughfunctionalfailureofnodevi

8><
>: ð9Þ

a) When Li tð Þ � Ci, this scenario means there is no func-
tional failure at node vi. Passengers on the platform
can move freely; all passengers can board the trains.

b) When Ci < Li tð Þ < nCi, this scenario means there is a

partial functional failure of node vi, the platform is cro-
wed, passengers can get off the train but not everyone
can get on the train.

c) When Li tð Þ > Ci, this scenario means there is a thorough
functional failure of node vi, the platform of this station
is overloaded, the trains pass through the station with-

out stopping, passenger flow congestion occurs and
spreads in the network. Here, n is a system function resi-
lience parameter, which reflects self-healing performance

of transport function and is determined by actual maxi-
mum capacity of station platform, usually let n ¼ 1:3
according to the actual operation experience.

2.2.2. The computation of network macro flow state

The state of passenger flow was calculated by some scholars
[26–29]. Here we have presented the concept of load entropy

to define the state of passenger flow in the Beijing Metro net-
work. As an important concept to research a complicated sys-
tem, entropy [30,31] can reflect the relationship between macro

state variables and micro state ones in a complicated system as
well as the evolution of the system with the employment of the
changes of entropy. The decreasing of entropy means the sys-

tem evolves from a disorder way to an order one, otherwise the
opposite will follow.

Assume Li tð Þ is in the interval 0; x � sÞ½ during the failure

propagation. x successive intervals are defined as
0; sÞ; s; 2 � sÞ; � � � ; x� 1ð Þ � s; x � sÞ½½½ and then the computation
is defined as follows:
y event at Line 10.
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Hn tð Þ ¼ �
XZ x

k¼1

nk tð Þ
N

log
nk tð Þ
N

ð10Þ

where, Hn tð Þ is the load entropy of the URTTN, nk tð Þ is the

numbers of nodes, whose load value Li tð Þ falls within the k
th interval k� 1ð Þ � s; k � sÞ½ , and N is the sum of network
nodes.
2.3. The cascade dynamics of passenger flow congestion model of
URT network in a train delay scenario

According to the Eq. (9), the train delay scenario can be

divided into two kinds of incidents, i.e., partial congestion
and thorough out congestion of trains and platforms in the
network. With the changing parameters of initial load regard-

ing accidental nodes, the cascading congestion model of
weighted URT network regarding passenger flow can be estab-
lished by a subsequent analysis of the dynamic propagation
processes of network overload after the failures of nodes.

For making the evolution model of load accord with the
actual situation in the network, we consider the effect of time
delays here. In case of the delay of the train, the overload in the

failure node will lead to the time delay of congestion and the
redistributed overload entirely in the network. This effect is
expected to occur in the changes of the line capacity. In case

of a node overload, the overload of each node in the network
will not always be at a state of high load. As time goes by, the
congestion will change in a dynamic way, with a self-
restoration.

At the initial time of t0, the initial load of the failure node vi
is Li t0ð Þ. Assume that the load of the failure node is distributed
to normal nodes according to redistribution rules, so there is

an updating of the load of normal nodes in the network, with
DLi as load increment, i.e., Li t0ð Þ! Lj t1ð Þ ¼ Lj t0ð Þ þ DLi.

The load increment DLi distributed to normal node vj is

related to the distance from nodes vi and vj, topology attributes

and the flow of node vj under normal historical conditions. DLi

can be obtained by:

DLi ¼
XZ 3

i¼1

qigi ð11Þ
g1 ¼ c
rij
Len

� 1

2

� �2

� m

" #
ð12Þ
g2 ¼ �1TBCj
2 ð13Þ
Fig. 5 The line capacity function of line 10 in a train delayed

operation.
g3 ¼ #Rln

I
0
j tð Þ

Ih
0
j tð Þ

 !2

ð14Þ

where g1; g2; andg3 are the functions of load distributions of

nodes, including the distance, topology attributes and passen-
ger flow of normal nodes, respectively. q1; q2; andq3 are respec-
tively influencing and controlling parameters of g1; g2; andg3
under historical conditions. c, m, 1, and # are the parameters
of model adjustment, respectively. rij represents the distance

from nodes from vi and vj , which is defined the minimum hops

of the two nodes, with the expression of rij ¼ ji� jj. Len is the

max diameter of URTTN.
Different metro lines have different transportation capac-
ity. In the delayed train operation scenario, the Transport
Capacity will decrease correspondingly. Here let Rln be the

function of the actual transportation capacity with respect to

the metro lines. I
0
j tð Þ and Ih

0
j tð Þ represent the discrete ingress

passenger flow volume of the station per minute and per hour,
respectively, under normal historical operating conditions.
Given the difficulty in acquiring the data of passenger flow
with the time interval of train departure, we use polynomial

interpolation method [32–35] to discretize the passenger flow

data of Ih
0
j tð Þ to acquire I

0
j tð Þ minutely and describe the evolu-

tion process of passenger flow state.

3. Case study

3.1. The topological network and the data

(1) Development of Beijing Metro topological network

Fig. 2 shows topological network based on Beijing Metro

network in 2013. In this figure different sizes of circles show
the different values of TBCi regarding all nodes, with the con-
struction of the topological diagram.

The analysis of Beijing Metro Line 10 (from L10S0 to

L10S44) is used to demonstrate the proposed methodology.
Fig. 3 shows the calculation results of node topological sig-

nificance by using Eq (5). Take station L10S37 as an example,

its BCi value is 0.177 only considering the factor of topology.
But passengers do not simply choose the shortest path as their
travel route. Once they consider both the transfer times and

the length in the path, the betweenness centrality drops to
0.068. Station L10S37 (Name: Lianhuaqiao) is located in a
small circle consisting of Line 1 (from L1S0 to L1S18), Line

10 and Line 9 (from L9S0 to L9S12). This leads to more trans-
fers in travel routes and lower TBCi value.

The median of TBCi obtained by statistical analysis is
0.08158, and the median of BCi obtained by statistical analysis

is 0.05224. According to Table 1, the topological significance
of nodes varies with TBCi and BCi changes. Considering both
topology and transfer times factors, the topological signifi-

cance of some stations with TBCi index has increased com-



Fig. 6 The discretized ingress passenger flow of six stations in Line 10.

Fig. 7 The node load of line 10 at different time in a train delayed operation.

Modelling cascade dynamics of passenger flow congestion in urban rail transit network induced by train delay 8803
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pared with BCi index, such as L10S17, L10S15, L10S14,
L10S13. The calculated topological significance of stations
with TBCi such as L10S26, L10S27, L10S28 are almost

unchanged compared with BCi index. Stations such as
L10S37, L10S30, L10S34, L10S31, L10S33 and L10S32 are
not in the top 10 stations list of TBCi.

(2) The source of the passenger flow data and the back-
ground of train delay event
Fig. 8 The comparison between the actual situation of passenger fl
The data of passenger flow within the interval of 07:30–
09:30 regarding the whole network of Beijing Metro on a given
date of October 2013 are collected.

The truth of the train delay event is shown in as Fig. 4 to
conduct a simulation of the state evolution process in the net-
work in a delayed train operation scenario. This event arose

from the turnout fault in a downward direction at Line 10.
According to Fig. 4, cascading failures is triggered by Sig-

nal failure happened in Section L10S5 to L10S6, and the begin-
ow (a) and the simulation results from state evolution model (b).
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ning and termination time intervals of 07:30–09:25 is set
regarding the model simulation, with the data of passenger
flow at 07:30 at the Station of L10S5 as the simulated initial

load.

3.2. A comparative analysis of the actual situation and the
simulation results of network passenger flow state

(1) Determination of the line capacity function Rln

To determine the parameter Rln in the simulation model,
that is, the actual transport capacity function of the line, this
paper gives the line capacity function of line 10 under the train

delayed operation in October 2013 according to Fig. 4, as
shown in Fig. 5.

In Fig. 5, The line capacity function normally equals one,

when Signal failure happened, the driver received a dispatch
instruction of lower speed, the line capacity drops. Then fault
repair occurred and Line stopped service for a period, the line
capacity reduces to zero. Finally, Line operation gradually

recovered and the line capacity gets back to normal standard.

(2) The discretization of hourly passenger flow data Ih
0
j tð Þ

For calculating the node load and describing the evolution
process of passenger flow state, the hourly passenger flow data

Ih
0
j tð Þ is discretized into the data of I

0
j tð Þ on a minutely basis

according to polynomial interpolation, see Fig. 6.
(3) The load of nodes in the network
The load of nodes in the network is calculated in accor-

dance with the formula (6) in Part 2.2. Due to the limitation
of the length of an article, we have chosen the load of nodes
at Line 10 for an analysis, the outcome of which is shown as

Fig. 7.
Fig. 9 The load increment (a) and the load distribut
As can be seen from Fig. 7 that the load is composed of that
of topology and flow. A bigger betweenness and passenger
flow volume at a transference station will lead to a larger load

value than that at ordinary stations. The transference stations
like TS/L10S29/L4S22 (Name:Jiaomenxi), TS/L10S9/L55
(Name: South Huixinxijie), TS/L13S12/L10S10 (Name:

Shaoyaoju), TS/AES1/L10S12 (Name: Sanyuanqiao), TS/
YLS0/L5S22 (Name: Songjiazhuang), TS/L10S36/L9S6
(Name: Liuliqiao), and the load value of node TS/L1S7/

L10S38 (Name: Gongzhufen) is comparatively bigger within
the time interval of 09:00–09:25.

With the load value (the initial load) at the time of 07:30 as
the basis (making a reference to the column in Fig. 8) and in

accordance with the evolution model of passenger flow in the
network in case of a delayed train operation, we have con-
ducted a simulation of passenger flow state within the interval

of 07:30–9:25, with the acquisition of the maximum value and
the minimum value of the load at different stations at Line 10
in case of a delayed train operation (making a reference to the

short vertical line in the interior of the column in Fig. 8). The
simulation outcome of the model revealed in Fig. 8 roughly
corresponds to the actual load trend of passenger flow.

Load changes have been revealed regarding the load incre-
ment of DLi distributed from other nodes in the simulation
model and the distributed functions g1; g2; g3 of node load
(see formulas (9)–(11)), as Fig. 9 shown. The three distributed

functions of node load, as the decisive parameters of load
increment, will have a direct effect on the load value at the next
time.

With the computation of the load of each node in the net-
work and in combination with the computation method of net-
work state based on load entropy, we have acquired the
ion functions g1; g2; g3 respectively (b), (c) and (d).



Fig. 10 The actual situation and the simulation result regarding passenger flow state of the network in case of a train delayed operation.
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diagrammatic sketch regarding the state of passenger flow at
different time which is shown in Fig. 10.

The changes in the value of load entropy have reflected the

evolution process in the system of passenger flow of the net-
work. We have discovered from a comparison that the
acquired simulation result based on the proposed model is

basically consistent with the actual data of passenger flow.
There are two typical cases of state transition in the chart.

Firstly, within the time interval of 07:50 ? 07:55, the value of
Hn tð Þ increases from 1.508 to 1.621, with the evolution of the

passenger flow system from an order state to a disorder one,
there is a serious imbalance of the load of the whole network
and the subsequently continual congestion at the stations.

Many lines are involved in this congestion. Secondly, within
the time interval of 07:55 ? 08:00, the value of Hn tð Þ decrease
from 1.621 to 1.511, there is a continual congestion at the sta-

tions of the network. The congestion is at one single line, i.e.,
Line 10, with no effect on the passenger flow at other lines. The
reason is that the failure immediately aroused the attentions of

government departments, and within a certain time of
response, the government have taken necessary measures to
require the trains to pass these stations at a low speed to
resume the normal operation.

Within the time interval of 09:00 ? 09:25, there is a relative
balance of the load of the whole network, which means the
state level of network passenger flow is in an acceptable range,

and passenger flow in only several stations reach the saturation
state.

4. Conclusions

In this paper, the conceptualized expression method of passen-
ger flow state is innovatively presented based on the proposed

definition of load. The node load concept describes the load
state of passenger flow, which are related to the topological
parameter of node, the topological parameter of neighbors
and the passenger flow. A bigger betweenness and passenger

flow volume at a transference station will lead to a larger load
value than that at ordinary stations, such as transfer stations
TS/L10S29/L4S22, TS/L10S9/L55 within the time interval

09:00–09:25.
The Most Selective Path is innovatively proposed which

refers to the path with the smallest weight. considering the

MSP, the Trip Betweenness Centrality (TBC), is proposed.
Compared to BC, TBC is more effective to measure station’s
capacity of passenger flow attraction. Stations with higher
TBC serve more passenger trips. When the subjective views

factor of passengers is introduced, the topological significance
of some stations with TBCi index has increased compared with
BCi, such as L10S17, L10S15, L10S14, L10S13.

As the second contribution of this paper, the cascade
dynamics of passenger flow congestion model of urban rail
transit network in a train delay scenario, is established with
a comprehensive consideration of TBC, the function of trans-

portation capacity of the lines, the factor of congestion time
delay and parameters of ingress volume at the stations. Taking
Beijing Metro Line 10 as an example and in combination with

the actual data of passenger flow, the outcome of simulation
has established. What can be acquired from the cascading
propagation model basically corresponds to the actual data

of passenger flow.
There are two typical cases of state transition within the

time interval 7:50–08:00, which means that serious imbalance

of the passenger flow load in the entire network occur. The
congestion of passenger flow arising from turnout failure at
section L10S5 to L10S6 influences many other lines. At
08:55, there is a relative balance of load of the passenger flow

in the whole network within the acceptable range of passen-
gers. Next work, we will go on our research into the propaga-
tion rules of passenger flow congestion and the optimization of

the function of line capacity in the model.
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