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Abstract

This paper investigates acoustic wave propagation in gas-saturated permeable lossy meta-
materials which have different types of resonators, namely acoustic and elastic resonators, as
building-block elements. By using the two-scale asymptotic homogenization method, the macro-
scopic equations that govern sound propagation in such metamaterials are established. These
equations show that the metamaterials can be modelled as equivalent fluids with unconventional
effective density and compressibility. Analysis of these frequency-dependent and complex-valued
parameters shows that the real parts of both can take negative values within frequency bands
determined by inner resonances. The upscaled theory is exemplified with the case of a permeable
lossy metamaterial having a unit cell comprising two unconnected fluid networks and a solid frame.
One of these fluid networks is loaded with acoustic resonators (e.g. quarter-wavelength, Helmholtz
resonators) while thin elastic films are present in the other one. It is shown that the propagation
of acoustic waves in permeable lossy metamaterials is determined by both classical visco-thermal
dissipation and local elasto-inertial resonances. The results are expected to lead to judicious
designs of acoustic materials with peculiar properties including negative phase velocity and phase
constant characteristic for regressive waves, very slow phase velocity, and wide sub-wavelength

band gaps.
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I. INTRODUCTION

Metamaterials are artificially structured materials with atypical effective parameters that
are primarily determined by the metamaterials’ microstructure instead of chemical compo-
sition. Research on acoustic metamaterials, reviewed in [1-3], has rapidly grown since the
works by Liu et al. [4] and Fang et al. [5] who reported, respectively, acoustic metamate-
rials exhibiting negative real part of the effective density and compressibility in a narrow
frequency band. In both cases, this is due to the resonant behavior of the metamaterial
constituents; with consequences being the existence of sub-wavelength bandgaps (i.e. fre-
quency bands where wave propagation is forbidden), slow phase velocity, and high levels
of sound attenuation. A negative real part of the effective parameters indicates an out-of-
phase response. For example, in a material with negative real part of the effective density,
the movement of the equivalent continuum is in the opposite direction to the driving force;
while in a material with negative real part of the effective compressibility, the equivalent
continuum expands upon an exerted pressure. Acoustic metamaterials exhibiting simultane-
ous negative real part of the effective density and compressibility have also been investigated
in a number of works, e.g. [6-15]. Due to their peculiar properties, these so-called double-
negative acoustic metamaterials have found application in, for example, sub-wavelength
imaging [16-18] and realizing reverse Doppler effect [19, 20]. In addition, the last decade
has seen a wealth of literature on acoustic metamaterials primarily intended for sound atten-
uation, with examples including waveguides loaded with resonators [21-25], coiled-space or
labyrinthic metamaterials [26-30], arrays of membranes with added masses [31-33|, arrays
of Helmholtz resonators [34, 35|, and permeo-elastic media [36, 37]. The atypical acoustical
properties of most of these metamaterials rely on the resonant behavior of their constituents.
Hence, the unconventional acoustic behavior is confined to narrow frequency bands. While
this limitation could, at least in part, be overcome by visco-thermal losses, it is known that
excessive losses can deteriorate the performance of acoustic metamaterials (see, e.g., [3, 38]).
This clearly points out the need to properly account for losses in the modelling of acoustic
metamaterials. This is done in this paper by using methods and analyses common for porous
media acoustics [39-43]. For porous materials, the effects of losses have been widely studied,
with examples being works on wave propagation in single porosity materials [44-48], such as

arrays of pores (see, e.g., [49-53]), granular materials [54-59], fibrous materials [60-63], and
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cellular materials [64-67]; multiscale porous media [59, 70-79]; and porous composites [80—
83].

Air-saturated acoustic metamaterials with unit cells comprising thin elastic solids and
acoustic resonators have been a subject of extensive research in recent years. Lee et al. [§]
investigated wave propagation in a channel with interspaced clamped membranes and side
holes. In this structure, which was built and tested, the identical membranes disconnected
the fluid phase. The effective density and bulk modulus were modelled using a "lumped-
element" approach while visco-thermal losses and fluid interaction with the membranes were
not taken into account. In other words, the material was modelled as an equivalent loss-
less fluid with real-valued effective properties that can simultaneously take negative values.
While the experiments confirmed this assumption for the tested material, it was left to
theoreticians to justify it. Similarly, Bongard et al. [9] investigated a one-dimensional struc-
ture comprising a channel with clamped membranes and transversally connected radial open
channels. Using circuit theory and a transmission line approach, the membranes, which dis-
connected the channel’s fluid network, were modelled as compliances while the open channels
as shunt acoustic masses. The effects of visco-thermal losses were discarded due to the large
characteristic size of the structure. The full-wave finite element simulations confirmed that
the material exhibits negative, zero, or positive refractive index, depending on the frequency
range. An acoustic double-negative metamaterial consisting of a channel with an array
of interspaced clamped membranes and laterally loaded Helmholtz resonators was studied
in [11]. As in the above mentioned works, the membranes rendered the channel’s fluid net-
work disconnected and visco-thermal losses were not considered. In this work, the possibility
of simultaneous or separate negative effective density and bulk modulus was experimentally
demonstrated. As in [9], these results were theoretically explained using both circuit theory
and a transmission line approach. On the other hand, Lee and Wright [13] introduced the
concept of hidden force and hidden source of volume to theoretically explain the negativity
of the real-valued effective density or bulk modulus of a lossless material identical to that
studied in [11]. Recently, Bellis and Lombard [15] used prototypical frequency-dependent
expressions for the effective density and bulk modulus of a material with the same geometry
as that studied in [11], in order to develop a time-domain model of sound propagation in
a waveguide coupled with Helmholtz resonators and elastic membranes. The losses were

described by a single lumped-type parameter in the expression for the complex-valued effec-
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tive bulk modulus; while the effective density was considered to be a real-valued function.
In all the works, mentioned in this paragraph, the single fluid network of the metamaterial
was disconnected and the macroscopic equations that govern acoustic wave propagation in
the metamaterial were directly postulated, instead of being derived using homogenization
techniques. The latter implies that a recipe for the calculation of the effective parameters
from the solution of boundary-valued problems that govern the local fluid physics is not yet
available.

This paper investigates sound propagation in gas-saturated permeable lossy metamateri-
als with unit cells composed of a perfectly rigid and impervious solid domain and two fluid
networks. The fluid that saturates one of the networks is in contact with the fluid that
saturates an acoustic resonator (e.g. quarter-wavelength, Helmholtz resonator). The second
fluid network contains a thin elastic film which strongly interacts with the fluid. Despite
the presence of the film, the fluid network remains connected. One of the key contributions
of this work is an upscaled theory of acoustic wave propagation in gas-saturated permeable
lossy metamaterials. The macroscopic equations are derived using the two-scale asymptotic
method of homogenization [43] and demonstrate that permeable lossy metamaterials can be
modeled as equivalent fluids with complex-valued frequency-dependent effective parameters.
These parameters describe the influence of local visco-elasto-inertial effects on the acous-
tical properties of the metamaterial. We also present i) a comprehensive analysis of the
effective parameters of permeable lossy metamaterials, starting from a microscale descrip-
tion and unraveling the physical origin of their atypical acoustic behavior; and ii) an hybrid
(numerical-analytical) model for exemplifying the unconventional acoustical properties of
the metamaterials.

This work continues results on oscillatory fluid flow and heat conduction in single porosity
media [44-48, 51-53, 67|, double porosity media [59, 70-72], and porous composites [82,
83|, as well as on oscillatory fluid-film interaction [36, 37]. The findings will be helpful
in the bottom-up design of acoustic metamaterials for applications related to wave control
and can be exploited together with the results of other works on oscillatory fluid flow in
waveguides [84-87].

The paper is organized as follows. The macroscopic equations that govern sound prop-
agation in permeable lossy metamaterials are established by homogenization in § II, with

the details of the derivation being presented in the Appendix A. The asymptotic analysis
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of the effective parameters of the metamaterial is presented in § III, while § IV introduces
an hybrid model which is used in § V to exemplify key features of the effective parameters
and acoustic behavior of permeable lossy metamaterials. Concluding remarks are presented

in the last section of the paper.

II. ACOUSTIC WAVE PROPAGATION IN PERMEABLE LOSSY METAMATE-
RIALS - THEORY

A. Geometry and key assumptions

A generic geometry of the periodic acoustic metamaterials investigated in this work is
shown in Figure 1. The representative elementary volume (REV) has a period ! and com-
prises the domains €, = Qyr U, UQys and Qg = Qg UQys. The perfectly-rigid solid part of
the REV is Q, = Qs U Qy, and its walls are I'y = T’y UT'y,. An acoustic resonator €2,, such
as a quarter-wavelength or a Helmholtz resonator (as in the diagram), is in contact with
the fluid-saturated domain €y through the fluid-fluid interface I',;. The thin elastic film I’
is clamped onto the perfectly-rigid and impervious solid domain €24 and strongly interacts
with the fluid that saturates Qq. Outward pointing normal vectors are denoted as n and N.
The macroscopic characteristic length L is related to the wavelength A of the acoustic waves
A = 2wL. Throughout the paper, it is assumed both that A > [, i.e. a long-wavelength
regime is considered, and harmonic dependence of the type ¢*. The former ensures a good
separation of scales and allows defining a small parameter ¢ = [/L < 1.

It must be noted that since the gas-saturated parts of €2, and €y, i.e. Q4 and Qyy, are not
connected, no interaction between the acoustic and elastic resonators is possible. The case
where the resonators share a common fluid network and interact, either weakly or strongly,

is beyond the scope of this work.

B. Local governing equations

Acoustic wave propagation in s is governed by the Stokes-Fourier system and boundary

conditions of zero velocity and excess temperature on I’y as well as continuity of mass flux,
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FIG. 1: Periodic geometry of a generic permeable lossy metamaterial. Top left — 3D
macroscopic medium. Top middle — 3D Representative Elementary Volume (REV). Top
right — Cutaway view of the 3D REV. Bottom left — 2D representation of the macroscopic
medium. Bottom right — 2D representation of the REV. The clamped films I" are shown in
green, while the acoustic resonators 2, in blue. The solid frame in shown in gray and the
pore fluid networks are transparent. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article)

pressure, and temperature on I',, namely

div(2nD(vy)) — Vpy = jwpevy, in Qyp, (1)

jwor +poV vy =0 in (2)

KV - VT, = jwpocpTs — jwpy 0 Oy, (3)
7
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v =0 on I, (5)
=0 on T, (6)
povy-n=pgv,-n on [y, (7)
po=pr on I'ug, (8)
=17 on [,p (9)

The physical parameters are the dynamic viscosity 7, specific heat capacity c,, thermal
conductivity x, and equilibrium pressure I, density pg, and temperature 75. The unknown
variables are the oscillating velocity v, pressure p,, density p,, and temperature 7,; while
D(vy) = 3(Vvy + (V)T — 2V - wI) is the deviatoric strain rate tensor, where I is the
unitary second-rank tensor. Note also that v,, p, and 7, are, respectively, the fluid velocity,
pressure, and temperature in the resonator, which as shown in Appendix A are not required
to be specified.

The propagation of acoustic waves in the fluid-saturated part of the permeo-elastic
domain, i.e. Qg is governed by the Stokes-Fourier system Eqs.(10)—(13) coupled with
Egs. (14)—(16) that govern the dynamics of the clamped film. The film, modelled as a
Love-Kirchhoff plate [36], can be pre-stressed, which means that bending and membrane
effects are accounted for [37]. The system is completed with clamping boundary conditions
formulated on 9T, i.e. Eq. (18), and conditions of zero velocity and excess temperature on

Iy, i.e. Eq. (19) and (20).

div(2nD(vq)) — Vpg = jwpeve in  Qgy, (10)
jwpa+poV vy =0 in Qg, (11)
KV - VT4 = jwpocyTa — jwpa In Qgy, (12)
bPa _ Pa | Ta .
— =—+— in Q. 13
Py opo o v (13)
V(T +TVug) = —w’petug—[0q-N]-N on T (14)
T = —div(M) on T, (15)
M = EI ((1 — V)&(Vug) + 1V - %dl) on T, (16)
8
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vg=jwugN on T, (17)

ug=0 and Vug-n=0 on OrI. (18)
vg=0 on T, (19)
Td = 0 on Fds url. (20)

The unknown variables in Eqgs.(10)—(13) are analogous to those in Egs. (1)—(4). In Egs. (14)-
(18), the tilde on the differential operators denotes that these act on the plane I'. For
instance, e(+) = (grr;i(~)+gfr\a/dT(-))/2 is the symmetric part of the in-plane gradient operator.
The out-of-plane shear stress vector T and the bending moment of the in-plane stress tensor
M are integrated over the film thickness ¢. The "plate" modulus of the films is F =
E/(1 — v?), where E and v are the Young’s modulus and Poisson’s ratio, respectively. The
bending stiffness is ET, where I = #3/12 is the moment of inertia of the plate. The surface
density of the films is p.t and the thickness of the films satisfies ¢ < [. In addition, the
film is loaded by the action of the fluid on its faces and its own inertia, as represented
by the right-hand side terms of Eq. (14). The former is the jump across I' of the normal
component of the fluid stress vector, i.e. [0y - N| - N, where [-] represents the "jump’ across
I' (e.g. [a] = a™ —a~, with the superscript T and ~ representing the opposite faces of the
film). Furthermore, it has been considered that the film has been isotropically and uniformly
pre-stressed by o7 = o7l = (T /t)I, where T is the uniform tension per unit length.

The two-scale asymptotic method of homogenization [43] is applied, as shown in the
Appendix A, to the set of equations (1)—(20) in order to establish a macroscopic description
of sound propagation in permeable lossy metamaterials. The general steps of the upscaling
process are the analysis of the local physics, rescaling of the local description, searching of
the unknown variables as series expansion in terms of the small parameter ¢, identification
of boundary-value problems, and determination of the effective macroscopic equations that
govern the propagation of sound waves in permeable lossy metamaterials. The latter is

presented in the next section.

C. Macroscopic equations and effective parameters

The macroscopic equations that govern sound propagation in permeable lossy metama-

terials are the mass balance equation (21) and the fluid flow constitutive law (22) (see

9



AlP

Publishing

Appendix A for their derivations), namely

V-V = —jw(ppdsCor(w) + padaCa(w)), (21)
V= _d)bk:](w) X Vpb _ ¢dk1(;(w) . vpah (22)

where V and p, and py represent the averaged fluid velocity and pressures in the permeable
lossy metamaterial, respectively. The subscript in the differential operator and the super-
script denoting the order in the variables have been dropped to ease the notation. The
effective parameters of the model are described below.

Egs. (21) and (22) demonstrate that the acoustic response of the investigated perme-
able lossy metamaterials is described by a two-pressure model. This is a consequence
of the decoupled nature of the pore fluid networks €}y and Qg4 and differs from classi-
cal single-pressure models for conventional, multiscale, or composite porous materials (see
e.g. [42, 43, 77, 82, 83]). However, the acoustic response of permeable lossy metamaterials
can be described by a single-pressure model under the following conditions. Consider a
metamaterial layer for which its thickness is much smaller than the sound wavelengths |\, |
(with ¢« = b,d) and, at the same time, larger than the metamaterial’s period. In such a
case, the pressure gradient, determined by the pressures at the extremities of the layer, is
identical in both effective fluids. It then follows that the pressures p, and py are also equal,
i.e. p, = pqg = p, and the two-pressure model can be reduced to the following single-pressure

model that describes the apparent acoustic response of permeable lossy metamaterials:

V-V = —jwpC(w), (23)
k
V= —% - Vp. (24)
Here, the effective compressibility C is given by (with ¢, = Q5 /Q and ¢q = Qg /Q)
C(w) = @beT(W) + ¢dCd(w) (25)

The effective compressibilities Cp. and Cy read as (see § A4 for their derivation)

Cpr(w) = Cy(w) + Cp(w), (26)
6w) = (1= T tiome, 242 (27)
2 Vr(w)
Cr(w) = z i (28)
10
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Ca= %0 (1 - FVT_lijOCp@dﬁw» ; (29)
where the thermal permeabilities are calculated as O,(w) = (6,(y,w)), (with ¢ = b,d, see
also §A 3b), L = 20 /T, s is a characteristic length, and Y, (w) is the effective admittance of
the resonator. Exact expressions for the admittance depending on the type of the resonator

are presented in the Appendix B.

The dynamic visco-elasto-inertial permeability tensor k(w) is given by
k(w) = ¢dpky(w) + ¢aka(w), (30)

where the dynamic visco-inertial permeability of the effective fluid saturating €y, i.e. ks,
and the dynamic visco-elasto-inertial permeability of the effective fluid saturating Qg i.e.
kg, are given by
ky(w) = (ky(y, )y and ky(w) = (ka(y,w))a, (31)
where k;(y, w) and ky(y, w) are calculated from the solution of the boundary-value problems
detailed in § A3a and § A 3c, respectively.
On the other hand, the effective density tensor p is related to the visco-elasto-inertial
permeability tensor through
p(w) = J%k‘l = (dopy " + 0apg") ", (32)
where p, = 1k, ! /jw and p, = nk;"'/jw.
For the analyses and examples to be presented in the next sections, it is pertinent to

recall that the effective wave number k.(w) and speed of sound c¢(w) are given by

ke = /@) C@) = wlp(w) [ 2]Cw) 2%, (33)
W eife(@) y
=T~ @@ (39

These expressions are valid for macroscopically isotropic metamaterials or when considering

a preferential sound propagation direction (i.e. the effective density tensor becomes p(w) =
p(w)I), and 0,(w) and Oc(w) are the frequency-dependent phases of the effective density and
compressibility, respectively.

The phase of the effective speed of sound and wave number are respectively given by

0,(w) + Oc(w)

gc(w) = 2

and Oy (w) = —0.(w). (35)

11
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In summary, the two-pressure model [Egs. (21) and (22)] and its reduction to a single-
pressure model [Egs. (23) and (24)] are the main contributions of this paper. The lat-
ter model shows that a permeable lossy metamaterial can be modelled as an equivalent
fluid with effective complex-valued frequency-dependent parameters k and C. Specifically,
Eq. (23) demonstrates that the effective compressibility depends on the classical effective
compressibilities of the fluid saturating the pore fluid networks, i.e. C, and C; which are
determined by the losses caused by the thermal exchanges between the saturating fluid and
the solid frame of the material, and an apparent compressibility, i.e. C,, that accounts for
the influence of the identical acoustic resonators through the effective admittance ). It is
the latter that induces atypical acoustic behavior, as it will be shown in § III where the
properties of the effective compressibility are analyzed in detail. On the other hand, despite
the formal similarity between Eq. (24) and the dynamic Darcy’s law [44], Eq. (24) does not
correspond to such a law [36, 37]. This is because the elastic and inertial effects in the films
as well as the viscous and inertial effects in both pore fluid networks affect k. The interplay
between these effects also contributes to an atypical behavior of the medium, as will be

shown later in the paper.

To conclude this section, it is worth highlighting degenerate cases of the upscaled model
given by Eqs. (23) and (24). If the acoustic resonators are not present and the films are
absent or can be considered as perfectly rigid, the upscaled model reduces to that of wave
propagation in double porosity materials with weakly contrasted permeabilities [72]. If the
permeo-elastic channel is absent, i.e. ¢4 = 0, the resulting upscaled model is that of wave
propagation in a fluid-saturated array of resonators [34, 35]. If the resonators are replaced
by a perfectly rigid impermeable solid, the upscaled model for wave propagation in single
porosity materials [44, 48] is retrieved, which is also the case if ¢, = 0 and the films are
perfectly rigid. On the other hand, if ¢, = 0, then the upscaled model for wave propagation in
permeo-elastic media [36, 37] is retrieved. In addition, the upscaled model introduced in this
work degenerates to that of wave propagation in porous composites with weakly contrasted
permeabilities [82] if ¢4 and ¢, are the volume fractions of the porous constituents and the
effective parameters Cy, kg, C;, and k; are interpreted as those of the porous constituents b

and d accordingly.

12
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III. ANALYSIS OF THE EFFECTIVE ACOUSTIC PROPERTIES

Here, the low- and high-frequency behavior of the effective parameters is investigated,
together with that at several characteristic frequencies. As previously, a preferential sound
propagation direction is considered for simplicity. Hence, the tensors are replaced by the
scalars IC, Ky, KCq, p, pp, and pg, which can represent the norms of the respective tensors.
Such approximation is valid for isotropic or even moderately anisotropic metamaterials.

In what follows, the frequency-dependent terms, derived in the Appendix C, that link
the local fields and the effective parameters will be used for the analysis. For the oscillatory
flows, these correspond to V, = R(K;) and Z, = —S(Kp), which reflect the dissipated
viscous and kinetic energy in Qyy, respectively; and to Vg = R(Kq), €4, and Z,; which reflect,
respectively, the dissipated viscous, elastic, and kinetic energies in Q4. These are strongly
affected by the fluid-film interaction. Note also that &; is determined by the elasticity of
the films, Z; is affected by the inertia of both the fluid and the films, and S(KCy) = &5 — Za.
For the oscillatory temperature fields, these correspond to H, = (v — 1)R(0,)/v0? and
S, = —(v = 1)S(0,) /762 (with ¢ = d,b), where S, and H, reflect the stored and dissipated

(due to heat conduction) energies, respectively.

A. Effective dynamic permeability and density

The dynamic visco-inertial permeability I, behaves classically. Hence, it tends to

52
ch(w < wub) — ICb(w = 0) = ’C()b and ICb(w > wvb) — —ja v s (36)
oob

where wy, = V/KopQoob, Kop, and aep are the viscous characteristic (or Biot) frequency,
static viscous permeability, and tortuosity of the pore fluid network 2, respectively. The
boundary layer thickness is 9, = \/1//7, where v is the kinematic viscosity of the saturating
fluid. Let us recall that the Biot frequency determines the transition from viscosity- and
inertia-dominated oscillatory flow in the pore space (¢ and indicates the frequency at which
the dissipation of sound due to the viscosity of the fluid saturating the said pore space is
maximized. Moreover, at the Biot frequency one has that Z(wy) = Vy(wep)-

Then, the magnitude and phase of the dynamic density p, tend to

2
C

e and |pp(w > wip)| = Pooch, (37)
0b

|pp(w < wep)| = po

13
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Op(w < wyp) = —g and  O,(w > wy) — 0. (38)

The dynamic visco-elasto-inertial permeability Iy has a complex behavior in frequency,
as discussed in detail in [36, 37]. Several characteristic frequencies can be defined as follows.
The visco-inertial characteristic frequency w,q determines the transition from viscous- to
inertia-dominated flow. Note, however, that w,q is defined, in the absence of elastic effects
(i.e. & — 0), implicitly through Vi(wys) = Za(wwg). Similar to classical porous media,
an estimation of this frequency is wyq = V/Kog@eoa. In this expression, Koy = Vi(w —
0) is the static permeability, which is well approximated by that of material with same
geometry as that of the permeo-elastic one but with perfectly rigid instead of elastic films;
and aooq = 62I; Hw > wyq) is the respective tortuosity, which is affected by the fluid-film
interaction [36, 37]. Then, the limiting behavior of Ky is formally similar to that shown in
Eq. (36) but with the subscript b — d. Consequently, the magnitude and phase of pg tend
to the values quoted in Eq. (37) and Eq. (38) (with b — d), respectively.

On the other hand, elasto-inertial characteristic frequencies which correspond to an anti-
resonance frequency wqq and a resonance frequency wgyq can be defined [36, 37] when viscous
effects are negligible (i.e. when V; — 0). In both cases, the elastic energy is compensated
by the kinetic energy, which means that we and wyq are both implicitly defined through
&4 =1Z4. Then, K, behaves as [37]

Kiw =weq) =0 and Ky(w = wyq) — co. (39)

At the anti-resonance frequency wyy, the mean fluid velocity tends to zero when the system
is excited by a finite pressure gradient. Physically, this implies that the internal motions of
the fluid-film system compensate. At the resonance frequency wyy, the mean fluid velocity
takes large values when the system responds to a finite pressure gradient.

It then follows that the magnitude and phase of the effective density py tend to

|pa(w = wea)] = 00 and  |pa(w = wyq)| — 0, (40)
T ™
Opy (W = Waq) = —5 and 0, (w = wg) — -5 (41)

It is clear that in the frequency band (wqq, wyq), the magnitude of pq is a decreasing function
of frequency, while its phase reflects that the movement of the equivalent fluid is in the

opposite direction to the driving force, i.e. §,, tends to
0py(Wadg < W < Wyq) = —T. (42)

14
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Consequently, the real part of p, is negative in the frequency band (Weq, wga), i.€¢ R(pa(waa <
w < wya)) < 0.

Gathering the previous results, the limiting behavior of the effective permeability and
density of the permeable lossy metamaterial is identified. For negligible elastic effects, the

former behaves as

52
K(w < wy) = opKpo + 0alao = Ko and K(w > w,) — —jqﬁa” , (43)

where a, = ¢/ (gpay+dacy) is the overall tortuosity of the metamaterial and ¢ = @+ ¢

The Biot frequency w, is implicitly defined through
¢be(wv) =+ ¢)dVd(wv) = qﬁbIb(wv) =+ (f)dId(wv) with (Z)dgd — O7 (44)

and can be well estimated by w, = ¢v/Kotso.
The magnitude and phase of the dynamic density p tend to
2

J,
lp(w < wy)| — pOK—” and |p(w > w,)| —
0

P00

3 (45)

0w K wy) = ,g and  0,(w > w,) — 0. (46)

The locally resonant behavior of the perme-elastic domain affects the effective perme-
ability and density of the permeable lossy metamaterial. The elasto-inertial characteristic

frequencies w, and w, are implicitly defined through

Gala(wei) = O Ty(Wes) + pala(wes) with (P Vy(wei) + daVa(wes)) — 0, (47)

where w,; equals to either w, or wy.

At the anti-resonance frequency w, (respectively resonance frequency wg), one has that
K(wa) — 0 (respectively K(w,) — o0). It is worth highlighting that w, is determined by
the elasticity and inertia of the films and the fluid saturating €%y and 4. The relationship
between this anti-resonance frequency and that of the permeo-elastic domain w,, is shown
to be w, > wyy, with the equality being observed when Z, — 0. On the other hand, since
Ka(wgq) — o0, the overall permeability also tends to oo at the resonance frequency wy = wgqy.
Hence, w, does not depend on fluid flow in €2,¢. These results lead to the following behavior

of the effective density
lp(w=w,)| =00 and |p(w=uw,)|—0, (48)
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0,(w=uw,) = —g and  0,(w =w,) — —g. (49)

Note also that in the frequency band Ay = (w,,wy), the magnitude of p is a decreasing

function of frequency, while the phase of the effective density tends to
0,(we <w < wy) = —. (50)

This shows that the real part of p is negative in this frequency range and means that the
movement of the equivalent fluid is in the opposite direction to the driving force.

At this point, some remarks are pertinent: i) despite the fact that the flow in the fluid
network Qg is uncoupled from that in €, the latter still affects the overall anti-resonance
frequency of the permeable lossy metamaterial. This enables the tuning of w, by, for example,
modifying the pore morphology €,;; and thereby the tuning of the band where R(p) < 0,
and ii) the small but non negligible viscous dissipation leads to damped resonances and, as
a consequence, removing the singularities of the effective parameters, while the excess of

dissipation can over damp the resonances.

B. Effective dynamic compressibility

Consider frequencies much smaller than the thermal characteristic frequencies wy,, defined
through H,(wy,) = S,(we,) and estimated as wy, = K/poc,Oq,, Wwhere Oy, is the static thermal

permeability of the pore fluid network Q,; (with ¢ = d,b). At the leading order, H,(w <

wy) = “’;1“% and S,(w < wy,) = 0. Hence, O,(w < wy,) = O,(w = 0) = Oy,. For w > wy,,
the leading-order limiting values are H,(w > wy) — 0 and S,(w > wy,) — (v — 1)/7,
ie. ©,(w > wy) — —jé2, where the thermal boundary layer thickness is &; = \/W.
Consequently, the effective compressibilities C; and C, behave classically, i.e.

1 v—1jw 1
C, . —(1-— and C, . —. 51
(w << wy) = Po( 5 wu) an (w>>wt)_>7P0 (51)

The magnitude and phase of the effective compressibilities then tend to

1 v—1wl? 1
Clw<wy) — —= 1+{——} and |C(w > wy)| > —, 52
€ w1+ [T 2 o> w)ls 6
Oc(w—0)—=0 and Oc(w>wy) — 0. (53)
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Using Eq. (C.20), one then obtains that (with w™® = min (wy,w) and W™ =

max (Wﬁn wtd))

C(w<<wfﬂn):{¢’b+¢b2y“ @:|_~|:¢b7*1w+ 2 YR amfmy .

Lw R Po v wp Lw B v wu

S i
C(W>>w§nax):{¢b ¢b2y d)d] {@23}}7

Lw vF
where Y% = R(),) and Y = 3(,).

To gain further insight, it is convenient to use a particular expression for the admit-
tance of the resonator. The features to be identified are, however, shared by other types of
acoustic resonators. Considering a quarter-wavelength resonator, the effective admittance
of which is given by Eq. (B.1), one has that Y, ~ jwCid, for |k.d,| < 1, where k.. and C;
are, respectively, the effective wave number and compressibility of the fluid saturating the
quarter-wavelength resonator of depth d,.. The effective compressibility C; takes the follow-
ing leading-order limiting values: Cj(w < wy) = 1/Fy and Ci(w > wy) = 1/7P. Then,
the term 2¢, Y /Lw, becomes either ¢,/ Py or ¢, /7Py for w < wy, or w 3> wy,, respectively.
Note that ¢, = Q,7/Q.

The low frequency asymptotic value of the overall normalized effective compressibility is

therefore given by

7-1 1Jw . P
P,C 0)=o— e Clw=0=—
wClw — 0) = — ie (w ) 7

(56)
where ® = ¢, + ¢, + ¢4 is the total porosity of the metamaterial and the apparent thermal
characteristic frequency w, is defined through w; ' ~ @ /wy+da/wia. This is an approximated
expression because a small contribution of a visco-elastic frequency coming from the loading
resonator has been omitted. Note also that the same result applies to a metamaterial whose
REV features a Helmholtz instead of a quarter-wavelength resonator but with ¢, — ¢, + ¢q,
where ¢, = Q,/Q2 and ¢, =,/ are the volume fractions occupied by the neck and cavity

of the resonator, respectively.

Then, the magnitude and phase of the effective compressibility (with w/w; < 1) tends to

2
IC(w — 0)] = — 1+[’7 1”} ~ 2 and bl —0) 0. (57)

Py 7P w Py

Since 0 < S, < (y — 1)/ (with ¢« = b,d), Eq. (C.20) shows that the real part of the

effective compressibility is positive, provided that J¥ > 0. This can also be seen from
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Egs. (54) and (55). However, at the resonance frequency f, of a lossless acoustic resonator,
the compressibility diverges [34]. Consequently, the magnitude and phase of the effective

compressibility at w, tend to

|C(w=w,)| =00, and Oc(w=w,)— — (58)

i
5
The real part of the effective compressibility can be negative, i.e. (C) < 0. With

reference to Eq. (C.20), this occurs in the frequency band where the following inequality is

satisfied
w Q

_?Orrf

RAIRS (B6(1 = Sp) + Pa(1 — Sy)) - (59)

It is clear that R(C) < 0 is only possible if V¥ < 0. For the case of a lossless quarter-

wavelength resonator, one has the following inequality

tan (§) < —¢*¢ with ¢ = ‘ng;i%/;ﬁd/gd’ )

where Eq. (B.1) has been used, ¢ = 7w/2w,, and g4 and g, can take values of 1 or 7,
depending on whether sound propagation in the respective equivalent fluid is isothermal or
adiabatic. Note that a necessary but not sufficient condition to satisfy (60) is 1 < w/w, < 2.

The inequality (60) is transcendental and shows that, despite the fact that the two fluid
networks are unconnected and therefore the waves that propagate in them do no interact,
there is still an influence of the fluid network g4, through its associated porosity, on the
atypical behavior of the effective compressibility. In practice, this means that the second
porosity can be used to make the frequency band where (C) < 0 narrower. However, the
fluid network Q4 does not modify the resonance frequency w, at which |C| — oo.

To estimate the frequency band Ay = (w,, w,,) where R(C) < 0, an approximation of the

left-hand side term of Eq. (60) is used, i.e.

T_ 2= ¢*w, with w, = g (61)
The solution of this equation leads to
W 1o —1
w =3 + 3 ¢* 3 (62)
1/3
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Focusing on the first resonance, assuming adiabatic sound propagation in %y, Q4 and €,
(i.e. the frequency is much higher than any thermal characteristic frequency and therefore
g = ga = 7), and recalling that for any frequency w,./w, < 2 otherwise the imaginary part
of the admittance cannot take negative values, it can be shown from Egs. (63) and (62) that
wrs/wy 1s a decreasing function of ¢* that takes the limiting values wy.,/w, — 2 for ¢* < 1
and wy,/w, — 1 for * > 1. This reflects that a larger (respectively smaller) fluid-saturated
volume occupied by the quarter-wavelength resonator maximizes (respectively minimizes)
the bandwidth of A,.

For the case of a permeable lossy metamaterial with one Helmholtz resonator per REV
and considering a 'lumped’ parameter approximation obtained by i) expanding the effective
admittance Eq. (B.2) for |keha| < 1 and |keln| < 1, and ii) considering adiabatic sound
propagation everywhere (i.e. the frequency is much higher than any thermal characteristic
frequency and therefore g, = g, = g4 = 7y); the ratio w,,/w, takes a simple form, i.e.

Wr Pa

=1+ .
Wy ¢b+¢)d

(64)

The magnitude and phase of the effective compressibility at the anti-resonance frequency
wyy tend to

IClw=wn)| =0 and Oc(w=w,) —g. (65)

Furthermore, even though the heat transfer in the fluid network €2 is uncoupled from that
in Qg, the heat transfer in the latter affects the frequency band where R(C(w)) < 0. The
existence of the additional pore network makes this band narrower and the phase of the

material’s effective compressibility approaches

Oc(wy < w < wpy) = —7. (66)

C. Effective speed of sound and wave number

Eq. (34) shows that |c(w)| — 0 if [K] = 0 or |C| — co. These conditions are not satisfied
in conventional porous materials [42], multiscale permeable media [73, 74, 76-79], or porous
composites [82, 83]. As an example, for conventional porous materials and considering
leading-order terms: co\/wKo/dw < |c| < co/\/am while the phase of the effective speed

of sound varies from 7/4 in viscosity-dominated flow regime down to 0 in inertia-dominated

19



AlP

Publishing

flow regime. Consequently, the magnitude of the wave number take the following values
ko\/m < |ke| < koy/@o, Where kg = w/co is the wave number in air. This classical
behavior is not totally shared by permeable lossy metamaterials.

As follows from the previous subsections, the magnitude and phase of the effective speed

of sound take the following values for low and high frequencies

[wK
le(w < wy)| = ¢ ‘;—’yﬁ and |c(w > w,)| — co(j , (67)

O (w < wy) — % and  0.(w > w,) — 0. (68)

Since |k.(w)| = w/|e(w)] and O (w) = —b.(w), it is direct to obtain the limiting values of the
magnitude and phase of the wave number. Hence, for the sake of brevity, these will not be
quoted in what follows.

Recalling that for elasto-inertial flow, the effective permeability at w, tends to zero, while
at w, it tends to co [see also Eq. (48)]; and further assuming adiabatic sound propagation

in both pore fluid networks, one obtains that

lc(wa)] = 0 and |c(wy)| — o0, (69)
bulwa) = 5 and Oow,) = 7, (70)
while in the band (wq,w,) the phase of the effective speed of sound tends to
T
O(we < w <wy) = =. (71)

2
Thus, the real part of the effective speed of sound (or phase velocity) tends to zero while the
imaginary part increases significantly. This means that no propagating waves are supported
in Ay and a bandgap is developed in this frequency range.
On the other hand, for inertia-dominated flow, the presence of resonators also affect the
effective sound speed. On the boundaries w, and w,, of the frequency range where R(C) < 0,
one has that

le(w,)] = 0 and  |e(we)| = o0, (72)
0.(wy) — % and O, (wp) — g (73)
In the frequency band (w,,w:), the phase of the effective speed of sound tends to

Oc(wr <w < wpy) = =, (74)

I
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and R(c) — 0. This means that a second bandgap is developed in this frequency range.

In summary, two band gaps are predicted due to two different resonance mechanisms, i.e.
acoustic resonance and fluid-film resonance, when the two atypical bands do not overlap. In
both bands, the real part of the speed of sound (or phase velocity) tends to zero while the
attenuation coefficient, defined as —S(k.), takes large values.

Up to now, it has been tacitly assumed that the two atypical bands do not overlap.
However, the overlap is not prohibited and this leads to behavior typical for double negative
metamaterials [6-10, 12, 14].

In the frequency band, denoted as A, where Ay = (wq,wy) and A, = (w;, wy) overlap,

the phase of the effective speed of sound tends to
O (w e A) = . (75)

This means that the phase velocity is negative in A, leading to a negative real part of the
refraction index in A. Negative phase velocity is a remarkable feature and its prediction
highlights the need to properly account for losses in the modeling. Ignoring the losses,
accounted for by the imaginary parts of such effective parameters, a positive phase velocity
in A may be predicted since both (p) and R(C) are negative in this band. It should be
emphasized that a negative phase velocity means that the propagating wave is regressive.
However, it is stressed that the attenuation coefficient is positive and the wave amplitude is
decreasing for frequencies in A, which is consistent with the fact that no gain is expected in
a passive material.

Interesting cases arise when elasto-inertial characteristic frequencies are matched. When
the dipolar anti-resonance of the fluid-film system coincides with the monopolar resonance
of the acoustic resonator, i.e. w, = w,, the magnitude and phase of the effective speed of
sound tend, respectively, to |c| — 0 and 6, — /2. If the anti resonance w, coincides with
the upper boundary of bandgap wy, then 6, — 7/2 and a local minimum in |c| is expected
due to the usually larger magnitude of p in comparison with that of C. If two resonance
frequencies coincide, i.e. wy = w,, |c| is expected to have a local maximum and 6, to tend
to /2. In addition, |¢| = oo and 0. — 7/2 at w = wy; = Wy,

The limiting cases considered so far are best approached when losses are small. Due
to the presence of losses, these limiting values are not reached and the phase behavior is

smoothed. The latter can also be exploited to induce anomalous acoustic wave propagation
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in narrow frequency bands. These phenomena are investigated in the subsequent parts.

IV. HYBRID MODEL

The modelling of permeable lossy metamaterials requires the calculations of their effective
parameters K and C, which, in turn, requires those of Ky, Ky, Cp, C,, and C4. These are
dependent on the saturating fluid, mechanical parameters of the films, and geometry of the
microstructure.

Figure 2 shows the microstucture of a permeable lossy metamaterial, to be used in ex-
amples, comprising a slit-like channel loaded with an acoustic resonator, a permeo-elastic
channel, and a solid frame. The REV is a parallelepiped with sides l;, [,,, and [;. The width
of the permeo-elastic channel is wy, while the width w, of the solid walls that decouple the
domains Q; and Qg is equal to their height hs;. The width of the slit-like channel loaded
with the Helmholtz resonator is hy = 2h. The Helmholtz resonator has a cylindrical cavity,
of radius r, and depth h,, with an in-built cylindrical neck with radius r,, and length [,,. The
height of the gap that connects the front and back fluid-saturated parts of the permeo-elastic
channel is hy. The height and depth of the bar one of the edges of the film is clamped onto
are h, and dg, respectively. The dimensions of the rectangular film are h,, and w,, = wq.
The geometry of the microstructure of other materials, described and used for comparison
purposes in the the next section, are also shown in Figure 2.

The dynamic visco-inertial permeability K, and dynamic thermal permeability O, of air

in the slit side-loaded by resonators are given by
Kb(w) = X(h7 5’0) and @b(w) = X(h7 6t)7 (76)

where

(77)

() — —if? <1 - tanh(ﬁx6‘1)> .

Vizdt
Then, the compressibility of air in the slit side-loaded by resonators, i.e. C,, is calcu-
lated by inserting Eq. (76) into (27), while C, is given by Eq. (28) with ). being given by
Eq. (B.2). Viscothermal losses in the neck and cavity of the resonator are accounted for via
the complex-valued frequency-dependent wave number and characteristic impedance. These

are calculated (with 5 = n,a) as k. = w\/1nCs/jwKs and Z.3 = wn/jwlsk.g. Here Kg is
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FIG. 2: Geometry of a permeable lossy metamaterial. (a) 3D macroscopic medium. (b) 3D
REV. (¢) and (d) cutaway views of the 3D REV. (e) and (f) Geometrical parameters of the
domains €2, and Q4. (g) 3D REV of a single porosity material (SPM). (h) 3D REV of a
permeo-elastic material (PEM). (i) 3D REV of a double porosity material (DPM).

calculated with the well known model proposed in [45, 48], i.e.
K:,B(W) = ]:(Icoﬂawvﬁva )v (78)

with Kog = 1r3/8, wys = 8v/r3, M, =1, and
w 2

. . _1
F(Fo.m, M) = Fy <g+ 1+Jﬂﬂ> . (79)

The effective compressibilities Cg are calculated by replacing b by 8 in Eq. (27) and the
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respective dynamic thermal permeabilities are given by ©5 = F(Oqg, wis, M) with Ogs =
13/8, wip = 8k /pocyrs, and Mz = 1.

Due to both the complex geometry of the permeo-elastic channel and the strong fluid-
film interaction, the dynamic visco-elasto-inertial permeability IC; is calculated from the
numerical solution of the boundary-value problem detailed in § A3c and using Eq. (31).
The calculations of ICy are performed using the finite element method, as detailed in [36, 37].
The effective compressibility C; is obtained by substituting the expression for the dynamic

thermal permeability ©4 into Eq. (29). This dynamic thermal permeability is calculated as
O4(w) = F(Ooq, Wia, Mia), (80)

where the thermal characteristic frequency, shape factor, and characteristic length are wyy =
K/ pocp©Ood, Mg = 864/ A2, and Ay, respectively. These parameters are calculated using

the finite element method, as discussed in detail in [63].

V. ILLUSTRATING EXAMPLES

The hybrid model is used in this section to exemplify the atypical acoustical properties
of a permeble lossy metamaterial, which, for the sake of brevity, will be referred to as PLM.

The microstructure of the PLM is shown in Fig. 2. The REV is a parallelepiped with
sides I, = 25 mm, [, = wq + 2w, and I, = 4hs + hy + he + hg + hg + hy,, where wy = 20 mm
is the width of the permeo-elastic channel, w, = hy = 1.5 mm is the width of the solid
walls, hy = 2h = 3 mm is the width of the slit-like channel side-loaded with the Helmholtz
resonator, h, = 27 mm is the depth of the cylindrical cavity of the Helmholtz resonator, and
hg = 1 mm is the height of the gap that connects the front and back fluid-saturated domains
of the permeo-elastic channel, h, = d; = 4 mm is the height of the bar one of the edges
of the film is clamped onto, and the dimensions of the rectangular film are h,, = 10 mm
and w,, = wg = 20 mm. The film thickness is ¢ = 76 um. The other parameters of the
Helmholtz resonator are the radius of its cylindrical cavity r, = 7 mm, the length of its neck
l, = 7 mm, and the diameter of its neck 2r, = 3 mm. The mechanical parameters of the
films are those of Mylar, i.e. E = 2.25 GPa, p, = 1390 kg/m?, and v = 0.38. The films are
pre-stressed with a uniform tension per unit thickness 7 = 1 N/m. Normal pressure and

temperature condition is considered.
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The large number of geometrical and mechanical parameters involved provides a plethora
of possibilities to tailor the acoustic behavior of the PLM. However, in what follows, the

parameters quoted above are kept constant unless otherwise explicitly stated.

A. Example 1 — Non overlapping atypical frequency bands

Figure 3a—d show a comparison between the dynamic density and compressibility of the
PLM and those of i) a double porosity material (DPM) with weakly contrasted permeabilities
and a REV comprising a solid part, a slit-like channel (without the loading Helmholtz
resonators), and ii) a permeo-elastic channel but with perfectly rigid instead of elastic films
[see Figures 2(i) and 2(h), respectively]. The characteristic frequencies of interest of the
PLM have been determined from their definition. These are f, = 4 Hz, f, = 610 Hz,
fq =677 Hz, f, =801 Hz, and f,, = 978 Hz.

As predicted through the analysis presented in § III, at frequencies much lower than f,,
the dynamic density of the PLM and DPM coincides, while their effective compressibilities
differ. For the dynamic density, this is because the films behave as perfectly rigid while
for C this is due to the fact that the whole fluid-filled volume of the Helmholtz resonators
affects the dynamic compressibility of the PLM. As the frequency increases, the differences
in the effective parameters of the PLM and DPM become apparent. At the anti-resonance
frequency f,, the magnitude of the dynamic density of the PLM takes its smallest value
while at the resonance frequency f, is maximum, although not infinite due to the small but
non-negligible viscous dissipation. Within the atypical band Ay = (fa, fg), the phase of p
approaches —7 and consequently Re(p) < 0. This is because in Ay the elasticity of the films
dominates over the inertia of the whole fluid-film system, i.e. $a&€4 > [dpLp + daZa] (see also
Eq. (C.12)). Note also that the value 6, = —7 is not achieved due to viscous dissipation,
which also makes the transitions between the atypical and classical behavior smoother. This
is typical for a band structure of lossy metamaterials. The classical behavior is recovered
for frequencies over f,, provided that no higher-order modes of the fluid-film system are
observed.

The magnitude of the effective compressibility of the PLM takes its extreme values at the
boundaries of the atypical band A, = (fry fre). As discussed in § III, at f, and f,, the phase

of the effective compressibility approaches —m/2, while in between them it tends to —7 in
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absence of dissipation. The larger value of fc, shown in Fig. 3(d), is attributed to the viscous
dissipation in the neck of the Helmholtz resonators, which also explains the regularization
of |C| at the resonance frequency f,. Tt is recalled that ®(C) < 0 in A,. Contrarily to
the atypical band induced by the fluid-film interaction in 24, in this case it is the effective
inertia of the fluid in the resonator that dominates over the elasticity of the whole fluid
system, which is consistent with the fact that the lowest frequency in A, corresponds to a
resonance frequency, instead of an anti-resonance frequency as it is the case in Aq.

For f <« f,, the phase velocity as well as the magnitude and phase of ¢ in the PLM
behave classically, which it is also the case for the wave number [see Fig.3(e)—(h)]. For
fo < f < fy, anomalous dispersion appears since the phase velocity in the PLM decreases.
This is in contrast with the behavior of DPM |[cf. black continuous and dashed gray lines in
Fig. 3e]. While the real part of the wave number (i.e. the phase constant) of the PLM and
DPM increases linearly with frequency for f, < f < f,, the slope of the phase constant of
the PLM is more pronounced. This is consistent with its slower phase velocity in comparison
with that in DPM. Such increase, however, becomes non linear as f — f, due to the influence
of the elasticity of the films on the acoustic behavior. Moreover, the phase constant and
attenuation coefficient at f, take large values.

Within the atypical band Ay, the phase constant rapidly approaches its minimum value,
while the attenuation coefficient decreases down to its minimum value at the frequency at
which the phase velocity takes its largest (supersonic) value, i.e. at f;. For f, < f < f,, the
phase velocity decreases while both the phase constant and attenuation coefficient increase
until reaching a local maximum, just below and above f,, respectively. On the other hand,
the phase velocity in A, decreases until reaching a plateau region to then increase up to
its maximum value within the atypical band. Consistently, the phase constant follows the
inverse trend while the attenuation coefficient is a decreasing function of frequency in Ay
Since the phase of the effective speed of sound does not reach /2, the atypical band can
only be considered as a quasi or pseudo band gap. This highlights the fact that excess of
dissipation, in this case occurring in the neck of the resonator, can prevent the existence of
a true band gap. It is emphasized, however, that the attenuation coefficient in Ay is still
significant, which reflects the high attenuation of sound within such band. On the other
hand, this example shows that the phase of the effective speed of sound tends to 7/4 at f..

and the phase velocity is close to ¢y. This means that a diffusive wave travels through the
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PLM at the speed of sound in lossless air. In the long-wavelength regime, such a behavior
is not possible to observe in conventional porous material. Moreover, for frequencies over
fr«, the phase velocity takes supersonic values due to the small magnitude of the effective
compressibility.

In summary, the results shown in Fig. 3 confirm the theoretical analysis presented in § III
and are characteristics of a PLM in which the atypical bands A, and A, are neither over-
lapping nor adjacent. In what follows, some of the geometrical parameters of the Helmholtz
resonator of PLM are varied to exemplify both the overlapping of the atypical bands and

cases where the elasto-inertial characteristic frequencies are matched.

B. Example 2 — Overlapping atypical frequency bands

In this example, the neck length and radius of the cavity of the Helmholtz resonator are
l, = 9 mm and r, = 9 mm, respectively. For this PLM, the atypical bands overlap and are
given by A, = (fr, fr«) = (555,746) Hz and Ay = (fa, fg) = (610,677) Hz. Figure 4 shows
the same effective parameters as those displayed in Fig. 3.

In the viscosity-dominated flow regime, i.e. for f < f,, the effective speed of sound
and wave number behave as in the example 1. For f. < f < f,, the real part of the
effective density is positive, the real part of the effective compressibility is negative, the
phase velocity is slow, the phase constant is a decreasing function of frequency, and the
attenuation coefficient exhibits peaks just over f,. and at f,, with the former peak being
slightly merged with the latter one since, in this example, the difference between f, and f,
is only 55 Hz.

In the region of double negativity, the phase of the effective speed of sound approaches =,
which reflects a negative phase velocity and a negative phase constant. This is accompanied
by a pronounced decrease in the attenuation coefficient. Physically, in the region of double
negativity, regressive waves propagate in the effective medium. The physical origin of this
peculiar behavior is the dominance of the elastic effects of the films in the permeo-elastic
channel and that of the inertia of the effective fluid saturating the neck of the resonator that
loads the pore fluid network €2,;. The peculiar behavior is not only seen in the region of
double negativity but also just below/above the lower /upper band-edge frequencies and when

the atypical bands are adjacent. This is due to the presence of dissipation, which smooths

27



AlP

Publishing

the phase transition. Hence, regressive waves are not exclusive to the double negativity
region, as it can be seen by close inspection of Fig. 4e and in other examples below.

In between f,; and f,,, a local maximum/minimum in the attenuation coefficient/phase
velocity is seen. This is accompanied by a close to zero phase constant. In the frequency
region, where in this example only $(C) is negative, 6. decreases from 7/2 to /4, while
the phase velocity increases over ¢yg. In this example, the phase velocity takes supersonic
values for frequencies over 750 Hz. Since 6. tends to 7/4 and the phase velocity is faster
than ¢y at f,,, diffusive waves propagating at an effective supersonic velocity are observed.
Such phenomenon is impossible to observe in conventional porous materials. Moreover,
around 900 Hz, the phase velocity and phase constant of the PLM equal those in lossless
air, the phase of the effective speed of sound is close to zero, and the attenuation coefficient
is negligible. All of these indicate that around this frequency the PLM is acoustically

transparent.

C. Example 3 — Adjacent atypical bands, f, = f,

In this example, a PLM with the same geometrical and physical parameters are those
quoted at the beginning of this section is considered but the length of the neck and the
radius of the cavity of the resonator are now [/, = 6.02 mm and 7, = 9 mm, respectively.
This allows matching the resonance frequencies, i.e. f, = f, = 677 Hz. The anti-resonance
frequencies are f, = 610 Hz and f,, = 910 Hz.

Figure 5 shows the effective dynamic density, compressibility, speed of sound and wave
number of the PLM. For frequencies in between f, and f,., the phase of the dynamic density
tends to —m, 0c decreases from 0 to —m/2, the phase of the effective speed of sound ap-
proaches /2, and a large attenuation coefficient is seen. These features do not conform to
those of a true band gap but the phase velocity does take very small values for f, < f < f;,
which also happens up to a frequency approximately equal to the harmonic mean of the
band-edge frequencies of Ay, As the frequency increases, however, the phase velocity takes
negative values, which reflects the existence of regressive waves. This is induced by the
smooth phase transition of the effective compressibility due to viscous dissipation.

Around f, = f,, a jump in the phase velocity is observed, i.e. R(c) transitions from a

negative local minimum to a positive local peak, while the attenuation coefficient is locally
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minimum. The phase 6, follows the opposite trend. At f = f. = f, the phase velocity tends
to zero while |c| exhibits a local maximum. For frequencies over f, = f. and below f,, a
pseudo band gap is observed, which is a consequence of the fact that in such frequency range
R(C) < 0 and N(p) > 0. For other frequency regions, e.g. f < f, and f > f., the trends

are as previously discussed.

D. Example 4 — Overlapping atypical bands, f, = f,

A PLM with a resonator with neck length increased to l,, = 7.45 mm and cavity radius
re = 9 mm and the rest of the parameters unchanged is considered. In this case, f,. = f, =
610 Hz, f, = 677 Hz, and f,. = 819 Hz. Figure 6 shows the effective properties of such PLM
in comparison with those of the DPM. At f = f, = f,, |p| and |C| are maximum and 6, and
fc both tend to —m /2. Consequently, the magnitude of the speed of sound tends to zero and
its phase to 7/2, the phase velocity tends to zero, and a large attenuation coefficient is seen.
Over f, = f., regressive waves are observed in the double negative region of the PLM. Such
behavior is observed up to f,; at which the negative phase velocity takes its smallest value
while the attenuation coefficient tends to zero. For higher frequencies, the phase constant is
close to zero and the attenuation coefficient presents a wide peak, while the phase velocity
starts increasing and takes supersonic values from a frequency close to f,... Again, at f.. a
diffusive wave travels with supersonic velocity. Moreover, the PLM appears as acoustically
transparent at frequencies around 1000 Hz. The trends in other frequency regions are as

previously discussed.

E. Example 5 — Overlapping atypical bands, f; = f..

In this example, the elasto-inertial characteristic frequencies f; and f,, are matched by
further increasing the length of Helmholtz resonator’s neck to /,, = 10.95 mm and setting the
radius of the resonator’s cavity to r, = 9 mm, while the values of the rest of the parameters
remain unchanged. The elasto-inertial characteristic frequencies are f;, = f.. = 677 Hz,
fo =610 Hz, and f, = 505 Hz. This case is illustrated in Figure 7. In the frequency region
limited by f, and f; = f.., the phase velocity tends to zero and the attenuation coeflicient

takes large values but a local minimum is observed within such a region. Moreover, for
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frequencies belonging to the double negative frequency region, regressive waves are supported
by the PLM. This is reflected by the negative phase velocity and phase constant as well as
the monotonically decreasing nature of the attenuation coefficient in such a region.

As predicted in § IIIC, |c| takes large values and 6. — 7/2 at f = f;, = fr. At
this frequency, a zero phase velocity, zero phase constant and a minimum in attenuation
coefficient are observed, i.e. the large value of |c| is determined by the imaginary part of
the effective speed of sound. It is also worth stressing that around f = f; = f,., a jump in
phase velocity stands out as a feature, while over such frequency a supersonic phase velocity,

together with 6. — 0, is reached.

F. Example 6 — Adjacent atypical bands, f.. = f,

By keeping constant the parameters of the PLM but setting [, = 13.5 mm and r, =
9 mm, the anti-resonance frequencies are matched, i.e. f.. = f, = 610 Hz. The resonance
frequencies are f, = 677 Hz and f, = 455 Hz. Figure 8 shows the same frequency-dependent
parameters as in, for example, Fig. 7.

For frequencies f < f, the behavior of the effective acoustical properties of the PLM
is similar to that of the DPM. In the frequency range f. < f < f., a pseudo band gap
is observed, reflected by the large attenuation coefficient and slow phase velocity, together
with 0. approaching 7/2 within such a frequency range. At f.. = fa, 6. — 7/2 and ||
exhibits a local minimum due to the larger magnitude of p in comparison with that of C.
Moreover, the phase velocity crosses the zero axis and a local maximum of the attenuation
coeflicient is achieved. Over f,. = f, and below f,, the real part of the dynamic density
is negative while J*(C) is positive. Despite this, regressive waves travel in the PLM, which
further states that such a peculiar behavior does not only occur in double negative frequency
bands. In the present case, such a behavior is determined by the smooth transitions in 6, and
Oc primarily caused by viscous dissipation. Moreover, such regressive waves slowly travel
through the material and are significantly attenuated, as quantified through the magnitudes
of the phase velocity and attenuation coefficient. It is clear that strong dispersion in PLM
is observed and its acoustic behavior is different from that of conventional single or multi

porosity materials.
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G. Example 7 — Matching f; and f, and strong visco-elasto-inertial interaction

Up until now, the microstructural parameters of the permeo-elastic domain and the width
of the slit-like channel in €y have not been varied. Because of the former, the dynamic
density has been the same for all the examples. By modifying some parameters of the
microstructure of the PLM, strong visco-elasto-inertial interaction can be observed. In
figure 9, the effective parameters of a PLM exhibiting such interaction are shown. The
microstructural parameters of the PLM that have been varied are (see Fig. 2): the height
of the gap that connects the front and back fluid-saturated parts of the permeo-elastic
channel hy = 0.15 mm, the width of the channel loaded by the acoustic resonator h, =
0.3 mm, and the radius of the cavity and the length and radius of the neck of the acoustic
resonator, i.e. r, = 9 mm, [, = 17.05 mm, and 7, = 2.5 mm, respectively. In this case,
the characteristic frequencies can only be determined from their general, implicit definition.
For instance, the apparent viscous characteristic (or Biot) frequency f, is defined as the
frequency at which |S(KC(w,))|/|R(K(wy))] — 1. This definition is compatible with that
used for conventional porous materials and results in f, = 273 Hz. An interesting feature
of this case is that the elastic power of the films also contributes to the imaginary part of
the dynamic permeability. Also, the apparent Biot frequency is mostly determined by the
viscous characteristic frequency of the equivalent fluid saturating ;. In a similar manner,
the apparent anti-resonance frequency f, is determined from its implicit definition, given by
Eq. (47), with viscous effects accounted for. This characteristic frequency corresponds to
the lower boundary of the band where %(p) < 0. Furthermore, f,, which in this example is
low, is strongly affected by the characteristic pore size £, = O(v/¢pKp) of the domain Q.
If ¢, is large in comparison with £; = O(/$4K,), then the width of the atypical band where
R(p) < 0 can be significantly reduced. Note also that f,, is also affected by ¢, through ¢,
[see Eq. (64)] and for this example is f,., = 946 Hz. In contrast to that, and as expected, the
resonance frequencies f; and f,, which are matched in this example and equal to 675 Hz,

are not significantly affected by hy and hs, respectively.

Figures 9a-b show the real part and phase of the dynamic density of the PLM as well as
those of SPM and PEM [see Fig. 2]. In SPM, the fluid-saturated part of its REV is Q; and
the rest of it is perfectly rigid and impermeable, i.e. the only permeable part of its REV
is the fluid-saturated channel of width h,. In PEM, the REV comprises the permeo-elastic
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channel Q4 and the rest of it is perfectly rigid and impermeable.

Figure 9a shows that the real part of the dynamic density of PEM is negative, with a large
magnitude, up to f,. Recalling that R(pq) = —nS(Kq)/w|Kal* with S(Kg) = —daZs + dala,
it is clear that R(pg) < 0 is observed because the elasticity of the films dominates over the
inertia of the fluid-film system. On the contrary, the real part of the dynamic density of
SPM, given by R(py) = nZy/w|Kp|?, is positive, as for any conventional porous material.
The real part of the dynamic density of the PLM, given by R(p) = —nS(K)/w|K|? with
S(K) = =Ly — ¢aZa + dafa, is negative because the effective elastic effects dominate over
the inertial effects of the whole fluid-film system. Moreover, at low frequencies, i.e. f < f,,
R(p) takes values in between those of R(pg)/¢dq and R(py)/Ps, which is consistent with the
fact that the two pore fluid networks work in parallel in terms of oscillatory flow in them [see
Eq. (32)]. However, for frequencies around f,, the elastic and inertial effects in the permeo-
elastic channel compensate each other and the dynamic permeability of the permeo-elastic
domain K4, whose magnitude is maximum at f,, determines the dynamic permeability of
the PLM as well as its dynamic density.

Figure 9b reveals that the phases of the dynamic density of SPM and PEM, 65" and
GEEM, are rather different, and that of the PLM, i.e. 6,, is influenced by both GEPM and GEEM
for frequencies up to f,. It is noted that HEPM varies from —7/2 to 0, while QEEM decreases
from —7/2 down to —m at f,. The former is a classical behavior, which it is not the case for
the latter primarily due to the dominance of the elastic effects over inertial ones, as well as
that of viscous dissipation in Qg resulting in the large magnitude of S(pa/¢q). This, together
with the strong contribution of viscous effects in €,y accounted for by S(py/¢s), is inherited
by the phase of the dynamic density of the PML up to f,. For frequencies over f,, 8, — 0,
which reflects that viscous effects are negligible in such a frequency range. Physically, the
values of the phase of the dynamic density of the PLM reflect that the effective movement of
the fluid and the driving force are in quadrature at low frequencies, opposite for frequencies
in between approximately 500 Hz and f; in this example, and in phase for frequencies over
f4- Such a behavior, together with that of the effective compressibility [see Fig. 9c-d| whose
behavior has been tuned so that the resonance frequency induced by the Helmholtz resonator
fr matches the resonance frequency of the fluid-film system f,, has direct consequences on
the atypical effective speed of sound and wave number of the PLM, as shown in Figs. 9e-h.

For f < f,, slow phase velocity is observed, together with increasing attenuation coefficient
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and a 7/4 phase of the effective speed of sound. This is characteristic of a fluid flow regime
determined by viscous effects, which in this case are attributed to the viscous dissipation
that occurs in Q4. As the frequency increases, slow sound propagation is still observed, the
attenuation coefficient exhibits a wide peak centered just over f,, and 6, transitions from 7 /4
to 7/2, which means that the sound waves are overdamped. For frequencies closer to f, = f»,
anomalous wave propagation and regressive waves are predicted, as it is evidenced by the
negative phase velocity and phase constant. However, the attenuation coefficient rapidly
decreases in such a frequency region. Within the frequency band (f,, f,+), a pseudo band
gap is observed, where the phase velocity takes small positive values, the phase constant is
quasi constant (outside the band transition regions), and the attenuation coefficient is large
enough to guarantee significant sound attenuation but decreases as the frequency increases
within the band. Over f;, the phase velocity takes supersonic values, the phase of the
effective speed of sound decreases from 7/4 towards zero, the phase constant grows quasi
linearly, and the attenuation coefficient decreases. All of these trends physically mean that a
wave traveling in the PLM used as an example here is i) progressive, diffusive, and slow at low
frequencies; ii) progressive, overdamped, and slow as the frequency increases; iii) regressive,
anomalous, weakly attenuated, and relatively fast in frequencies just below f; = f,; iv)
progressive, overdamped, and slow for frequencies over fy; v) progressive, diffusive, and
supersonic at around f,,; and vi) progressive, weakly damped, and supersonic at frequencies

over f.. and up until the highest frequency considered in this example.

Other interesting features of PLMs are worth highlighting. For the sake of brevity, these
are now discussed without showing results graphically.
Remarks:
i) In all the examples, the mechanical parameters of the films have been kept constant. Their
influence on p,4 have been discussed in [36, 37| and is as follows. Increasing the "plate" modu-
lus E of the films leads to higher foq and fzq. This also happens when the films are stretched
further by increasing the tension per unit length 7. Decreasing the surface density p.t lowers
both foq and fyq. Moreover, a permeo-elastic material with small surface density exhibits a
wider atypical band. It shall be emphasized that these trends are observed when the flow
regime is determined by elasto-inertial effects. For the case of comparable viscous, elastic,
and inertial effects, the trends are similar to those shown in Fig. 9a-b for the PEM material.

It should, however, be noted that by varying the parameters that determine the effective
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elasticity of the films R(p,) can exhibit either negative, zero, or positive values in a wide
frequency range, as shown in the figure 9 in [37]. All of these trends are also seen in the
dynamic density of a PLM, with the particularity being that the existence of the decoupled
pore fluid network €2,y provides an additional degree of freedom. Indeed, by decreasing the
width of the channel hy of 2y the anti-resonance frequency f,, which is generally larger
than f,4, can be lowered; while the opposite trend is observed as hy is increased, up to a
point where the band (f,, f;) may become very narrow, meaning that R(p) takes negative
values in a limited frequency band.

ii) The REV of the PLM used as example features a Helmholtz resonator and a clamped
film modeled as a Love-Kirchhoff plate under tension. However, the theory is applicable to
a PLM with a REV featuring a quarter-wavelength and a film modeled as a membrane for
which bending effects are negligible. In this type of PLM, the difference between the first
and second resonance frequencies is smaller than that of the PLMs used in the examples.
This certainly leads to the possibility of achieving atypical acoustic behavior in different
frequency regions where, for example, the atypical band induced by the first anti and res-
onance frequencies of one type of resonators can overlap with that induced by the second
anti and resonance frequencies of the other type of resonators. The analysis in such a case
becomes rather complicated and, as such, a simpler PLM has been chosen to exemplify the
developed theory.

iii) We ought to mention that the study of the effective group and energy transport velocities
in permeable lossy metamaterials is a rich subject that is a matter left to further work, as it
also is the physical realization of metamaterial prototypes that can enable the experimental
verification of the upscaled theory introduced in this work. Such a prototype building is en-
visaged to require a significant degree of precision due to the high sensitivity of the effective

parameters to the microstructural parameters of the PLM.
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FIG. 9: Matching f; and f, and strong visco-elasto-inertial interaction. Top: Real part
and normalized phase of the normalized dynamic density p(w)/po [(a) and (b)] of the PLM
[continuous black lines|, SPM [dashed black lines|, and PEM [dashed gray lines| [see the
text for their description and Fig. 2|; and magnitude and phase of the normalized dynamic
compressibility C(w)P, [(¢) and (d)] of the PLM. The inset plot in [(a)] zooms in the
frequency region where R(p) < 0. Bottom: Phase velocity [(e)], phase of the effective speed
of sound [(f)], phase constant [(g)], and attenuation coefficient [(h)] of the PLM. The inset
plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (f,, fy = f-) [dark gray] and (f, = f,, fre) [light gray].
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VI. CONCLUSIONS

Acoustic wave propagation in permeable lossy metamaterials (PLM) was investigated
in this paper. The representative elementary volume of the investigated periodic PLM
comprised a perfectly rigid and impervious solid domain and two independent pore fluid
networks. The fluid that saturates one of the connected pore fluid networks was in contact
with the fluid that saturates an acoustic resonator. A thin elastic film is present in the other

connected pore fluid network and strongly interacts with the fluid that saturates it.

The two-scale asymptotic homogenization method was used to establish the macro-
scopic equations that govern sound propagation in PLM. These upscaled equations demon-
strated that the PLM can be modeled as an equivalent fluid with unconventional frequency-
dependent and complex-valued effective dynamic visco-elasto-inertial permeability (or den-
sity) and compressibility. The dynamic visco-elasto-inertial permeability was shown to be
a weighted sum of the dynamic permeabilities of the fluid that saturates the pore fluid
networks. One of these dynamic permeabilities behave conventionally, while the other is
strongly affected by the local fluid-film interaction. In a similar manner, it was proven that
the effective compressibility of the PLM is a weighted sum of the effective compressibilities of
the fluid that saturates the pore fluid networks. One of these corresponds to a combination
of a classical effective compressibility and an apparent compressibility that is dependent on
the effective admittance of the acoustic resonator, while the other behaves in a conventional
manner. The strong fluid-film interaction was shown to determine the atypical behavior of
the effective dynamic density, while the acoustic resonators determine that of the effective
compressibility. The result of this are two atypical bands which could overlap or not, or
be adjacent. The positions and boundaries of these bands are determined by elasto-inertial
characteristic frequencies which can be tuned by varying microstructural and/or physical
parameters. In each atypical band the real part of one of the effective parameters is nega-

tive.

Sub-wavelength band gaps, slow sound, supersonic diffusive waves, and regressive waves,
among others, are all phenomena present in PLM. Their physical origin was established from
the analysis of the effective parameters and their links with the fields that determine sound
propagation in the PLM locally. Moreover, an hybrid (numerical-analytical) model for the

effective acoustical properties of the PLM was developed and used to exemplify the possible
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variations in the atypical acoustic behavior of the PLM. This also allowed highlighting the
crucial role of losses and the need to properly account for them in the modeling of PLM.
This work has shown that the propagation of acoustic waves in PLM is primarily deter-
mined by classical visco-thermal dissipation and inner elasto-inertial resonances induced by
decoupled acoustic and elastic resonators. It also provides a theoretical framework for the
rational design of PLM for acoustic wave manipulation. Accounting for the interaction be-
tween two different types of resonators would be a logical extension of the theory presented.

In addition, the experimental verification of the theory would be a subject of future work.
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Appendix A: UPSCALING OF THE WAVE EQUATION IN PERMEABLE LOSSY
METAMATERIALS

1. Physical analysis and rescaled local description

The aim of the physical analysis is to determine both the variables in Egs. (1)-(20) that
fluctuate either locally or macroscopically and the relative order of magnitude of the terms
in the said equations. Such analysis is crucial for the rescaling of the local description.

The equations formulated in €; are analyzed first. Such analysis is well established (see,
e.g., [43, 44, 48]). Let us recall that, in the long-wavelength regime, the macroscopic pressure
gradient drives the fluid flow in €;. This leads to following estimate |Vp,| = O (py/L),

where, from now on, the accent * indicates a characteristic value of the term it is applied
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to (e.g. Py is a characteristic value of py). In addition, the fluid velocity and its rate of
deviatoric deformation fluctuate locally, i.e. |div(2nD(v;))| = O(niy/12), while its divergence
varies with the sound wavelength, i.e. |V -v,| = O (9/L). On the other hand, the excess
temperature in Eq. (3) varies locally, which leads to |kV - V7| = O(k7/1%).

Regarding the relative order of magnitude of the terms, it is of interest to describe the
acoustic behavior for the case where all the terms in Egs. (1)—(3) contribute to the local fluid
flow and heat conduction. This means that in the equation of conservation of momentum
the viscous and inertial terms as well as the pressure gradient are of the same order of
magnitude, i.e. O(nip/f?) = O(powis) = O(fy/L), in the equation of conservation of mass
one has that O(0,/L) = O(wps/po), and in the equation of conservation of energy the
conduction and the thermal inertia terms are balanced by the source due to pressure, i.e.
O(k7/1%) = O(wpocyTy) = O(wpy). Moreover, in the equation of state the following estimate
holds O(py/ Fo) = O(pv/po) = O(/70).

The physical analysis for the set of equations (1)—(9) is completed by assessing the bound-
ary conditions. Specifically, the continuity of pressure on I';¢ sets O(py) = O(p,) while the
long-wavelength condition imposes that the mass flux pulsed from the resonator on I', s is of
one order smaller than the mass flux produced by the incident wave in the fluid network, i.e.
lpov,-n|/|povs-n| = O(e). Such an estimate can be justified by considering a cell 2, denot-
ing the ingoing mass flux on one of its faces (of surface S;) as Sppe¥p1, the outgoing mass flux
on the opposite face as Sppotp2, and the mass flux pulsed from the resonator as O(po0.I; ).
Recalling that, by hypothesis, one has that L > [, then (Sppots2 — Sepo0Un1)/Sepotm ~ /L.
Moreover, the conservation of mass imposes that Sypotse = SppoUe + 1y s po¥,. It then follows
that I',f0,/Sp0 = O(g). On the other hand, invoking the continuity of thermal flux one
obtains 7./7% = O(¢g), which is a valid approximation as long a characteristic size of the
resonator (e.g. a radius of the neck of a Helmholtz resonator) is of one order smaller than .

The physical analysis of the Egs. (10)—(13), which are formulated in Qg closely follows
that developed in previous paragraphs for the Eqs. (1)—(4). Hence, it suffices replacing the
subscript b by d. The physical analysis of the equations that govern the dynamics of the
film, i.e. Eqgs. (14)-(18), and associated boundary conditions is now addressed by recalling
the results in [36, 37]. The continuity of the fluid and film velocities, i.e. Eq. (17), provides
the estimate O(v4) = O(wiy), which imposes that the film velocity varies locally, as the out-

of-plane shear stress vector T and in-plane stress tensor M also do. Then, to account for
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visco-elasto-inertial fluid-film interaction, the order of magnitude of the terms in the equation
of conservation of momentum (14) should satisfy O(ETtq/1*) = O(p.tw?ig) = O(nva/l) =
O(pql/L). In addition, the local variations of the deviatoric viscous stress determine that
its jump across I' also fluctuates locally. It then follows that O([n9./1]) = O(no4/l). Finally,
since the pressure varies with the wavelength, its jump across I is estimated as O([p4]/l) =

O(pa/L).

2. Rescaled local description

The two-scale asymptotic homogenization method for periodic media is used to establish
an equivalent macroscopic model for acoustic wave propagation in permeable lossy metama-
terials. The use of this method is possible due to the large scale separation between the local
and macroscopic characteristic sizes, i.e. [/L = ¢ < 1. To represent the evolution at the two
spatial scales and taking the macroscopic characteristic size as a reference length, one can
introduce the following dimensional space variables: @ and y = e '@, which respectively
account for macro- and microscopic fluctuations. Then, the usual differential operator V
becomes V, +e7!V,. Note that the spatial variables can be considered as independent due
to the large separation of scales and non-bold letters for the spatial variables are used to
ease the notation.

The use of two space variables is combined with a rescaling of the usual equations based
upon a single space variable and the physical analysis that allowed to determine the relative
order of magnitude among the terms. In particular, the rescaling of the equations enables to
have consistency between the magnitude of the gradient of a quantity ) and the respective
physical estimate. This is based on the fact that the actual physical gradient of a quantity
Q(z,y) that varies macroscopically is of the order of V,@Q, which is expressed when using
the two introduced spatial variables as V,Q+¢7'V,Q. Instead, the actual physical gradient
of a quantity that fluctuates locally is of the order of V,@Q), and this is expressed as e(V,Q +
¢7'V,Q) which introduces the rescaling by the scale ratio . As an example, div(D(vy))
must be rewritten as e2div(D(v})) in order to express that the fluid velocity varies locally.

The rescaled local equations are given by (with V =V, 4+ ¢!V, and . = b,d )

e2div(2nD(v,)) — Vp, = jwpev, in Q, (A1)
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jwp, +poV-v, =0 in Qg (A.2)

e2kV - VT, = jwpocyT, —jwp, in Q, (A.3)

% — %+% i Q. (A4)

v,=0 on T, (A.5)

7,=0 on I, UT, (A.6)
PoVe-N=cecpgv,-n on I, (A7)

pp=pr on Iy, (A.8)

T =¢e7, on I,y (A.9)

eV (T + TeVug) = —w’petug — [(27eD(vy) —e 'pal) -N] N on T, (A.10)
T=—ediv(M) on T, (A.11)

M=EI ((1 — 1)e%(Vuy) + veV - %uﬂ) on T, (A12)
vg=jwugN on T, (A.13)

ug =0 and seud -n=0 on OI. (A.14)

3. Boundary-value problems

The unknown variables written as series expansions in €, e.g. py(z,y) = > py skpgk) (z,y),
are inserted in the rescaled local equations. Then, matching the terms with equal powers of
¢ leads to boundary-value problems whose solution enables the determination of the effective
parameters of the permeable lossy metamaterial.

Identifying the ¢ !-term in Egs. (A.1) and (A.10) leads to Vypéo) = Vyp((i[)) = 0 and

[p(do)] = 0. Hence, the leading-order pressures are, consistently with the physical analysis,
macroscopic variables, i.e. p,()o) = p,go)(x) and p((io) = p((io)(:v). The boundary value problems

arising from homogenization are directly presented in what follows.
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a. Oscillatory fluid flow in Qyf

For the oscillatory Stokes problem, consider the Hilbert space W, of complex €2 — periodic
velocity fields wy, defined in €, that fulfils V,,- w;, = 0 in Qy; and w;, = 0 on I'y;. Then, the

weak formulation (see [43]) is given by

Yw, €Wy, A(vi”, wy) = By(wy), (A.15)
with
By(wy) = =V - (W), (A.16)
Ab(véo), W) = n%b(véo), wy) + jwpoﬁb(v£0)7wb), (A.17)
where
Ry vy, W) = (2D, (v;) : Dy (W), (A.18)
3wy W) = (v ) (A.19)

In these equations, the spatial averaging operator is defined as

1
(Y = Qibf/gbf dS. (A.20)

Relying on the properties of the form Ay (i.e. sesquilinear and coercive in W,) and
the semi-linearity of By, the existence and uniqueness of the solution of the linear problem
Eq. (A.15) is ensured by the Lax-Milgram theorem. Moreover, since the forcing term is

Vzpéo), the solution V,(,O) can be written as

ky (v,
v y Vap©, (A.21)

where k;, represents a Q-periodic normalized local velocity field.

b.  Oscillatory heat conduction in Qyy

Regarding the oscillatory heat conduction problem, its weak formulation is obtained by
multiplying Eq. (A.3) identified at ¢® by the conjugate of a Q — periodic test function
qy € H' that satisfies the boundary condition ¢, = 0 on I'ys U I'f, integrating by part,

applying the divergence theorem, and considering the periodicity. The final result is
Va, € H',  ap(r”., @) = by(a), (A.22)
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where

by(as) = jwpy (@), (A.23)
ab(Tb(O)v @) = HHb(TISO)a ) +J'WPOCpr(T£O)7 ®), (A.24)
with
Hy(r" ) = (V7 - Vi), (A.25)
S(r” @) = (7 G- (A.26)

The linear problem (A.22) is forced by the locally-constant pressure pl(,o). Hence, T,fo) can be

linearly related to péo) via

)
7 = 7b(i’w)jwp£°)7 (A.27)

where 6, represents a ()-periodic normalized local temperature field.

c.  Oscillatory fluid-film interaction problem in Qg UT

Focusing on the equations formulated in {24 and on I', the identification process leads to
an oscillatory Stokes coupled with the equations that govern the leading-order film velocity
vc(lo) = jwuéo). The associated weak formulation has been obtained in [37] and is therefore
only recalled here.

Consider the Hilbert space W, of complex {2 —periodic velocity fields wq defined in €24 UI"

that fulfil the following kinematic restrictions: V,-wy = 0in Qg, wg = 0 on I'ys, wg = wgN

on I', and wy = 0 and ﬁywd -n =0 on JI'. The weak formulation is given by

\V/Wd S Wd, Ad(VEIO), Wd) = Bd(Wd), (A28)
with
Ba(wa) = —Vap - (Wa)a, (A29)
. R
Ad(VEiO)7 Wd) = ni)‘id(véo), Wd) +Jwg3d(v§0),wd) —+ jzﬁd(’v((io), wd), (A30)
where
Ra(vy wa) = (2D, (vy") : D, (Wa)).a, (A.31)
ol
Batv wa) = 230y wa) + 23 (0w, (A.32)
EI
Qfd(v;o), wy) = %Qﬁm(v((io), wq) + Kt’fp(v((io), wa), (A.33)
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with

3p(vy) wa) = (v W), (A.34a)
jp(“éo),wd) = <U¢(10)wd>1“7 (A.34b)
Qm(v((i())a wd) = <6yv¢(10) ! 6&1“’7(1)1‘7 (A34C)
&0, wa) = (N (), wa))r, (A.34d)
NP wa) = (1= )&, (Vo) : 6,(Vywa) + vV, - V'V, - V. (A.35)

In these equations, the spatial averaging operators are given by

1 1

Y= — - dQ. and ()r=— [ - dl, A.36
(a= g =g [ (A.30)

Quy
and the density parameter p and the elastic parameter 8 that accounts for both bending
and membrane effects are given by

EI/T+T

A.37
o (A.3)

r
0=po+ pl— and RKR=
Qdf

Since the form Ay is sesquilinear and coercive in W, and By is semi-linear, the Lax-Milgram
theorem ensures the existence and uniqueness of the solution of vfio> in Qg and, by continuity,
that of U(({o) on I'. Furthermore, being Eq. (A.28) linear and recalling that the system is forced

by the macroscopic pressure gradient, it is direct to write the solution as

k
VEJ,O) — ,y . VxPEzO) n Q. (A.38a)
UC(lO)N = VElO) on T. (A.38b)

Despite the formal similarity between the dynamic Darcy’s law Eq. (A.21) and Eq. (A.38a),
it is stressed that the latter is fundamentally different due to the fact that the -periodic
normalized local velocity field k, accounts for visco-elasto-inertial instead of only visco-

inertial effects, as Rb does.

d. Oscillatory heat conduction in Qg

The weak formulation of the oscillatory heat conduction problem in §2;, is obtained by
replacing the subscripts b by d in Egs. (A.22)—(A.27) of §A 3b. The solution of the oscillatory
heat conduction in Qg is also given by Eq. (A.27) but with b — d.
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4. Derivation of the macroscopic equations

The identification of the € terms in Eq. (A.2), with « = b, yields

)
Vo v+ v, v 4wl — o, (A.39)

Po
which after applying the operator Eq. (A.20) and using Eq. (A.4) at €° becomes

) ) 5 7
Ve (v o +{(Vy vy ) + +jw<L -

=0. A4
T )b =0 (A.40)

In this equation, the term (V,, - v,()l))b is calculated by using the divergence theorem, noting
that the surface integrals on opposite boundaries of the unit cell cancel out due to periodicity,

and using Eq. (A.7) at ! and Eq. (A.5) at ¢°. The final result is

1 . 0 er(w)
(9, {7 = g 22

: (A.A1)

where £ = 2Q,;/I', s is a characteristic length and the effective admittance ), of the res-

onator is given by

1 VSO) -n
Ve(w) = ————dr. (A.42)
Lop e, pl¥

Inserting Eqs. (A.27) and (A.41) into Eq. (A.39) and recalling the thermodynamic identity
Py/70 = pocy(y — 1)/ (with 7 being the adiabatic exponent), one obtains

Vo (Vi) + jwp o = 0, (A.43)

where the effective compressibility Cy, is given by Eq. (26).
The identification of the £° terms in Eq. (A.2) (for ¢ = d) and application of the spatial
averaging operator Eq. (A.36) to the resulting equation yields

(0)

Ve (v )a+ (v = (P (A.44)
0
In this equation, the term (V,, - vfil))d is null due to szl) = 0 on Iy, periodicity, and the

continuity of the fluid velocity across the interface I'; while the right-hand side term is linked
with the effective compressibility of the fluid saturating 4. Taking into account these two

remarks, Eq. (A.44) becomes
Ve (V‘(i[)))d + juwpPCy(w) = 0. (A.45)
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The macroscopic mass balance Eq. (21) is obtained by adding Egs. (A.43) and (A.45)
after having multiplied them by ¢, and ¢4, respectively. The macroscopic constitutive fluid
flow law Eq. (22) is obtained from Eqs. (A.21) and (A.38). In both macroscopic equations,
the overall leading-order velocity, defined as vO = VE()) in Q, (with ¢ = b,d), has been
spatially averaged over the whole REV using the operator (-) = Q71 be/UQd/ - dS.

Appendix B: Expressions for the effective admittance of acoustic resonators

For a quarter-wavelength resonator, the effective admittance is given by

1

Vr =Yg = —jZe cot (kerd,)’

(B.1)

where d,. is the depth resonator and Z. and k. are, respectively, the characteristic
impedance and wave number of the effective fluid that saturates it. For a lossless, tor-
tuous quarter-wavelength resonator, one has that the characteristic impedance is given by
Zer = PoCor/Ooor/Pr, Where aoo, and ¢, are, respectively, the inner tortuosity and porosity
of the resonator; and the wave number is given by k., = ko\/0ce, = w/0icer/co, Where ¢
is the speed of sound in the saturating gas. On the other hand, it is clear from Eq. (B.1)
that ), — oo when cot (k..d.) — 0. For a lossless resonator, this occurs when k..d, = nm/2
(with n = 1,3,...). Hence the first resonance (n = 1) occurs at f, = ¢o/4d\/0or.

For a Helmholtz resonator with neck length [,, neck constant cross-section I',,, = I',¢,
neck volume €, cavity length h,, cavity constant cross-section I',,, and cavity volume );

the effective admittance is given by (with G =T, /T,)

ZUJ(l + Z’lUTlg
Py = e T LunY B.2
y y ! Zumea + Zzng ( )
with
Zwa = —}Zeq €Ot (keaha) and  Zy, = —jZep cot (kenly), (B.3)

where Z,, and k., (respectively Z., and k.,) are the characteristic impedance and the wave
number of the fluid saturating the cavity (respectively the neck), which for a cavity and a
neck where losses are negligible equal, in both cases, to Zy and kg. Moreover, one can make

use of asymptotic values of the effective parameters to estimate the resonance frequency as

fT = COFrn/\/ QaQn-
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Appendix C: Link between the effective parameters and local fields
1. Dynamic permeabilities and densities

To simplify the analysis, macro-isotropy or a preferential flow direction is considered.

This means that the involved tensors are replaced by scalars.

a.  Oscillatory flow in Qyy

The relationship between the dynamic visco-inertial permeability K, and the local velocity
field is identified by taking the solution of the oscillatory flow problem described in § A 3 a as
a test field, i.e. w, = v;,. Note that the superscript indicating the order has been dropped to
alleviate the notation. After evaluating this solution in the weak formulation (A.15), taking
the conjugate, and recalling that for a preferential flow direction (vy), = —(Ky/n) Vs,
one obtains a direct relationship between the dynamic visco-inertial permeability and the

frequency-dependent local flow in the period. This reads as

Ab(Vb,Vb) R A
Kp=n——=->=K K, C.1
b n ‘vpb|2 b +J b ( )

with
ER(VI, Vb) ~ ~

R Y0V gk, k) > 0, 0.2
b= T~ ke k) 20 (€2

o _oTp(ve, vp) Ty (ks k)
KS=_§ 2 — _ < 0. C.3
’ " Vpe/nl? & T (€3

where 9, = \/W is the viscous boundary layer thickness.
Hence, the dynamic visco-inertial permeability can be written as (with V, = R(k,, ky) > 0
and 7, = 0,23y (ky, ky) > 0)
Ky =V —iL,. (C4)

This equation shows that the real and imaginary parts /C, reflect the dissipated viscous and
kinetic energies developed by the flow (for a unitary pressure gradient).

The dynamic density p, = 17/jwk, can be conveniently written as

_nG(Ky)

i . q
= 14+ = h = , .
Pb w KE ( + IC;) with  G(q) e (C.5)

and K = K3/K® = —T,, V),
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b.  Oscillatory fluid-film interaction in Qg UT

The procedure to obtain the link between the dynamic visco-elasto-inertial permeability
K4 and the local fields is similar to the one detailed in the previous subsection. For the sake

of brevity, only the final result is provided, i.e.

Ka=Va+ij(&—Ta), (C.6)
where
Ra(va, va) PO
Vo= ———7=NRyky ky) >0, C.7
(e WEE a(ka, kq) >0, (C.7)
= ﬁed(l}d,w?) _ ﬁ@d(kmkd) _ Tem( ds d) + ep( ds (l) Z 07 (CS)
nw |Vpa/nl>  nw nw
~ ~ 1 I af I L et 7. 7
I, = 6;2£Jd(Vd7VIJ;) _ ﬁJd(de-, kq) _ I5(ka, ka) +2/;)0 Tp(ka, ka) > 0. (C.9)
po [Vpa/n| po 02 o3

Eq. (C.6) shows that K, reflects the dissipated viscous, kinetic and elastic (or pseudo-elastic)
energies developed by the oscillatory fluid flow which is strongly affected by the fluid-film
interaction. In particular, the kinetic energy is determined by the inertia of the fluid and
the films while the elastic (or pseudo-elastic) energy by bending and membrane effects in
the films.

The dynamic density p; = 1/jwK,y is obtained by replacing the subscript b by d

in Eq. (C.5), i.e.
n G(K3) J
= 1+ -2 1
pd w KF * Ks5)’ (C.10)

where K = K3 /K} = (€4 — Za)/Va.

c.  Oscillatory flow in the permeable lossy metamaterial
Combining the previous results, one can write the visco-elasto-inertial permeability as
K = oV + ¢aVa + i(0ala — 06Ty + $ald)). (C.11)

This equation shows that the viscous dissipated, kinetic and elastic (or pseudo-elastic) ener-
gies developed by the flows in Qg and €, affect the overall permeability of the permeable

lossy metamaterial.

53

Publishing

AlP



AlP

Publishing

The dynamic density is then given by Eq. (32), which for a preferential propagation

direction becomes

o) = (quéZJ) - Pﬁi))l B _gG’(CIg) (1 N %> (©12)

where K* = K3 /K" = (¢a€a — [06Ts + daZa))/ (06Vs + daVa)-

2. Dynamic thermal permeabilities, compressibilities, and effective admittance

The relationship between the effective parameter ©,(w) and the local temperature field
Ty = Tb(o) is now identified. To do so, let us take the solution itself as a test field, i.e. ¢, = 7,
and evaluate it in the conjugate of Eq. (A.22) to obtain (note that we have dropped the

superscript indicating the order to alleviate the notation)
ay(To, ) = —jwDy(T)e- (C.13)

Recalling that (1), = (©p/k)jwps, one obtains a direct relationship between the dynamic
thermal permeability and the frequency-dependent local temperature field in the period,

which reads as
KRayp (7’1,7 Tb)

0, = o = oF +ijey, (C.14)
where
Hy (15, 75) A oA
R b\ by b
R — =H,(6,,0;) > 0, C.15
b ‘pr/K‘Z b( b b) ( )
o o Su(75, ) Su(6y, Op)
S 29T, Th (Db, Op
= _ =_ < 1
o, 0, op /i 5 <0, (C.16)

and 0; = y/k/wpoc, the thermal boundary layer thickness.

Hence the effective compressibility C, can be written as

1 . S
C, = ) (1=38) —jHy) = CF +iC, (C.17)
where o
Y—16) 4 —1H,(6y,6)
= 2 — >0, 1

[ A 2 (G189

vy = 1 6? v — 1Sb(éb, é)b)
S, = — - = C.19
: S Y o= (019)
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To link the local temperature field in Qg with the effective parameters, the same steps as

in the previous paragraphs are followed. The final results are obtained by replacing the

subscript b by d in Egs. (C.14)—(C.18).

The overall effective compressibility is then linked to the local fields as well as the effective

admittance of the resonator ), = ij + ij, via
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