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Abstract

This paper investigates acoustic wave propagation in gas-saturated permeable lossy meta-

materials which have different types of resonators, namely acoustic and elastic resonators, as

building-block elements. By using the two-scale asymptotic homogenization method, the macro-

scopic equations that govern sound propagation in such metamaterials are established. These

equations show that the metamaterials can be modelled as equivalent fluids with unconventional

effective density and compressibility. Analysis of these frequency-dependent and complex-valued

parameters shows that the real parts of both can take negative values within frequency bands

determined by inner resonances. The upscaled theory is exemplified with the case of a permeable

lossy metamaterial having a unit cell comprising two unconnected fluid networks and a solid frame.

One of these fluid networks is loaded with acoustic resonators (e.g. quarter-wavelength, Helmholtz

resonators) while thin elastic films are present in the other one. It is shown that the propagation

of acoustic waves in permeable lossy metamaterials is determined by both classical visco-thermal

dissipation and local elasto-inertial resonances. The results are expected to lead to judicious

designs of acoustic materials with peculiar properties including negative phase velocity and phase

constant characteristic for regressive waves, very slow phase velocity, and wide sub-wavelength

band gaps.

Keywords: Acoustic metamaterials; equivalent fluid; homogenization; inner resonances; regressive

waves.
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I. INTRODUCTION

Metamaterials are artificially structured materials with atypical effective parameters that

are primarily determined by the metamaterials’ microstructure instead of chemical compo-

sition. Research on acoustic metamaterials, reviewed in [1–3], has rapidly grown since the

works by Liu et al. [4] and Fang et al. [5] who reported, respectively, acoustic metamate-

rials exhibiting negative real part of the effective density and compressibility in a narrow

frequency band. In both cases, this is due to the resonant behavior of the metamaterial

constituents; with consequences being the existence of sub-wavelength bandgaps (i.e. fre-

quency bands where wave propagation is forbidden), slow phase velocity, and high levels

of sound attenuation. A negative real part of the effective parameters indicates an out-of-

phase response. For example, in a material with negative real part of the effective density,

the movement of the equivalent continuum is in the opposite direction to the driving force;

while in a material with negative real part of the effective compressibility, the equivalent

continuum expands upon an exerted pressure. Acoustic metamaterials exhibiting simultane-

ous negative real part of the effective density and compressibility have also been investigated

in a number of works, e.g. [6–15]. Due to their peculiar properties, these so-called double-

negative acoustic metamaterials have found application in, for example, sub-wavelength

imaging [16–18] and realizing reverse Doppler effect [19, 20]. In addition, the last decade

has seen a wealth of literature on acoustic metamaterials primarily intended for sound atten-

uation, with examples including waveguides loaded with resonators [21–25], coiled-space or

labyrinthic metamaterials [26–30], arrays of membranes with added masses [31–33], arrays

of Helmholtz resonators [34, 35], and permeo-elastic media [36, 37]. The atypical acoustical

properties of most of these metamaterials rely on the resonant behavior of their constituents.

Hence, the unconventional acoustic behavior is confined to narrow frequency bands. While

this limitation could, at least in part, be overcome by visco-thermal losses, it is known that

excessive losses can deteriorate the performance of acoustic metamaterials (see, e.g., [3, 38]).

This clearly points out the need to properly account for losses in the modelling of acoustic

metamaterials. This is done in this paper by using methods and analyses common for porous

media acoustics [39–43]. For porous materials, the effects of losses have been widely studied,

with examples being works on wave propagation in single porosity materials [44–48], such as

arrays of pores (see, e.g., [49–53]), granular materials [54–59], fibrous materials [60–63], and

3

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



cellular materials [64–67]; multiscale porous media [59, 70–79]; and porous composites [80–

83].

Air-saturated acoustic metamaterials with unit cells comprising thin elastic solids and

acoustic resonators have been a subject of extensive research in recent years. Lee et al. [8]

investigated wave propagation in a channel with interspaced clamped membranes and side

holes. In this structure, which was built and tested, the identical membranes disconnected

the fluid phase. The effective density and bulk modulus were modelled using a "lumped-

element" approach while visco-thermal losses and fluid interaction with the membranes were

not taken into account. In other words, the material was modelled as an equivalent loss-

less fluid with real-valued effective properties that can simultaneously take negative values.

While the experiments confirmed this assumption for the tested material, it was left to

theoreticians to justify it. Similarly, Bongard et al. [9] investigated a one-dimensional struc-

ture comprising a channel with clamped membranes and transversally connected radial open

channels. Using circuit theory and a transmission line approach, the membranes, which dis-

connected the channel’s fluid network, were modelled as compliances while the open channels

as shunt acoustic masses. The effects of visco-thermal losses were discarded due to the large

characteristic size of the structure. The full-wave finite element simulations confirmed that

the material exhibits negative, zero, or positive refractive index, depending on the frequency

range. An acoustic double-negative metamaterial consisting of a channel with an array

of interspaced clamped membranes and laterally loaded Helmholtz resonators was studied

in [11]. As in the above mentioned works, the membranes rendered the channel’s fluid net-

work disconnected and visco-thermal losses were not considered. In this work, the possibility

of simultaneous or separate negative effective density and bulk modulus was experimentally

demonstrated. As in [9], these results were theoretically explained using both circuit theory

and a transmission line approach. On the other hand, Lee and Wright [13] introduced the

concept of hidden force and hidden source of volume to theoretically explain the negativity

of the real-valued effective density or bulk modulus of a lossless material identical to that

studied in [11]. Recently, Bellis and Lombard [15] used prototypical frequency-dependent

expressions for the effective density and bulk modulus of a material with the same geometry

as that studied in [11], in order to develop a time-domain model of sound propagation in

a waveguide coupled with Helmholtz resonators and elastic membranes. The losses were

described by a single lumped-type parameter in the expression for the complex-valued effec-
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tive bulk modulus; while the effective density was considered to be a real-valued function.

In all the works, mentioned in this paragraph, the single fluid network of the metamaterial

was disconnected and the macroscopic equations that govern acoustic wave propagation in

the metamaterial were directly postulated, instead of being derived using homogenization

techniques. The latter implies that a recipe for the calculation of the effective parameters

from the solution of boundary-valued problems that govern the local fluid physics is not yet

available.

This paper investigates sound propagation in gas-saturated permeable lossy metamateri-

als with unit cells composed of a perfectly rigid and impervious solid domain and two fluid

networks. The fluid that saturates one of the networks is in contact with the fluid that

saturates an acoustic resonator (e.g. quarter-wavelength, Helmholtz resonator). The second

fluid network contains a thin elastic film which strongly interacts with the fluid. Despite

the presence of the film, the fluid network remains connected. One of the key contributions

of this work is an upscaled theory of acoustic wave propagation in gas-saturated permeable

lossy metamaterials. The macroscopic equations are derived using the two-scale asymptotic

method of homogenization [43] and demonstrate that permeable lossy metamaterials can be

modeled as equivalent fluids with complex-valued frequency-dependent effective parameters.

These parameters describe the influence of local visco-elasto-inertial effects on the acous-

tical properties of the metamaterial. We also present i) a comprehensive analysis of the

effective parameters of permeable lossy metamaterials, starting from a microscale descrip-

tion and unraveling the physical origin of their atypical acoustic behavior; and ii) an hybrid

(numerical-analytical) model for exemplifying the unconventional acoustical properties of

the metamaterials.

This work continues results on oscillatory fluid flow and heat conduction in single porosity

media [44–48, 51–53, 67], double porosity media [59, 70–72], and porous composites [82,

83], as well as on oscillatory fluid-film interaction [36, 37]. The findings will be helpful

in the bottom-up design of acoustic metamaterials for applications related to wave control

and can be exploited together with the results of other works on oscillatory fluid flow in

waveguides [84–87].

The paper is organized as follows. The macroscopic equations that govern sound prop-

agation in permeable lossy metamaterials are established by homogenization in § II, with

the details of the derivation being presented in the Appendix A. The asymptotic analysis
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of the effective parameters of the metamaterial is presented in § III, while § IV introduces

an hybrid model which is used in § V to exemplify key features of the effective parameters

and acoustic behavior of permeable lossy metamaterials. Concluding remarks are presented

in the last section of the paper.

II. ACOUSTIC WAVE PROPAGATION IN PERMEABLE LOSSY METAMATE-

RIALS – THEORY

A. Geometry and key assumptions

A generic geometry of the periodic acoustic metamaterials investigated in this work is

shown in Figure 1. The representative elementary volume (REV) has a period l and com-

prises the domains Ωb = Ωbf ∪Ωbr∪Ωbs and Ωd = Ωdf ∪Ωds. The perfectly-rigid solid part of

the REV is Ωs = Ωbs ∪Ωds and its walls are Γs = Γbs ∪ Γds. An acoustic resonator Ωbr, such

as a quarter-wavelength or a Helmholtz resonator (as in the diagram), is in contact with

the fluid-saturated domain Ωbf through the fluid-fluid interface Γrf . The thin elastic film Γ

is clamped onto the perfectly-rigid and impervious solid domain Ωds and strongly interacts

with the fluid that saturates Ωdf . Outward pointing normal vectors are denoted as n and N.

The macroscopic characteristic length L is related to the wavelength λ of the acoustic waves

λ = 2πL. Throughout the paper, it is assumed both that λ ≫ l, i.e. a long-wavelength

regime is considered, and harmonic dependence of the type ejωt. The former ensures a good

separation of scales and allows defining a small parameter ε = l/L ≪ 1.

It must be noted that since the gas-saturated parts of Ωb and Ωd, i.e. Ωbf and Ωdf , are not

connected, no interaction between the acoustic and elastic resonators is possible. The case

where the resonators share a common fluid network and interact, either weakly or strongly,

is beyond the scope of this work.

B. Local governing equations

Acoustic wave propagation in Ωbf is governed by the Stokes-Fourier system and boundary

conditions of zero velocity and excess temperature on Γs as well as continuity of mass flux,

6

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



L l Ωbr

Γ

L l

Ωb

Ωd

Ωbr

Ωbs Ωbf

Ωdf

Ωds

Γ

⊙N

Γds

Γbs Γrf

n

FIG. 1: Periodic geometry of a generic permeable lossy metamaterial. Top left – 3D

macroscopic medium. Top middle – 3D Representative Elementary Volume (REV). Top

right – Cutaway view of the 3D REV. Bottom left – 2D representation of the macroscopic

medium. Bottom right – 2D representation of the REV. The clamped films Γ are shown in

green, while the acoustic resonators Ωbr in blue. The solid frame in shown in gray and the

pore fluid networks are transparent. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article)

.

pressure, and temperature on Γrf , namely

div(2ηD(vb))−∇pb = jωρ0vb in Ωbf , (1)

jωρb + ρ0∇ · vb = 0 in Ωbf , (2)

κ∇ · ∇τb = jωρ0cpτb − jωpb in Ωbf , (3)
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pb
P0

=
ρb
ρ0

+
τb
τ0

in Ωbf , (4)

vb = 0 on Γbs, (5)

τb = 0 on Γbs, (6)

ρ0vb · n = ρ0vr · n on Γrf , (7)

pb = pr on Γrf , (8)

τb = τr on Γrf . (9)

The physical parameters are the dynamic viscosity η, specific heat capacity cp, thermal

conductivity κ, and equilibrium pressure P0, density ρ0, and temperature τ0. The unknown

variables are the oscillating velocity vb, pressure pp, density ρb, and temperature τb; while

D(vb) = 1
2
(∇vb + (∇vb)

T − 2
3
∇ · vbI) is the deviatoric strain rate tensor, where I is the

unitary second-rank tensor. Note also that vr, pr and τr are, respectively, the fluid velocity,

pressure, and temperature in the resonator, which as shown in Appendix A are not required

to be specified.

The propagation of acoustic waves in the fluid-saturated part of the permeo-elastic

domain, i.e. Ωdf , is governed by the Stokes-Fourier system Eqs.(10)–(13) coupled with

Eqs. (14)–(16) that govern the dynamics of the clamped film. The film, modelled as a

Love-Kirchhoff plate [36], can be pre-stressed, which means that bending and membrane

effects are accounted for [37]. The system is completed with clamping boundary conditions

formulated on ∂Γ, i.e. Eq. (18), and conditions of zero velocity and excess temperature on

Γs, i.e. Eq. (19) and (20).

div(2ηD(vd))−∇pd = jωρ0vd in Ωdf , (10)

jωρd + ρ0∇ · vd = 0 in Ωdf , (11)

κ∇ · ∇τd = jωρ0cpτd − jωpd in Ωdf , (12)

pd
P0

=
ρd
ρ0

+
τd
τ0

in Ωdf . (13)

∇̃ · (T + T ∇̃ud) = −ω2ρetud − [σd · N] · N on Γ (14)

T = −d̃iv(M) on Γ, (15)

M = EI
(
(1− ν)ẽ(∇̃ud) + ν∇̃ · ∇̃udI

)
on Γ, (16)
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vd = jωudN on Γ, (17)

ud = 0 and ∇̃ud · n = 0 on ∂Γ. (18)

vd = 0 on Γds, (19)

τd = 0 on Γds ∪ Γ. (20)

The unknown variables in Eqs.(10)–(13) are analogous to those in Eqs. (1)–(4). In Eqs. (14)–

(18), the tilde on the differential operators denotes that these act on the plane Γ. For

instance, ẽ(·) = (g̃rad(·)+g̃rad
T
(·))/2 is the symmetric part of the in-plane gradient operator.

The out-of-plane shear stress vector T and the bending moment of the in-plane stress tensor

M are integrated over the film thickness t. The "plate" modulus of the films is E =

E/(1− ν2), where E and ν are the Young’s modulus and Poisson’s ratio, respectively. The

bending stiffness is EI, where I = t3/12 is the moment of inertia of the plate. The surface

density of the films is ρet and the thickness of the films satisfies t ≪ l. In addition, the

film is loaded by the action of the fluid on its faces and its own inertia, as represented

by the right-hand side terms of Eq. (14). The former is the jump across Γ of the normal

component of the fluid stress vector, i.e. [σd · N] · N, where [·] represents the ’jump’ across

Γ (e.g. [a] = a+ − a−, with the superscript + and − representing the opposite faces of the

film). Furthermore, it has been considered that the film has been isotropically and uniformly

pre-stressed by σT = σT I = (T /t)I, where T is the uniform tension per unit length.

The two-scale asymptotic method of homogenization [43] is applied, as shown in the

Appendix A, to the set of equations (1)–(20) in order to establish a macroscopic description

of sound propagation in permeable lossy metamaterials. The general steps of the upscaling

process are the analysis of the local physics, rescaling of the local description, searching of

the unknown variables as series expansion in terms of the small parameter ε, identification

of boundary-value problems, and determination of the effective macroscopic equations that

govern the propagation of sound waves in permeable lossy metamaterials. The latter is

presented in the next section.

C. Macroscopic equations and effective parameters

The macroscopic equations that govern sound propagation in permeable lossy metama-

terials are the mass balance equation (21) and the fluid flow constitutive law (22) (see
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Appendix A for their derivations), namely

∇ · V = −jω(pbφbCbr(ω) + pdφdCd(ω)), (21)

V = −φbkb(ω)

η
· ∇pb −

φdkd(ω)

η
· ∇pd, (22)

where V and pb and pd represent the averaged fluid velocity and pressures in the permeable

lossy metamaterial, respectively. The subscript in the differential operator and the super-

script denoting the order in the variables have been dropped to ease the notation. The

effective parameters of the model are described below.

Eqs. (21) and (22) demonstrate that the acoustic response of the investigated perme-

able lossy metamaterials is described by a two-pressure model. This is a consequence

of the decoupled nature of the pore fluid networks Ωbf and Ωdf and differs from classi-

cal single-pressure models for conventional, multiscale, or composite porous materials (see

e.g. [42, 43, 77, 82, 83]). However, the acoustic response of permeable lossy metamaterials

can be described by a single-pressure model under the following conditions. Consider a

metamaterial layer for which its thickness is much smaller than the sound wavelengths |λι|
(with ι = b, d) and, at the same time, larger than the metamaterial’s period. In such a

case, the pressure gradient, determined by the pressures at the extremities of the layer, is

identical in both effective fluids. It then follows that the pressures pb and pd are also equal,

i.e. pb = pd = p, and the two-pressure model can be reduced to the following single-pressure

model that describes the apparent acoustic response of permeable lossy metamaterials:

∇ · V = −jωpC(ω), (23)

V = −k(ω)

η
· ∇p. (24)

Here, the effective compressibility C is given by (with φb = Ωbf/Ω and φd = Ωdf/Ω)

C(ω) = φbCbr(ω) + φdCd(ω). (25)

The effective compressibilities Cbr and Cd read as (see § A 4 for their derivation)

Cbr(ω) = Cb(ω) + Cr(ω), (26)

Cb(ω) =
1

P0

(
1− γ − 1

γ
jωρ0cp

Θb(ω)

κ

)
, (27)

Cr(ω) =
2

L
Yr(ω)

jω
, (28)
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Cd =
1

P0

(
1− γ − 1

γ
jωρ0cp

Θd(ω)

κ

)
, (29)

where the thermal permeabilities are calculated as Θι(ω) = 〈Θ̂ι(y, ω)〉ι (with ι = b, d, see

also §A 3 b), L = 2Ωbf/Γrf is a characteristic length, and Yr(ω) is the effective admittance of

the resonator. Exact expressions for the admittance depending on the type of the resonator

are presented in the Appendix B.

The dynamic visco-elasto-inertial permeability tensor k(ω) is given by

k(ω) = φbkb(ω) + φdkd(ω), (30)

where the dynamic visco-inertial permeability of the effective fluid saturating Ωbf , i.e. kb,

and the dynamic visco-elasto-inertial permeability of the effective fluid saturating Ωdf , i.e.

kd, are given by

kb(ω) = 〈k̂b(y, ω)〉b and kd(ω) = 〈k̂d(y, ω)〉d, (31)

where k̂b(y, ω) and k̂d(y, ω) are calculated from the solution of the boundary-value problems

detailed in § A 3 a and § A 3 c, respectively.

On the other hand, the effective density tensor ρ is related to the visco-elasto-inertial

permeability tensor through

ρ(ω) =
η

jω
k
−1 = (φbρ

−1
b + φdρ

−1
d )−1, (32)

where ρb = ηk−1
b /jω and ρd = ηk−1

d /jω.

For the analyses and examples to be presented in the next sections, it is pertinent to

recall that the effective wave number kc(ω) and speed of sound c(ω) are given by

kc = ω
√

ρ(ω)C(ω) = ω|ρ(ω)|1/2|C(ω)|1/2ejθk(ω), (33)

c(ω) =
ω

kc(ω)
=

ejθc(ω)

|ρ(ω)|1/2|C(ω)|1/2 . (34)

These expressions are valid for macroscopically isotropic metamaterials or when considering

a preferential sound propagation direction (i.e. the effective density tensor becomes ρ(ω) =

ρ(ω)I), and θρ(ω) and θC(ω) are the frequency-dependent phases of the effective density and

compressibility, respectively.

The phase of the effective speed of sound and wave number are respectively given by

θc(ω) = −θρ(ω) + θC(ω)

2
and θk(ω) = −θc(ω). (35)
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In summary, the two-pressure model [Eqs. (21) and (22)] and its reduction to a single-

pressure model [Eqs. (23) and (24)] are the main contributions of this paper. The lat-

ter model shows that a permeable lossy metamaterial can be modelled as an equivalent

fluid with effective complex-valued frequency-dependent parameters k and C. Specifically,

Eq. (23) demonstrates that the effective compressibility depends on the classical effective

compressibilities of the fluid saturating the pore fluid networks, i.e. Cb and Cd which are

determined by the losses caused by the thermal exchanges between the saturating fluid and

the solid frame of the material, and an apparent compressibility, i.e. Cr, that accounts for

the influence of the identical acoustic resonators through the effective admittance Yr. It is

the latter that induces atypical acoustic behavior, as it will be shown in § III where the

properties of the effective compressibility are analyzed in detail. On the other hand, despite

the formal similarity between Eq. (24) and the dynamic Darcy’s law [44], Eq. (24) does not

correspond to such a law [36, 37]. This is because the elastic and inertial effects in the films

as well as the viscous and inertial effects in both pore fluid networks affect k. The interplay

between these effects also contributes to an atypical behavior of the medium, as will be

shown later in the paper.

To conclude this section, it is worth highlighting degenerate cases of the upscaled model

given by Eqs. (23) and (24). If the acoustic resonators are not present and the films are

absent or can be considered as perfectly rigid, the upscaled model reduces to that of wave

propagation in double porosity materials with weakly contrasted permeabilities [72]. If the

permeo-elastic channel is absent, i.e. φd = 0, the resulting upscaled model is that of wave

propagation in a fluid-saturated array of resonators [34, 35]. If the resonators are replaced

by a perfectly rigid impermeable solid, the upscaled model for wave propagation in single

porosity materials [44, 48] is retrieved, which is also the case if φb = 0 and the films are

perfectly rigid. On the other hand, if φb = 0, then the upscaled model for wave propagation in

permeo-elastic media [36, 37] is retrieved. In addition, the upscaled model introduced in this

work degenerates to that of wave propagation in porous composites with weakly contrasted

permeabilities [82] if φd and φb are the volume fractions of the porous constituents and the

effective parameters Cd, kd, Cb, and kb are interpreted as those of the porous constituents b

and d accordingly.
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III. ANALYSIS OF THE EFFECTIVE ACOUSTIC PROPERTIES

Here, the low- and high-frequency behavior of the effective parameters is investigated,

together with that at several characteristic frequencies. As previously, a preferential sound

propagation direction is considered for simplicity. Hence, the tensors are replaced by the

scalars K, Kb, Kd, ρ, ρb, and ρd, which can represent the norms of the respective tensors.

Such approximation is valid for isotropic or even moderately anisotropic metamaterials.

In what follows, the frequency-dependent terms, derived in the Appendix C, that link

the local fields and the effective parameters will be used for the analysis. For the oscillatory

flows, these correspond to Vb = ℜ(Kb) and Ib = −ℑ(Kb), which reflect the dissipated

viscous and kinetic energy in Ωbf , respectively; and to Vd = ℜ(Kd), Ed, and Id which reflect,

respectively, the dissipated viscous, elastic, and kinetic energies in Ωdf . These are strongly

affected by the fluid-film interaction. Note also that Ed is determined by the elasticity of

the films, Id is affected by the inertia of both the fluid and the films, and ℑ(Kd) = Ed − Id.

For the oscillatory temperature fields, these correspond to Hι = (γ − 1)ℜ(Θι)/γδ
2
t and

Sι = −(γ − 1)ℑ(Θι)/γδ
2
t (with ι = d, b), where Sι and Hι reflect the stored and dissipated

(due to heat conduction) energies, respectively.

A. Effective dynamic permeability and density

The dynamic visco-inertial permeability Kb behaves classically. Hence, it tends to

Kb(ω ≪ ωvb) → Kb(ω = 0) = K0b and Kb(ω ≫ ωvb) → −j
δ2v
α∞b

, (36)

where ωvb = ν/K0bα∞b, K0b, and α∞b are the viscous characteristic (or Biot) frequency,

static viscous permeability, and tortuosity of the pore fluid network Ωbf , respectively. The

boundary layer thickness is δv =
√
ν/ω, where ν is the kinematic viscosity of the saturating

fluid. Let us recall that the Biot frequency determines the transition from viscosity- and

inertia-dominated oscillatory flow in the pore space Ωbf and indicates the frequency at which

the dissipation of sound due to the viscosity of the fluid saturating the said pore space is

maximized. Moreover, at the Biot frequency one has that Ib(ωvb) = Vb(ωvb).

Then, the magnitude and phase of the dynamic density ρb tend to

|ρb(ω ≪ ωvb)| → ρ0
δ2v
K0b

and |ρb(ω ≫ ωvb)| → ρ0α∞b, (37)
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θρb(ω ≪ ωvb) = −π

2
and θρb(ω ≫ ωvb) → 0. (38)

The dynamic visco-elasto-inertial permeability Kd has a complex behavior in frequency,

as discussed in detail in [36, 37]. Several characteristic frequencies can be defined as follows.

The visco-inertial characteristic frequency ωvd determines the transition from viscous- to

inertia-dominated flow. Note, however, that ωvd is defined, in the absence of elastic effects

(i.e. Ed → 0), implicitly through Vd(ωvd) = Id(ωvd). Similar to classical porous media,

an estimation of this frequency is ωvd = ν/K0dα∞d. In this expression, K0d = Vd(ω →
0) is the static permeability, which is well approximated by that of material with same

geometry as that of the permeo-elastic one but with perfectly rigid instead of elastic films;

and α∞d = δ2vI−1
d (ω ≫ ωvd) is the respective tortuosity, which is affected by the fluid-film

interaction [36, 37]. Then, the limiting behavior of Kd is formally similar to that shown in

Eq. (36) but with the subscript b → d. Consequently, the magnitude and phase of ρd tend

to the values quoted in Eq. (37) and Eq. (38) (with b → d), respectively.

On the other hand, elasto-inertial characteristic frequencies which correspond to an anti-

resonance frequency ωad and a resonance frequency ωgd can be defined [36, 37] when viscous

effects are negligible (i.e. when Vd → 0). In both cases, the elastic energy is compensated

by the kinetic energy, which means that ωad and ωgd are both implicitly defined through

Ed = Id. Then, Kd behaves as [37]

Kd(ω = ωad) → 0 and Kd(ω = ωgd) → ∞. (39)

At the anti-resonance frequency ωad, the mean fluid velocity tends to zero when the system

is excited by a finite pressure gradient. Physically, this implies that the internal motions of

the fluid-film system compensate. At the resonance frequency ωgd, the mean fluid velocity

takes large values when the system responds to a finite pressure gradient.

It then follows that the magnitude and phase of the effective density ρd tend to

|ρd(ω = ωad)| → ∞ and |ρd(ω = ωgd)| → 0, (40)

θρd(ω = ωad) = −π

2
and θρd(ω = ωgd) → −π

2
. (41)

It is clear that in the frequency band (ωad, ωgd), the magnitude of ρd is a decreasing function

of frequency, while its phase reflects that the movement of the equivalent fluid is in the

opposite direction to the driving force, i.e. θρd tends to

θρd(ωad < ω < ωgd) → −π. (42)
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Consequently, the real part of ρd is negative in the frequency band (ωad, ωgd), i.e ℜ(ρd(ωad <

ω < ωgd)) < 0.

Gathering the previous results, the limiting behavior of the effective permeability and

density of the permeable lossy metamaterial is identified. For negligible elastic effects, the

former behaves as

K(ω ≪ ωv) → φbKb0 + φdKd0 = K0 and K(ω ≫ ωv) → −jφ
δ2v
α∞

, (43)

where α∞ = φ/(φbα
−1
∞b+φdα

−1
∞d) is the overall tortuosity of the metamaterial and φ = φb+φd.

The Biot frequency ωv is implicitly defined through

φbVb(ωv) + φdVd(ωv) = φbIb(ωv) + φdId(ωv) with φdEd → 0, (44)

and can be well estimated by ωv = φν/K0α∞.

The magnitude and phase of the dynamic density ρ tend to

|ρ(ω ≪ ωv)| → ρ0
δ2v
K0

and |ρ(ω ≫ ωv)| →
ρ0α∞

φ
, (45)

θρ(ω ≪ ωv) = −π

2
and θρ(ω ≫ ωv) → 0. (46)

The locally resonant behavior of the perme-elastic domain affects the effective perme-

ability and density of the permeable lossy metamaterial. The elasto-inertial characteristic

frequencies ωa and ωg are implicitly defined through

φdEd(ωei) = φbIb(ωei) + φdId(ωei) with (φbVb(ωei) + φdVd(ωei)) → 0, (47)

where ωei equals to either ωa or ωg.

At the anti-resonance frequency ωa (respectively resonance frequency ωg), one has that

K(ωa) → 0 (respectively K(ωg) → ∞). It is worth highlighting that ωa is determined by

the elasticity and inertia of the films and the fluid saturating Ωbf and Ωdf . The relationship

between this anti-resonance frequency and that of the permeo-elastic domain ωad is shown

to be ωa ≥ ωad, with the equality being observed when Ib → 0. On the other hand, since

Kd(ωgd) → ∞, the overall permeability also tends to ∞ at the resonance frequency ωg = ωgd.

Hence, ωg does not depend on fluid flow in Ωbf . These results lead to the following behavior

of the effective density

|ρ(ω = ωa)| → ∞ and |ρ(ω = ωg)| → 0, (48)
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θρ(ω = ωa) = −π

2
and θρ(ω = ωg) → −π

2
. (49)

Note also that in the frequency band ∆d = (ωa, ωg), the magnitude of ρ is a decreasing

function of frequency, while the phase of the effective density tends to

θρ(ωa < ω < ωg) → −π. (50)

This shows that the real part of ρ is negative in this frequency range and means that the

movement of the equivalent fluid is in the opposite direction to the driving force.

At this point, some remarks are pertinent: i) despite the fact that the flow in the fluid

network Ωdf is uncoupled from that in Ωbf , the latter still affects the overall anti-resonance

frequency of the permeable lossy metamaterial. This enables the tuning of ωa by, for example,

modifying the pore morphology Ωbf ; and thereby the tuning of the band where ℜ(ρ) < 0,

and ii) the small but non negligible viscous dissipation leads to damped resonances and, as

a consequence, removing the singularities of the effective parameters, while the excess of

dissipation can over damp the resonances.

B. Effective dynamic compressibility

Consider frequencies much smaller than the thermal characteristic frequencies ωtι, defined

through Hι(ωtι) = Sι(ωtι) and estimated as ωtι = κ/ρ0cpΘ0ι, where Θ0ι is the static thermal

permeability of the pore fluid network Ωιf (with ι = d, b). At the leading order, Hι(ω ≪
ωtι) → γ−1

γ
ω
ωtι

and Sι(ω ≪ ωtι) → 0. Hence, Θι(ω ≪ ωtι) → Θι(ω = 0) = Θ0ι. For ω ≫ ωtι,

the leading-order limiting values are Hι(ω ≫ ωtι) → 0 and Sι(ω ≫ ωtι) → (γ − 1)/γ,

i.e. Θι(ω ≫ ωtι) → −jδ2t , where the thermal boundary layer thickness is δt =
√

κ/ρ0cpω.

Consequently, the effective compressibilities Cd and Cb behave classically, i.e.

Cι(ω ≪ ωtι) →
1

P0

(
1− γ − 1

γ

jω

ωtι

)
and Cι(ω ≫ ωtι) →

1

γP0

. (51)

The magnitude and phase of the effective compressibilities then tend to

|Cι(ω ≪ ωtι)| →
1

P0

√

1 +

[
γ − 1

γ

ω

ωtι

]2
and |Cι(ω ≫ ωtι)| →

1

γP0

, (52)

θCι(ω → 0) → 0 and θCι(ω ≫ ωtι) → 0. (53)
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Using Eq. (C.20), one then obtains that (with ωmin
t = min (ωtb, ωtd) and ωmax

t =

max (ωtb, ωtd))

C(ω ≪ ωmin
t ) =

[
φb

P0

+ φb
2

L
Yℑ

r

ω
+

φd

P0

]
− j

[
φb

P0

γ − 1

γ

ω

ωtb

+ φb
2

L
Yℜ

r

ω
+

φd

P0

γ − 1

γ

ω

ωtd

]
, (54)

C(ω ≫ ωmax
t ) =

[
φb

γP0

+ φb
2

L
Yℑ

r

ω
+

φd

γP0

]
− j

[
φb

2

L
Yℜ

r

ω

]
, (55)

where Yℜ
r = ℜ(Yr) and Yℑ

r = ℑ(Yr).

To gain further insight, it is convenient to use a particular expression for the admit-

tance of the resonator. The features to be identified are, however, shared by other types of

acoustic resonators. Considering a quarter-wavelength resonator, the effective admittance

of which is given by Eq. (B.1), one has that Yr ≈ jωCr̃dr for |kcrdr| ≪ 1, where kcr and Cr̃

are, respectively, the effective wave number and compressibility of the fluid saturating the

quarter-wavelength resonator of depth dr. The effective compressibility Cr̃ takes the follow-

ing leading-order limiting values: Cr̃(ω ≪ ωtr) = 1/P0 and Cr̃(ω ≫ ωtr) = 1/γP0. Then,

the term 2φbYℑ
r /Lω, becomes either φr/P0 or φr/γP0 for ω ≪ ωtr or ω ≫ ωtr, respectively.

Note that φr = Ωrf/Ω.

The low frequency asymptotic value of the overall normalized effective compressibility is

therefore given by

P0C(ω → 0) = Φ− γ − 1

γ

jω

ωt

i.e. C(ω = 0) =
Φ

P0

(56)

where Φ = φb + φr + φd is the total porosity of the metamaterial and the apparent thermal

characteristic frequency ωt is defined through ω−1
t ≈ φb/ωtb+φd/ωtd. This is an approximated

expression because a small contribution of a visco-elastic frequency coming from the loading

resonator has been omitted. Note also that the same result applies to a metamaterial whose

REV features a Helmholtz instead of a quarter-wavelength resonator but with φr → φn+φa,

where φn = Ωn/Ω and φa = Ωa/Ω are the volume fractions occupied by the neck and cavity

of the resonator, respectively.

Then, the magnitude and phase of the effective compressibility (with ω/ωt ≪ 1) tends to

|C(ω → 0)| → Φ

P0

√

1 +

[
γ − 1

γΦ

ω

ωt

]2
≈ Φ

P0

and θC(ω → 0) → 0. (57)

Since 0 ≤ Sι ≤ (γ − 1)/γ (with ι = b, d), Eq. (C.20) shows that the real part of the

effective compressibility is positive, provided that Yℑ
r ≥ 0. This can also be seen from
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Eqs. (54) and (55). However, at the resonance frequency fr of a lossless acoustic resonator,

the compressibility diverges [34]. Consequently, the magnitude and phase of the effective

compressibility at ωr tend to

|C(ω = ωr)| → ∞, and θC(ω = ωr) → −π

2
. (58)

The real part of the effective compressibility can be negative, i.e. ℜ(C) < 0. With

reference to Eq. (C.20), this occurs in the frequency band where the following inequality is

satisfied

Yℑ
r < − ω

P0

Ω

Γrf

(φb(1− Sb) + φd(1− Sd)) . (59)

It is clear that ℜ(C) < 0 is only possible if Yℑ
r < 0. For the case of a lossless quarter-

wavelength resonator, one has the following inequality

tan (ξ) < −φ⋆ξ with φ⋆ =
φb/gb + φd/gd

φr/γ
, (60)

where Eq. (B.1) has been used, ξ = πω/2ωr, and gd and gb can take values of 1 or γ,

depending on whether sound propagation in the respective equivalent fluid is isothermal or

adiabatic. Note that a necessary but not sufficient condition to satisfy (60) is 1 ≤ ω/ωr < 2.

The inequality (60) is transcendental and shows that, despite the fact that the two fluid

networks are unconnected and therefore the waves that propagate in them do no interact,

there is still an influence of the fluid network Ωdf , through its associated porosity, on the

atypical behavior of the effective compressibility. In practice, this means that the second

porosity can be used to make the frequency band where ℜ(C) < 0 narrower. However, the

fluid network Ωdf does not modify the resonance frequency ωr at which |C| → ∞.

To estimate the frequency band ∆b = (ωr, ωr⋆) where ℜ(C) < 0, an approximation of the

left-hand side term of Eq. (60) is used, i.e.

ω∗ − 2

1− ω2
∗

= φ⋆ω∗ with ω∗ =
ω

ωr

. (61)

The solution of this equation leads to

ωr⋆

ωr

= z+
1

3z

φ⋆ − 1

φ⋆
, (62)

z =

(
1

φ⋆

)1/3
[
1 +

√
1− (φ⋆ − 1)3

27φ⋆

]1/3
. (63)
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Focusing on the first resonance, assuming adiabatic sound propagation in Ωbf , Ωdf and Ωrf

(i.e. the frequency is much higher than any thermal characteristic frequency and therefore

gb = gd = γ), and recalling that for any frequency ωr⋆/ωr < 2 otherwise the imaginary part

of the admittance cannot take negative values, it can be shown from Eqs. (63) and (62) that

ωr⋆/ωr is a decreasing function of φ⋆ that takes the limiting values ωr⋆/ωr → 2 for φ⋆ ≪ 1

and ωr⋆/ωr → 1 for φ⋆ ≫ 1. This reflects that a larger (respectively smaller) fluid-saturated

volume occupied by the quarter-wavelength resonator maximizes (respectively minimizes)

the bandwidth of ∆b.

For the case of a permeable lossy metamaterial with one Helmholtz resonator per REV

and considering a ’lumped’ parameter approximation obtained by i) expanding the effective

admittance Eq. (B.2) for |kcaha| ≪ 1 and |kcnln| ≪ 1, and ii) considering adiabatic sound

propagation everywhere (i.e. the frequency is much higher than any thermal characteristic

frequency and therefore ga = gb = gd = γ); the ratio ωr⋆/ωr takes a simple form, i.e.

ωr⋆

ωr

=

√
1 +

φa

φb + φd

. (64)

The magnitude and phase of the effective compressibility at the anti-resonance frequency

ωr⋆ tend to

|C(ω = ωr⋆)| → 0 and θC(ω = ωr⋆) → −π

2
. (65)

Furthermore, even though the heat transfer in the fluid network Ωbf is uncoupled from that

in Ωdf , the heat transfer in the latter affects the frequency band where ℜ(C(ω)) < 0. The

existence of the additional pore network makes this band narrower and the phase of the

material’s effective compressibility approaches

θC(ωr < ω < ωr⋆) → −π. (66)

C. Effective speed of sound and wave number

Eq. (34) shows that |c(ω)| → 0 if |K| = 0 or |C| → ∞. These conditions are not satisfied

in conventional porous materials [42], multiscale permeable media [73, 74, 76–79], or porous

composites [82, 83]. As an example, for conventional porous materials and considering

leading-order terms: c0
√
ωK0/φγν ≤ |c| ≤ c0/

√
α∞ while the phase of the effective speed

of sound varies from π/4 in viscosity-dominated flow regime down to 0 in inertia-dominated
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flow regime. Consequently, the magnitude of the wave number take the following values

k0
√
φγν/ωK0 ≤ |kc| ≤ k0

√
α∞, where k0 = ω/c0 is the wave number in air. This classical

behavior is not totally shared by permeable lossy metamaterials.

As follows from the previous subsections, the magnitude and phase of the effective speed

of sound take the following values for low and high frequencies

|c(ω ≪ ωv)| → c0

√
ωK0

Φγν
and |c(ω ≫ ωv)| →

c0√
α∞

, (67)

θc(ω ≪ ωv) →
π

4
and θc(ω ≫ ωv) → 0. (68)

Since |kc(ω)| = ω/|c(ω)| and θk(ω) = −θc(ω), it is direct to obtain the limiting values of the

magnitude and phase of the wave number. Hence, for the sake of brevity, these will not be

quoted in what follows.

Recalling that for elasto-inertial flow, the effective permeability at ωa tends to zero, while

at ωg it tends to ∞ [see also Eq. (48)]; and further assuming adiabatic sound propagation

in both pore fluid networks, one obtains that

|c(ωa)| → 0 and |c(ωg)| → ∞, (69)

θc(ωa) →
π

4
and θc(ωg) →

π

4
, (70)

while in the band (ωa, ωg) the phase of the effective speed of sound tends to

θc(ωa < ω < ωg) →
π

2
. (71)

Thus, the real part of the effective speed of sound (or phase velocity) tends to zero while the

imaginary part increases significantly. This means that no propagating waves are supported

in ∆d and a bandgap is developed in this frequency range.

On the other hand, for inertia-dominated flow, the presence of resonators also affect the

effective sound speed. On the boundaries ωr and ωr⋆ of the frequency range where ℜ(C) < 0,

one has that

|c(ωr)| → 0 and |c(ωr⋆)| → ∞, (72)

θc(ωr) →
π

4
and θc(ωr⋆) →

π

4
. (73)

In the frequency band (ωr, ωr⋆), the phase of the effective speed of sound tends to

θc(ωr < ω < ωr⋆) →
π

2
, (74)
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and ℜ(c) → 0. This means that a second bandgap is developed in this frequency range.

In summary, two band gaps are predicted due to two different resonance mechanisms, i.e.

acoustic resonance and fluid-film resonance, when the two atypical bands do not overlap. In

both bands, the real part of the speed of sound (or phase velocity) tends to zero while the

attenuation coefficient, defined as −ℑ(kc), takes large values.

Up to now, it has been tacitly assumed that the two atypical bands do not overlap.

However, the overlap is not prohibited and this leads to behavior typical for double negative

metamaterials [6–10, 12, 14].

In the frequency band, denoted as ∆, where ∆d = (ωa, ωg) and ∆b = (ωr, ωr⋆) overlap,

the phase of the effective speed of sound tends to

θc(ω ∈ ∆) → π. (75)

This means that the phase velocity is negative in ∆, leading to a negative real part of the

refraction index in ∆. Negative phase velocity is a remarkable feature and its prediction

highlights the need to properly account for losses in the modeling. Ignoring the losses,

accounted for by the imaginary parts of such effective parameters, a positive phase velocity

in ∆ may be predicted since both ℜ(ρ) and ℜ(C) are negative in this band. It should be

emphasized that a negative phase velocity means that the propagating wave is regressive.

However, it is stressed that the attenuation coefficient is positive and the wave amplitude is

decreasing for frequencies in ∆, which is consistent with the fact that no gain is expected in

a passive material.

Interesting cases arise when elasto-inertial characteristic frequencies are matched. When

the dipolar anti-resonance of the fluid-film system coincides with the monopolar resonance

of the acoustic resonator, i.e. ωa = ωr, the magnitude and phase of the effective speed of

sound tend, respectively, to |c| → 0 and θc → π/2. If the anti resonance ωa coincides with

the upper boundary of bandgap ωr⋆, then θc → π/2 and a local minimum in |c| is expected

due to the usually larger magnitude of ρ in comparison with that of C. If two resonance

frequencies coincide, i.e. ωg = ωr, |c| is expected to have a local maximum and θc to tend

to π/2. In addition, |c| → ∞ and θc → π/2 at ω = ωg = ωr⋆.

The limiting cases considered so far are best approached when losses are small. Due

to the presence of losses, these limiting values are not reached and the phase behavior is

smoothed. The latter can also be exploited to induce anomalous acoustic wave propagation
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in narrow frequency bands. These phenomena are investigated in the subsequent parts.

IV. HYBRID MODEL

The modelling of permeable lossy metamaterials requires the calculations of their effective

parameters K and C, which, in turn, requires those of Kd, Kb, Cb, Cr, and Cd. These are

dependent on the saturating fluid, mechanical parameters of the films, and geometry of the

microstructure.

Figure 2 shows the microstucture of a permeable lossy metamaterial, to be used in ex-

amples, comprising a slit-like channel loaded with an acoustic resonator, a permeo-elastic

channel, and a solid frame. The REV is a parallelepiped with sides lt, lw, and lh. The width

of the permeo-elastic channel is wd, while the width ws of the solid walls that decouple the

domains Ωbf and Ωdf is equal to their height hs. The width of the slit-like channel loaded

with the Helmholtz resonator is hb = 2h. The Helmholtz resonator has a cylindrical cavity,

of radius ra and depth ha, with an in-built cylindrical neck with radius rn and length ln. The

height of the gap that connects the front and back fluid-saturated parts of the permeo-elastic

channel is hg. The height and depth of the bar one of the edges of the film is clamped onto

are hq and dq, respectively. The dimensions of the rectangular film are hm and wm = wd.

The geometry of the microstructure of other materials, described and used for comparison

purposes in the the next section, are also shown in Figure 2.

The dynamic visco-inertial permeability Kb and dynamic thermal permeability Θb of air

in the slit side-loaded by resonators are given by

Kb(ω) = χ(h, δv) and Θb(ω) = χ(h, δt), (76)

where

χ(x, δ) = −jδ2
(
1− tanh (

√
jxδ−1)√

jxδ−1

)
. (77)

Then, the compressibility of air in the slit side-loaded by resonators, i.e. Cb, is calcu-

lated by inserting Eq. (76) into (27), while Cr is given by Eq. (28) with Yr being given by

Eq. (B.2). Viscothermal losses in the neck and cavity of the resonator are accounted for via

the complex-valued frequency-dependent wave number and characteristic impedance. These

are calculated (with β = n, a) as kcβ = ω
√

ηCβ/jωKβ and Zcβ = ωη/jωKβkcβ. Here Kβ is

22

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



L l

Ωb

Ωd

Ωbf

Ωdf

Ωr

Γ
Ωds

Ωbs

(a) (b) (c)

lh

lt

dq

lh
2

lw

2ra

ha

hbwb

ln

2rn

ws

hs

lh
2

lw

wmhm

hq

wd

hg

ws

hs

(d) (e) (f)

(g) (h) (i)

FIG. 2: Geometry of a permeable lossy metamaterial. (a) 3D macroscopic medium. (b) 3D

REV. (c) and (d) cutaway views of the 3D REV. (e) and (f) Geometrical parameters of the

domains Ωb and Ωd. (g) 3D REV of a single porosity material (SPM). (h) 3D REV of a

permeo-elastic material (PEM). (i) 3D REV of a double porosity material (DPM).

calculated with the well known model proposed in [45, 48], i.e.

Kβ(ω) = F(K0β, ωvβ,Mvβ), (78)

with K0β = r2β/8, ωvβ = 8ν/r2β, Mvβ = 1, and

F(F0, ̟,M) = F0

(
jω

̟
+

√
1 +

jω

̟

M
2

)−1

. (79)

The effective compressibilities Cβ are calculated by replacing b by β in Eq. (27) and the
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respective dynamic thermal permeabilities are given by Θβ = F(Θ0β, ωtβ,Mtβ) with Θ0β =

r2β/8, ωtβ = 8κ/ρ0cpr
2
β, and Mtβ = 1.

Due to both the complex geometry of the permeo-elastic channel and the strong fluid-

film interaction, the dynamic visco-elasto-inertial permeability Kd is calculated from the

numerical solution of the boundary-value problem detailed in § A 3 c and using Eq. (31).

The calculations of Kd are performed using the finite element method, as detailed in [36, 37].

The effective compressibility Cd is obtained by substituting the expression for the dynamic

thermal permeability Θd into Eq. (29). This dynamic thermal permeability is calculated as

Θd(ω) = F(Θ0d, ωtd,Mtd), (80)

where the thermal characteristic frequency, shape factor, and characteristic length are ωtd =

κ/ρ0cpΘ0d, Mtd = 8Θ0d/Λ
2
td , and Λtd, respectively. These parameters are calculated using

the finite element method, as discussed in detail in [63].

V. ILLUSTRATING EXAMPLES

The hybrid model is used in this section to exemplify the atypical acoustical properties

of a permeble lossy metamaterial, which, for the sake of brevity, will be referred to as PLM.

The microstructure of the PLM is shown in Fig. 2. The REV is a parallelepiped with

sides lt = 25 mm, lw = wd +2ws, and lh = 4hs + hb + ha + hg + hq + hm, where wd = 20 mm

is the width of the permeo-elastic channel, ws = hs = 1.5 mm is the width of the solid

walls, hb = 2h = 3 mm is the width of the slit-like channel side-loaded with the Helmholtz

resonator, ha = 27 mm is the depth of the cylindrical cavity of the Helmholtz resonator, and

hg = 1 mm is the height of the gap that connects the front and back fluid-saturated domains

of the permeo-elastic channel, hq = dq = 4 mm is the height of the bar one of the edges

of the film is clamped onto, and the dimensions of the rectangular film are hm = 10 mm

and wm = wd = 20 mm. The film thickness is t = 76 µm. The other parameters of the

Helmholtz resonator are the radius of its cylindrical cavity ra = 7 mm, the length of its neck

ln = 7 mm, and the diameter of its neck 2rn = 3 mm. The mechanical parameters of the

films are those of Mylar, i.e. E = 2.25 GPa, ρs = 1390 kg/m3, and ν = 0.38. The films are

pre-stressed with a uniform tension per unit thickness T = 1 N/m. Normal pressure and

temperature condition is considered.
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The large number of geometrical and mechanical parameters involved provides a plethora

of possibilities to tailor the acoustic behavior of the PLM. However, in what follows, the

parameters quoted above are kept constant unless otherwise explicitly stated.

A. Example 1 – Non overlapping atypical frequency bands

Figure 3a–d show a comparison between the dynamic density and compressibility of the

PLM and those of i) a double porosity material (DPM) with weakly contrasted permeabilities

and a REV comprising a solid part, a slit-like channel (without the loading Helmholtz

resonators), and ii) a permeo-elastic channel but with perfectly rigid instead of elastic films

[see Figures 2(i) and 2(h), respectively]. The characteristic frequencies of interest of the

PLM have been determined from their definition. These are fv = 4 Hz, fa = 610 Hz,

fg = 677 Hz, fr = 801 Hz, and fr⋆ = 978 Hz.

As predicted through the analysis presented in § III, at frequencies much lower than fv,

the dynamic density of the PLM and DPM coincides, while their effective compressibilities

differ. For the dynamic density, this is because the films behave as perfectly rigid while

for C this is due to the fact that the whole fluid-filled volume of the Helmholtz resonators

affects the dynamic compressibility of the PLM. As the frequency increases, the differences

in the effective parameters of the PLM and DPM become apparent. At the anti-resonance

frequency fa, the magnitude of the dynamic density of the PLM takes its smallest value

while at the resonance frequency fg is maximum, although not infinite due to the small but

non-negligible viscous dissipation. Within the atypical band ∆̃d = (fa, fg), the phase of ρ

approaches −π and consequently Re(ρ) < 0. This is because in ∆̃d the elasticity of the films

dominates over the inertia of the whole fluid-film system, i.e. φdEd > [φbIb + φdId] (see also

Eq. (C.12)). Note also that the value θρ = −π is not achieved due to viscous dissipation,

which also makes the transitions between the atypical and classical behavior smoother. This

is typical for a band structure of lossy metamaterials. The classical behavior is recovered

for frequencies over fg, provided that no higher-order modes of the fluid-film system are

observed.

The magnitude of the effective compressibility of the PLM takes its extreme values at the

boundaries of the atypical band ∆̃b = (fr, fr⋆). As discussed in § III, at fr and fr⋆ the phase

of the effective compressibility approaches −π/2, while in between them it tends to −π in
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absence of dissipation. The larger value of θC, shown in Fig. 3(d), is attributed to the viscous

dissipation in the neck of the Helmholtz resonators, which also explains the regularization

of |C| at the resonance frequency fr. It is recalled that ℜ(C) < 0 in ∆̃b. Contrarily to

the atypical band induced by the fluid-film interaction in Ωdf , in this case it is the effective

inertia of the fluid in the resonator that dominates over the elasticity of the whole fluid

system, which is consistent with the fact that the lowest frequency in ∆̃b corresponds to a

resonance frequency, instead of an anti-resonance frequency as it is the case in ∆̃d.

For f ≪ fv, the phase velocity as well as the magnitude and phase of c in the PLM

behave classically, which it is also the case for the wave number [see Fig.3(e)–(h)]. For

fv ≪ f ≪ fg, anomalous dispersion appears since the phase velocity in the PLM decreases.

This is in contrast with the behavior of DPM [cf. black continuous and dashed gray lines in

Fig. 3e]. While the real part of the wave number (i.e. the phase constant) of the PLM and

DPM increases linearly with frequency for fv ≪ f ≪ fg, the slope of the phase constant of

the PLM is more pronounced. This is consistent with its slower phase velocity in comparison

with that in DPM. Such increase, however, becomes non linear as f → fa due to the influence

of the elasticity of the films on the acoustic behavior. Moreover, the phase constant and

attenuation coefficient at fa take large values.

Within the atypical band ∆̃d, the phase constant rapidly approaches its minimum value,

while the attenuation coefficient decreases down to its minimum value at the frequency at

which the phase velocity takes its largest (supersonic) value, i.e. at fg. For fg < f < fr, the

phase velocity decreases while both the phase constant and attenuation coefficient increase

until reaching a local maximum, just below and above fr, respectively. On the other hand,

the phase velocity in ∆̃b decreases until reaching a plateau region to then increase up to

its maximum value within the atypical band. Consistently, the phase constant follows the

inverse trend while the attenuation coefficient is a decreasing function of frequency in ∆̃b.

Since the phase of the effective speed of sound does not reach π/2, the atypical band can

only be considered as a quasi or pseudo band gap. This highlights the fact that excess of

dissipation, in this case occurring in the neck of the resonator, can prevent the existence of

a true band gap. It is emphasized, however, that the attenuation coefficient in ∆̃b is still

significant, which reflects the high attenuation of sound within such band. On the other

hand, this example shows that the phase of the effective speed of sound tends to π/4 at fr⋆

and the phase velocity is close to c0. This means that a diffusive wave travels through the
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PLM at the speed of sound in lossless air. In the long-wavelength regime, such a behavior

is not possible to observe in conventional porous material. Moreover, for frequencies over

fr⋆, the phase velocity takes supersonic values due to the small magnitude of the effective

compressibility.

In summary, the results shown in Fig. 3 confirm the theoretical analysis presented in § III

and are characteristics of a PLM in which the atypical bands ∆̃b and ∆̃d are neither over-

lapping nor adjacent. In what follows, some of the geometrical parameters of the Helmholtz

resonator of PLM are varied to exemplify both the overlapping of the atypical bands and

cases where the elasto-inertial characteristic frequencies are matched.

B. Example 2 – Overlapping atypical frequency bands

In this example, the neck length and radius of the cavity of the Helmholtz resonator are

ln = 9 mm and ra = 9 mm, respectively. For this PLM, the atypical bands overlap and are

given by ∆̃b = (fr, fr⋆) = (555, 746) Hz and ∆̃b = (fa, fg) = (610, 677) Hz. Figure 4 shows

the same effective parameters as those displayed in Fig. 3.

In the viscosity-dominated flow regime, i.e. for f ≪ fv, the effective speed of sound

and wave number behave as in the example 1. For fr < f < fa, the real part of the

effective density is positive, the real part of the effective compressibility is negative, the

phase velocity is slow, the phase constant is a decreasing function of frequency, and the

attenuation coefficient exhibits peaks just over fr and at fa, with the former peak being

slightly merged with the latter one since, in this example, the difference between fa and fr

is only 55 Hz.

In the region of double negativity, the phase of the effective speed of sound approaches π,

which reflects a negative phase velocity and a negative phase constant. This is accompanied

by a pronounced decrease in the attenuation coefficient. Physically, in the region of double

negativity, regressive waves propagate in the effective medium. The physical origin of this

peculiar behavior is the dominance of the elastic effects of the films in the permeo-elastic

channel and that of the inertia of the effective fluid saturating the neck of the resonator that

loads the pore fluid network Ωbf . The peculiar behavior is not only seen in the region of

double negativity but also just below/above the lower/upper band-edge frequencies and when

the atypical bands are adjacent. This is due to the presence of dissipation, which smooths
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the phase transition. Hence, regressive waves are not exclusive to the double negativity

region, as it can be seen by close inspection of Fig. 4e and in other examples below.

In between fg and fr⋆, a local maximum/minimum in the attenuation coefficient/phase

velocity is seen. This is accompanied by a close to zero phase constant. In the frequency

region, where in this example only ℜ(C) is negative, θc decreases from π/2 to π/4, while

the phase velocity increases over c0. In this example, the phase velocity takes supersonic

values for frequencies over 750 Hz. Since θc tends to π/4 and the phase velocity is faster

than c0 at fr⋆, diffusive waves propagating at an effective supersonic velocity are observed.

Such phenomenon is impossible to observe in conventional porous materials. Moreover,

around 900 Hz, the phase velocity and phase constant of the PLM equal those in lossless

air, the phase of the effective speed of sound is close to zero, and the attenuation coefficient

is negligible. All of these indicate that around this frequency the PLM is acoustically

transparent.

C. Example 3 – Adjacent atypical bands, fr = fg

In this example, a PLM with the same geometrical and physical parameters are those

quoted at the beginning of this section is considered but the length of the neck and the

radius of the cavity of the resonator are now ln = 6.02 mm and ra = 9 mm, respectively.

This allows matching the resonance frequencies, i.e. fr = fg = 677 Hz. The anti-resonance

frequencies are fa = 610 Hz and fr⋆ = 910 Hz.

Figure 5 shows the effective dynamic density, compressibility, speed of sound and wave

number of the PLM. For frequencies in between fa and fr, the phase of the dynamic density

tends to −π, θC decreases from 0 to −π/2, the phase of the effective speed of sound ap-

proaches π/2, and a large attenuation coefficient is seen. These features do not conform to

those of a true band gap but the phase velocity does take very small values for fa < f < fr,

which also happens up to a frequency approximately equal to the harmonic mean of the

band-edge frequencies of ∆̃d. As the frequency increases, however, the phase velocity takes

negative values, which reflects the existence of regressive waves. This is induced by the

smooth phase transition of the effective compressibility due to viscous dissipation.

Around fr = fg, a jump in the phase velocity is observed, i.e. ℜ(c) transitions from a

negative local minimum to a positive local peak, while the attenuation coefficient is locally
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minimum. The phase θc follows the opposite trend. At f = fr = fg the phase velocity tends

to zero while |c| exhibits a local maximum. For frequencies over fg = fr and below fr⋆, a

pseudo band gap is observed, which is a consequence of the fact that in such frequency range

ℜ(C) < 0 and ℜ(ρ) > 0. For other frequency regions, e.g. f ≪ fv and f > fr⋆, the trends

are as previously discussed.

D. Example 4 – Overlapping atypical bands, fr = fa

A PLM with a resonator with neck length increased to ln = 7.45 mm and cavity radius

ra = 9 mm and the rest of the parameters unchanged is considered. In this case, fr = fa =

610 Hz, fg = 677 Hz, and fr⋆ = 819 Hz. Figure 6 shows the effective properties of such PLM

in comparison with those of the DPM. At f = fa = fr, |ρ| and |C| are maximum and θρ and

θC both tend to −π/2. Consequently, the magnitude of the speed of sound tends to zero and

its phase to π/2, the phase velocity tends to zero, and a large attenuation coefficient is seen.

Over fa = fr, regressive waves are observed in the double negative region of the PLM. Such

behavior is observed up to fg at which the negative phase velocity takes its smallest value

while the attenuation coefficient tends to zero. For higher frequencies, the phase constant is

close to zero and the attenuation coefficient presents a wide peak, while the phase velocity

starts increasing and takes supersonic values from a frequency close to fr⋆. Again, at fr⋆ a

diffusive wave travels with supersonic velocity. Moreover, the PLM appears as acoustically

transparent at frequencies around 1000 Hz. The trends in other frequency regions are as

previously discussed.

E. Example 5 – Overlapping atypical bands, fg = fr⋆

In this example, the elasto-inertial characteristic frequencies fg and fr⋆ are matched by

further increasing the length of Helmholtz resonator’s neck to ln = 10.95 mm and setting the

radius of the resonator’s cavity to ra = 9 mm, while the values of the rest of the parameters

remain unchanged. The elasto-inertial characteristic frequencies are fg = fr⋆ = 677 Hz,

fa = 610 Hz, and fr = 505 Hz. This case is illustrated in Figure 7. In the frequency region

limited by fr and fg = fr⋆, the phase velocity tends to zero and the attenuation coefficient

takes large values but a local minimum is observed within such a region. Moreover, for
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frequencies belonging to the double negative frequency region, regressive waves are supported

by the PLM. This is reflected by the negative phase velocity and phase constant as well as

the monotonically decreasing nature of the attenuation coefficient in such a region.

As predicted in § III C, |c| takes large values and θc → π/2 at f = fg = fr⋆. At

this frequency, a zero phase velocity, zero phase constant and a minimum in attenuation

coefficient are observed, i.e. the large value of |c| is determined by the imaginary part of

the effective speed of sound. It is also worth stressing that around f = fg = fr⋆, a jump in

phase velocity stands out as a feature, while over such frequency a supersonic phase velocity,

together with θc → 0, is reached.

F. Example 6 – Adjacent atypical bands, fr⋆ = fa

By keeping constant the parameters of the PLM but setting ln = 13.5 mm and ra =

9 mm, the anti-resonance frequencies are matched, i.e. fr⋆ = fa = 610 Hz. The resonance

frequencies are fg = 677 Hz and fr = 455 Hz. Figure 8 shows the same frequency-dependent

parameters as in, for example, Fig. 7.

For frequencies f ≪ fv the behavior of the effective acoustical properties of the PLM

is similar to that of the DPM. In the frequency range fr < f < fr⋆, a pseudo band gap

is observed, reflected by the large attenuation coefficient and slow phase velocity, together

with θc approaching π/2 within such a frequency range. At fr⋆ = fa, θc → π/2 and |c|
exhibits a local minimum due to the larger magnitude of ρ in comparison with that of C.

Moreover, the phase velocity crosses the zero axis and a local maximum of the attenuation

coefficient is achieved. Over fr⋆ = fa and below fg, the real part of the dynamic density

is negative while ℜ(C) is positive. Despite this, regressive waves travel in the PLM, which

further states that such a peculiar behavior does not only occur in double negative frequency

bands. In the present case, such a behavior is determined by the smooth transitions in θρ and

θC primarily caused by viscous dissipation. Moreover, such regressive waves slowly travel

through the material and are significantly attenuated, as quantified through the magnitudes

of the phase velocity and attenuation coefficient. It is clear that strong dispersion in PLM

is observed and its acoustic behavior is different from that of conventional single or multi

porosity materials.
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FIG. 3: Non overlaping atypical bands. Top: Magnitude and normalized phase of the

normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and (d)].

Bottom: Real part [(e)] and phase [(f)] of the effective speed of sound and real part of the

wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the

absolute value of the effective speed of sound. Continuous black lines – Permeable lossy

metamaterial (PLM). Dashed gray lines – Double porosity material (DPM). The shaded

regions represent the atypical frequency bands ∆̃d = (fa, fg) [dark gray] and ∆̃b = (fr, fr⋆)

[light gray].
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FIG. 4: Overlapping atypical bands. Top: Magnitude and normalized phase of the

normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and (d)].

Bottom: Real part [(e)] and phase [(f)] of the effective speed of sound and real part of the

wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the

absolute value of the effective speed of sound. Continuous black lines – Permeable lossy

metamaterial (PLM). Dashed gray lines – Double porosity material (DPM). The shaded

regions represent the atypical frequency bands ∆̃d = (fa, fg) [dark gray] and ∆̃b = (fr, fr⋆)

[light gray].
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FIG. 5: Adjacent atypical bands, fr = fg. Top: Magnitude and normalized phase of the

normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and (d)]

of the permeable lossy metamaterial PLM [continuous black lines] and double porosity

material [dashed gray lines]. Bottom: Real part [(e)] and phase [(f)] of the effective speed

of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset

plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (fa, fg = fr) [dark gray] and (fr = fg, fr⋆) [light gray].
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FIG. 6: Overlapping atypical bands, fr = fa. Top: Magnitude and normalized phase of the

normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and (d)]

of the permeable lossy metamaterial PLM [continuous black lines] and double porosity

material [dashed gray lines]. Bottom: Real part [(e)] and phase [(f)] of the effective speed

of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset

plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (fa = fr, fg) [dark gray] and (fr = fa, fr⋆) [light gray].
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FIG. 7: Overlapping atypical bands, fg = fr⋆. Top: Magnitude and normalized phase of

the normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and

(d)] of the permeable lossy metamaterial PLM [continuous black lines] and double porosity

material [dashed gray lines]. Bottom: Real part [(e)] and phase [(f)] of the effective speed

of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset

plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (fa, fg = fr⋆) [dark gray] and (fr, fr⋆ = fg) [light gray].
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FIG. 8: Adjacent atypical bands, fr⋆ = fa. Top: Magnitude and normalized phase of the

normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] and compressibility C(ω)P0 [(c) and (d)]

of the permeable lossy metamaterial PLM [continuous black lines] and double porosity

material [dashed gray lines]. Bottom: Real part [(e)] and phase [(f)] of the effective speed

of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset

plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (fa = fr⋆, fg) [dark gray] and (fr, fr⋆ = fa) [light gray].
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G. Example 7 – Matching fg and fr and strong visco-elasto-inertial interaction

Up until now, the microstructural parameters of the permeo-elastic domain and the width

of the slit-like channel in Ωbf have not been varied. Because of the former, the dynamic

density has been the same for all the examples. By modifying some parameters of the

microstructure of the PLM, strong visco-elasto-inertial interaction can be observed. In

figure 9, the effective parameters of a PLM exhibiting such interaction are shown. The

microstructural parameters of the PLM that have been varied are (see Fig. 2): the height

of the gap that connects the front and back fluid-saturated parts of the permeo-elastic

channel hg = 0.15 mm, the width of the channel loaded by the acoustic resonator hb =

0.3 mm, and the radius of the cavity and the length and radius of the neck of the acoustic

resonator, i.e. ra = 9 mm, ln = 17.05 mm, and rn = 2.5 mm, respectively. In this case,

the characteristic frequencies can only be determined from their general, implicit definition.

For instance, the apparent viscous characteristic (or Biot) frequency fv is defined as the

frequency at which |ℑ(K(ωv))|/|ℜ(K(ωv))| → 1. This definition is compatible with that

used for conventional porous materials and results in fv = 273 Hz. An interesting feature

of this case is that the elastic power of the films also contributes to the imaginary part of

the dynamic permeability. Also, the apparent Biot frequency is mostly determined by the

viscous characteristic frequency of the equivalent fluid saturating Ωbf . In a similar manner,

the apparent anti-resonance frequency fa is determined from its implicit definition, given by

Eq. (47), with viscous effects accounted for. This characteristic frequency corresponds to

the lower boundary of the band where ℜ(ρ) < 0. Furthermore, fa, which in this example is

low, is strongly affected by the characteristic pore size ℓb = O(
√
φbKb) of the domain Ωbf .

If ℓb is large in comparison with ℓd = O(
√
φdKd), then the width of the atypical band where

ℜ(ρ) < 0 can be significantly reduced. Note also that fr⋆ is also affected by ℓb through φb

[see Eq. (64)] and for this example is fr⋆ = 946 Hz. In contrast to that, and as expected, the

resonance frequencies fg and fr, which are matched in this example and equal to 675 Hz,

are not significantly affected by hg and hb, respectively.

Figures 9a–b show the real part and phase of the dynamic density of the PLM as well as

those of SPM and PEM [see Fig. 2]. In SPM, the fluid-saturated part of its REV is Ωbf and

the rest of it is perfectly rigid and impermeable, i.e. the only permeable part of its REV

is the fluid-saturated channel of width hb. In PEM, the REV comprises the permeo-elastic
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channel Ωdf and the rest of it is perfectly rigid and impermeable.

Figure 9a shows that the real part of the dynamic density of PEM is negative, with a large

magnitude, up to fg. Recalling that ℜ(ρd) = −ηℑ(Kd)/ω|Kd|2 with ℑ(Kd) = −φdId + φdEd,
it is clear that ℜ(ρd) < 0 is observed because the elasticity of the films dominates over the

inertia of the fluid-film system. On the contrary, the real part of the dynamic density of

SPM, given by ℜ(ρb) = ηIb/ω|Kb|2, is positive, as for any conventional porous material.

The real part of the dynamic density of the PLM, given by ℜ(ρ) = −ηℑ(K)/ω|K|2 with

ℑ(K) = −φbIb − φdId + φdEd, is negative because the effective elastic effects dominate over

the inertial effects of the whole fluid-film system. Moreover, at low frequencies, i.e. f ≪ fv,

ℜ(ρ) takes values in between those of ℜ(ρd)/φd and ℜ(ρb)/φb, which is consistent with the

fact that the two pore fluid networks work in parallel in terms of oscillatory flow in them [see

Eq. (32)]. However, for frequencies around fg, the elastic and inertial effects in the permeo-

elastic channel compensate each other and the dynamic permeability of the permeo-elastic

domain Kd, whose magnitude is maximum at fg, determines the dynamic permeability of

the PLM as well as its dynamic density.

Figure 9b reveals that the phases of the dynamic density of SPM and PEM, θSPMρ and

θPEMρ , are rather different, and that of the PLM, i.e. θρ, is influenced by both θSPMρ and θPEMρ

for frequencies up to fg. It is noted that θSPMρ varies from −π/2 to 0, while θPEMρ decreases

from −π/2 down to −π at fg. The former is a classical behavior, which it is not the case for

the latter primarily due to the dominance of the elastic effects over inertial ones, as well as

that of viscous dissipation in Ωdf resulting in the large magnitude of ℑ(ρd/φd). This, together

with the strong contribution of viscous effects in Ωbf accounted for by ℑ(ρb/φb), is inherited

by the phase of the dynamic density of the PML up to fg. For frequencies over fg, θρ → 0,

which reflects that viscous effects are negligible in such a frequency range. Physically, the

values of the phase of the dynamic density of the PLM reflect that the effective movement of

the fluid and the driving force are in quadrature at low frequencies, opposite for frequencies

in between approximately 500 Hz and fg in this example, and in phase for frequencies over

fg. Such a behavior, together with that of the effective compressibility [see Fig. 9c–d] whose

behavior has been tuned so that the resonance frequency induced by the Helmholtz resonator

fr matches the resonance frequency of the fluid-film system fg, has direct consequences on

the atypical effective speed of sound and wave number of the PLM, as shown in Figs. 9e–h.

For f ≪ fv, slow phase velocity is observed, together with increasing attenuation coefficient
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and a π/4 phase of the effective speed of sound. This is characteristic of a fluid flow regime

determined by viscous effects, which in this case are attributed to the viscous dissipation

that occurs in Ωbf . As the frequency increases, slow sound propagation is still observed, the

attenuation coefficient exhibits a wide peak centered just over fv, and θc transitions from π/4

to π/2, which means that the sound waves are overdamped. For frequencies closer to fg = fr,

anomalous wave propagation and regressive waves are predicted, as it is evidenced by the

negative phase velocity and phase constant. However, the attenuation coefficient rapidly

decreases in such a frequency region. Within the frequency band (fr, fr⋆), a pseudo band

gap is observed, where the phase velocity takes small positive values, the phase constant is

quasi constant (outside the band transition regions), and the attenuation coefficient is large

enough to guarantee significant sound attenuation but decreases as the frequency increases

within the band. Over fg, the phase velocity takes supersonic values, the phase of the

effective speed of sound decreases from π/4 towards zero, the phase constant grows quasi

linearly, and the attenuation coefficient decreases. All of these trends physically mean that a

wave traveling in the PLM used as an example here is i) progressive, diffusive, and slow at low

frequencies; ii) progressive, overdamped, and slow as the frequency increases; iii) regressive,

anomalous, weakly attenuated, and relatively fast in frequencies just below fg = fr; iv)

progressive, overdamped, and slow for frequencies over fg; v) progressive, diffusive, and

supersonic at around fr⋆; and vi) progressive, weakly damped, and supersonic at frequencies

over fr⋆ and up until the highest frequency considered in this example.

Other interesting features of PLMs are worth highlighting. For the sake of brevity, these

are now discussed without showing results graphically.

Remarks:

i) In all the examples, the mechanical parameters of the films have been kept constant. Their

influence on ρd have been discussed in [36, 37] and is as follows. Increasing the "plate" modu-

lus E of the films leads to higher fad and fgd. This also happens when the films are stretched

further by increasing the tension per unit length T . Decreasing the surface density ρet lowers

both fad and fgd. Moreover, a permeo-elastic material with small surface density exhibits a

wider atypical band. It shall be emphasized that these trends are observed when the flow

regime is determined by elasto-inertial effects. For the case of comparable viscous, elastic,

and inertial effects, the trends are similar to those shown in Fig. 9a–b for the PEM material.

It should, however, be noted that by varying the parameters that determine the effective
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elasticity of the films ℜ(ρd) can exhibit either negative, zero, or positive values in a wide

frequency range, as shown in the figure 9 in [37]. All of these trends are also seen in the

dynamic density of a PLM, with the particularity being that the existence of the decoupled

pore fluid network Ωbf provides an additional degree of freedom. Indeed, by decreasing the

width of the channel hb of Ωbf the anti-resonance frequency fa, which is generally larger

than fad, can be lowered; while the opposite trend is observed as hb is increased, up to a

point where the band (fa, fg) may become very narrow, meaning that ℜ(ρ) takes negative

values in a limited frequency band.

ii) The REV of the PLM used as example features a Helmholtz resonator and a clamped

film modeled as a Love-Kirchhoff plate under tension. However, the theory is applicable to

a PLM with a REV featuring a quarter-wavelength and a film modeled as a membrane for

which bending effects are negligible. In this type of PLM, the difference between the first

and second resonance frequencies is smaller than that of the PLMs used in the examples.

This certainly leads to the possibility of achieving atypical acoustic behavior in different

frequency regions where, for example, the atypical band induced by the first anti and res-

onance frequencies of one type of resonators can overlap with that induced by the second

anti and resonance frequencies of the other type of resonators. The analysis in such a case

becomes rather complicated and, as such, a simpler PLM has been chosen to exemplify the

developed theory.

iii) We ought to mention that the study of the effective group and energy transport velocities

in permeable lossy metamaterials is a rich subject that is a matter left to further work, as it

also is the physical realization of metamaterial prototypes that can enable the experimental

verification of the upscaled theory introduced in this work. Such a prototype building is en-

visaged to require a significant degree of precision due to the high sensitivity of the effective

parameters to the microstructural parameters of the PLM.
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FIG. 9: Matching fg and fr and strong visco-elasto-inertial interaction. Top: Real part

and normalized phase of the normalized dynamic density ρ(ω)/ρ0 [(a) and (b)] of the PLM

[continuous black lines], SPM [dashed black lines], and PEM [dashed gray lines] [see the

text for their description and Fig. 2]; and magnitude and phase of the normalized dynamic

compressibility C(ω)P0 [(c) and (d)] of the PLM. The inset plot in [(a)] zooms in the

frequency region where ℜ(ρ) < 0. Bottom: Phase velocity [(e)], phase of the effective speed

of sound [(f)], phase constant [(g)], and attenuation coefficient [(h)] of the PLM. The inset

plot in [(e)] shows the absolute value of the effective speed of sound. The shaded regions

represent the frequency bands (fa, fg = fr) [dark gray] and (fr = fg, fr⋆) [light gray].
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VI. CONCLUSIONS

Acoustic wave propagation in permeable lossy metamaterials (PLM) was investigated

in this paper. The representative elementary volume of the investigated periodic PLM

comprised a perfectly rigid and impervious solid domain and two independent pore fluid

networks. The fluid that saturates one of the connected pore fluid networks was in contact

with the fluid that saturates an acoustic resonator. A thin elastic film is present in the other

connected pore fluid network and strongly interacts with the fluid that saturates it.

The two-scale asymptotic homogenization method was used to establish the macro-

scopic equations that govern sound propagation in PLM. These upscaled equations demon-

strated that the PLM can be modeled as an equivalent fluid with unconventional frequency-

dependent and complex-valued effective dynamic visco-elasto-inertial permeability (or den-

sity) and compressibility. The dynamic visco-elasto-inertial permeability was shown to be

a weighted sum of the dynamic permeabilities of the fluid that saturates the pore fluid

networks. One of these dynamic permeabilities behave conventionally, while the other is

strongly affected by the local fluid-film interaction. In a similar manner, it was proven that

the effective compressibility of the PLM is a weighted sum of the effective compressibilities of

the fluid that saturates the pore fluid networks. One of these corresponds to a combination

of a classical effective compressibility and an apparent compressibility that is dependent on

the effective admittance of the acoustic resonator, while the other behaves in a conventional

manner. The strong fluid-film interaction was shown to determine the atypical behavior of

the effective dynamic density, while the acoustic resonators determine that of the effective

compressibility. The result of this are two atypical bands which could overlap or not, or

be adjacent. The positions and boundaries of these bands are determined by elasto-inertial

characteristic frequencies which can be tuned by varying microstructural and/or physical

parameters. In each atypical band the real part of one of the effective parameters is nega-

tive.

Sub-wavelength band gaps, slow sound, supersonic diffusive waves, and regressive waves,

among others, are all phenomena present in PLM. Their physical origin was established from

the analysis of the effective parameters and their links with the fields that determine sound

propagation in the PLM locally. Moreover, an hybrid (numerical-analytical) model for the

effective acoustical properties of the PLM was developed and used to exemplify the possible
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variations in the atypical acoustic behavior of the PLM. This also allowed highlighting the

crucial role of losses and the need to properly account for them in the modeling of PLM.

This work has shown that the propagation of acoustic waves in PLM is primarily deter-

mined by classical visco-thermal dissipation and inner elasto-inertial resonances induced by

decoupled acoustic and elastic resonators. It also provides a theoretical framework for the

rational design of PLM for acoustic wave manipulation. Accounting for the interaction be-

tween two different types of resonators would be a logical extension of the theory presented.

In addition, the experimental verification of the theory would be a subject of future work.
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Appendix A: UPSCALING OF THE WAVE EQUATION IN PERMEABLE LOSSY

METAMATERIALS

1. Physical analysis and rescaled local description

The aim of the physical analysis is to determine both the variables in Eqs. (1)–(20) that

fluctuate either locally or macroscopically and the relative order of magnitude of the terms

in the said equations. Such analysis is crucial for the rescaling of the local description.

The equations formulated in Ωbf are analyzed first. Such analysis is well established (see,

e.g., [43, 44, 48]). Let us recall that, in the long-wavelength regime, the macroscopic pressure

gradient drives the fluid flow in Ωbf . This leads to following estimate |∇pb| = O (p̌b/L),

where, from now on, the accent ·̌ indicates a characteristic value of the term it is applied
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to (e.g. p̌b is a characteristic value of pb). In addition, the fluid velocity and its rate of

deviatoric deformation fluctuate locally, i.e. |div(2ηD(vb))| = O(ηv̌b/l
2), while its divergence

varies with the sound wavelength, i.e. |∇ · vb| = O (v̌b/L). On the other hand, the excess

temperature in Eq. (3) varies locally, which leads to |κ∇ · ∇τb| = O(κτ̌b/l
2).

Regarding the relative order of magnitude of the terms, it is of interest to describe the

acoustic behavior for the case where all the terms in Eqs. (1)–(3) contribute to the local fluid

flow and heat conduction. This means that in the equation of conservation of momentum

the viscous and inertial terms as well as the pressure gradient are of the same order of

magnitude, i.e. O(ηv̌b/ℓ
2) = O(ρ0ωv̌b) = O(p̌b/L), in the equation of conservation of mass

one has that O(v̌b/L) = O(ωρ̌b/ρ0), and in the equation of conservation of energy the

conduction and the thermal inertia terms are balanced by the source due to pressure, i.e.

O(κτ̌b/l
2) = O(ωρ0cpτ̌b) = O(ωp̌b). Moreover, in the equation of state the following estimate

holds O(p̌b/P0) = O(ρ̌b/ρ0) = O(τ̌b/τ0).

The physical analysis for the set of equations (1)–(9) is completed by assessing the bound-

ary conditions. Specifically, the continuity of pressure on Γrf sets O(p̌b) = O(p̌r) while the

long-wavelength condition imposes that the mass flux pulsed from the resonator on Γrf is of

one order smaller than the mass flux produced by the incident wave in the fluid network, i.e.

|ρ0vr ·n|/|ρ0vb ·n| = O(ε). Such an estimate can be justified by considering a cell Ωb, denot-

ing the ingoing mass flux on one of its faces (of surface Sb) as Sbρ0v̌b1, the outgoing mass flux

on the opposite face as Sbρ0v̌b2, and the mass flux pulsed from the resonator as O(ρ0v̌rΓrf ).

Recalling that, by hypothesis, one has that L ≫ l, then (Sbρ0v̌b2 − Sbρ0v̌b1)/Sbρ0v̌b1 ≈ l/L.

Moreover, the conservation of mass imposes that Sbρ0v̌b2 ≈ Sbρ0v̌b1+Γrfρ0v̌r. It then follows

that Γrf v̌r/Sbv̌b1 = O(ε). On the other hand, invoking the continuity of thermal flux one

obtains τ̌r/τ̌b = O(ε), which is a valid approximation as long a characteristic size of the

resonator (e.g. a radius of the neck of a Helmholtz resonator) is of one order smaller than l.

The physical analysis of the Eqs. (10)–(13), which are formulated in Ωdf , closely follows

that developed in previous paragraphs for the Eqs. (1)–(4). Hence, it suffices replacing the

subscript b by d. The physical analysis of the equations that govern the dynamics of the

film, i.e. Eqs. (14)–(18), and associated boundary conditions is now addressed by recalling

the results in [36, 37]. The continuity of the fluid and film velocities, i.e. Eq. (17), provides

the estimate O(v̌d) = O(ωǔd), which imposes that the film velocity varies locally, as the out-

of-plane shear stress vector T and in-plane stress tensor M also do. Then, to account for
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visco-elasto-inertial fluid-film interaction, the order of magnitude of the terms in the equation

of conservation of momentum (14) should satisfy O(EIǔd/l
4) = O(ρetω

2ǔd) = O(ηv̌d/l) =

O(p̌dl/L). In addition, the local variations of the deviatoric viscous stress determine that

its jump across Γ also fluctuates locally. It then follows that O([ηv̌d/l]) = O(ηv̌d/l). Finally,

since the pressure varies with the wavelength, its jump across Γ is estimated as O([p̌d]/l) =

O(p̌d/L).

2. Rescaled local description

The two-scale asymptotic homogenization method for periodic media is used to establish

an equivalent macroscopic model for acoustic wave propagation in permeable lossy metama-

terials. The use of this method is possible due to the large scale separation between the local

and macroscopic characteristic sizes, i.e. l/L = ε ≪ 1. To represent the evolution at the two

spatial scales and taking the macroscopic characteristic size as a reference length, one can

introduce the following dimensional space variables: x and y = ε−1
x, which respectively

account for macro- and microscopic fluctuations. Then, the usual differential operator ∇
becomes ∇x + ε−1∇y. Note that the spatial variables can be considered as independent due

to the large separation of scales and non-bold letters for the spatial variables are used to

ease the notation.

The use of two space variables is combined with a rescaling of the usual equations based

upon a single space variable and the physical analysis that allowed to determine the relative

order of magnitude among the terms. In particular, the rescaling of the equations enables to

have consistency between the magnitude of the gradient of a quantity Q and the respective

physical estimate. This is based on the fact that the actual physical gradient of a quantity

Q(x, y) that varies macroscopically is of the order of ∇xQ, which is expressed when using

the two introduced spatial variables as ∇xQ+ε−1∇yQ. Instead, the actual physical gradient

of a quantity that fluctuates locally is of the order of ∇yQ, and this is expressed as ε(∇xQ+

ε−1∇yQ) which introduces the rescaling by the scale ratio ε. As an example, div(D(vb))

must be rewritten as ε2div(D(vb)) in order to express that the fluid velocity varies locally.

The rescaled local equations are given by (with ∇ = ∇x + ε−1∇y and ι = b, d )

ε2div(2ηD(vι))−∇pι = jωρ0vι in Ωιf , (A.1)
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jωρι + ρ0∇ · vι = 0 in Ωιf , (A.2)

ε2κ∇ · ∇τι = jωρ0cpτι − jωpι in Ωιf , (A.3)

pι
P0

=
ρι
ρ0

+
τι
τ0

in Ωιf , (A.4)

vι = 0 on Γιs, (A.5)

τι = 0 on Γιs ∪ Γ, (A.6)

ρ0vb · n = ερ0vr · n on Γrf , (A.7)

pb = pr on Γrf , (A.8)

τb = ετr on Γrf , (A.9)

ε∇̃ · (T + T ε∇̃ud) = −ω2ρetud − [(2ηεD(vd)− ε−1pdI) · N] · N on Γ, (A.10)

T = −εd̃iv(M) on Γ, (A.11)

M = EI
(
(1− ν)ε2ẽ(∇̃ud) + νε2∇̃ · ∇̃udI

)
on Γ, (A.12)

vd = jωudN on Γ, (A.13)

ud = 0 and ε∇̃ud · n = 0 on ∂Γ. (A.14)

3. Boundary-value problems

The unknown variables written as series expansions in ε, e.g. pb(x, y) =
∑∞

k=0 ε
kp

(k)
b (x, y),

are inserted in the rescaled local equations. Then, matching the terms with equal powers of

ε leads to boundary-value problems whose solution enables the determination of the effective

parameters of the permeable lossy metamaterial.

Identifying the ε−1-term in Eqs. (A.1) and (A.10) leads to ∇yp
(0)
b = ∇yp

(0)
d = 0 and

[p
(0)
d ] = 0. Hence, the leading-order pressures are, consistently with the physical analysis,

macroscopic variables, i.e. p
(0)
b = p

(0)
b (x) and p

(0)
d = p

(0)
d (x). The boundary value problems

arising from homogenization are directly presented in what follows.
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a. Oscillatory fluid flow in Ωbf

For the oscillatory Stokes problem, consider the Hilbert space Wb of complex Ω−periodic

velocity fields wb defined in Ωbf that fulfils ∇y ·wb = 0 in Ωbf and wb = 0 on Γbs. Then, the

weak formulation (see [43]) is given by

∀wb ∈ Wb, Ab(v
(0)
b ,wb) = Bb(wb), (A.15)

with

Bb(wb) = −∇xp
(0)
b · 〈wb〉b, (A.16)

Ab(v
(0)
b ,wb) = ηRb(v

(0)
b ,wb) + jωρ0Ib(v

(0)
b ,wb), (A.17)

where

Rb(v
(0)
b ,wb) = 〈2Dy(v

(0)
b ) : Dy(wb)〉b, (A.18)

Ib(v
(0)
b ,wb) = 〈v(0)

b · wb〉b. (A.19)

In these equations, the spatial averaging operator is defined as

〈·〉b =
1

Ωbf

∫

Ωbf

·dΩ. (A.20)

Relying on the properties of the form Ab (i.e. sesquilinear and coercive in Wb) and

the semi-linearity of Bb, the existence and uniqueness of the solution of the linear problem

Eq. (A.15) is ensured by the Lax-Milgram theorem. Moreover, since the forcing term is

∇xp
(0)
b , the solution v

(0)
b can be written as

v
(0)
b = − k̂b(y, ω)

η
· ∇xp

(0)
b , (A.21)

where k̂b represents a Ω-periodic normalized local velocity field.

b. Oscillatory heat conduction in Ωbf

Regarding the oscillatory heat conduction problem, its weak formulation is obtained by

multiplying Eq. (A.3) identified at ε(0) by the conjugate of a Ω − periodic test function

qb ∈ H1 that satisfies the boundary condition qb = 0 on Γbs ∪ Γrf , integrating by part,

applying the divergence theorem, and considering the periodicity. The final result is

∀qb ∈ H1, ab(τ
(0)
b , qb) = bb(qb), (A.22)
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where

bb(qb) = jωp
(0)
b 〈qb〉b, (A.23)

ab(τ
(0)
b , qb) = κHb(τ

(0)
b , qb) + jωρ0cpSb(τ

(0)
b , qb), (A.24)

with

Hb(τ
(0)
b , qb) = 〈∇yτ

(0)
b · ∇yqb〉b, (A.25)

Sb(τ
(0)
b , qb) = 〈τ (0)b qb〉b. (A.26)

The linear problem (A.22) is forced by the locally-constant pressure p
(0)
b . Hence, τ

(0)
b can be

linearly related to p
(0)
b via

τ
(0)
b =

Θ̂b(y, ω)

κ
jωp

(0)
b , (A.27)

where Θ̂b represents a Ω-periodic normalized local temperature field.

c. Oscillatory fluid-film interaction problem in Ωdf ∪ Γ

Focusing on the equations formulated in Ωdf and on Γ, the identification process leads to

an oscillatory Stokes coupled with the equations that govern the leading-order film velocity

v
(0)
d = jωu

(0)
d . The associated weak formulation has been obtained in [37] and is therefore

only recalled here.

Consider the Hilbert space Wd of complex Ω−periodic velocity fields wd defined in Ωdf∪Γ
that fulfil the following kinematic restrictions: ∇y ·wd = 0 in Ωdf , wd = 0 on Γds, wd = wdN

on Γ, and wd = 0 and ∇̃ywd · n = 0 on ∂Γ. The weak formulation is given by

∀wd ∈ Wd, Ad(v
(0)
d ,wd) = Bd(wd), (A.28)

with

Bd(wd) = −∇xp
(0)
d · 〈wd〉d, (A.29)

Ad(v
(0)
d ,wd) = ηRd(v

(0)
d ,wd) + jω̺Id(v

(0)
d ,wd) +

K

jω
Ed(v

(0)
d , wd), (A.30)

where

Rd(v
(0)
d ,wd) = 〈2Dy(v

(0)
d ) : Dy(wd)〉d, (A.31)

Id(v
(0)
d ,wd) =

ρ0
̺
If (v

(0)
d ,wd) +

ρet

̺
Ip(v

(0)
d , wd), (A.32)

Ed(v
(0)
d , wd) =

T
K
Em(v

(0)
d , wd) +

EI

K
Ep(v

(0)
d , wd), (A.33)
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with

If (v
(0)
d ,wd) = 〈v(0)

d · wd〉d, (A.34a)

Ip(v
(0)
d , wd) = 〈v(0)d wd〉Γ, (A.34b)

Em(v
(0)
d , wd) = 〈∇̃yv

(0)
d · ∇̃ywd〉Γ, (A.34c)

Ep(v
(0)
d , wd) = 〈Ñ (v

(0)
d , wd)〉Γ, (A.34d)

Ñ (v
(0)
d , wd) = (1− ν)ẽy(∇̃yv

(0)
d ) : ẽy(∇̃ywd) + ν∇̃y · ∇̃yv

(0)
d ∇̃y · ∇̃ywd. (A.35)

In these equations, the spatial averaging operators are given by

〈·〉d =
1

Ωdf

∫

Ωdf

· dΩ. and 〈·〉Γ =
1

Ωdf

∫

Γ

· dΓ, (A.36)

and the density parameter ̺ and the elastic parameter K that accounts for both bending

and membrane effects are given by

̺ = ρ0 + ρet
Γ

Ωdf

and K =
EI/Γ + T

Ωdf

. (A.37)

Since the form Ad is sesquilinear and coercive in Wd and Bd is semi-linear, the Lax-Milgram

theorem ensures the existence and uniqueness of the solution of v
(0)
d in Ωdf and, by continuity,

that of v
(0)
d on Γ. Furthermore, being Eq. (A.28) linear and recalling that the system is forced

by the macroscopic pressure gradient, it is direct to write the solution as

v
(0)
d = − k̂d(y, ω)

η
· ∇xp

(0)
d in Ωdf , (A.38a)

v
(0)
d N = v

(0)
d on Γ. (A.38b)

Despite the formal similarity between the dynamic Darcy’s law Eq. (A.21) and Eq. (A.38a),

it is stressed that the latter is fundamentally different due to the fact that the Ω-periodic

normalized local velocity field k̂d accounts for visco-elasto-inertial instead of only visco-

inertial effects, as k̂b does.

d. Oscillatory heat conduction in Ωdf

The weak formulation of the oscillatory heat conduction problem in Ωb is obtained by

replacing the subscripts b by d in Eqs. (A.22)–(A.27) of §A 3 b. The solution of the oscillatory

heat conduction in Ωdf is also given by Eq. (A.27) but with b → d.
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4. Derivation of the macroscopic equations

The identification of the ε0 terms in Eq. (A.2), with ι = b, yields

∇x · v(0)
b +∇y · v(1)

b + jω
ρ
(0)
b

ρ0
= 0, (A.39)

which after applying the operator Eq. (A.20) and using Eq. (A.4) at ε0 becomes

∇x · 〈v(0)
b 〉b + 〈∇y · v(1)

b 〉b ++jω〈p
(0)
b

P0

− τ
(0)
b

τ0
〉b = 0. (A.40)

In this equation, the term 〈∇y · v(1)
b 〉b is calculated by using the divergence theorem, noting

that the surface integrals on opposite boundaries of the unit cell cancel out due to periodicity,

and using Eq. (A.7) at ε1 and Eq. (A.5) at ε0. The final result is

〈∇y · v(1)
b 〉b = jωp

(0)
b

2

L
Yr(ω)

jω
, (A.41)

where L = 2Ωbf/Γrf is a characteristic length and the effective admittance Yr of the res-

onator is given by

Yr(ω) =
1

Γrf

∫

Γrf

v
(0)
r · n
p
(0)
b

dΓ. (A.42)

Inserting Eqs. (A.27) and (A.41) into Eq. (A.39) and recalling the thermodynamic identity

P0/τ0 = ρ0cp(γ − 1)/γ (with γ being the adiabatic exponent), one obtains

∇x · 〈v(0)
b 〉b + jωp

(0)
b Cbr = 0, (A.43)

where the effective compressibility Cbr is given by Eq. (26).

The identification of the ε0 terms in Eq. (A.2) (for ι = d) and application of the spatial

averaging operator Eq. (A.36) to the resulting equation yields

∇x · 〈v(0)
d 〉d + 〈∇y · v(1)

d 〉d = −jω〈ρ
(0)
d

ρ0
〉d. (A.44)

In this equation, the term 〈∇y · v(1)
d 〉d is null due to v

(1)
d = 0 on Γs, periodicity, and the

continuity of the fluid velocity across the interface Γ; while the right-hand side term is linked

with the effective compressibility of the fluid saturating Ωdf . Taking into account these two

remarks, Eq. (A.44) becomes

∇x · 〈v(0)
d 〉d + jωp

(0)
d Cd(ω) = 0. (A.45)
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The macroscopic mass balance Eq. (21) is obtained by adding Eqs. (A.43) and (A.45)

after having multiplied them by φb and φd, respectively. The macroscopic constitutive fluid

flow law Eq. (22) is obtained from Eqs. (A.21) and (A.38). In both macroscopic equations,

the overall leading-order velocity, defined as V
(0) = v

(0)
ι in Ωιf (with ι = b, d), has been

spatially averaged over the whole REV using the operator 〈·〉 = Ω−1
∫
Ωbf∪Ωdf

· dΩ.

Appendix B: Expressions for the effective admittance of acoustic resonators

For a quarter-wavelength resonator, the effective admittance is given by

Yr = Yrq =
1

−jZcr cot (kcrdr)
, (B.1)

where dr is the depth resonator and Zcr and kcr are, respectively, the characteristic

impedance and wave number of the effective fluid that saturates it. For a lossless, tor-

tuous quarter-wavelength resonator, one has that the characteristic impedance is given by

Zcr = ρ0c0
√
α∞r/φr, where α∞r and φr are, respectively, the inner tortuosity and porosity

of the resonator; and the wave number is given by kcr = k0
√
α∞r = ω

√
α∞r/c0, where c0

is the speed of sound in the saturating gas. On the other hand, it is clear from Eq. (B.1)

that Yr → ∞ when cot (kcrdr) → 0. For a lossless resonator, this occurs when kcrdr = nπ/2

(with n = 1, 3, ...). Hence the first resonance (n = 1) occurs at fr = c0/4d
√
α∞r.

For a Helmholtz resonator with neck length ln, neck constant cross-section Γrn = Γrf ,

neck volume Ωn, cavity length ha, cavity constant cross-section Γra, and cavity volume Ωa;

the effective admittance is given by (with G = Γra/Γrn)

Yr = Yrh =
Zwa + ZwnG

ZwnZwa + Z2
cnG

, (B.2)

with

Zwa = −jZca cot (kcaha) and Zwn = −jZcn cot (kcnln), (B.3)

where Zca and kca (respectively Zcn and kcn) are the characteristic impedance and the wave

number of the fluid saturating the cavity (respectively the neck), which for a cavity and a

neck where losses are negligible equal, in both cases, to Z0 and k0. Moreover, one can make

use of asymptotic values of the effective parameters to estimate the resonance frequency as

fr = c0Γrn/
√
ΩaΩn.
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Appendix C: Link between the effective parameters and local fields

1. Dynamic permeabilities and densities

To simplify the analysis, macro-isotropy or a preferential flow direction is considered.

This means that the involved tensors are replaced by scalars.

a. Oscillatory flow in Ωbf

The relationship between the dynamic visco-inertial permeability Kb and the local velocity

field is identified by taking the solution of the oscillatory flow problem described in § A 3 a as

a test field, i.e. wb = vb. Note that the superscript indicating the order has been dropped to

alleviate the notation. After evaluating this solution in the weak formulation (A.15), taking

the conjugate, and recalling that for a preferential flow direction 〈vb〉b = −(Kb/η)∇pb,

one obtains a direct relationship between the dynamic visco-inertial permeability and the

frequency-dependent local flow in the period. This reads as

Kb = η
Ab(vb,vb)

|∇pb|2
= Kℜ

b + jKℑ
b , (C.1)

with

Kℜ
b =

R(vb,vb)

|∇pb/η|2
= R(k̂b, k̂b) ≥ 0, (C.2)

Kℑ
b = −δ−2

v

Ib(vb,vb)

|∇pb/η|2
= −Ib(k̂b, k̂b)

δ2v
≤ 0, (C.3)

where δv =
√

η/ρ0ω is the viscous boundary layer thickness.

Hence, the dynamic visco-inertial permeability can be written as (with Vb = R(k̂b, k̂b) ≥ 0

and Ib = δ−2
v Ib(k̂b, k̂b) ≥ 0)

Kb = Vb − jIb. (C.4)

This equation shows that the real and imaginary parts Kb reflect the dissipated viscous and

kinetic energies developed by the flow (for a unitary pressure gradient).

The dynamic density ρb = η/jωKb can be conveniently written as

ρb = − η

ω

G(K⋆
b)

Kℜ
b

(
1 +

j

K⋆
b

)
with G(q) =

q

1 + q2
, (C.5)

and K⋆
b = Kℑ/Kℜ = −Ib/Vb.
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b. Oscillatory fluid-film interaction in Ωdf ∪ Γ

The procedure to obtain the link between the dynamic visco-elasto-inertial permeability

Kd and the local fields is similar to the one detailed in the previous subsection. For the sake

of brevity, only the final result is provided, i.e.

Kd = Vd + j(Ed − Id), (C.6)

where

Vd =
Rd(vd,vd)

|∇pd/η|2
= Rd(k̂d, k̂d) ≥ 0, (C.7)

Ed =
K

ηω

Ed(vd, vd)

|∇pd/η|2
=

K

ηω
Ed(k̂d, k̂d) =

T Em(k̂d, k̂d) + EIEp(k̂d, k̂d)

ηω
≥ 0, (C.8)

Id = δ−2
v

̺

ρ0

Id(vd,vd)

|∇pd/η|2
=

̺

ρ0

Id(k̂d, k̂d)

δ2v
=

If (k̂d, k̂d) +
ρet
ρ0
Ip(k̂d, k̂d)

δ2v
≥ 0. (C.9)

Eq. (C.6) shows that Kd reflects the dissipated viscous, kinetic and elastic (or pseudo-elastic)

energies developed by the oscillatory fluid flow which is strongly affected by the fluid-film

interaction. In particular, the kinetic energy is determined by the inertia of the fluid and

the films while the elastic (or pseudo-elastic) energy by bending and membrane effects in

the films.

The dynamic density ρd = η/jωKd is obtained by replacing the subscript b by d

in Eq. (C.5), i.e.

ρd = − η

ω

G(K⋆
d)

Kℜ
d

(
1 +

j

K⋆
d

)
, (C.10)

where K⋆
d = Kℑ

d /Kℜ
d = (Ed − Id)/Vd.

c. Oscillatory flow in the permeable lossy metamaterial

Combining the previous results, one can write the visco-elasto-inertial permeability as

K = φbVb + φdVd + j(φdEd − [φbIb + φdId]). (C.11)

This equation shows that the viscous dissipated, kinetic and elastic (or pseudo-elastic) ener-

gies developed by the flows in Ωdf and Ωbf affect the overall permeability of the permeable

lossy metamaterial.
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The dynamic density is then given by Eq. (32), which for a preferential propagation

direction becomes

ρ(ω) =

(
φb

ρb(ω)
+

φd

ρd(ω)

)−1

= − η

ω

G(K⋆)

Kℜ

(
1 +

j

K⋆

)
(C.12)

where K⋆ = Kℑ/Kℜ = (φdEd − [φbIb + φdId])/(φbVb + φdVd).

2. Dynamic thermal permeabilities, compressibilities, and effective admittance

The relationship between the effective parameter Θb(ω) and the local temperature field

τb = τ
(0)
b is now identified. To do so, let us take the solution itself as a test field, i.e. qb = τb,

and evaluate it in the conjugate of Eq. (A.22) to obtain (note that we have dropped the

superscript indicating the order to alleviate the notation)

ab(τb, τb) = −jωpb〈τ〉b. (C.13)

Recalling that 〈τb〉b = (Θb/κ)jωpb, one obtains a direct relationship between the dynamic

thermal permeability and the frequency-dependent local temperature field in the period,

which reads as

Θb =
κab(τb, τb)

|ωpb|2
= Θℜ

b + jΘℑ
b , (C.14)

where

Θℜ
b =

Hb(τb, τb)

|ωpb/κ|2
= Hb(Θ̂b, Θ̂b) ≥ 0, (C.15)

Θℑ
b = −δ−2

t

Sb(τb, τb)

|ωpb/κ|2
= −Sb(Θ̂b, Θ̂b)

δ2t
≤ 0, (C.16)

and δt =
√

κ/ωρ0cp the thermal boundary layer thickness.

Hence the effective compressibility Cb can be written as

Cb =
1

P0

[(1− Sb)− jHb] = C
ℜ
b + jCℑ

b , (C.17)

where

Hb =
γ − 1

γ

Θℜ
p

δ2t
=

γ − 1

γ

Hb(Θ̂b, Θ̂b)

δ2t
≥ 0, (C.18)

Sb = −γ − 1

γ

Θℑ
b

δ2t
=

γ − 1

γ

Sb(Θ̂b, Θ̂b)

δ4t
≥ 0. (C.19)
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To link the local temperature field in Ωdf with the effective parameters, the same steps as

in the previous paragraphs are followed. The final results are obtained by replacing the

subscript b by d in Eqs. (C.14)–(C.18).

The overall effective compressibility is then linked to the local fields as well as the effective

admittance of the resonator Yr = Yℜ
r + jYℑ

r , via

C(ω) =

[
φb

P0

(1− Sb) + φb
2

L
Yℑ

r

ω
+

φd

P0

(1− Sd)

]
− j

[
φb

P0

Hb + φb
2

L
Yℜ

r

ω
+

φd

P0

Hd

]
. (C.20)

[1] G. Ma and P. Sheng. “Acoustic metamaterials : From local resonances to broad horizons,”

Sci. Adv. 2 (2), e1501595 (2016).

[2] S. A. Cummer, J. Christensen, and A. Alù. “Controlling sound with acoustic metamaterials,”

Nat. Rev. Mater. 1, 16001 (2016).

[3] G. Liao, C. Luan, Z. Wang, J. Liu, X. Yao, and J. Fu, “Acoustic metamaterials: a review

of theories, structures, fabrication approaches, and applications,” Adv. Mater. Technol. 6,

2000787 (2021).

[4] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant

sonic materials,” Science 289, 1734–1736 (2000).

[5] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic

metamaterials with negative modulus,” Nat. Mater. 5, 452–456 (2006).

[6] Y. Ding, Z. Liu, C. Qiu, and J. Shi. “Metamaterial with simultaneously negative bulk modulus

and mass density,” Phys. Rev. Lett. 99, 093904 (2007).

[7] Y. Cheng, J. Y. Xu, and X. J. Liu. “One-dimensional structured ultrasonic metamaterials with

simultaneously negative dynamic density and modulus,” Phys. Rev. B 77 (4), 045134 (2008).

[8] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Composite acoustic medium

with simultaneously negative density and modulus,” Phys. Rev. Lett. 104, 054301 (2010).

[9] F. Bongard, H. Lissek, and J. R. Mosig. “Acoustic transmission line metamaterial with nega-

tive/zero/positive refractive index,” Phys. Rev. B 82 (9), 094306 (2010).

[10] L. Fok and X. Zhang. “Negative acoustic index metamaterial,” Phys. Rev. B 83 (21), 214304

(2011).

[11] Y. M. Seo, J. J. Park, S. H. Lee, C. M. Park, C. K. Kim, S. H. Lee, “Acoustic metamaterial

55

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



exhibiting four different sign combinations of density and modulus,” J. Appl. Phys. 111, 023504

(2012).

[12] Z. Liang, M. Willatzen, J. Li, and J. Christensen. “Tunable acoustic double negativity meta-

material,” Sci. Rep. 2 (1), 859 (2011).

[13] S. H. Lee and O. B. Wright, “Origin of negative density and modulus in acoustic metamaterials,”

Phys. Rev. B 93, 024302 (2016).

[14] V. C. Henríquez, V. M. García-Chocano, and J. Sánchez-Dehesa, “Viscothermal losses in

double-negative acoustic metamaterials,”. Phys. Rev. Appl. 8, 014029 (2017).

[15] C. Bellis and B. Lombard, “Simulating transient wave phenomena in acoustic metamaterials

using auxiliary fields”, Wave Motion 86, 175–194 (2019).

[16] H. Jia, M. Ke, R. Hao, Y. Ye, F. Liu, and Z. Liu, “Subwavelength imaging by a simple planar

acoustic superlens,” Appl. Phys. Lett. 97 (17), 173507 (2010).

[17] Y. Li, G. Yu, B. Liang, X. Zou, G. Li, S. Cheng, and J. Cheng, “Three-dimensional ultrathin

planar lenses by acoustic metamaterials,” Sci. Rep. 4 (1), 6830 (2014).

[18] X. Yang, J. Yin, G. Yu, L. Peng, and N. Wang, “Acoustic superlens using helmholtz-resonator-

based metamaterials,” Appl. Phys. Lett. 107 (19), 193505 (2015).

[19] S. L. Zhai, X. P. Zhao, S. Liu, F. L. Shen, L. L. Li, and C. R. Luo, “Inverse doppler effects in

broadband acoustic metamaterials,” Sci. Rep. 6 (1), 32388 (2016).

[20] S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative

metamaterials,” Phys. Rev. B 81 (24), 241102 (2010).

[21] T. Dupont, P. Leclaire, O. Sicot, X. L. Gong, and R. Panneton, “Acoustic properties of air-

saturated porous materials containing dead-end porosity,” J. Appl. Phys. 110, 094903 (2011).

[22] X. Jiang, B. Liang, R.-Q. Li, X.-Y Zou, L.-L. Yin, and J.-C. Cheng. “Ultra-broadband absorp-

tion by acoustic metamaterials,” Appl. Phys. Lett. 105, 243505 (2014).

[23] J.-P. Groby, A. Lardeau, W. Huang, and Y. Auregan, “The use of slow sound to design simple

sound absorbing materials,” J. Appl. Phys. 117, 124903 (2015).

[24] N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, and J.-P. Groby, “Ultra-thin metama-

terial for perfect and quasiomnidirectional sound absorption,” Appl. Phys. Lett. 109, 121902

(2016).

[25] D. C. Brooke, O. Umnova, P. Leclaire, T. Dupont “Acoustic metamaterial for low frequency

sound absorption in linear and nonlinear regimes,” J. Sound Vib. 485, 115585 (2020).

56

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



[26] A. O. Krushynska, F. Bosia, M. Miniaci, and N. M. Pugno, “Spider web-structured labyrinthine

acoustic metamaterials for low-frequency sound control,” New J. Phys. 19, 105001 (2017).

[27] Y. Li and B. M. Assouar. “Acoustic metasurface-based perfect absorber with deep subwave-

length thickness,” Appl. Phys. Lett. 108, 063502 (2016).

[28] C. Chen, Z. Du, G. Hu, and J. Yang. “A low-frequency sound absorbing material with sub-

wavelength thickness,” Appl. Phys. Lett. 110, 221903 (2017).

[29] Y. Shen, Y. Yang, X. Guo, Y. Shen, and D. Zhang, “Low-frequency anechoic metasurface based

on coiled channel of gradient cross-section,” Appl. Phys. Lett. 114, 083501 (2019).

[30] F. Wu, Y. Xiao, D. Yu, H. Zhao, Y. Wang, and J. Wen, “Low-frequency sound absorption of

hybrid absorber based on micro-perforated panel and coiled-up channels,” Appl. Phys. Lett.

114, 151901 (2019).

[31] Z. Yang, J. Mei, M. Yang, N. Chan, and P. Sheng. “Membrane-type acoustic metamaterial

with negative dynamic mass,” Phys. Rev. Lett. 101, 204301 (2008).

[32] C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt. “Transmission loss and dynamic response

of membrane-type locally resonant acoustic metamaterials,” J. App. Phys. 108, 114905 (2010).

[33] J. Mei, G. Ma, M. Yang, Z. Yang, and W. Wen. “Dark acoustic metamaterials as super ab-

sorbers for low-frequency sound,” Nat. Commun. 3, 756 (2012).

[34] C. Boutin, “Acoustics of porous media with inner resonators,” J. Acoust. Soc. Am. 134(6),

4717–4729 (2013).

[35] C. Boutin, and F. X. Bécot, “Theory and experiments on poro-acoustics with inner resonators,”

Wave Motion 54, 76–99 (2015).

[36] R. Venegas and C. Boutin, “Acoustics of permeo-elastic materials,” J. Fluid Mech. 828, 135–

174 (2017).

[37] C. Boutin and R. Venegas, “Pore-scale bending and membrane effects in permeo-elastic media,”

Mech. Mater. 145, 103362 (2020).

[38] N. J. R. K. Gerard and Y. Jing, “Loss in acoustic metasurfaces: a blessing in disguise,” MRS

Commun. 10, 32–41 (2020).

[39] C. Zwikker and C. W. Kosten, Sound absorbing materials (Elsevier, 1949).

[40] M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-

frequency range,” J. Acoust. Soc. Am. 28, 168–178 (1956).

[41] M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher

57

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



frequency range,” J. Acoust. Soc. Am. 28, 179–191 (1956).

[42] J. F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modeling Sound Absorbing

Materials (John Wiley & Sons, 2009) 2nd ed.

[43] J. L. Auriault, C. Boutin, and C. Geindreau, Homogenization of Coupled Phenomena in

Heterogeneous Media (ISTE Ltd and John Wiley & Sons, 2009).

[44] J. L. Auriault, L. Borne, and R. Chambon, “Dynamics of porous saturated media, checking of

the generalized law of Darcy,” J. Acoust. Soc. Am. 77, 1641–1650 (1985).

[45] D. L. Johnson, J. Koplik, and R. Dashen, “Theory of dynamic permeability and tortuosity in

fluid-saturated porous media,” J. Fluid Mech. 176, 379–402 (1987).

[46] Y. Champoux and J. F. Allard, “Dynamic tortuosity and bulk modulus in air-saturated porous

media,” J. Appl. Phys. 70, 1975–1979 (1991).

[47] S. R. Pride, F. D. Morgan, and A. F. Gangi, “Drag forces of porous-medium acoustics,” Phys.

Rev. B 47, 4964–4975 (1993).

[48] D. Lafarge, P. Lemarinier, J. F. Allard, and V. Tarnow, “Dynamic compressibility of air in

porous structures at audible frequencies,” J. Acoust. Soc. Am. 102, 1995–2006 (1997).

[49] M. R. Stinson, “The propagation of plane sound waves in narrow and wide circular tubes, and

generalization to uniform tubes of arbitrary cross-sectional shape,” J. Acoust. Soc. Am. 89,

550–558 (1991).

[50] M. Nori and R. Venegas, “Sound propagation in porous materials with annular pores,” J.

Acoust. Soc. Am. 141, 4642–4651 (2017).

[51] Z. Xu, W. He, F. Xin, and T. J. Lu, “Sound propagation in porous materials containing rough

tubes,” Phys. Fluids 32, 093604 (2020).

[52] J. Ning, Y. Li, and G. Zhao, “Simple multi-sections unit-cell model for sound absorption

characteristics of lotus-type porous metals,” Phys. Fluids 31, 077102 (2019).

[53] W. He, M. Liu, X. Peng, F. Xin, and T.-J. Lu, “Sound absorption of petal shaped micro-channel

porous materials,” Phys. Fluids 33, 063606 (2021).

[54] K. Attenborough, “Acoustical characteristics of rigid fibrous absorbents and granular materi-

als,” J. Acoust. Soc. Am. 73, 785–799 (1983).

[55] A. M. Chapman and J. J. L. Higdon, “Oscillatory stokes flow in periodic porous media,” Phys.

Fluids 4, 2099–2116 (1992).

[56] O. Umnova, K. Attenborough, and K. M. Li, “Cell model calculations of dynamic drag param-

58

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



eters in packings of spheres,” J. Acoust. Soc. Am. 107, 3113–3119 (2000).

[57] C. Boutin and C. Geindreau, “Estimates and bounds of dynamic permeability of granular

media,” J. Acoust. Soc. Am. 124, 3576–3593 (2008).

[58] C. Boutin and C. Geindreau, “Periodic homogenization and consistent estimates of transport

parameters through sphere and polyhedron packings in the whole porosity range,” Phys. Rev.

E 82, 036313 (2010).

[59] R. Venegas, “Microstructure influence on acoustical properties of multiscale porous materials,”

Ph.D. thesis (University of Salford, Salford, United Kingdom, 2011).

[60] C. Perrot, F. Chevillotte, and R. Panneton, “Bottom-up approach for microstructure optimiza-

tion of sound absorbing materials,” J. Acoust. Soc. Am. 124, 940–948 (2008).

[61] O. Umnova, D. Tsiklauri, and R. Venegas, “Effect of boundary slip on the acoustical properties

of microfibrous materials,” J. Acoust. Soc. Am 126, 1850–1861 (2009).

[62] T. G. Zieliński, “Microstructure representations for sound absorbing fibrous media: 3d and 2d

multiscale modelling and experiments,” J. Sound Vib. 409, 112–130 (2017).

[63] T. G. Zieliński, R. Venegas, C. Perrot, M. Cervenka, F. Chevillotte, and K. Attenborough,

“Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous me-

dia,” J. Sound Vib. 483, 115441 (2020).

[64] C. Perrot, F. Chevillotte, and R. Panneton, “Dynamic viscous permeability of an open-cell

aluminum foam: Computations versus experiments,” J. Appl. Phys. 103, 024909 (2008).

[65] C. Perrot, F. Chevillotte, M. T. Hoang, G. Bonnet, F.-X. Bécot, L. Gautron, and A. Duval,

“Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments

and three-dimensional numerical simulations,” J. Appl. Phys. 111, 014911 (2012).

[66] F. Chevillotte and C. Perrot, “Effect of the three-dimensional microstructure on the sound

absorption of foams: A parametric study,” J. Acoust. Soc. Am. 142, 940–948 (2017).

[67] J. Ning, G. Zhao, and X. He, “Non-acoustical parameters and sound absorption characteristics

of porous polyurethane foams,” Phys. Fluids 31, 037106 (2019).

[68] H. T. Luu, C. Perrot, V. Monchiet, and R. Panneton, “Three-dimensional reconstruction of

a random fibrous medium: geometry, transport and sound absorbing properties,” J. Acoust.

Soc. Am. 141, 4768–4780 (2017).

[69] J. Ning and Y. Li, “Dynamic flow resistivity and sound absorption of compressed fibrous porous

materials: experimental and theoretical,” Phys. Fluids 32, 127103 (2020).

59

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



[70] J. L. Auriault and C. Boutin. "Deformable porous media with double porosity. III: Acoustics,”

Transport Porous Med. 14 (2), 143–162 (1994).

[71] C. Boutin, P. Royer, and J. L. Auriault, “Acoustic absorption of porous surfacing with dual

porosity,” Int. J. Solids Struct. 35, 4709–4737 (1998).

[72] X. Olny and C. Boutin, “Acoustic wave propagation in double porosity media,” J. Acoust. Soc.

Am. 113, 73–89 (2003).

[73] R. Venegas and O. Umnova, “Acoustical properties of double porosity granular materials,”

J. Acoust. Soc. Am. 130, 2765–2776 (2011).

[74] R. Venegas and O. Umnova, “Influence of sorption on sound propagation in granular activated

carbon,” J. Acoust. Soc. Am. 140, 755–766 (2016).

[75] C. Boutin and R. Venegas, “Assessment of the effective parameters of dual porosity deformable

media,” Mech. Mater. 102, 26–46 (2016).

[76] R. Venegas and C. Boutin, “Acoustics of sorptive porous materials,” Wave Motion 68, 162–181

(2017).

[77] R. Venegas, C. Boutin, and O. Umnova, “Acoustics of multiscale sorptive porous materials,”

Phys. Fluids 29, 082006 (2017).

[78] R. Venegas and C. Boutin, “Acoustics of permeable heterogeneous materials with local non-

equilibrium pressure states,” J. Sound Vib. 418, 221–239 (2018).

[79] R. Venegas and C. Boutin, “Enhancing sound attenuation in permeable heterogeneous materials

via diffusion processes,” Acta Acust. United Ac. 104, 623–635 (2018).

[80] E. Gourdon and M. Seppi, “Extension of double porosity model to porous materials containing

specific porous inclusions,” Acta Acust. United Ac. 96, 275–291 (2010).

[81] F. Chevillotte, L. Jaouen, and F.-X. Bécot, “On the modeling of visco-thermal dissipations in

heterogeneous porous media,” J. Acoust. Soc. Am. 138, 3922–3929 (2015).

[82] R. Venegas, T. G. Zieliński, G. Núnez, and F.-X. Bécot, “Acoustics of porous composites,”

Compos. B. Eng. 220, 109006 (2021).

[83] G. Núnez, R. Venegas, T. G. Zieliński, and F.-X. Bécot, “Equivalent fluid approach to modeling

the acoustical properties of polydisperse heterogeneous porous composites,” Phys. Fluids 33,

062008 (2021).

[84] A. Tsimpoukis and D. Valougeorgisa, “Pulsatile pressure driven rarefied gas flow in long rect-

angular ducts,” Phys. Fluids 30, 047104 (2018).

60

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



[85] K. Pradhan and A. Guha, “Fluid dynamics of oscillatory flow in three-dimensional branching

networks,” Phys. Fluids 31, 063601 (2019).

[86] U. Torres-Herrera, “Dynamic permeability of fluids in rectangular and square microchannels:

Shift and coupling of viscoelastic bidimensional resonances,” Phys. Fluids 33, 047104 (2021).

[87] M. S. Nagargoje, D. K. Mishra, and R. Gupta, “Pulsatile flow dynamics in symmetric and

asymmetric bifurcating vessels,” Phys. Fluids 33, 071904 (2021.)

61

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



L l Ωbr

Γ

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



L l

Ωb

Ωd

Ωbr

Ωbs Ωbf

Ωdf

Ωds

Γ

⊙N

Γds

Γbs
Γrf

n

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



L

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



l

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



Ωb

Ωd

Ωbf

Ωdf

Ωr

Γ
Ωds

Ωbs

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



lh

lt

dq

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



lh

2

lw

2ra

ha

hbwb

ln

2rn

ws

hs

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



lh
2

lw

wmhm

hq

wd

hg

ws

hs

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
0 1 2 3

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 1 2 3

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
0 10 20 30 40 50 60 70 80

(g)

!=(kc(!)) [1=m]
0 10 20 30 40 50 60 70 80

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-4 -3 -2 -1 0 1 2

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 1 2 3 4

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-80 -60 -40 -20 0 20 40 60 80

(g)

!=(kc(!)) [1=m]
0 20 40 60 80 100 120

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-4 -3 -2 -1 0 1 2

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 0.5 1 1.5 2

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-20 0 20 40 60 80 100 120

(g)

!=(kc(!)) [1=m]
0 20 40 60 80 100 120 140

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-4 -3 -2 -1 0 1 2

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 1 2 3 4

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-100 -50 0 50 100 150

(g)

!=(kc(!)) [1=m]
0 50 100 150 200

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-10 -8 -6 -4 -2 0 1 2 3 4 5 6 7

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-40 -20 0 20 40 60

(g)

!=(kc(!)) [1=m]
0 10 20 30 40 50 60

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



j;(!)=;0j
0 30 60 90 120

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

DPM

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

DPM

jC(!)P0j
0 1 2 3 4

(c)

PLM

DPM

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

PLM

DPM

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-1 0 1 2 3 4 5 6

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 1 2 3 4 5

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-10 0 10 20 30 40 50

(g)

!=(kc(!)) [1=m]
0 10 20 30 40 50

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(;=;0)
-4500 -3500 -2500 -1500 -500 500

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(a)

PLM

SPM

PEM

<(;=;0)
-150 -100 -50 0 50

0

100

200

300

400

500

600

700

800

900

1000

3;(!)=:
-1 -0.75 -0.5 -0.25 0

(b)

PLM

SPM

PEM

jC(!)P0j
0 1 2 3 4 5

(c)

3C(!)=:
-1 -0.75 -0.5 -0.25 0

(d)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2



<(c(!)=c0)
-0.5 0 0.5 1 1.5

F
re

q
u
en

cy
[H

z]

0

100

200

300

400

500

600

700

800

900

1000

(e)

j(c(!)=c0j
0 0.5 1 1.5 2

0

100

200

300

400

500

600

700

800

900

1000

3c(!)=:
0 0.25 0.5 0.75 1

(f)

<(kc(!)) [1=m]
-20 -10 0 10 20 30

(g)

!=(kc(!)) [1=m]
0 10 20 30 40 50 60

(h)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
7
3
4
2


