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ABSTRACT

This paper investigates acoustic wave propagation in gas-saturated permeable lossy metamaterials, which have different types of resonators,
namely, acoustic and elastic resonators, as building-block elements. By using the two-scale asymptotic homogenization method, the macro-
scopic equations that govern sound propagation in such metamaterials are established. These equations show that the metamaterials can be
modeled as equivalent fluids with unconventional effective density and compressibility. Analysis of these frequency-dependent and complex-
valued parameters shows that the real parts of both can take negative values within frequency bands determined by inner resonances. The
upscaled theory is exemplified with the case of a permeable lossy metamaterial having a unit cell comprising two unconnected fluid networks
and a solid frame. One of these fluid networks is loaded with acoustic resonators (e.g., quarter-wavelength, Helmholtz resonators), while thin
elastic films are present in the other one. It is shown that the propagation of acoustic waves in permeable lossy metamaterials is determined
by both classical visco-thermal dissipation and local elasto-inertial resonances. The results are expected to lead to judicious designs of acous-
tic materials with peculiar properties including negative phase velocity and phase constant characteristic for regressive waves, very slow phase
velocity, and wide sub-wavelength bandgaps.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077342

I. INTRODUCTION

Metamaterials are artificially structured materials with atypical
effective parameters that are primarily determined by the metamateri-
als’ microstructure instead of chemical composition. Research on
acoustic metamaterials, reviewed in Refs. 1–3, has rapidly grown since
the works by Liu et al.4 and Fang et al.5 who reported, respectively,
acoustic metamaterials exhibiting negative real part of the effective
density and compressibility in a narrow frequency band. In both
cases, this is due to the resonant behavior of the metamaterial constitu-
ents, with consequences being the existence of sub-wavelength bandg-
aps (i.e., frequency bands where wave propagation is forbidden), slow
phase velocity, and high levels of sound attenuation. A negative real

part of the effective parameters indicates an out-of-phase response.
For example, in a material with negative real part of the effective den-
sity, the movement of the equivalent continuum is in the opposite
direction to the driving force, while in a material with negative real
part of the effective compressibility, the equivalent continuum expands
upon an exerted pressure. Acoustic metamaterials exhibiting simulta-
neous negative real part of the effective density and compressibility
have also been investigated in a number of works, for example, Refs.
6–15. Due to their peculiar properties, these so-called double-negative
acoustic metamaterials have found application in, for example, sub-
wavelength imaging16–18 and realizing reverse Doppler effect.19,20 In
addition, the last decade has seen a wealth of literature on acoustic
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metamaterials primarily intended for sound attenuation, with exam-
ples including waveguides loaded with resonators,21–25 coiled-space or
labyrinthic metamaterials,26–30 arrays of membranes with added
masses,31–33 arrays of Helmholtz resonators,34,35 and permeo-elastic
media.36,37 The atypical acoustical properties of most of these metama-
terials rely on the resonant behavior of their constituents. Hence, the
unconventional acoustic behavior is confined to narrow frequency
bands. While this limitation could, at least in part, be overcome by
visco-thermal losses, it is known that excessive losses can deteriorate
the performance of acoustic metamaterials (see, e.g., Refs. 3 and 38).
This clearly points out the need to properly account for losses in the
modeling of acoustic metamaterials. This is done in this paper by using
methods and analyses common for porous media acoustics.39–43 For
porous materials, the effects of losses have been widely studied, with
examples being works on wave propagation in single porosity materi-
als (SPMs),44–48 such as arrays of pores (see, e.g., Refs. 49–53), granular
materials,54–59 fibrous materials,60–63,68,69 and cellular materials;64–67

multiscale porous media;59,70–79 and porous composites.80–83

Air-saturated acoustic metamaterials with unit cells comprising
thin elastic solids and acoustic resonators have been a subject of exten-
sive research in recent years. Lee et al.8 investigated wave propagation
in a channel with interspaced clamped membranes and side holes. In
this structure, which was built and tested, the identical membranes dis-
connected the fluid phase. The effective density and bulk modulus
were modeled using a “lumped-element” approach, while visco-
thermal losses and fluid interaction with the membranes were not
taken into account. In other words, the material was modeled as an
equivalent lossless fluid with real-valued effective properties that can
simultaneously take negative values. While the experiments confirmed
this assumption for the tested material, it was left to theoreticians to
justify it. Similarly, Bongard et al.9 investigated a one-dimensional
structure comprising a channel with clamped membranes and trans-
versally connected radial open channels. Using circuit theory and a
transmission line approach, the membranes, which disconnected the
channel’s fluid network, were modeled as compliances while the open
channels as shunt acoustic masses. The effects of visco-thermal losses
were discarded due to the large characteristic size of the structure. The
full-wave finite element simulations confirmed that the material exhib-
its negative, zero, or positive refractive index, depending on the fre-
quency range. An acoustic double-negative metamaterial consisting of
a channel with an array of interspaced clamped membranes and later-
ally loaded Helmholtz resonators was studied in Ref. 11. As in the
above-mentioned works, the membranes rendered the channel’s fluid
network disconnected and visco-thermal losses were not considered.
In this work, the possibility of simultaneous or separate negative effec-
tive density and bulk modulus was experimentally demonstrated. As
in Ref. 9, these results were theoretically explained using both circuit
theory and a transmission line approach. On the other hand, Lee and
Wright13 introduced the concept of hidden force and hidden source of
volume to theoretically explain the negativity of the real-valued effec-
tive density or bulk modulus of a lossless material identical to that
studied in Ref. 11. Recently, Bellis and Lombard15 used prototypical
frequency-dependent expressions for the effective density and bulk
modulus of a material with the same geometry as that studied in Ref.
11, in order to develop a time-domain model of sound propagation in
a waveguide coupled with Helmholtz resonators and elastic mem-
branes. The losses were described by a single lumped-type parameter

in the expression for the complex-valued effective bulk modulus, while
the effective density was considered to be a real-valued function. In all
the works, mentioned in this paragraph, the single fluid network of the
metamaterial was disconnected and the macroscopic equations that
govern acoustic wave propagation in the metamaterial were directly
postulated, instead of being derived using homogenization techniques.
The latter implies that a recipe for the calculation of the effective
parameters from the solution of boundary-valued problems that gov-
ern the local fluid physics is not yet available.

This paper investigates sound propagation in gas-saturated per-
meable lossy metamaterials (PLMs) with unit cells composed of a per-
fectly rigid and impervious solid domain and two fluid networks. The
fluid that saturates one of the networks is in contact with the fluid that
saturates an acoustic resonator (e.g., quarter-wavelength, Helmholtz
resonator). The second fluid network contains a thin elastic film,
which strongly interacts with the fluid. Despite the presence of the
film, the fluid network remains connected. One of the key contribu-
tions of this work is an upscaled theory of acoustic wave propagation
in gas-saturated permeable lossy metamaterials. The macroscopic
equations are derived using the two-scale asymptotic method of
homogenization43 and demonstrate that permeable lossy metamateri-
als can be modeled as equivalent fluids with complex-valued fre-
quency-dependent effective parameters. These parameters describe the
influence of local visco-elasto-inertial effects on the acoustical proper-
ties of the metamaterial. We also present (i) a comprehensive analysis
of the effective parameters of permeable lossy metamaterials, starting
from a microscale description and unraveling the physical origin of
their atypical acoustic behavior; and (ii) an hybrid (numerical–analytical)
model for exemplifying the unconventional acoustical properties of the
metamaterials.

This work continues results on oscillatory fluid flow and heat
conduction in single porosity media,44–48,51–53,67 double porosity
media,59,70–72 and porous composites,82,83 as well as on oscillatory
fluid–film interaction.36,37 The findings will be helpful in the bottom-
up design of acoustic metamaterials for applications related to wave
control and can be exploited together with the results of other works
on oscillatory fluid flow in waveguides.84–87

The paper is organized as follows. The macroscopic equations
that govern sound propagation in permeable lossy metamaterials are
established by homogenization in Sec. II, with the details of the deriva-
tion being presented in Appendix A. The asymptotic analysis of the
effective parameters of the metamaterial is presented in Sec. III, while
Sec. IV introduces an hybrid model, which is used in Sec. V to exem-
plify key features of the effective parameters and acoustic behavior of
permeable lossy metamaterials. Concluding remarks are presented in
the last section of the paper.

II. ACOUSTIC WAVE PROPAGATION IN PERMEABLE
LOSSY METAMATERIALS—THEORY
A. Geometry and key assumptions

A generic geometry of the periodic acoustic metamaterials inves-
tigated in this work is shown in Fig. 1. The representative elementary
volume (REV) has a period l and comprises the domains Xb

¼ Xbf [ Xbr [ Xbs and Xd ¼ Xdf [ Xds. The perfectly rigid solid part
of the REV is Xs ¼ Xbs [ Xds, and its walls are Cs ¼ Cbs [ Cds. An
acoustic resonator Xbr, such as a quarter-wavelength or a Helmholtz
resonator (as in the diagram), is in contact with the fluid-saturated
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domain Xbf through the fluid–fluid interface Crf. The thin elastic
film C is clamped onto the perfectly rigid and impervious solid
domain Xds and strongly interacts with the fluid that saturates Xdf.
Outward pointing normal vectors are denoted as n and N. The
macroscopic characteristic length L is related to the wavelength k
of the acoustic waves via k ¼ 2pL. Throughout the paper, it is
assumed both that k � l; that is, a long-wavelength regime is con-
sidered, and harmonic dependence of the type ejxt . The former
ensures a good separation of scales and allows defining a small
parameter e ¼ l=L � 1.

It must be noted that since the gas-saturated parts of Xb and Xd,
that is, Xbf and Xdf, are not connected, no interaction between the
acoustic and elastic resonators is possible. The case where the resona-
tors share a common fluid network and interact, either weakly or
strongly, is beyond the scope of this work.

B. Local governing equations

Acoustic wave propagation in Xbf is governed by the Stokes–
Fourier system and boundary conditions of zero velocity and excess

temperature on Cs as well as continuity of mass flux, pressure, and
temperature on Crf, namely,

divð2gDðvbÞÞ � rpb ¼ jxq0vb in Xbf ; (1)

jxqb þ q0r � vb ¼ 0 in Xbf ; (2)

jr � rsb ¼ jxq0cpsb � jxpb in Xbf ; (3)
pb
P0

¼ qb
q0

þ sb
s0

in Xbf ; (4)

vb ¼ 0 on Cbs; (5)

sb ¼ 0 on Cbs; (6)

q0vb � n ¼ q0vr � n on Crf ; (7)

pb ¼ pr on Crf ; (8)

sb ¼ sr on Crf : (9)

The physical parameters are the dynamic viscosity g, specific heat
capacity cp, thermal conductivity j, and equilibrium pressure P0,
density q0, and temperature s0. The unknown variables are the oscil-
lating velocity vb, pressure pp, density qb, and temperature sb, while

FIG. 1. Periodic geometry of a generic permeable lossy metamaterial. Top left—3D macroscopic medium. Top middle—3D Representative Elementary Volume (REV). Top
right—Cutaway view of the 3D REV. Bottom left—2D representation of the macroscopic medium. Bottom right—2D representation of the REV. The clamped films C are
shown in green, while the acoustic resonators Xbr in blue. The solid frame is shown in gray and the pore fluid networks are transparent. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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DðvbÞ ¼ 1
2 rvb þ ðrvbÞT � 2

3r � vbI
� �

is the deviatoric strain rate
tensor, where I is the unitary second-rank tensor. Note also that vr , pr,
and sr are, respectively, the fluid velocity, pressure, and temperature in
the resonator, which as shown in Appendix A are not required to be
specified.

The propagation of acoustic waves in the fluid-saturated part of
the permeo-elastic domain, that is, Xdf, is governed by the Stokes–
Fourier system Eqs. (10)–(13) coupled with Eqs. (14)–(16) that govern
the dynamics of the clamped film. The film, modeled as a Love–
Kirchhoff plate,36 can be pre-stressed, which means that bending and
membrane effects are accounted for.37 The system is completed with
clamping boundary conditions formulated on @C, that is, Eq. (18),
and conditions of zero velocity and excess temperature on Cs, that is,
Eqs. (19) and (20)

divð2gDðvdÞÞ � rpd ¼ jxq0vd in Xdf ; (10)

jxqd þ q0r � vd ¼ 0 in Xdf ; (11)

jr � rsd ¼ jxq0cpsd � jxpd in Xdf ; (12)
pd
P0

¼ qd
q0

þ sd
s0

in Xdf ; (13)

er � ðTþ T erudÞ ¼ �x2qetud � rd �N½ � �N on C; (14)

T ¼ �fdivðMÞ on C; (15)

M ¼ EI ð1� �ÞeeðerudÞ þ � er � erudI
� �

on C; (16)

vd ¼ jxudN on C; (17)

ud ¼ 0 and erud � n ¼ 0 on @C; (18)

vd ¼ 0 on Cds; (19)

sd ¼ 0 on Cds [ C: (20)

The unknown variables in Eqs. (10)–(13) are analogous to those in
Eqs. (1)–(4). In Eqs. (14)–(18), the tilde on the differential operators

denotes that these act on the plane C. For instance, eeð�Þ ¼ ðggradð�Þ
þggradT

ð�ÞÞ=2 is the symmetric part of the in-plane gradient operator.
The out-of-plane shear stress vector T and the bending moment of the
in-plane stress tensor M are integrated over the film thickness t. The
“plate”modulus of the films is E ¼ E=ð1� �2Þ, where E and � are the
Young’s modulus and Poisson’s ratio, respectively. The bending
stiffness is EI, where I ¼ t3=12 is the moment of inertia of the plate.
The surface density of the films is qet, and the thickness of the films
satisfies t � l. In addition, the film is loaded by the action of the fluid
on its faces and its own inertia, as represented by the right-hand side
terms of Eq. (14). The former is the jump across C of the normal com-
ponent of the fluid stress vector, that is, ½rd � N� �N, where ½�� repre-
sents the “jump” across C (e.g., ½a� ¼ aþ � a�, with the superscript þ

and � representing the opposite faces of the film). Furthermore, it has
been considered that the film has been isotropically and uniformly
pre-stressed by rT ¼ rT I ¼ ðT =tÞI, where T is the uniform tension
per unit length.

The two-scale asymptotic method of homogenization43 is
applied, as shown in Appendix A, to the set of Eqs. (1)–(20) in order
to establish a macroscopic description of sound propagation in perme-
able lossy metamaterials. The general steps of the upscaling process
are the analysis of the local physics, rescaling of the local description,
searching of the unknown variables as series expansion in terms of the

small parameter e, identification of boundary-value problems, and
determination of the effective macroscopic equations that govern the
propagation of sound waves in permeable lossy metamaterials. The lat-
ter is presented in Sec. II C.

C. Macroscopic equations and effective parameters

The macroscopic equations that govern sound propagation in
permeable lossy metamaterials are the mass balance equation (21) and
the fluid flow constitutive law (22) (see Appendix A for their deriva-
tions), namely,

r � V ¼ �jxðpb/bCbrðxÞ þ pd/dCdðxÞÞ; (21)

V ¼ �/bkbðxÞ
g

� rpb �
/dkdðxÞ

g
� rpd; (22)

where V and pb and pd represent the averaged fluid velocity and pres-
sures in the permeable lossy metamaterial, respectively. The subscript
in the differential operator and the superscript denoting the order in
the variables have been dropped to ease the notation. The effective
parameters of the model are described below.

Equations (21) and (22) demonstrate that the acoustic response
of the investigated permeable lossy metamaterials is described by a
two-pressure model. This is a consequence of the decoupled nature of
the pore fluid networks Xbf and Xdf and differs from classical single-
pressure models for conventional, multiscale, or composite porous
materials (see, e.g., Refs. 42, 43, 77, 82, and 83). However, the acoustic
response of permeable lossy metamaterials can be described by a
single-pressure model under the following conditions. Consider a
metamaterial layer for which its thickness is much smaller than the
sound wavelengths jkij (with i ¼ b; d) and, at the same time, larger
than the metamaterial’s period. In such a case, the pressure gradient,
determined by the pressures at the extremities of the layer, is identical
in both effective fluids. It then follows that the pressures pb and pd are
also equal, that is, pb ¼ pd ¼ p, and the two-pressure model can be
reduced to the following single-pressure model that describes the
apparent acoustic response of permeable lossy metamaterials:

r � V ¼ �jxpCðxÞ; (23)

V ¼ � kðxÞ
g

� rp: (24)

Here, the effective compressibility C is given by (with /b ¼ Xbf =X
and /d ¼ Xdf =X)

CðxÞ ¼ /bCbrðxÞ þ /dCdðxÞ: (25)

The effective compressibilities Cbr and Cd read as (see Appendix A4
for their derivation)

CbrðxÞ ¼ CbðxÞ þ CrðxÞ; (26)

CbðxÞ ¼
1
P0

1� c� 1
c

jxq0cp
HbðxÞ

j

� �
; (27)

CrðxÞ ¼
2
L
YrðxÞ
jx

; (28)

Cd ¼
1
P0

1� c� 1
c

jxq0cp
HdðxÞ

j

� �
; (29)

where the thermal permeabilities are calculated asHiðxÞ ¼ hĤiðy;xÞii
(with i ¼ b; d, see also Appendix A 3 b), L ¼ 2Xbf =Crf is a
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characteristic length, and YrðxÞ is the effective admittance of the
resonator. Exact expressions for the admittance depending on the
type of the resonator are presented in Appendix B.

The dynamic visco-elasto-inertial permeability tensor kðxÞ is
given by

kðxÞ ¼ /bkbðxÞ þ /dkdðxÞ; (30)

where the dynamic visco-inertial permeability of the effective fluid sat-
urating Xbf, that is, kb, and the dynamic visco-elasto-inertial perme-
ability of the effective fluid saturatingXdf, that is, kd , are given by

kbðxÞ ¼ hk̂bðy;xÞib and kdðxÞ ¼ hk̂dðy;xÞid; (31)

where k̂bðy;xÞ and k̂dðy;xÞ are calculated from the solution of the
boundary-value problems detailed in Appendixes A3 a and A3 c,
respectively.

On the other hand, the effective density tensor q is related to the
visco-elasto-inertial permeability tensor through

qðxÞ ¼ g
jx

k�1 ¼ ð/bq
�1
b þ /dq

�1
d Þ�1; (32)

where qb ¼ gk�1
b =jx and qd ¼ gk�1

d =jx.
For the analyses and examples to be presented in Secs. III and V,

it is pertinent to recall that the effective wave number kcðxÞ and speed
of sound cðxÞ are given by

kc ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxÞCðxÞ

p
¼ xjqðxÞj1=2jCðxÞj1=2ejhkðxÞ; (33)

cðxÞ ¼ x
kcðxÞ

¼ ejhcðxÞ

jqðxÞj1=2jCðxÞj1=2
: (34)

These expressions are valid for macroscopically isotropic metama-
terials or when considering a preferential sound propagation direc-
tion [i.e., the effective density tensor becomes qðxÞ ¼ qðxÞI], and
hqðxÞ and hCðxÞ are the frequency-dependent phases of the effec-
tive density and compressibility, respectively.

The phase of the effective speed of sound and wave number is,
respectively, given by

hcðxÞ ¼ � hqðxÞ þ hCðxÞ
2

and hkðxÞ ¼ �hcðxÞ: (35)

In summary, the two-pressure model [Eqs. (21) and (22)] and its
reduction to a single-pressure model [Eqs. (23) and (24)] are the
main contributions of this paper. The latter model shows that a per-
meable lossy metamaterial can be modeled as an equivalent fluid with
effective complex-valued frequency-dependent parameters k and C.
Specifically, Eq. (23) demonstrates that the effective compressibility
depends on the classical effective compressibilities of the fluid saturat-
ing the pore fluid networks, that is, Cb and Cd , which are determined
by the losses caused by the thermal exchanges between the saturating
fluid and the solid frame of the material, and an apparent compress-
ibility, that is,Cr , that accounts for the influence of the identical acous-
tic resonators through the effective admittance, Yr . It is the latter that
induces atypical acoustic behavior, as it will be shown in Sec. III where
the properties of the effective compressibility are analyzed in detail.
On the other hand, despite the formal similarity between Eq. (24) and
the dynamic Darcy’s law,44 Eq. (24) does not correspond to such a
law.36,37 This is because the elastic and inertial effects in the films as

well as the viscous and inertial effects in both pore fluid networks
affect k. The interplay between these effects also contributes to an
atypical behavior of the medium, as will be shown later in the paper.

To conclude this section, it is worth highlighting degenerate cases
of the upscaled model given by Eqs. (23) and (24). If the acoustic reso-
nators are not present and the films are absent or can be considered as
perfectly rigid, the upscaled model reduces to that of wave propagation
in double porosity materials (DPMs) with weakly contrasted perme-
abilities.72 If the permeo-elastic channel is absent, that is, /d ¼ 0, the
resulting upscaled model is that of wave propagation in a fluid-
saturated array of resonators.34,35 If the resonators are replaced by a
perfectly rigid impermeable solid, the upscaled model for wave propa-
gation in single porosity materials44,48 is retrieved, which is also the
case if /b ¼ 0 and the films are perfectly rigid. On the other hand, if
/b ¼ 0, then the upscaled model for wave propagation in permeo-
elastic media36,37 is retrieved. In addition, the upscaled model intro-
duced in this work degenerates to that of wave propagation in porous
composites with weakly contrasted permeabilities82 if /d and /b are
the volume fractions of the porous constituents and the effective
parameters Cd; kd; Cb, and kb are interpreted as those of the porous
constituents b and d accordingly.

III. ANALYSIS OF THE EFFECTIVE ACOUSTIC
PROPERTIES

Here, the low- and high-frequency behavior of the effective
parameters is investigated, together with that at several characteristic
frequencies. As previously, a preferential sound propagation direction
is considered for simplicity. Hence, the tensors are replaced by the sca-
lars K; Kb; Kd , q, qb, and qd, which can represent the norms of the
respective tensors. Such approximation is valid for isotropic or even
moderately anisotropic metamaterials.

In what follows, the frequency-dependent terms, derived in
Appendix C, that link the local fields and the effective parameters will
be used for the analysis. For the oscillatory flows, these correspond to
Vb ¼ <ðKbÞ and I b ¼ �=ðKbÞ, which reflect the dissipated viscous
and kinetic energy in Xbf, respectively; and to Vd ¼ <ðKdÞ; Ed , and
I d which reflect, respectively, the dissipated viscous, elastic, and
kinetic energies in Xdf. These are strongly affected by the fluid–film
interaction. Note also that Ed is determined by the elasticity of the
films, I d is affected by the inertia of both the fluid and the films, and
=ðKdÞ ¼ Ed � Id . For the oscillatory temperature fields, these corre-
spond to Hi ¼ ðc� 1Þ<ðHiÞ=cd2t and Si ¼ �ðc� 1Þ=ðHiÞ=cd2t
(with i ¼ d; b), where Si andHi reflect the stored and dissipated (due
to heat conduction) energies, respectively.

A. Effective dynamic permeability and density

The dynamic visco-inertial permeability Kb behaves classically.
Hence, it tends to

Kbðx � xvbÞ ! Kbðx ¼ 0Þ ¼ K0b

and Kbðx � xvbÞ ! �j
d2v
a1b

; (36)

where xvb ¼ �=K0ba1b, K0b, and a1b are the viscous characteristic
(or Biot) frequency, static viscous permeability, and tortuosity of the
pore fluid network Xbf, respectively. The boundary layer thickness is
dv ¼

ffiffiffiffiffiffiffiffiffi
�=x

p
, where � is the kinematic viscosity of the saturating fluid.
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Let us recall that the Biot frequency determines the transition from vis-
cosity- and inertia-dominated oscillatory flow in the pore space Xbf

and indicates the frequency at which the dissipation of sound due to
the viscosity of the fluid saturating the said pore space is maximized.
Moreover, at the Biot frequency one has that I bðxvbÞ ¼ VbðxvbÞ.

Then, the magnitude and phase of the dynamic density qb
tend to

jqbðx � xvbÞj ! q0
d2v
K0b

and jqbðx � xvbÞj ! q0a1b; (37)

hqbðx � xvbÞ ¼ � p
2

and hqbðx � xvbÞ ! 0: (38)

The dynamic visco-elasto-inertial permeability Kd has a complex
behavior in frequency, as discussed in detail in Refs. 36 and 37. Several
characteristic frequencies can be defined as follows. The visco-inertial
characteristic frequency xvd determines the transition from viscous- to
inertia-dominated flow. Note, however, that xvd is defined, in the
absence of elastic effects (i.e., Ed ! 0), implicitly through VdðxvdÞ
¼ I dðxvdÞ. Similar to classical porous media, an estimation of this fre-
quency is xvd ¼ �=K0da1d . In this expression, K0d ¼ Vdðx ! 0Þ is
the static permeability, which is well approximated by that of material
with same geometry as that of the permeo-elastic one but with per-
fectly rigid instead of elastic films; and a1d ¼ d2vI�1

d ðx � xvdÞ is the
respective tortuosity, which is affected by the fluid–film interac-
tion.36,37 Then, the limiting behavior of Kd is formally similar to that
shown in Eq. (36) but with the subscript b ! d. Consequently, the
magnitude and phase of qd tend to the values quoted in Eqs. (37) and
(38) (with b ! d), respectively.

On the other hand, elasto-inertial characteristic frequencies,
which correspond to an anti-resonance frequencyxad and a resonance
frequency xgd, can be defined36,37 when viscous effects are negligible
(i.e., when Vd ! 0). In both cases, the elastic energy is compensated
by the kinetic energy, which means that xad and xgd are both implic-
itly defined through Ed ¼ Id . Then,Kd behaves as

37

Kdðx ¼ xadÞ ! 0 and Kdðx ¼ xgdÞ ! 1: (39)

At the anti-resonance frequency xad, the mean fluid velocity tends to
zero when the system is excited by a finite pressure gradient.
Physically, this implies that the internal motions of the fluid–film sys-
tem compensate. At the resonance frequency xgd, the mean fluid
velocity takes large values when the system responds to a finite pres-
sure gradient.

It then follows that the magnitude and phase of the effective den-
sity qd tend to

jqdðx ¼ xadÞj ! 1 and jqdðx ¼ xgdÞj ! 0; (40)

hqd ðx ¼ xadÞ ¼ � p
2

and hqd ðx ¼ xgdÞ ! � p
2
: (41)

It is clear that in the frequency band ðxad;xgdÞ, the magnitude of qd
is a decreasing function of frequency, while its phase reflects that the
movement of the equivalent fluid is in the opposite direction to the
driving force, that is, hqd tends to

hqd ðxad < x < xgdÞ ! �p: (42)

Consequently, the real part of qd is negative in the frequency band
ðxad;xgdÞ, that is, <½qdðxad < x < xgdÞ� < 0.

Gathering the previous results, the limiting behavior of the effec-
tive permeability and density of the permeable lossy metamaterial is
identified. For negligible elastic effects, the former behaves as

Kðx � xvÞ ! /bKb0 þ /dKd0 ¼ K0

and Kðx � xvÞ ! �j/
d2v
a1

; (43)

where a1 ¼ /=ð/ba
�1
1b þ /da

�1
1dÞ is the overall tortuosity of the

metamaterial and / ¼ /b þ /d . The Biot frequency xv is implicitly
defined through

/bVbðxvÞ þ /dVdðxvÞ ¼ /bI bðxvÞ þ /dIdðxvÞ
with /dEd ! 0; (44)

and can be well estimated by xv ¼ /�=K0a1.
The magnitude and phase of the dynamic density q tend to

jqðx � xvÞj ! q0
d2v
K0

and jqðx � xvÞj !
q0a1
/

; (45)

hqðx � xvÞ ¼ � p
2

and hqðx � xvÞ ! 0: (46)

The locally resonant behavior of the permeo-elastic domain
affects the effective permeability and density of the permeable lossy
metamaterial. The elasto-inertial characteristic frequencies xa and xg

are implicitly defined through

/dEdðxeiÞ ¼ /bI bðxeiÞ þ /dIdðxeiÞ
with ð/bVbðxeiÞ þ /dVdðxeiÞÞ ! 0; (47)

where xei equals to either xa or xg.
At the anti-resonance frequency xa (respectively, resonance fre-

quency xg), one has that KðxaÞ ! 0 [respectively, KðxgÞ ! 1]. It
is worth highlighting thatxa is determined by the elasticity and inertia
of the films and the fluid saturating Xbf and Xdf. The relationship
between this anti-resonance frequency and that of the permeo-elastic
domain xad is shown to be xa � xad , with the equality being
observed when I b ! 0. On the other hand, since KdðxgdÞ ! 1, the
overall permeability also tends to 1 at the resonance frequency
xg ¼ xgd . Hence, xg does not depend on fluid flow in Xbf. These
results lead to the following behavior of the effective density:

jqðx ¼ xaÞj ! 1 and jqðx ¼ xgÞj ! 0; (48)

hqðx ¼ xaÞ ¼ �p
2

and hqðx ¼ xgÞ ! �p
2
: (49)

Note also that in the frequency band Dd ¼ ðxa;xgÞ, the magnitude of
q is a decreasing function of frequency, while the phase of the effective
density tends to

hqðxa < x < xgÞ ! �p: (50)

This shows that the real part of q is negative in this frequency range
and means that the movement of the equivalent fluid is in the opposite
direction to the driving force.

At this point, some remarks are pertinent: (i) despite the fact that
the flow in the fluid networkXdf is uncoupled from that inXbf, the lat-
ter still affects the overall anti-resonance frequency of the permeable
lossy metamaterial. This enables the tuning of xa by, for example,
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modifying the pore morphology Xbf, and thereby the tuning of the
band where <ðqÞ < 0, and (ii) the small but non-negligible viscous
dissipation leads to damped resonances and, as a consequence, remov-
ing the singularities of the effective parameters, while the excess of dis-
sipation can over damp the resonances.

B. Effective dynamic compressibility

Consider frequencies much smaller than the thermal characteris-
tic frequencies xti, defined throughHiðxtiÞ ¼ SiðxtiÞ and estimated
as xti ¼ j=q0cpH0i, where H0i is the static thermal permeability
of the pore fluid network Xif (with i ¼ d; b). At the leading
order, Hiðx � xtiÞ ! c�1

c
x
xti

and Siðx � xtiÞ ! 0. Hence,

Hiðx � xtiÞ ! Hiðx ¼ 0Þ ¼ H0i. For x � xti, the leading-order
limiting values are Hiðx � xtiÞ ! 0 and
Siðx � xtiÞ ! ðc� 1Þ=c, that is, Hiðx � xtiÞ ! �jd2t , where the
thermal boundary layer thickness is dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=q0cpx

p
. Consequently,

the effective compressibilities Cd andCb behave classically, that is,

Ciðx � xtiÞ !
1
P0

1� c� 1
c

jx
xti

� �
and Ciðx � xtiÞ !

1
cP0

:

(51)

The magnitude and phase of the effective compressibilities then tend to

jCiðx � xtiÞj !
1
P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c� 1

c
x
xti

� �2s

and jCiðx � xtiÞj !
1
cP0

; (52)

hCiðx ! 0Þ ! 0 and hCiðx � xtiÞ ! 0: (53)

Using Eq. (C20), one then obtains that [with xmin
t ¼minðxtb;xtdÞ

andxmax
t ¼maxðxtb;xtdÞ]

Cðx � xmin
t Þ ¼ /b

P0
þ /b

2
L
Y=

r

x
þ /d

P0

" #

� j
/b

P0

c� 1
c

x
xtb

þ /b
2
L
Y<

r

x
þ /d

P0

c� 1
c

x
xtd

" #
;

(54)

Cðx � xmax
t Þ ¼ /b

cP0
þ /b

2
L
Y=

r

x
þ /d

cP0

" #
� j /b

2
L
Y<

r

x

� �
; (55)

where Y<
r ¼ <ðYrÞ and Y=

r ¼ =ðYrÞ.
To gain further insight, it is convenient to use a particular expres-

sion for the admittance of the resonator. The features to be identified
are, however, shared by other types of acoustic resonators.
Considering a quarter-wavelength resonator, the effective admittance
of which is given by Eq. (B1), one has that Yr � jxCer dr for
jkcrdrj � 1, where kcr and Cer are, respectively, the effective wave
number and compressibility of the fluid saturating the quarter-
wavelength resonator of depth dr. The effective compressibility Cer
takes the following leading-order limiting values: Cer ðx � xtrÞ
¼ 1=P0 and Cer ðx � xtrÞ ¼ 1=cP0. Then, the term, 2/bY=

r =Lx,
becomes either /r=P0 or /r=cP0 for x � xtr or x � xtr , respec-
tively. Note that /r ¼ Xrf =X.

The low-frequency asymptotic value of the overall normalized
effective compressibility is therefore given by

P0Cðx ! 0Þ ¼ U� c� 1
c

jx
xt

; i:e:; Cðx ¼ 0Þ ¼ U
P0

; (56)

where U ¼ /b þ /r þ /d is the total porosity of the metamaterial
and the apparent thermal characteristic frequency xt is defined
through x�1

t � /b=xtb þ /d=xtd . This is an approximated expres-
sion because a small contribution of a visco-elastic frequency coming
from the loading resonator has been omitted. Note also that the same
result applies to a metamaterial whose REV features a Helmholtz
instead of a quarter-wavelength resonator but with /r ! /n þ /a,
where /n ¼ Xn=X and /a ¼ Xa=X are the volume fractions occupied
by the neck and cavity of the resonator, respectively.

Then, the magnitude and phase of the effective compressibility
(withx=xt � 1) tend to

jCðx ! 0Þj ! U
P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c� 1

cU
x
xt

� �2s
� U

P0

and hCðx ! 0Þ ! 0: (57)

Since 0 	 Si 	 ðc� 1Þ=c (with i ¼ b; d), Eq. (C20) shows that
the real part of the effective compressibility is positive, provided that
Y=

r � 0. This can also be seen from Eqs. (54) and (55). However, at
the resonance frequency fr of a lossless acoustic resonator, the com-
pressibility diverges.34 Consequently, the magnitude and phase of the
effective compressibility atxr tend to

jCðx ¼ xrÞj ! 1 and hCðx ¼ xrÞ ! �p
2
: (58)

The real part of the effective compressibility can be negative, that
is,<ðCÞ < 0. With reference to Eq. (C20), this occurs in the frequency
band where the following inequality is satisfied:

Y=
r < � x

P0

X
Crf

/bð1� SbÞ þ /dð1� SdÞð Þ: (59)

It is clear that <ðCÞ < 0 is only possible if Y=
r < 0. For the case of a

lossless quarter-wavelength resonator, one has the following
inequality:

tan ðnÞ < �/?n with /? ¼ /b=gb þ /d=gd
/r=c

; (60)

where Eq. (B1) has been used, n ¼ px=2xr , and gd and gb can take
values of 1 or c, depending on whether sound propagation in the
respective equivalent fluid is isothermal or adiabatic. Note that a
necessary but not sufficient condition to satisfy (60) is
1 	 x=xr < 2.

The inequality (60) is transcendental and shows that despite
the fact that the two fluid networks are unconnected and therefore
the waves that propagate in them do no interact, there is still an
influence of the fluid network Xdf, through its associated porosity,
on the atypical behavior of the effective compressibility. In prac-
tice, this means that the second porosity can be used to make the
frequency band where <ðCÞ < 0 narrower. However, the fluid net-
work Xdf does not modify the resonance frequency xr at which
jCj ! 1.
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To estimate the frequency band Db ¼ ðxr ;xr?Þ where
<ðCÞ < 0, an approximation of the left-hand side term of Eq. (60) is
used, that is,

x
 � 2
1� x2



¼ /?x
 with x
 ¼

x
xr

: (61)

The solution of this equation leads to

xr?

xr
¼ zþ 1

3z
/? � 1
/? ; (62)

z ¼ 1
/?

� �1=3

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð/? � 1Þ3

27/?

s24 351=3

: (63)

Focusing on the first resonance, assuming adiabatic sound propaga-
tion in Xbf, Xdf and Xrf (i.e., the frequency is much higher than any
thermal characteristic frequency, and therefore, gb ¼ gd ¼ c), and
recalling that for any frequency xr?=xr < 2, otherwise the imaginary
part of the admittance cannot take negative values, it can be shown
from Eqs. (63) and (62) that xr?=xr is a decreasing function of /?

that takes the limiting values xr?=xr ! 2 for /? � 1 and xr?=xr

! 1 for /? � 1. This reflects that a larger (respectively, smaller)
fluid-saturated volume occupied by the quarter-wavelength resonator
maximizes (respectively, minimizes) the bandwidth of Db.

For the case of a permeable lossy metamaterial with one
Helmholtz resonator per REV and considering a “lumped” parameter
approximation obtained by (i) expanding the effective admittance Eq.
(B2) for jkcahaj � 1 and jkcnlnj � 1, and (ii) considering adiabatic
sound propagation everywhere (i.e., the frequency is much higher
than any thermal characteristic frequency and therefore ga ¼ gb ¼ gd
¼ c), the ratio xr?=xr takes a simple form, that is,

xr?

xr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ /a

/b þ /d

s
: (64)

The magnitude and phase of the effective compressibility at the anti-
resonance frequency xr? tend to

jCðx ¼ xr?Þj ! 0 and hCðx ¼ xr?Þ ! � p
2
: (65)

Furthermore, even though the heat transfer in the fluid network Xbf is
uncoupled from that in Xdf, the heat transfer in the latter affects the
frequency band where <ðCðxÞÞ < 0. The existence of the additional
pore network makes this band narrower, and the phase of the materi-
al’s effective compressibility approaches

hCðxr < x < xr?Þ ! �p: (66)

C. Effective speed of sound and wave number

Equation (34) shows that jcðxÞj ! 0 if jKj ¼ 0 or jCj ! 1.
These conditions are not satisfied in conventional porous materials,42

multiscale permeable media,73,74,76–79 or porous composites.82,83 As an
example, for conventional porous materials and considering leading-

order terms: c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xK0=/c�

p
	 jcj 	 c0=

ffiffiffiffiffiffiffi
a1

p
, while the phase of the

effective speed of sound varies from p=4 in viscosity-dominated flow
regime down to 0 in inertia-dominated flow regime. Consequently, the

magnitude of the wave number takes the following values
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/c�=xK0

p
	 jkcj 	 k0

ffiffiffiffiffiffiffi
a1

p
, where k0 ¼ x=c0 is the wave num-

ber in air. This classical behavior is not totally shared by permeable
lossy metamaterials.

As follows from the Subsections IIIA and IIIB, the magnitude
and phase of the effective speed of sound take the following values for
low and high frequencies:

jcðx � xvÞj ! c0

ffiffiffiffiffiffiffiffiffi
xK0

Uc�

s
and jcðx � xvÞj !

c0ffiffiffiffiffiffiffi
a1

p ; (67)

hcðx � xvÞ !
p
4

and hcðx � xvÞ ! 0: (68)

Since jkcðxÞj ¼ x=jcðxÞj and hkðxÞ ¼ �hcðxÞ, it is direct to obtain
the limiting values of the magnitude and phase of the wave number.
Hence, for the sake of brevity, these will not be quoted in what follows.

Recalling that for elasto-inertial flow, the effective permeability at
xa tends to zero, while at xg it tends to1 [see also Eq. (48)], and fur-
ther assuming adiabatic sound propagation in both pore fluid net-
works, one obtains that

jcðxaÞj ! 0 and jcðxgÞj ! 1; (69)

hcðxaÞ !
p
4

and hcðxgÞ !
p
4
; (70)

while in the band Dd ¼ ðxa;xgÞ, the phase of the effective speed of
sound tends to

hcðxa < x < xgÞ !
p
2
: (71)

Thus, the real part of the effective speed of sound (or phase velocity)
tends to zero, while the imaginary part increases significantly. This
means that no propagating waves are supported in Dd and a bandgap
is developed in this frequency range.

On the other hand, for inertia-dominated flow, the presence of
resonators also affects the effective sound speed. On the boundaries xr

andxr? of the frequency range where<ðCÞ < 0, one has that

jcðxrÞj ! 0 and jcðxr?Þj ! 1; (72)

hcðxrÞ !
p
4

and hcðxr?Þ !
p
4
: (73)

In the frequency band Db ¼ ðxr ;xr?Þ, the phase of the effective speed
of sound tends to

hcðxr < x < xr?Þ !
p
2
; (74)

and <ðcÞ ! 0. This means that a second bandgap is developed in this
frequency range.

In summary, two bandgaps are predicted due to two different res-
onance mechanisms, that is, acoustic resonance and fluid–film reso-
nance, when the two atypical bands do not overlap. In both bands, the
real part of the speed of sound (or phase velocity) tends to zero, while
the attenuation coefficient, defined as�=ðkcÞ, takes large values.

Up to now, it has been tacitly assumed that the two atypical
bands do not overlap. However, the overlap is not prohibited and this
leads to behavior typical for double-negative metamaterials.6–10,12,14

In the frequency band, denoted as D, where Dd ¼ ðxa;xgÞ and
Db ¼ ðxr;xr?Þ overlap, the phase of the effective speed of sound
tends to
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hcðx 2 DÞ ! p: (75)

This means that the phase velocity is negative in D, leading to a nega-
tive real part of the refraction index in D. Negative phase velocity is a
remarkable feature, and its prediction highlights the need to properly
account for losses in the modeling. Ignoring the losses, accounted for
by the imaginary parts of such effective parameters, a positive phase
velocity in Dmay be predicted since both<ðqÞ and <ðCÞ are negative
in this band. It should be emphasized that a negative phase velocity
means that the propagating wave is regressive. However, it is stressed
that the attenuation coefficient is positive and the wave amplitude is
decreasing for frequencies in D, which is consistent with the fact that
no gain is expected in a passive material.

Interesting cases arise when elasto-inertial characteristic frequen-
cies are matched. When the dipolar anti-resonance of the fluid–film
system coincides with the monopolar resonance of the acoustic reso-
nator, that is, xa ¼ xr , the magnitude and phase of the effective speed
of sound tend, respectively, to jcj ! 0 and hc ! p=2. If the anti-
resonance xa coincides with the upper boundary of the bandgap xr?,
then hc ! p=2 and a local minimum in jcj is expected due to the usu-
ally larger magnitude of q in comparison with that of C. If two
resonance frequencies coincide, that is, xg ¼ xr; jcj is expected to
have a local maximum and hc to tend to p=2. In addition, jcj ! 1
and hc ! p=2 atx ¼ xg ¼ xr?.

The limiting cases considered so far are best approached when
losses are small. Due to the presence of losses, these limiting values are
not reached and the phase behavior is smoothed. The latter can also
be exploited to induce anomalous acoustic wave propagation in nar-
row frequency bands. These phenomena are investigated in the subse-
quent parts.

IV. HYBRID MODEL

The modeling of permeable lossy metamaterials requires the cal-
culations of their effective parameters K and C, which, in turn,
requires those of Kd; Kb; Cb; Cr , and Cd . These are dependent on
the saturating fluid, mechanical parameters of the films, and geometry
of the microstructure.

Figure 2 shows the microstructure of a permeable lossy metama-
terial, to be used in examples, comprising a slit-like channel loaded
with an acoustic resonator, a permeo-elastic channel, and a solid
frame. The REV is a parallelepiped with sides lt, lw, and lh. The width
of the permeo-elastic channel is wd, while the width ws of the solid
walls that decouple the domains Xbf and Xdf is equal to their height hs.
The width of the slit-like channel loaded with the Helmholtz resonator
is hb ¼ 2h. The Helmholtz resonator has a cylindrical cavity, of radius
ra and depth ha, with an in-built cylindrical neck with radius rn and
length ln. The height of the gap that connects the front and back fluid-
saturated parts of the permeo-elastic channel is hg. The height and
depth of the bar one of the edges of the film is clamped onto are hq
and dq, respectively. The dimensions of the rectangular film are hm
and wm ¼ wd. The geometry of the microstructure of other materials,
described and used for comparison purposes in Sec. V, is also shown
in Fig. 2.

The dynamic visco-inertial permeability Kb and dynamic ther-
mal permeability Hb of air in the slit side-loaded by resonators are
given by

KbðxÞ ¼ vðh; dvÞ and HbðxÞ ¼ vðh; dtÞ; (76)

where

vðx; dÞ ¼ �jd2 1� tanh
ffiffi
j

p
xd�1

	 
ffiffi
j

p
xd�1

 !
: (77)

Then, the compressibility of the air in the slit side-loaded by resonators,
that is, Cb, is calculated by inserting Eq. (76) into (27), while Cr is given
by Eq. (28) with Yr being given by Eq. (B2). Viscothermal losses in the
neck and cavity of the resonator are accounted for via the complex-
valued frequency-dependent wave number and characteristic imped-
ance. These are calculated (with b ¼ n; a) as kcb ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gCb=jxKb

p
and Zcb ¼ xg=jxKbkcb. Here, Kb is calculated with the well-known
model proposed in Refs. 45 and 48, that is,

KbðxÞ ¼ FðK0b;xvb;MvbÞ; (78)

withK0b ¼ r2b=8; xvb ¼ 8�=r2b; Mvb ¼ 1, and

FðF 0;-;MÞ ¼ F 0
jx
-

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jx

-
M
2

r !�1

: (79)

The effective compressibility Cb are calculated by replacing b by b in
Eq. (27), and the respective dynamic thermal permeabilities are given
by Hb ¼ FðH0b;xtb;MtbÞ withH0b ¼ r2b=8; xtb ¼ 8j=q0cpr

2
b, and

Mtb ¼ 1.
Due to both the complex geometry of the permeo-elastic channel

and the strong fluid–film interaction, the dynamic visco-elasto-inertial
permeability Kd is calculated from the numerical solution of the
boundary-value problem detailed in Appendix A3c and using Eq. (31).
The calculations of Kd are performed using the finite element method,
as detailed in Refs. 36 and 37. The effective compressibilityCd is obtained
by substituting the expression for the dynamic thermal permeability Hd

into Eq. (29). This dynamic thermal permeability is calculated as

HdðxÞ ¼ FðH0d;xtd;MtdÞ; (80)

where the thermal characteristic frequency, shape factor, and charac-
teristic length are xtd ¼ j=q0cpH0d; Mtd ¼ 8H0d=K

2
td , and Ktd,

respectively. These parameters are calculated using the finite element
method, as discussed in detail in Ref. 63.

V. ILLUSTRATING EXAMPLES

The hybrid model is used in this section to exemplify the atypical
acoustical properties of a permeable lossy metamaterial, which, for the
sake of brevity, will be referred to as PLM.

The microstructure of the PLM is shown in Fig. 2. The REV is a
parallelepiped with sides lt ¼ 25 mm, lw ¼ wd þ 2ws, and
lh ¼ 4hs þ hb þ ha þ hg þ hq þ hm, where wd ¼ 20 mm is the width
of the permeo-elastic channel, ws ¼ hs ¼ 1:5 mm is the width of the
solid walls, hb ¼ 2h ¼ 3 mm is the width of the slit-like channel side-
loaded with the Helmholtz resonator, ha ¼ 27 mm is the depth of the
cylindrical cavity of the Helmholtz resonator, and hg ¼ 1 mm is the
height of the gap that connects the front and back fluid-saturated
domains of the permeo-elastic channel, hq ¼ dq ¼ 4 mm is the height
of the bar one of the edges of the film is clamped onto, and the dimen-
sions of the rectangular film are hm ¼ 10 mm and wm ¼ wd ¼ 20 mm.
The film thickness is t¼ 76 lm. The other parameters of the
Helmholtz resonator are the radius of its cylindrical cavity ra ¼ 7 mm,
the length of its neck ln ¼ 7 mm, and the diameter of its neck 2rn
¼ 3 mm. The mechanical parameters of the films are those of
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Mylar, that is, E¼ 2.25 GPa; qs ¼ 1390 kg=m3, and � ¼ 0:38. The films
are pre-stressed with a uniform tension per unit thickness T ¼ 1 N=m.
Normal pressure and temperature condition are considered.

The large number of geometrical and mechanical parameters
involved provides a plethora of possibilities to tailor the acoustic
behavior of the PLM. However, in what follows, the parameters quoted
above are kept constant unless otherwise explicitly stated.

A. Example 1—Non-overlapping atypical frequency
bands

Figures 3(a)–3(d) show a comparison between the dynamic den-
sity and compressibility of the PLM and those of (i) a double porosity

material (DPM) with weakly contrasted permeabilities and a REV
comprising a solid part, a slit-like channel (without the loading
Helmholtz resonators), and (ii) a permeo-elastic channel but with per-
fectly rigid instead of elastic films [see Figs. 2(h) and 2(i), respectively].
The characteristic frequencies of interest of the PLM have been deter-
mined from their definition. These are fv ¼ 4 Hz, fa ¼ 610 Hz, fg
¼ 677 Hz, fr¼ 801 Hz, and fr? ¼ 978 Hz.

As predicted through the analysis presented in Sec. III, at fre-
quencies much lower than fv, the dynamic density of the PLM and
DPM coincides, while their effective compressibilities differ. For the
dynamic density, this is because the films behave as perfectly rigid,
while for C, this is due to the fact that the whole fluid-filled volume of

FIG. 2. Geometry of a permeable lossy metamaterial. (a) 3D macroscopic medium. (b) 3D REV. (c) and (d) cutaway views of the 3D REV. (e) and (f) Geometrical parameters
of the domains Xb and Xd. (g) 3D REV of a single porosity material (SPM). (h) 3D REV of a permeo-elastic material (PEM). (i) 3D REV of a double porosity material (DPM).
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the Helmholtz resonators affects the dynamic compressibility of the
PLM. As the frequency increases, the differences in the effective parame-
ters of the PLM and DPM become apparent. At the anti-resonance fre-
quency fa, the magnitude of the dynamic density of the PLM takes its
smallest value, while the resonance frequency fg is maximum, although

not infinite due to the small but non-negligible viscous dissipation.
Within the atypical band eDd ¼ ðfa; fgÞ, the phase of q approaches �p
and consequently ReðqÞ < 0. This is because in eDd the elasticity of the
films dominates over the inertia of the whole fluid–film system, that is,
/dEd > ½/bI b þ /dId� [see also Eq. (C12)]. Note also that the value

FIG. 3. Non-overlapping atypical bands. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0 [(c) and
(d)]. Bottom: Real part [(e)] and phase [(f)] of the effective speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows
the absolute value of the effective speed of sound. Continuous black lines—Permeable lossy metamaterial (PLM). Dashed gray lines—Double porosity material (DPM). The
shaded regions represent the atypical frequency bands eDd ¼ ðfa; fgÞ (dark gray) and eDb ¼ ðfr ; fr?Þ (light gray).
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hq ¼ �p is not achieved due to viscous dissipation, which also makes
the transitions between the atypical and classical behavior smoother.
This is typical for a band structure of lossy metamaterials. The classical
behavior is recovered for frequencies over fg, provided that no higher-
order modes of the fluid–film system are observed.

The magnitude of the effective compressibility of the PLM takes
its extreme values at the boundaries of the atypical band eDb ¼ ðfr ; fr?Þ.
As discussed in Sec. III, at fr and fr? the phase of the effective com-
pressibility approaches�p=2, while in between them it tends to�p in
the absence of dissipation. The larger value of hC, shown in Fig. 3(d),
is attributed to the viscous dissipation in the neck of the Helmholtz
resonators, which also explains the regularization of jCj at the reso-
nance frequency fr. It is recalled that <ðCÞ < 0 in eDb. Contrarily to
the atypical band induced by the fluid–film interaction in Xdf, in this
case, it is the effective inertia of the fluid in the resonator that domi-
nates over the elasticity of the whole fluid system, which is consistent
with the fact that the lowest frequency in eDb corresponds to a reso-
nance frequency, instead of an anti-resonance frequency as it is the
case in eDd .

For f � fv, the phase velocity and the magnitude and phase of c
in the PLM behave classically, which it is also the case for the wave
number [see Figs. 3(e)–3(h)]. For fv � f � fg , anomalous dispersion
appears since the phase velocity in the PLM decreases. This is in con-
trast with the behavior of DPM [cf. black continuous and dashed gray
lines in Fig. 3(e)]. While the real part of the wave number (i.e., the
phase constant) of the PLM and DPM increases linearly with fre-
quency for fv � f � fg , the slope of the phase constant of the PLM is
more pronounced. This is consistent with its slower phase velocity in
comparison with that in DPM. Such increase, however, becomes non-
linear as f ! fa due to the influence of the elasticity of the films on
the acoustic behavior. Moreover, the phase constant and attenuation
coefficient at fa take large values.

Within the atypical band eDd , the phase constant rapidly
approaches its minimum value, while the attenuation coefficient
decreases down to its minimum value at the frequency at which the
phase velocity takes its largest (supersonic) value, that is, at fg. For
fg < f < fr , the phase velocity decreases while both the phase constant
and attenuation coefficient increase until reaching a local maximum,
just below and above fr, respectively. On the other hand, the phase
velocity in eDb decreases until reaching a plateau region to then
increase up to its maximum value within the atypical band.
Consistently, the phase constant follows the inverse trend, while the
attenuation coefficient is a decreasing function of frequency in eDb.
Since the phase of the effective speed of sound does not reach p=2, the
atypical band can only be considered as a quasi or pseudo bandgap.
This highlights the fact that excess of dissipation, in this case occurring
in the neck of the resonator, can prevent the existence of a true
bandgap. It is emphasized, however, that the attenuation coefficient ineDb is still significant, which reflects the high attenuation of sound
within such band. On the other hand, this example shows that the
phase of the effective speed of sound tends to p=4 at fr? and the phase
velocity is close to c0. This means that a diffusive wave travels through
the PLM at the speed of sound in lossless air. In the long-wavelength
regime, such a behavior is not possible to observe in conventional
porous material. Moreover, for frequencies over fr?, the phase velocity
takes supersonic values due to the small magnitude of the effective
compressibility.

In summary, the results shown in Fig. 3 confirm the theoretical
analysis presented in Sec. III and are characteristics of a PLM in which
the atypical bands eDb and eDd are neither overlapping nor adjacent. In
what follows, some of the geometrical parameters of the Helmholtz
resonator of PLM are varied to exemplify both the overlapping of the
atypical bands and cases where the elasto-inertial characteristic fre-
quencies are matched.

B. Example 2—Overlapping atypical frequency bands

In this example, the neck length and radius of the cavity of the
Helmholtz resonator are ln ¼ 9 mm and ra ¼ 9 mm, respectively. For
this PLM, the atypical bands overlap and are given by eDb ¼ ðfr ; fr?Þ
¼ ð555; 746Þ Hz and eDb ¼ ðfa; fgÞ ¼ ð610; 677Þ Hz. Figure 4 shows
the same effective parameters as those displayed in Fig. 3.

In the viscosity-dominated flow regime, that is, for f � fv, the
effective speed of sound and wave number behaves as in the example
1. For fr < f < fa, the real part of the effective density is positive, the
real part of the effective compressibility is negative, the phase velocity
is slow, the phase constant is a decreasing function of frequency, and
the attenuation coefficient exhibits peaks just over fr and at fa, with the
former peak being slightly merged with the latter one since, in this
example, the difference between fa and fr is only 55Hz.

In the region of double negativity, the phase of the effective speed
of sound approaches p, which reflects a negative phase velocity and a
negative phase constant. This is accompanied by a pronounced
decrease in the attenuation coefficient. Physically, in the region of dou-
ble negativity, regressive waves propagate in the effective medium. The
physical origin of this peculiar behavior is the dominance of the elastic
effects of the films in the permeo-elastic channel and that of the inertia
of the effective fluid saturating the neck of the resonator that loads the
pore fluid network Xbf. The peculiar behavior is not only seen in the
region of double negativity but also just below/above the lower/upper
band edge frequencies and when the atypical bands are adjacent. This
is due to the presence of dissipation, which smooths the phase transi-
tion. Hence, regressive waves are not exclusive to the double negativity
region, as it can be seen by close inspection of Fig. 4(e) and in other
examples below.

In between fg and fr?, a local maximum/minimum in the attenua-
tion coefficient/phase velocity is seen. This is accompanied by a close to
zero phase constant. In the frequency region, where in this example
only <ðCÞ is negative, hc decreases from p=2 to p=4, while the phase
velocity increases over c0. In this example, the phase velocity takes
supersonic values for frequencies over 750 Hz. Since hc tends to p=4
and the phase velocity is faster than c0 at fr?, diffusive waves propagating
at an effective supersonic velocity are observed. Such phenomenon is
impossible to observe in conventional porous materials. Moreover,
around 900Hz, the phase velocity and phase constant of the PLM equal
those in lossless air, the phase of the effective speed of sound is close to
zero, and the attenuation coefficient is negligible. All of these indicate
that around this frequency the PLM is acoustically transparent.

C. Example 3—Adjacent atypical bands, fr ¼ fg
In this example, a PLM with the same geometrical and physical

parameters as those quoted at the beginning of this section is consid-
ered, but the length of the neck and the radius of the cavity of the reso-
nator are now ln ¼ 6.02 mm and ra ¼ 9 mm, respectively. This allows
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matching the resonance frequencies, that is, fr ¼ fg ¼ 677 Hz. The
anti-resonance frequencies are fa¼ 610 Hz and fr? ¼ 910 Hz.

Figure 5 shows the effective dynamic density, compressibility,
speed of sound, and wave number of the PLM. For frequencies in
between fa and fr, the phase of the dynamic density tends to

�p; hC decreases from 0 to �p=2, the phase of the effective speed
of sound approaches p=2, and a large attenuation coefficient is
seen. These features do not conform to those of a true bandgap,
but the phase velocity does take very small values for fa < f < fr ,
which also happens up to a frequency approximately equal to the

FIG. 4. Overlapping atypical bands. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0 [(c) and
(d)]. Bottom: Real part [(e)] and phase [(f)] of the effective speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows
the absolute value of the effective speed of sound. Continuous black lines—Permeable lossy metamaterial (PLM). Dashed gray lines—Double porosity material (DPM). The
shaded regions represent the atypical frequency bands eDd ¼ ðfa; fgÞ (dark gray) and eDb ¼ ðfr ; fr?Þ (light gray).
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harmonic mean of the band edge frequencies of eDd . As the fre-
quency increases, however, the phase velocity takes negative val-
ues, which reflects the existence of regressive waves. This is
induced by the smooth phase transition of the effective compress-
ibility due to viscous dissipation.

Around fr ¼ fg, a jump in the phase velocity is observed, that
is, <ðcÞ transitions from a negative local minimum to a positive
local peak, while the attenuation coefficient is locally minimum.
The phase hc follows the opposite trend. At f ¼ fr ¼ fg , the
phase velocity tends to zero, while jcj exhibits a local maximum.

FIG. 5. Adjacent atypical bands, fr ¼ fg. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0 [(c) and
(d)] of the permeable lossy metamaterial PLM (continuous black lines) and double porosity material (dashed gray lines). Bottom: Real part [(e)] and phase [(f)] of the effective
speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the absolute value of the effective speed of sound. The
shaded regions represent the frequency bands ðfa; fg ¼ fr Þ (dark gray) and ðfr ¼ fg; fr?Þ (light gray).
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For frequencies over fg ¼ fr and below fr?, a pseudo bandgap is
observed, which is a consequence of the fact that in such fre-
quency range <ðCÞ < 0 and <ðqÞ > 0. For other frequency
regions, for example, f � fv and f > fr?, the trends are as previ-
ously discussed.

D. Example 4—Overlapping atypical bands, fr ¼ fa
A PLM with a resonator with neck length increased to ln ¼ 7.45

mm and cavity radius ra ¼ 9 mm, and the rest of the parameters
unchanged is considered. In this case, fr ¼ fa ¼ 610 Hz, fg ¼ 677 Hz,
and fr? ¼ 819 Hz. Figure 6 shows the effective properties of such PLM

FIG. 6. Overlapping atypical bands, fr ¼ fa. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0 [(c)
and (d)] of the permeable lossy metamaterial PLM (continuous black lines) and double porosity material (dashed gray lines). Bottom: Real part [(e)] and phase [(f)] of the effec-
tive speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the absolute value of the effective speed of sound. The
shaded regions represent the frequency bands ðfa ¼ fr ; fgÞ (dark gray) and ðfr ¼ fa; fr?Þ (light gray).
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in comparison with those of the DPM. At f ¼ fa ¼ fr; jqj and jCj are
maximum and hq and hC both tend to�p=2. Consequently, the mag-
nitude of the speed of sound tends to zero and its phase to p=2, the
phase velocity tends to zero, and a large attenuation coefficient is seen.
Over fa ¼ fr, regressive waves are observed in the double-negative
region of the PLM. Such behavior is observed up to fg at which the
negative phase velocity takes its smallest value, while the attenuation
coefficient tends to zero. For higher frequencies, the phase constant is
close to zero and the attenuation coefficient presents a wide peak,
while the phase velocity starts increasing and takes supersonic values
from a frequency close to fr?. Again, at fr? a diffusive wave travels with
supersonic velocity. Moreover, the PLM appears as acoustically trans-
parent at frequencies around 1000 Hz. The trends in other frequency
regions are as previously discussed.

E. Example 5—Overlapping atypical bands, fg ¼ fr?
In this example, the elasto-inertial characteristic frequencies fg

and fr? are matched by further increasing the length of Helmholtz res-
onator’s neck to ln ¼ 10:95 mm and setting the radius of the resona-
tor’s cavity to ra ¼ 9 mm, while the values of the rest of the
parameters remain unchanged. The elasto-inertial characteristic fre-
quencies are fg ¼ fr? ¼ 677 Hz, fa ¼ 610 Hz, and fr ¼ 505 Hz. This
case is illustrated in Fig. 7. In the frequency region limited by fr and
fg ¼ fr?, the phase velocity tends to zero and the attenuation coeffi-
cient takes large values, but a local minimum is observed within such a
region. Moreover, for frequencies belonging to the double-negative
frequency region, regressive waves are supported by the PLM. This is
reflected by the negative phase velocity and phase constant as well as
the monotonically decreasing nature of the attenuation coefficient in
such a region.

As predicted in Sec. IIIC, jcj takes large values and hc ! p=2 at
f ¼ fg ¼ fr?. At this frequency, a zero phase velocity, zero phase con-
stant, and a minimum in attenuation coefficient are observed; that is,
the large value of jcj is determined by the imaginary part of the effec-
tive speed of sound. It is also worth stressing that around f ¼ fg ¼ fr?,
a jump in phase velocity stands out as a feature, while over such fre-
quency a supersonic phase velocity, together with hc ! 0, is reached.

F. Example 6—Adjacent atypical bands, fr? ¼ fa
By keeping constant the parameters of the PLM but setting ln

¼ 13:5 mm and ra ¼ 9 mm, the anti-resonance frequencies are
matched, that is, fr? ¼ fa ¼ 610 Hz. The resonance frequencies are
fg ¼ 677 Hz and fr ¼ 455 Hz. Figure 8 shows the same frequency-
dependent parameters as in, for example, Fig. 7.

For frequencies f � fv the behavior of the effective acoustical
properties of the PLM is similar to that of the DPM. In the frequency
range fr < f < fr?, a pseudo bandgap is observed, reflected by the
large attenuation coefficient and slow phase velocity, together with hc
approaching p=2 within such a frequency range. At fr? ¼ fa; hc
! p=2 and jcj exhibit a local minimum due to the larger magnitude
of q in comparison with that of C. Moreover, the phase velocity
crosses the zero axis and a local maximum of the attenuation coeffi-
cient is achieved. Over fr? ¼ fa and below fg, the real part of the
dynamic density is negative, while <ðCÞ is positive. Despite this,
regressive waves travel in the PLM, which further states that such a
peculiar behavior does not only occur in double-negative frequency

bands. In the present case, such a behavior is determined by the
smooth transitions in hq and hC primarily caused by viscous dissipa-
tion. Moreover, such regressive waves slowly travel through the mate-
rial and are significantly attenuated, as quantified through the
magnitudes of the phase velocity and attenuation coefficient. It is clear
that strong dispersion in PLM is observed and its acoustic behavior is
different from that of conventional single or multi porosity materials.

G. Example 7—Matching fg and fr and strong
visco-elasto-inertial interaction

Up until now, the microstructural parameters of the permeo-
elastic domain and the width of the slit-like channel in Xbf have not
been varied. Because of the former, the dynamic density has been the
same for all the examples. By modifying some parameters of the
microstructure of the PLM, strong visco-elasto-inertial interaction can
be observed. In Fig. 9, the effective parameters of a PLM exhibiting
such interaction are shown. The microstructural parameters of the
PLM that have been varied are (see Fig. 2): the height of the gap that
connects the front and back fluid-saturated parts of the permeo-elastic
channel hg ¼ 0.15 mm, the width of the channel loaded by the
acoustic resonator hb ¼ 0.3 mm, and the radius of the cavity and the
length and radius of the neck of the acoustic resonator, that is, ra ¼ 9
mm, ln ¼ 17.05 mm, and rn ¼ 2.5 mm, respectively. In this case,
the characteristic frequencies can only be determined from their gen-
eral, implicit definition. For instance, the apparent viscous characteris-
tic (or Biot) frequency fv is defined as the frequency at which
j=ðKðxvÞÞj=j<ðKðxvÞÞj ! 1. This definition is compatible with that
used for conventional porous materials and results in fv ¼ 273 Hz. An
interesting feature of this case is that the elastic power of the films also
contributes to the imaginary part of the dynamic permeability. Also,
the apparent Biot frequency is mostly determined by the viscous char-
acteristic frequency of the equivalent fluid saturating Xbf. In a similar
manner, the apparent anti-resonance frequency fa is determined
from its implicit definition, given by Eq. (47), with viscous effects
accounted for. This characteristic frequency corresponds to the
lower boundary of the band where <ðqÞ < 0. Furthermore, fa, which
in this example is low, is strongly affected by the characteristic pore
size ‘b ¼ O

	 ffiffiffiffiffiffiffiffiffiffiffi
/bKb

p 

of the domain Xbf. If ‘b is large in comparison

with ‘d ¼ O
	 ffiffiffiffiffiffiffiffiffiffiffi

/dKd

p 

, then the width of the atypical band where

<ðqÞ < 0 can be significantly reduced. Note also that fr? is
also affected by ‘b through /b [see Eq. (64)] and for this example is
fr? ¼ 946 Hz. In contrast to that, and as expected, the resonance fre-
quencies fg and fr, which are matched in this example and equal to
675Hz, are not significantly affected by hg and hb, respectively.

Figures 9(a) and 9(b) show the real part and phase of the
dynamic density of the PLM as well as those of SPM and permeo-
elastic material (PEM) (see Fig. 2). In SPM, the fluid-saturated part of
its REV is Xbf and the rest of it is perfectly rigid and impermeable; that
is, the only permeable part of its REV is the fluid-saturated channel of
width hb. In PEM, the REV comprises the permeo-elastic channel Xdf

and the rest of it is perfectly rigid and impermeable.
Figure 9(a) shows that the real part of the dynamic density of

PEM is negative, with a large magnitude, up to fg. Recalling that
<ðqdÞ ¼ �g=ðKdÞ=xjKdj2 with =ðKdÞ ¼ �/dId þ /dEd , it is
clear that <ðqdÞ < 0 is observed because the elasticity of the films
dominates over the inertia of the fluid–film system. On the contrary,
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the real part of the dynamic density of SPM, given by
<ðqbÞ ¼ gI b=xjKbj2, is positive, as for any conventional porous
material. The real part of the dynamic density of the PLM, given by
<ðqÞ ¼ �g=ðKÞ=xjKj2 with =ðKÞ ¼ �/bI b � /dId þ /dEd , is
negative because the effective elastic effects dominate over the inertial

effects of the whole fluid–film system. Moreover, at low frequencies,
that is, f � fv; <ðqÞ takes values in between those of <ðqdÞ=/d and
<ðqbÞ=/b, which is consistent with the fact that the two pore fluid
networks work in parallel in terms of oscillatory flow in them [see Eq.
(32)]. However, for frequencies around fg, the elastic and inertial

FIG. 7. Overlapping atypical bands, fg ¼ fr?. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0
[(c) and (d)] of the permeable lossy metamaterial PLM (continuous black lines) and double porosity material (dashed gray lines). Bottom: Real part [(e)] and phase [(f)] of the
effective speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the absolute value of the effective speed of sound.
The shaded regions represent the frequency bands ðfa; fg ¼ fr?Þ (dark gray) and ðfr ; fr? ¼ fgÞ (light gray).
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effects in the permeo-elastic channel compensate each other and the
dynamic permeability of the permeo-elastic domainKd , whose magni-
tude is maximum at fg, determines the dynamic permeability of the
PLM as well as its dynamic density.

Figure 9(b) reveals that the phases of the dynamic density of
SPM and PEM, hSPMq and hPEMq , are rather different, and that of the
PLM, that is, hq, is influenced by both hSPMq and hPEMq for frequencies
up to fg. It is noted that hSPMq varies from �p=2 to 0, while hPEMq

FIG. 8. Adjacent atypical bands, fr? ¼ fa. Top: Magnitude and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] and compressibility CðxÞP0 [(c)
and (d)] of the permeable lossy metamaterial PLM (continuous black lines) and double porosity material (dashed gray lines). Bottom: Real part [(e)] and phase [(f)] of the effec-
tive speed of sound and real part of the wave number [(g)] and attenuation coefficient [(h)]. The inset plot in [(e)] shows the absolute value of the effective speed of sound. The
shaded regions represent the frequency bands ðfa ¼ fr?; fgÞ (dark gray) and ðfr ; fr? ¼ faÞ (light gray).
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decreases from �p=2 down to �p at fg. The former is a classical
behavior, which it is not the case for the latter primarily due to the
dominance of the elastic effects over inertial ones, as well as that of vis-
cous dissipation in Xdf resulting in the large magnitude of =ðqd=/dÞ.

This, together with the strong contribution of viscous effects in Xbf

accounted for by =ðqb=/bÞ, is inherited by the phase of the dynamic
density of the PML up to fg. For frequencies over fg, hq ! 0, which
reflects that viscous effects are negligible in such a frequency range.

FIG. 9. Matching fg and fr and strong visco-elasto-inertial interaction. Top: Real part and normalized phase of the normalized dynamic density qðxÞ=q0 [(a) and (b)] of the
PLM (continuous black lines), SPM (dashed black lines), and PEM (dashed gray lines) (see the text for their description and Fig. 2); and magnitude and phase of the normal-
ized dynamic compressibility CðxÞP0 [(c) and (d)] of the PLM. The inset plot in [(a)] zooms in the frequency region where <ðqÞ < 0. Bottom: Phase velocity [(e)], phase of
the effective speed of sound [(f)], phase constant [(g)], and attenuation coefficient [(h)] of the PLM. The inset plot in [(e)] shows the absolute value of the effective speed of
sound. The shaded regions represent the frequency bands ðfa; fg ¼ fr Þ (dark gray) and ðfr ¼ fg; fr?Þ (light gray).
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Physically, the values of the phase of the dynamic density of the PLM
reflect that the effective movement of the fluid and the driving force
are in quadrature at low frequencies, opposite for frequencies in
between approximately 500Hz and fg in this example, and in phase for
frequencies over fg. Such a behavior, together with that of the effective
compressibility [see Figs. 9(c) and 9(d)] whose behavior has been
tuned so that the resonance frequency induced by the Helmholtz reso-
nator fr matches the resonance frequency of the fluid–film system fg,
has direct consequences on the atypical effective speed of sound and
wave number of the PLM, as shown in Figs. 9(e)–9(h). For f � fv,
slow phase velocity is observed, together with increasing attenuation
coefficient and a p=4 phase of the effective speed of sound. This is
characteristic of a fluid flow regime determined by viscous effects,
which in this case are attributed to the viscous dissipation that occurs
in Xbf. As the frequency increases, slow sound propagation is still
observed, the attenuation coefficient exhibits a wide peak centered just
over fv, and hc transitions from p=4 to p=2, which means that the
sound waves are overdamped. For frequencies closer to fg¼ fr, anoma-
lous wave propagation and regressive waves are predicted, as it is evi-
denced by the negative phase velocity and phase constant. However,
the attenuation coefficient rapidly decreases in such a frequency
region. Within the frequency band ðfr ; fr?Þ, a pseudo bandgap is
observed, where the phase velocity takes small positive values, the
phase constant is quasi constant (outside the band transition regions),
and the attenuation coefficient is large enough to guarantee significant
sound attenuation but decreases as the frequency increases within the
band. Over fg, the phase velocity takes supersonic values, the phase of
the effective speed of sound decreases from p=4 toward zero, the phase
constant grows quasi linearly, and the attenuation coefficient
decreases. All of these trends physically mean that a wave traveling in
the PLM used as an example here is (i) progressive, diffusive, and slow
at low frequencies; (ii) progressive, overdamped, and slow as the fre-
quency increases; (iii) regressive, anomalous, weakly attenuated, and
relatively fast in frequencies just below fg ¼ fr; (iv) progressive, over-
damped, and slow for frequencies over fg; (v) progressive, diffusive,
and supersonic at around fr?; and (vi) progressive, weakly damped,
and supersonic at frequencies over fr? and up until the highest fre-
quency considered in this example.

Other interesting features of PLMs are worth highlighting. For
the sake of brevity, these are now discussed without showing results
graphically.

Remarks:

(i) In all the examples, the mechanical parameters of the films
have been kept constant. Their influence on qd has been dis-
cussed in Refs. 36 and 37 and is as follows. Increasing the
“plate” modulus E of the films leads to higher fad and fgd.
This also happens when the films are stretched further by
increasing the tension per unit length T . Decreasing the
surface density qet lowers both fad and fgd. Moreover, a
permeo-elastic material with small surface density exhibits a
wider atypical band. It shall be emphasized that these trends
are observed when the flow regime is determined by elasto-
inertial effects. For the case of comparable viscous, elastic,
and inertial effects, the trends are similar to those shown in
Figs. 9(a) and 9(b) for the PEM. It should, however, be
noted that by varying the parameters that determine the
effective elasticity of the films <ðqdÞ can exhibit either

negative, zero, or positive values in a wide frequency range,
as shown in Fig. 9 in Ref. 37. All of these trends are also
seen in the dynamic density of a PLM, with the particularity
being that the existence of the decoupled pore fluid network
Xbf provides an additional degree of freedom. Indeed, by
decreasing the width of the channel hb of Xbf the anti-
resonance frequency fa, which is generally larger than fad,
can be lowered, while the opposite trend is observed as hb is
increased, up to a point where the band ðfa; fgÞ may become
very narrow, meaning that <ðqÞ takes negative values in a
limited frequency band.

(ii) The REV of the PLM used as example features a Helmholtz
resonator and a clamped film modeled as a Love–Kirchhoff
plate under tension. However, the theory is applicable to a
PLM with a REV featuring a quarter-wavelength and a film
modeled as a membrane for which bending effects are negli-
gible. In this type of PLM, the difference between the first
and second resonance frequencies is smaller than that of the
PLMs used in the examples. This certainly leads to the pos-
sibility of achieving atypical acoustic behavior in different
frequency regions where, for example, the atypical band
induced by the first anti- and resonance frequencies of one
type of resonators can overlap with that induced by the sec-
ond anti- and resonance frequencies of the other type of
resonators. The analysis in such a case becomes rather com-
plicated and, as such, a relatively simple PLM has been cho-
sen to exemplify the developed theory.

(iii) We ought to mention that the study of the effective group
and energy transport velocities in permeable lossy metama-
terials is a rich subject that is a matter left to further work,
as it also is the physical realization of metamaterial proto-
types that can enable the experimental verification of the
upscaled theory introduced in this work. Such a prototype
building is envisaged to require a significant degree of preci-
sion due to the high sensitivity of the effective parameters to
the microstructural parameters of the PLM.

VI. CONCLUSIONS

Acoustic wave propagation in permeable lossy metamaterials
(PLM) was investigated in this paper. The representative elementary
volume of the investigated periodic PLM comprised a perfectly rigid
and impervious solid domain and two independent pore fluid net-
works. The fluid that saturates one of the connected pore fluid net-
works was in contact with the fluid that saturates an acoustic
resonator. A thin elastic film is present in the other connected pore
fluid network and strongly interacts with the fluid that saturates it.

The two-scale asymptotic homogenization method was used to
establish the macroscopic equations that govern sound propagation in
PLM. These upscaled equations demonstrated that the PLM can be
modeled as an equivalent fluid with unconventional frequency-
dependent and complex-valued effective dynamic visco-elasto-inertial
permeability (or density) and compressibility. The dynamic visco-
elasto-inertial permeability was shown to be a weighted sum of the
dynamic permeabilities of the fluid that saturates the pore fluid net-
works. One of these dynamic permeabilities behave conventionally,
while the other is strongly affected by the local fluid–film interaction.
In a similar manner, it was proven that the effective compressibility of
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the PLM is a weighted sum of the effective compressibilities of the fluid
that saturates the pore fluid networks. One of these corresponds to a
combination of a classical effective compressibility and an apparent
compressibility that is dependent on the effective admittance of the
acoustic resonator, while the other behaves in a conventional manner.
The strong fluid–film interaction was shown to determine the atypical
behavior of the effective dynamic density, while the acoustic resonators
determine that of the effective compressibility. The results of this are
two atypical bands, which could overlap or not, or be adjacent. The
positions and boundaries of these bands are determined by elasto-
inertial characteristic frequencies which can be tuned by varying
microstructural and/or physical parameters. In each atypical band, the
real part of one of the effective parameters is negative.

Sub-wavelength bandgaps, slow sound, supersonic diffusive
waves, and regressive waves, among others, are all phenomena present
in PLM. Their physical origin was established from the analysis of the
effective parameters and their links with the fields that determine
sound propagation in the PLM locally. Moreover, an hybrid (numeri-
cal–analytical) model for the effective acoustical properties of the PLM
was developed and used to exemplify the possible variations in the
atypical acoustic behavior of the PLM. This also allowed highlighting
the crucial role of losses and the need to properly account for them in
the modeling of PLM.

This work has shown that the propagation of acoustic waves in
PLM is primarily determined by classical visco-thermal dissipation
and inner elasto-inertial resonances induced by decoupled acoustic
and elastic resonators. It also provides a theoretical framework for the
rational design of PLM for acoustic wave manipulation. Accounting
for the interaction between two different types of resonators would be
a logical extension of the theory presented. In addition, the experimen-
tal verification of the theory would be a subject of future work.
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APPENDIX A: UPSCALING OF THE WAVE
EQUATION IN PERMEABLE LOSSY
METAMATERIALS

1. Physical analysis and rescaled local description

The aim of the physical analysis is to determine both the varia-
bles in Eqs. (1)–(20) that fluctuate either locally or macroscopically
and the relative order of magnitude of the terms in the said

equations. Such analysis is crucial for the rescaling of the local
description.

The equations formulated in Xbf are analyzed first. Such analy-
sis is well established (see, e.g., Refs. 43, 44, and 48). Let us recall
that, in the long-wavelength regime, the macroscopic pressure gra-
dient drives the fluid flow in Xbf. This leads to following estimate
jrpbj ¼ Oð�pb=LÞ, where, from now on, the accent�indicates a char-
acteristic value of the term it is applied to (e.g., �pb is a characteristic
value of pb). In addition, the fluid velocity and its rate of deviatoric
deformation fluctuate locally, that is, jdivð2gDðvbÞÞj ¼ Oðg�vb=l2Þ,
while its divergence varies with the sound wavelength, that is,
jr � vbj ¼ Oð�vb=LÞ. On the other hand, the excess temperature in
Eq. (3) varies locally, which leads to jjr � rsbj ¼ Oðj�sb=l2Þ.

Regarding the relative order of magnitude of the terms, it is of
interest to describe the acoustic behavior for the case where all the
terms in Eqs. (1)–(3) contribute to the local fluid flow and heat conduc-
tion. This means that in the equation of conservation of momentum,
the viscous and inertial terms as well as the pressure gradient are of the
same order of magnitude, that is, Oðg�vb=‘2Þ ¼ Oðq0x�vbÞ ¼ Oð�pb=LÞ,
in the equation of conservation of mass one has that Oð�vb=LÞ
¼ Oðx�qb=q0Þ, and in the equation of conservation of energy, the con-
duction and the thermal inertia terms are balanced by the source due to
pressure, that is, Oðj�sb=l2Þ ¼ Oðxq0cp�sbÞ ¼ Oðx�pbÞ. Moreover, in
the equation of state the following estimate holds Oð�pb=P0Þ
¼ Oð�qb=q0Þ ¼ Oð�sb=s0Þ.

The physical analysis for the set of Eqs. (1)–(9) is completed
by assessing the boundary conditions. Specifically, the continuity of
pressure on Crf sets Oð�pbÞ ¼ Oð�prÞ, while the long-wavelength con-
dition imposes that the mass flux pulsed from the resonator on Crf

is of one order smaller than the mass flux produced by the incident
wave in the fluid network, i.e., jq0vr � nj=jq0vb � nj ¼ OðeÞ. Such an
estimate can be justified by considering a cell Xb, denoting the
ingoing mass flux on one of its faces (of surface Sb) as Sbq0�vb1, the
outgoing mass flux on the opposite face as Sbq0�vb2, and the mass
flux pulsed from the resonator as Oðq0�vrCrf Þ. Recalling that, by
hypothesis, one has that L � l, then ðSbq0�vb2 � Sbq0�vb1Þ=Sbq0�vb1
� l=L. Moreover, the conservation of mass imposes that
Sbq0�vb2 � Sbq0�vb1 þ Crf q0�vr . It then follows that Crf�vr=Sb�vb1
¼ OðeÞ. On the other hand, invoking the continuity of thermal flux
one obtains �sr=�sb ¼ OðeÞ, which is a valid approximation as long a
characteristic size of the resonator (e.g., a radius of the neck of a
Helmholtz resonator) is of one order smaller than l.

The physical analysis of Eqs. (10)–(13), which are formulated
in Xdf, closely follows that developed in previous paragraphs for
Eqs. (1)–(4). Hence, it suffices replacing the subscript b by d. The
physical analysis of the equations that govern the dynamics of the
film, that is, Eqs. (14)–(18), and associated boundary conditions is
now addressed by recalling the results in Refs. 36 and 37. The conti-
nuity of the fluid and film velocities, that is, Eq. (17), provides the
estimate Oð�vdÞ ¼ Oðx�udÞ, which imposes that the film velocity
varies locally, as the out-of-plane shear stress vector T and in-plane
stress tensor M also do. Then, to account for visco-elasto-inertial
fluid–film interaction, the order of magnitude of the terms in the
equation of conservation of momentum (14) should satisfy
OðEI�ud=l4Þ ¼ Oðqetx2�udÞ ¼ Oðg�vd=lÞ ¼ Oð�pdl=LÞ. In addition,
the local variations of the deviatoric viscous stress determine that its
jump across C also fluctuates locally. It then follows that
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Oð½g�vd=l�Þ ¼ Oðg�vd=lÞ. Finally, since the pressure varies with the
wavelength, its jump across C is estimated as Oð½�pd�=lÞ ¼ Oð�pd=LÞ.

2. Rescaled local description

The two-scale asymptotic homogenization method for peri-
odic media is used to establish an equivalent macroscopic model
for acoustic wave propagation in permeable lossy metamaterials.
The use of this method is possible due to the large scale separation
between the local and macroscopic characteristic sizes, that is,
l=L ¼ e � 1. To represent the evolution at the two spatial scales
and taking the macroscopic characteristic size as a reference
length, one can introduce the following dimensional space varia-
bles: x and y ¼ e�1x, which, respectively, account for macroscopic
and microscopic fluctuations. Then, the usual differential operator
r becomes rx þ e�1ry . Note that the spatial variables can be
considered as independent due to the large separation of scales
and non-bold letters for the spatial variables are used to ease the
notation.

The use of two space variables is combined with a rescaling of
the usual equations based upon a single space variable and the
physical analysis that allowed to determine the relative order of
magnitude among the terms. In particular, the rescaling of the
equations enables to have consistency between the magnitude of the
gradient of a quantity Q and the respective physical estimate. This
is based on the fact that the actual physical gradient of a quantity
Q(x, y) that varies macroscopically is of the order of rxQ, which is
expressed when using the two introduced spatial variables as
rxQþ e�1ryQ. Instead, the actual physical gradient of a quantity
that fluctuates locally is of the order of ryQ, and this is expressed
as eðrxQþ e�1ryQÞ, which introduces the rescaling by the scale
ratio e. As an example, divðDðvbÞÞ must be rewritten as
e2divðDðvbÞÞ in order to express that the fluid velocity varies
locally.

The rescaled local equations are given by (with r ¼ rx

þ e�1ry and i ¼ b; d)

e2divð2gDðviÞÞ � rpi ¼ jxq0vi in Xif ; (A1)

jxqi þ q0r � vi ¼ 0 in Xif ; (A2)

e2jr � rsi ¼ jxq0cpsi � jxpi in Xif ; (A3)
pi
P0

¼ qi
q0

þ si
s0

in Xif ; (A4)

vi ¼ 0 on Cis; (A5)

si ¼ 0 on Cis [ C; (A6)

q0vb � n ¼ eq0vr � n on Crf ; (A7)

pb ¼ pr on Crf ; (A8)

sb ¼ esr on Crf ; (A9)

eer � ðTþ T eerudÞ ¼ �x2qetud �
�
ð2geDðvdÞ

� e�1pdIÞ �N� �N on C; (A10)

T ¼ �efdivðMÞ on C; (A11)

M ¼ EI ð1� �Þe2eeðerudÞ þ �e2 er � erudI
� �

on C; (A12)

vd ¼ jxudN on C; (A13)

ud ¼ 0 and eerud � n ¼ 0 on @C: (A14)

3. Boundary-value problems

The unknown variables written as series expansions in e, for
example, pbðx; yÞ ¼

P1
k¼0 e

kpðkÞb ðx; yÞ, are inserted in the rescaled
local equations. Then, matching the terms with equal powers of e leads
to boundary-value problems whose solution enables the determination
of the effective parameters of the permeable lossy metamaterial.

Identifying the e�1-term in Eqs. (A1) and (A10) leads to

ryp
ð0Þ
b ¼ ryp

ð0Þ
d ¼ 0 and ½pð0Þd � ¼ 0. Hence, the leading-order pres-

sures are, consistently with the physical analysis, macroscopic variables,

that is, pð0Þb ¼ pð0Þb ðxÞ and pð0Þd ¼ pð0Þd ðxÞ. The boundary value problems
arising from homogenization are directly presented in what follows.

a. Oscillatory fluid flow in Xbf

For the oscillatory Stokes problem, consider the Hilbert space
Wb of complex X� periodic velocity fields wb defined in Xbf that
fulfill ry � wb ¼ 0 in Xbf and wb ¼ 0 on Cbs. Then, the weak formu-
lation (see Ref. 43) is given by

8wb 2 Wb; Abðvð0Þb ;wbÞ ¼ BbðwbÞ; (A15)

with

BbðwbÞ ¼ �rxp
ð0Þ
b � hwbib; (A16)

Abðvð0Þb ;wbÞ ¼ g<bðvð0Þb ;wbÞ þ jxq0=bðvð0Þb ;wbÞ; (A17)

where

<bðvð0Þb ;wbÞ ¼ h2Dyðvð0Þb Þ : DyðwbÞib; (A18)

=bðvð0Þb ;wbÞ ¼ hvð0Þb � wbib: (A19)

In these equations, the spatial averaging operator is defined as

h�ib ¼
1
Xbf

ð
Xbf

� dX: (A20)

Relying on the properties of the form Ab (i.e., sesquilinear and
coercive in Wb) and the semi-linearity of Bb, the existence and
uniqueness of the solution of the linear problem Eq. (A15) is
ensured by the Lax–Milgram theorem. Moreover, since the forcing
term isrxp

ð0Þ
b , the solution vð0Þb can be written as

vð0Þb ¼ � k̂bðy;xÞ
g

� rxp
ð0Þ
b ; (A21)

where k̂b represents a X-periodic normalized local velocity field.

b. Oscillatory heat conduction in Xbf

Regarding the oscillatory heat conduction problem, its weak
formulation is obtained by multiplying Eq. (A3) identified at eð0Þ by
the conjugate of a X� periodic test function qb 2 H1 that satisfies
the boundary condition qb ¼ 0 on Cbs [ Crf , integrating by part,
applying the divergence theorem, and considering the periodicity.
The final result is
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8qb 2 H1; abðsð0Þb ; qbÞ ¼ bbðqbÞ; (A22)

where

bbðqbÞ ¼ jxpð0Þb h�qbib; (A23)

abðsð0Þb ; qbÞ ¼ jHbðsð0Þb ; qbÞ þ jxq0cpSbðsð0Þb ; qbÞ; (A24)

with

Hbðsð0Þb ; qbÞ ¼ hrys
ð0Þ
b � ry�qbib; (A25)

Sbðsð0Þb ; qbÞ ¼ hsð0Þb �qbib: (A26)

The linear problem (A22) is forced by the locally constant pressure

pð0Þb . Hence, sð0Þb can be linearly related to pð0Þb via

sð0Þb ¼ Ĥbðy;xÞ
j

jxpð0Þb ; (A27)

where Ĥb represents a X-periodic normalized local temperature
field.

c. Oscillatory fluid–film interaction problem in Xdf [ C

Focusing on the equations formulated in Xdf and on C, the
identification process leads to an oscillatory Stokes problem coupled
with the equations that govern the leading-order film velocity
vð0Þd ¼ jxuð0Þd . The associated weak formulation has been obtained
in Ref. 37 and is therefore only recalled here.

Consider the Hilbert space Wd of complex X� periodic velocity
fields wd defined in Xdf [ C that fulfill the following kinematic restric-
tions: ry � wd ¼ 0 in Xdf, wd ¼ 0 on Cds, wd ¼ wdN on C, and

wd ¼ 0 and erywd � n ¼ 0 on @C. The weak formulation is given by

8wd 2 Wd; Adðvð0Þd ;wdÞ ¼ BdðwdÞ; (A28)

with

BdðwdÞ ¼ �rxp
ð0Þ
d � hwd id; (A29)

Adðvð0Þd ;wdÞ ¼ g<dðvð0Þd ;wdÞ þ jx.=dðvð0Þd ;wdÞ þ
K

jx
Edðvð0Þd ;wdÞ;

(A30)

where

<dðvð0Þd ;wdÞ ¼ h2Dyðvð0Þd Þ : Dyðwd Þid; (A31)

=dðvð0Þd ;wdÞ ¼
q0
.
=f ðvð0Þd ;wdÞ þ

qet
.

=pðvð0Þd ;wdÞ; (A32)

Edðvð0Þd ;wdÞ ¼
T
K
Emðvð0Þd ;wdÞ þ

EI
K
Epðvð0Þd ;wdÞ; (A33)

with

=f ðvð0Þd ;wdÞ ¼ hvð0Þd � wd id; (A34a)

=pðvð0Þd ;wdÞ ¼ hvð0Þd wd iC; (A34b)

Emðvð0Þd ;wdÞ ¼ heryv
ð0Þ
d � erywd iC; (A34c)

Epðvð0Þd ;wdÞ ¼ hfN ðvð0Þd ;wdÞiC; (A34d)

fN ðvð0Þd ;wdÞ ¼ ð1� �Þeeyðeryv
ð0Þ
d Þ : eeyðery �wdÞ

þ � ery � eryv
ð0Þ
d
ery � ery�wd: (A35)

In these equations, the spatial averaging operators are given by

h�id ¼
1
Xdf

ð
Xdf

� dX and h�iC ¼ 1
Xdf

ð
C
� dC; (A36)

and the density parameter . and the elastic parameter K that
accounts for both bending and membrane effects are given by

. ¼ q0 þ qet
C
Xdf

and K ¼ EI=Cþ T
Xdf

: (A37)

Since the form Ad is sesquilinear and coercive in Wd and Bd is
semi-linear, the Lax–Milgram theorem ensures the existence and

uniqueness of the solution of vð0Þd in Xdf and, by continuity, that of

vð0Þd on C. Furthermore, being Eq. (A28) linear and recalling that
the system is forced by the macroscopic pressure gradient, it is
direct to write the solution as

vð0Þd ¼ � k̂dðy;xÞ
g

� rxp
ð0Þ
d in Xdf ; (A38a)

vð0Þd N ¼ vð0Þd on C: (A38b)

Despite the formal similarity between the dynamic Darcy’s law Eqs.
(A21) and (A38a), it is stressed that the latter is fundamentally dif-
ferent due to the fact that the X-periodic normalized local velocity
field k̂d accounts for visco-elasto-inertial instead of only visco-
inertial effects, as k̂b does.

d. Oscillatory heat conduction in Xdf

The weak formulation of the oscillatory heat conduction prob-
lem in Xb is obtained by replacing the subscripts b by d in Eqs.
(A22)–(A27) of Appendix A 3 b. The solution of the oscillatory heat
conduction in Xdf is also given by Eq. (A27) but with b ! d.

4. Derivation of the macroscopic equations

The identification of the e0 terms in Eq. (A2), with i ¼ b,
yields

rx � vð0Þb þry � vð1Þb þ jx
qð0Þb

q0
¼ 0; (A39)

which after applying the operator Eq. (A20) and using Eq. (A4) at
e0 becomes

rx � hvð0Þb ib þ hry � vð1Þb ib þþjx

�
pð0Þb

P0
� sð0Þb

s0



b

¼ 0: (A40)

In this equation, the term hry � vð1Þb ib is calculated by using the
divergence theorem, noting that the surface integrals on opposite
boundaries of the unit cell cancel out due to periodicity, and using
Eq. (A7) at e1 and Eq. (A5) at e0. The final result is

hry � vð1Þb ib ¼ jxpð0Þb

2
L
YrðxÞ
jx

; (A41)
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where L ¼ 2Xbf =Crf is a characteristic length and the effective
admittance Yr of the resonator is given by

YrðxÞ ¼
1
Crf

ð
Crf

vð0Þr � n
pð0Þb

dC: (A42)

Inserting Eqs. (A27) and (A41) into Eq. (A39) and recalling the
thermodynamic identity P0=s0 ¼ q0cpðc� 1Þ=c (with c being the
adiabatic exponent), one obtains

rx � hvð0Þb ib þ jxpð0Þb Cbr ¼ 0; (A43)

where the effective compressibility Cbr is given by Eq. (26).
The identification of the e0 terms in Eq. (A2) (for i ¼ d) and

application of the spatial averaging operator Eq. (A36) to the result-
ing equation yields

rx � hvð0Þd id þ hry � vð1Þd id ¼ �jx

�
qð0Þd

q0



d

: (A44)

In this equation, the term hry � vð1Þd id is null due to vð1Þd ¼ 0 on Cs,
periodicity, and the continuity of the fluid velocity across the inter-
face C, while the right-hand side term is linked with the effective
compressibility of the fluid saturating Xdf. Taking into account
these two remarks, Eq. (A44) becomes

rx � hvð0Þd id þ jxpð0Þd CdðxÞ ¼ 0: (A45)

The macroscopic mass balance Eq. (21) is obtained by adding
Eqs. (A43) and (A45) after having multiplied them by /b and /d ,
respectively. The macroscopic constitutive fluid flow law Eq. (22) is
obtained from Eqs. (A21) and (A38). In both macroscopic
equations, the overall leading-order velocity, defined as Vð0Þ ¼ vð0Þi

in Xif (with i ¼ b; d), has been spatially averaged over the whole
REV using the operator h�i ¼ X�1Ð

Xbf[Xdf
� dX.

APPENDIX B: EXPRESSIONS FOR THE EFFECTIVE
ADMITTANCE OF ACOUSTIC RESONATORS

For a quarter-wavelength resonator, the effective admittance is
given by

Yr ¼ Yrq ¼
1

�jZcrcotðkcrdrÞ
; (B1)

where dr is the depth of the resonator and Zcr and kcr are, respec-
tively, the characteristic impedance and wave number of the effec-
tive fluid that saturates it. For a lossless, tortuous quarter-
wavelength resonator, one has that the characteristic impedance is
given by Zcr ¼ q0c0

ffiffiffiffiffiffiffiffi
a1r

p
=/r , where a1r and /r are, respectively,

the inner tortuosity and porosity of the resonator; and the wave
number is given by kcr ¼ k0

ffiffiffiffiffiffiffiffi
a1r

p ¼ x
ffiffiffiffiffiffiffiffi
a1r

p
=c0, where c0 is the

speed of sound in the saturating gas. On the other hand, it is clear
from Eq. (B1) that Yr ! 1 when cotðkcrdrÞ ! 0. For a lossless res-
onator, this occurs when kcrdr ¼ np=2 (with n ¼ 1; 3;…Þ. Hence,
the first resonance (n¼ 1) occurs at fr ¼ c0=4d

ffiffiffiffiffiffiffiffi
a1r

p
.

For a Helmholtz resonator with neck length ln, neck constant
cross section Crn ¼ Crf , neck volume Xn, cavity length ha, cavity
constant cross section Cra, and cavity volume Xa; the effective
admittance is given by (with G ¼ Cra=Crn)

Yr ¼ Yrh ¼
Zwa þ ZwnG

ZwnZwa þ Z2
cnG

; (B2)

with

Zwa ¼ �jZcacotðkcahaÞ and Zwn ¼ �jZcncotðkcnlnÞ; (B3)

where Zca and kca (respectively, Zcn and kcn) are the characteristic
impedance and the wave number of the fluid saturating the cavity
(respectively, the neck), which for a cavity and a neck where losses
are negligible equal, in both cases, to Z0 and k0. Moreover, one can
make use of asymptotic values of the effective parameters to esti-
mate the resonance frequency as fr ¼ c0Crn=

ffiffiffiffiffiffiffiffiffiffiffi
XaXn

p
.

APPENDIX C: LINK BETWEEN THE EFFECTIVE
PARAMETERS AND LOCAL FIELDS

1. Dynamic permeabilities and densities

To simplify the analysis, macro-isotropy or a preferential flow
direction is considered. This means that the involved tensors are
replaced by scalars.

a. Oscillatory flow in Xbf

The relationship between the dynamic visco-inertial permeability
Kb and the local velocity field is identified by taking the solution of the
oscillatory flow problem described in Appendix A3 a as a test field,
that is, wb ¼ vb. Note that the superscript indicating the order has
been dropped to alleviate the notation. After evaluating this solution in
the weak formulation (A15), taking the conjugate, and recalling that for
a preferential flow direction hvbib ¼ �ðKb=gÞrpb, one obtains a
direct relationship between the dynamic visco-inertial permeability and
the frequency-dependent local flow in the period. This reads as

Kb ¼ g
Abðvb; vbÞ
jrpbj2

¼ K<
b þ jK=

b ; (C1)

with

K<
b ¼ <ðvb; vbÞ

jrpb=gj2
¼ <ðk̂b; k̂bÞ � 0; (C2)

K=
b ¼ �d�2

v

=bðvb; vbÞ
jrpb=gj2

¼ �=bðk̂b; k̂bÞ
d2v

	 0; (C3)

where dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=q0x

p
is the viscous boundary layer thickness.

Hence, the dynamic visco-inertial permeability can be written
as [with Vb ¼ <ðk̂b; k̂bÞ � 0 and I b ¼ d�2

v =bðk̂b; k̂bÞ � 0]

Kb ¼ Vb � jI b: (C4)

This equation shows that the real and imaginary parts Kb reflect the
dissipated viscous and kinetic energies developed by the flow (for a
unitary pressure gradient).

The dynamic density qb ¼ g=jxKb can be conveniently writ-
ten as

qb ¼ � g
x
GðK?

bÞ
K<

b

1þ j
K?

b

� �
with GðqÞ ¼ q

1þ q2
; (C5)

and K?
b ¼ K==K< ¼ �I b=Vb.
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b. Oscillatory fluid–film interaction in Xdf [ C

The procedure to obtain the link between the dynamic visco-
elasto-inertial permeability Kd and the local fields is similar to the
one detailed in Appendix C 1 a. For the sake of brevity, only the
final result is provided, that is,

Kd ¼ Vd þ jðEd � I dÞ; (C6)

where

Vd ¼
<dðvd; vdÞ
jrpd=gj2

¼ <dðk̂d; k̂dÞ � 0; (C7)

Ed ¼
K

gx
Edðvd; vdÞ
jrpd=gj2

¼ K

gx
Edðk̂d; k̂dÞ

¼ T Emðk̂d; k̂dÞ þ EIEpðk̂d; k̂dÞ
gx

� 0; (C8)

Id ¼ d�2
v

.
q0

=dðvd; vdÞ
jrpd=gj2

¼ .
q0

=dðk̂d; k̂dÞ
d2v

¼
=f ðk̂d; k̂dÞ þ

qet
q0

=pðk̂d; k̂dÞ

d2v
� 0: (C9)

Equation (C6) shows that Kd reflects the dissipated viscous, kinetic,
and elastic (or pseudo-elastic) energies developed by the oscillatory
fluid flow, which is strongly affected by the fluid–film interaction.
In particular, the kinetic energy is determined by the inertia of the
fluid and the films while the elastic (or pseudo-elastic) energy by
bending and membrane effects in the films.

The dynamic density qd ¼ g=jxKd is obtained by replacing
the subscript b by d in Eq. (C5), that is,

qd ¼ � g
x
GðK?

dÞ
K<

d

1þ j
K?

d

� �
; (C10)

where K?
d ¼ K=

d =K<
d ¼ ðEd � I dÞ=Vd .

c. Oscillatory flow in the permeable lossy metamaterial

Combining the previous results, one can write the visco-elasto-
inertial permeability as

K ¼ /bVb þ /dVd þ jð/dEd � /bI b þ /dI d½ �Þ: (C11)

This equation shows that the viscous dissipated, kinetic, and elastic
(or pseudo-elastic) energies developed by the flows in Xdf and Xbf

affect the overall permeability of the permeable lossy metamaterial.
The dynamic density is then given by Eq. (32), which for a

preferential propagation direction becomes

qðxÞ ¼ /b

qbðxÞ
þ /d

qdðxÞ

� ��1

¼ � g
x
GðK?Þ
K< 1þ j

K?

� �
; (C12)

where K? ¼ K==K< ¼ ð/dEd � ½/bI b þ /dId�Þ=ð/bVb þ /dVdÞ.

2. Dynamic thermal permeabilities, compressibilities,
and effective admittance

The relationship between the effective parameter HbðxÞ and
the local temperature field sb ¼ sð0Þb is now identified. To do so, let

us take the solution itself as a test field, that is, qb ¼ sb, and evaluate
it in the conjugate of Eq. (A22) to obtain (note that we have
dropped the superscript indicating the order to alleviate the
notation)

abðsb; sbÞ ¼ �jx�pbhsib: (C13)

Recalling that hsbib ¼ ðHb=jÞjxpb, one obtains a direct relation-
ship between the dynamic thermal permeability and the frequency-
dependent local temperature field in the period, which reads as

Hb ¼
jabðsb; sbÞ
jxpbj2

¼ H<
b þ jH=

b ; (C14)

where

H<
b ¼ Hbðsb; sbÞ

jxpb=jj2
¼ HbðĤb; ĤbÞ � 0; (C15)

H=
b ¼ �d�2

t
Sbðsb; sbÞ
jxpb=jj2

¼ �SbðĤb; ĤbÞ
d2t

	 0; (C16)

and dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=xq0cp

p
the thermal boundary layer thickness.

Hence, the effective compressibility Cb can be written as

Cb ¼
1
P0

ð1� SbÞ � jHb½ � ¼ C<
b þ jC=

b ; (C17)

where

Hb ¼
c� 1
c

H<
p

d2t
¼ c� 1

c
HbðĤb; ĤbÞ

d2t
� 0; (C18)

Sb ¼ � c� 1
c

H=
b

d2t
¼ c� 1

c
SbðĤb; ĤbÞ

d4t
� 0: (C19)

To link the local temperature field in Xdf with the effective parame-
ters, the same steps as in the previous paragraphs are followed. The
final results are obtained by replacing the subscript b by d in Eqs.
(C14)–(C18).

The overall effective compressibility is then linked to the local
fields as well as the effective admittance of the resonator
Yr ¼ Y<

r þ jY=
r , via

CðxÞ ¼ /b

P0
ð1� SbÞ þ /b

2
L
Y=

r

x
þ /d

P0
ð1� SdÞ

" #

� j
/b

P0
Hb þ /b

2
L
Y<

r

x
þ /d

P0
Hd

" #
: (C20)
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