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ABSTRACT 

Motivated by exploring novel intelligent functional materials deployed in electromagnetic 

squeezing flows such systems, a comprehensive mathematical model is developed to investigate 

the squeezing flow of a smart viscous ionic magneto-tribological fluid with zeta potential effects, 

intercalated between two parallel plates rotating in unison, under the simultaneous application of 

electric and magnetic fields.  The lower disk permits lateral mass flux (suction or injection). 

Continuity and momentum equations are represented in the proposed three-dimensional 

mathematical model by a set of partial differential equations. The electro-viscous effects resulting 

from distorted electric double-capacity flow fields are comprehensively examined for various 

intensities of applied plate motion. The formulation features a more robust approach to the 

traditional Poisson-Boltzmann equation model. A similarity transformation is used to translate the 

governing equations into ordinary differential equations, which are then numerically solved with 

appropriate boundary conditions at the disks using MATLAB software. Via graphical visualization 

of velocity profiles, pressure gradients and the upper wall coefficient of skin friction, several 

characteristics of squeezing flow are analysed. The computations show that there is a rise in 

pressure near the plate walls and a fall in pressure in the centre with increment in rotational, 

electroosmosis, electric field, and magnetic parameters. However, by selecting the appropriate 

squeezing velocity, the viscous drag on the lower plate can be effectively reduced. It is also 

observed that as the disk (wall) suction parameter increases, both radial and transverse velocities 

are damped. The current study generalizes previous investigations with the novelty of rotation and 

also pressure gradient computations. Furthermore, it provides a useful benchmark for alternative 

numerical simulations. 

 

KEYWORDS: Squeezing flow; Rotation; HPM; Zeta potential; Electro-osmosis; Magnetic field. 

 

https://www.sciencedirect.com/journal/colloids-and-surfaces-a-physicochemical-and-engineering-aspects
mailto:Email-balaji_2410@yahoo.co.in
mailto:prakashjayavel@yahoo.co.in
mailto:dtripathi@nituk.ac.in
mailto:gortoab@gmail.com
mailto:dtripathi@nituk.ac.in


2 
 

1. INTRODUCTION 

Squeezing flow is fundamental to the operation of numerous bearing systems in modern 

engineering tribology [1]. It features in polymer mould injection, gas turbine systems, 

locomotive bearings, composite materials synthesis, rheometry, synovial biomechanics and food 

processing. Approaching surfaces in squeezing flows often feature parallel disks which generate 

compression in the intercalating fluid via an external applied stress. Traditionally studies of 

squeezing flows have employed the classical Reynolds lubrication equation. However, in 

situations featuring complex boundary conditions, unsteady effects, inertia, sophisticated 

lubricants, rough geometries, slip effects and supplementary body forces, a more comprehensive 

approach is required.  The Reynolds equation, while useful for estimating pressure distribution 

and film thickness, is not adequate for providing a comprehensive picture of the intricate 

momentum characteristics in such regimes [2-4]. The Navier-Stokes partial differential equations 

however can often be reduced to much simpler ordinary differential equation systems via 

similarity transformations to simulate more elegant squeezing flow problems. In recent years 

many investigations have been conducted examining complex squeezing flows with this 

approach and exploring other phenomena such as heat and mass diffusion and multi-

physical/chemical effects. The squeezed dynamics analysis for heat transmission on a porous 

surface was reported by Mahmood et al. [5]. Hayat et al. [6] considered the effects of chemical 

reactions and heat conductivity on squeezing motion.  

Additionally, the introduction of ionic and magnetic lubricants has mobilized new work in 

magnetohydrodynamic and electrokinetic squeezing flows. Ionic lubrication [7] features electro-

kinetic flows which arise when a peripheral electric field is applied between the inlet and outlet 

of a channel. The ionic (polar) fluid develops near-wall layers of counter-ions within the fluid, 

resulting mobilizing flow of the electrolyte through the system. In contrast, the neutral core gets 

seized by the electric field and moves like a solid object [8]. In an experiment with porous clay 

in 1809, Reuss [9] proved the concept of electrokinetic flow for the first time. 

Magnetohydrodynamics (MHD) involves the interaction of external static or oscillating 

magnetic fields with viscous fluids. Magnetic lubrication therefore deploys electrically 

conducting fluids which respond to an external magnetic field [10]. MHD also features in many 

other applications in biomedical systems including blood flows [11-13]. Many theoretical and 

numerical studies of both electro-osmotic lubrication and hydromagnetic lubrication have been 

conducted including squeezing flows.  Li and Jin [14] developed a tribological model including 

the coupled effects of electric double layer (EDL) and boundary slip. Using the Debye—Hückel 
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approximation for low surface potential and the Navier-Stokes equation with body force due to 

the electrical potential with Navier slip boundary conditions, they derived expressions for 

velocity distributions, apparent viscosity and the modified Reynolds lubrication equation, 

showing that load capacity is enhanced with a reduction in inverse Debye length and slip lengths 

and with increment in electro-viscosity. Further studies include Phillips and Zabinski [15] (on 

ceramic electro-kinetic lubrication) and Wong et al. [16] (on electric double layer effects in 

slender aqueous films). Talapatra and Chakraborty [17] investigated the squeezing flow between 

two charged parallel plates with electric double layer overlap effects. They showed that the 

classical Poisson-Boltzmann equation may be inaccurate for squeezing flow in very narrow 

regimes where instantaneous liquid layer thickness is the same or thinner than the characteristic 

electric double layer thickness, for which there exists a deficit of counterions within the bulk 

liquid owing to a surplus in the electrical double layer or vice versa. Zhao et al. [18] investigated 

the squeezing flow between charged curved and a flat surface as a model of the tip–substrate 

configuration in electrolytic dynamic atomic force microscopy. They utilized the Derjaguin–

Landau–Verwey–Overbeek theory, noting that the electro-viscous effect strongly increases the 

dissipative hydrodynamic interaction force and sharpens the velocity profiles in the thin 

electrolyte solution film. Magnetofluid squeeze film studies Noor et al. [19] who examined 

transient viscoelastic radiative reactive squeezing flow between two plates using a finite 

difference procedure. Shah and Patel [20] deployed the Rosensweig ferrohydrodynamic theory 

to derive a general modified Reynolds equation for ferrofluid (FF) lubricated circular discs 

porous squeeze film-bearings, under oblique and radially variable magnetic field. They 

considered several different circular porous squeeze film-bearing configurations including the 

exponential, secant and parallel (flat)) designs. Domairry and Aziz [21] used a homotopy 

perturbation (HPM) to compute the MHD squeezing flow between parallel discs under axial 

static magnetic field. Adesanya et al. [22] used the Adomian decomposition method (ADM) and 

Runge-Kutta Shooting Method (RKSM) to simulate the time-dependent squeezing flow of a 

magnetic Eyring-Powell liquid between parallel plates with radiative flux and internal heat 

generation/absorption effects associated with exothermic or endothermic nature of the reaction. 

They showed that the flow is damped with reducing magnetic field (Hartmann number) for 

expanding walls (plates moving apart) whereas contraction (squeezing) of the channel walls, heat 

generation, and radiation parameters elevate the Nusselt number. Umavathi et al. [23] computed 

the transient squeezing magnetized nanofluid film flow with mixed thermal boundary conditions 

imposed at the plates.  They observed that larger Hartmann number (i. e. stronger axial magnetic 

field) reduces velocity in the intermediate zone, and that nanoparticles reduce heat build-up in 
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squeezing films, which helps to prevent corrosion and plate internal surface deterioration. 

Prajapati [23] studied the hydromagnetic squeeze film between rough porous truncated conical 

plates under an oblique magnetic field and deployed a stochastic random roughness model for 

the bearing surfaces. They showed that there is a substantial boost in the pressure, load carrying 

capacity and response time with increment in magnetization parameter and that lubrication 

performance is also enhanced with negatively skewed roughness. Further studies include Khan 

et al. [25] who used the Variation of Parameters Method (VPM) to study MHD squeezing flow 

between two infinite plates, observing strong deceleration in the axial flow with increasing 

magnetic field and acceleration with increment in Reynolds number. In all of these 

investigations, magnetic lubricants have been shown to increase efficiency by controlling 

lubricant viscosity fluctuation under high operating conditions. It was also found that the electro-

viscous impact on squeezing streams of thin electrolyte sheets limited between two curved and 

flat charged surfaces could be accounted for by employing lubrication assumptions. This 

approach involves the solution of the Nernst, Planck and Poisson/Navier–Stokes equations and 

enables the identification of how electro-viscous effects at a specific zeta potential is influenced 

by an EDL counterion conductivity, resulting in a much sharper velocity distribution.  

Under the influence of an applied electric field, ions in aqueous ionic liquids are carried through 

the capillary wall by electroosmosis. For bio-microfluidic systems, there is a need to build 

mathematical models to describe in a more refined fashion the physiological transport process 

and construct optimized bio-microfluidic devices [8]. For different flow geometries, such as 

capillaries, channels and capillary annulus configurations, basic mathematical models for 

electroosmotic squeezing flows as described earlier have identified the importance also of zeta 

potential effects. Other studies have also confirmed this in biomicrofluidics [26-29]. For 

electrokinetically propelled movements, Helmholtz presented theoretical research on the electric 

double layer (EDL) in 1879 [30]. In the early 1900s, Von Smoluchowski [31] heavily influenced 

the understanding of electrokinetically propelled streams, particularly when the EDL thickness 

is significantly less than the channel height. It has further been identified that when the double 

layer is thin compared to the minimum distance separating charged surfaces e. g. in a squeezing 

plate system, the electro-kinetic force magnitude can be manipulated relative to viscous force 

[7]. Burgreen and Nakache [32] used the Debye–Hückel linear method to calculate the applied 

electric distribution to study the effect of surface potential on liquid flow via ultrafine slits. Very 

recently Prakash et al. [33] have generalized previous Newtonian studies to consider the impact 
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of electrical double layer (EDL) in bio-inspired propulsion of non-Newtonian PTT liquids in 

micro-channels.  

Combined MHD and electro-osmotic transport has recently also emerged as novel hybrid 

approach for designing micro-fluidic systems and offers significant promise also in tribological 

engineering. Frequently an axial electrical field is used in conjunction with a transverse magnetic 

field to offer a dual mechanism for regulating ionic magnetic lubricant flows. Interesting studies 

in electro-magnetohydrodynamics (EMHD) include Bharathi et al. [34] who studied the 

combined effects of electrical and magnetic fields in electro-osmotic magnetized hybrid 

nanofluid flow from an exponentially accelerated wall with radiative heat flux. Prakash et al. 

[35] investigated the EMHD peristaltic pumping flow of a Williamson rheological liquid. They 

computed the influence of Debye-Hückel parameter, Helmholtz-Smoluchowski velocity, zeta 

potential and Hartmann number on pumping characteristics, shear stress and trapping patterns. 

Further studies include Rajaram et al. [36] who have shown the very different effects induced 

with axial electrical field direction and also transverse magnetic field strength on momentum and 

heat transfer characteristics in EMHD flows.  

The above investigations have generally neglected rotational body force effects. However, in 

emerging lubrications systems e. g. electro-osmotic travelling wave bearings [37], rotation is 

critical. Other industrial and technical operations also feature rotating channel/plate/wall fluid 

dynamics. Further analyses of non-conducting rotating flows have been communicated by 

Turkyilmazoglu [38-39] and also magnetohydrodynamic rotating stretching disk flows [40, 41].  

All these investigations confirmed the substantial modification in momentum and thermal 

characteristics with Coriolis body force effect and featured various parameters to simulate this 

effect including Rossby number and Ekman number. It is important to note that the measurement 

of mass flow rate is greatly dependent on the Coriolis force in spinning devices and equipment 

such as radial micro-pumps and rotating shock absorbers which feature squeezing flows. This has 

motivated interest in the rotational squeezing flows. Many studies have been communicated 

considering either non-conducting or electrically conducting fluid under the action of electrical 

field, magnetic field or both. Munawar et al. [42] simulated the squeezing flow of a magnetized 

liquid in a rotating parallel plate channel with a lower stretching porous wall. They observed that 

substantial pressure variation is induced close to the plate boundaries with magnetic field and that 

the downward motion of upper plate leads to acceleration in the forward flow and viscous drag on 

lower plate, whereas upward motion generates backflow. Arain et al. [43] used a combination of 

the differential transform method (DTM) and Padé approximants to simulate the squeezing 



6 
 

nanofluid magnetized flow between rotating circular plates doped with micro-organisms, as a 

model of bio-inspired nano-lubrication. Magnetic induction effects in rotating dual disk MHD 

squeezing flow were investigated by Zueco and Bég [44] using the PSPICE electrothermal 

software. Bég et al. [45] deployed an Adomian decomposition method (ADM) to compute the 

radial and tangential induced magnetic field and velocity field in squeezing rotating magnetic film 

lubrication between coaxial rotating disks with Batchelor number effects for a range of squeezing 

scenarios. Khatun et al. [46] utilized an explicit finite difference method to analyze the combined 

effects of electrical and magnetic fields on squeezing flow in a rotating electromagnetic sensor 

(Riga plate) regime with radiative flux. Riasat et al. [47] examined magnetic rotating nanofluid 

squeezing films with induction effects). Siva et al. [48] studied non-Newtonian magnetic electro-

osmotic squeezing flow in a rotating microfluidic channel with thermal effects. Further 

investigations include Abhimanyu et al. [49] (on viscoelastic rotating electro-kinetic flow), Li et 

al. [50] (on third grade elastico-viscous rotating electro-osmotic microchannel flow), Qi et al. [51] 

(on spinning Eyring electro-kinetic flow) and Siva et al. [52] (on time-dependent aqueous ionic 

couple stress rotating electrokinetic flow).  All these studies have confirmed the marked 

modifications in fluid characteristics achieved with electrical and magnetic fields in conjunction 

with rotational body forces.   

To the best of the authors' knowledge, a scrutiny of the technical literature has shown that thus 

far zeta potential effects however have not been examined in combined rotating EMHD squeeze 

film flow between disks. This is the motivation of the present study. A mathematical model for 

coupled electro-magnetic-hydrodynamic viscous squeezing flow with rotational body force and 

zeta potential effects is therefore developed in the present article.  The electro-osmotic MHD 

rotating squeezing flow model is rendered dimensionless and solved numerically, subject to 

appropriate boundary conditions, with MATLAB software [53]. Extensive visualization of 

momentum characteristics is included. Significant modifications in these characteristics are 

observed due to rotational, squeezing, magnetic and electrical body force effects. The 

simulations are relevant to hybrid electromagnetic lubrication in micro-tribological systems. 

 

2. MATHEMATICAL MODEL FORMULATION 

As shown in Figure 1, unsteady three-dimensional incompressible, viscous, squeezing flow 

between coaxial rotating parallel plates is investigated. The X-axis runs parallel to the plate 

planes, while the Y-axis is perpendicular to the plates in a Cartesian coordinate system (𝑋, 𝑌). 
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Ionic fluid electrical net charge thickness and other body forces are ignored when the suspended 

particles move in front of a magnetic field, 𝐵(𝑡) (=
𝐵0

√1−𝑎𝑡
) applied in the direction of the Y-axis. 

The whole system (fluid and plates) rotates in unison with angular velocity (𝛺∗ =

𝜔𝑗/(1 − 𝑎𝑡))about the Y-axis.  The time-dependent gap between the parallel plates is defined 

by:  

ℎ(𝑡) = 𝐻(1 − 𝑎𝑡)1/2         (1) 

Here the preliminary position of the upper plate is H at 0t =  and a  is a characteristic frequency 

parameter with dimension of (time)-1
 and at < 1. The following assumptions are invoked in order 

to construct the rotating electromagnetohydrodynamic (EMHD) model: 

a) A three-dimensional model is considered with the plates in the X-Z plane.  

b) The fluid temperature and concentration are not considered in this model.  

c) Electric field is in the X-direction and its effect is considered in the X-momentum 

equation.   

d) There is no slippage at the interior surfaces of the plate wall. 

e) All extra body forces are disregarded. 

f) The plate’s suction/injection is included.  

 

Figure 1: Geometry of the EMHD rotating squeeze flow problem  
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2.1 The governing equations  

The conservation equations describing the flow are the continuity and momentum equations 

which following [42] are:   

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0,           (2) 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
+

2𝜔

1−𝑎𝑡
𝑊) = −

𝜕𝑃

𝜕𝑋
+ 𝜇 (

𝜕2𝑈

𝜕𝑋2
+
𝜕2𝑈

𝜕𝑌2
) − 𝜎𝐵2(𝑡)𝑈 + 𝜌𝑒𝐸𝑋(𝑡),  (3) 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑌
+ 𝜇 (

𝜕2𝑉

𝜕𝑋2
+
𝜕2𝑉

𝜕𝑌2
),      (4) 

𝜌 (
𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑋
+ 𝑉

𝜕𝑊

𝜕𝑌
−

2𝜔

1−𝑎𝑡
𝑈) = 𝜇 (

𝜕2𝑊

𝜕𝑋2
+
𝜕2𝑊

𝜕𝑌2
) − 𝜎𝐵2(𝑡)𝑊.    (5) 

Here (𝑈, 𝑉,𝑊)denote the velocity components along the (𝑋, 𝑌) directions respectively, 𝜌is 

density, 𝑃 is pressure, 𝜇is dynamic viscosity, 𝐵0 is magnetic field and  is electrical 

conductivity. The applied electric field 𝐸𝑋(𝑡)can be defined as: 

𝐸𝑋(𝑡) =
𝐸𝑥

1−𝑎𝑡
,                     (6) 

2.2. Electrical potential 

The electrical potential as a result of the electrical double layer (EDL) is given by the Poisson 

equation at the internal surfaces of the parallel plates [27-29]:    

            

   𝜵𝟐𝑬 = −
𝝆𝒆

𝜺𝒆𝒇
,                                                                                (7) 

Here ef  is the permittivity or the dielectric constant of the ionic electrolytic solution. In a 

symmetric electrolyte solution, the number of ions of type-i, denoted by the symbol
in , follow 

the equilibrium Boltzmann distribution equation: 

𝑛𝑖 = 𝑛𝑖0 𝑒𝑥𝑝 (−
𝑧𝑖𝑒𝐸

𝑘𝐵𝑇𝐻
),                                                                                             (8) 

Here 𝑇𝐻, e , 𝑘𝐵, 𝑛𝑖0 and 𝑧𝑖 are the absolute temperature, electron charge, Boltzmann constant, 

bulk ionic concentration and the valence of type-i ions, respectively. 

For a symmetric electrolyte of value z , the net volume charge density (
e ) is connected to the 

overall concentration and the difference between anions and cations. 

𝜌𝑒 = 𝑧𝑒(𝑛+ − 𝑛−).                                                                                                        (9)   



9 
 

Inserting Eqn. (8) into Eqn. (9), we obtain: 

𝜌𝑒 = −2𝑧𝑒𝑛0 𝑠𝑖𝑛ℎ (
𝑧𝑒𝐸

𝑘𝐵𝑇𝐻
).                                                                                         (10) 

Substituting the value of charge density (
e )  from (Eqn. (7)) into the Poisson equation (Eqn. 

(10)) produces the following differential equation: 

𝑑2𝐸

𝑑𝑌2
=

2𝑧𝑒𝑛0

𝜀𝑒𝑓
𝑠𝑖𝑛ℎ (

𝑧𝑒𝐸

𝑘𝐵𝑇𝐻
),                                                                                                (11) 

2.3 Dimensional Boundary conditions 

The prescribed boundary conditions for the proposed problem at the upper and lower plates are 

respectively defined by:  

𝑈 = 0, 𝑉 = 𝑉ℎ =
𝑑ℎ

𝑑𝑡
,𝑊 = 0, 𝐸 = 𝜉𝑎𝑡𝑌 = ℎ(𝑡), 

                       𝑈 = 𝑈𝑐 =
𝑎𝑋

2(1−𝑎𝑡)
, 𝑉 = 𝑉𝑐 = −

𝑉0

√1−𝑎𝑡
,𝑊 = 0, 𝐸 = 0𝑎𝑡𝑌 = 0.            (12) 

3. SCALING ANALYSIS  

To render the governing Eqns. (1)-(5) and (13)-(14) into non-dimensional form, the following 

similarity transformations are now defined: 

𝑈 = 𝑈𝑐𝑓
′(𝜂), 𝑉 =

−𝑎𝐻

2√1−𝑎𝑡
𝑓(𝜂),𝑊 = 𝑈𝑐𝑔(𝜂)

𝑃 =
𝜇

𝑋
𝑈𝑐𝑝(𝜂), 𝐸 =

𝑧𝑒𝛷

𝑘𝐵𝑇𝐻
, 𝜂 =

𝑌

𝐻√1−𝑎𝑡
.

}     (13) 

The non-dimensional forms of the momentum Eqns. (3)-(5) emerge as:   

𝑆(2𝑓 ′ + 𝜂𝑓″ + (𝑓 ′)2 − 𝑓𝑓″ + 𝛺𝑔) +𝑀2𝑓 ′ − 𝑓‴ =
𝜇𝑎𝑋

2𝐻2(1−𝑎𝑡)2
(−

𝜕𝑃

𝜕𝑋
+

𝜌𝑒𝐸𝑥

(1−𝑎𝑡)
),  (14) 

𝑆(𝑓 + 𝜂𝑓 ′ − 𝑓𝑓 ′) − 𝑓″ =
2𝐻(1−𝑎𝑡)3/2

𝜇𝑎

𝜕𝑃

𝜕𝑌
,  (15) 

𝑔″ − 𝑆(2𝑔 + 𝜂𝑔′ − 𝑓𝑔′ + 𝑔𝑓 ′ − 𝛺𝑓 ′) − 𝑀2𝑔 = 0, ,  (16) 

By eliminating the pressure term and differentiating Eqn. (15) w.r.t ‘ X ’ and Eqn. (14) w.r.t Y

then Eqn. (15) becomes: 

𝜕2𝑃

𝜕𝑋𝜕𝑌
= 0

      
(17) 

In due course, Eqn. (14) may then be written as:   
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 ( ) ( )2 23 cosh 0,f S f f ff f f g M f Uem       − + − + + − +  =                        (18) 

The electrical potential equation can be derived via Eqn. (12) as follows:  

 𝛷″ −𝑚2 𝑠𝑖𝑛ℎ(𝛷) = 0.                   (19) 

By virtue of Eqn. (15), the pressure gradient can also be determined as:  

 
𝑑𝑝

𝑑𝜂
= 𝑆(𝑓 + 𝜂𝑓 ′ − 𝑓𝑓 ′) − 𝑓″,         (20) 

The associated dimensionless boundary conditions assume the form: 

𝑓(0) = 𝛽, 𝑓 ′(0) = 1, 𝑔(0) = 0, 𝛷(0) = 0 

                                          𝑓(1) = 1, 𝑓 ′(1) = 0, 𝑔(1) = 0,𝛷(1) = 𝜉                          (21) 

Here 𝑆 =
𝑎𝜌𝐻2

2𝜇
is the squeezing number, 𝑀 = 𝐻𝐵0√

𝜎

𝜇
is the Hartmann number (ratio of magnetic 

Lorentz force to viscous hydrodynamic force), 𝜉 =
𝑧𝑒𝜉̃

𝑘𝐵𝑇𝐻
is the zeta potential parameter, 𝛺 =

2𝜔

𝑎
is 

the rotation parameter, 𝛽 =
2𝑉0

𝑎𝐻
 is the plate suction parameter, 𝑈𝑒 =

1

𝑎𝑋
𝑈ℎ𝑠 is electric field 

parameter where 𝑈ℎ𝑠 = −
2𝑘𝐵𝑇𝐻𝜀𝑒𝑓𝐸𝑥

𝜇𝑧𝑒
 denotes the Helmholtz-Smoluchowski velocity and 𝑚2 =

𝐾2𝐻2(1 − 𝑎𝑡) is electroosmosis parameter where 𝐾2 = −
2𝑧2𝑒2𝑛0

𝜀𝑒𝑓𝑘𝐵𝑇𝐻
 is the Debye-Hückel 

parameter.  

The dimensional form of upper plate (wall) coefficient of skin friction may be defined as 

follows: 

𝐶𝑓 =
𝜇

𝜌𝜈2
(
𝜕𝑈

𝜕𝑌
)
𝑌=ℎ(𝑡)

,                   (22) 

Using Eqn. (12) in Eqn. (19), we obtain the dimensionless form of skin friction coefficient 

(dimensionless wall shear stress) as follows:  

𝐻2

𝑋2
(1 − 𝑎𝑡)𝑅𝑒𝑥𝐶𝑓 = 𝑓

″(1).        (23) 

where, 𝜈𝐻 = −
𝑎𝐻

2√1−𝑎𝑡
, and 𝑅𝑒𝑥 =

2𝜌𝜈𝐻
2𝑋√1−𝑎𝑡

𝑎𝐻𝜇
 is the local Reynolds numbers.  
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4. SEMI ANALYTICAL SOLUTION OF THE PROBLEM  

4.1 Electrical potential equation  

According to standard practice, the Poisson-Boltzmann distribution may be linearized by 

decreasing the tiny zeta potentials that are generated by most ionic solutions to less than or equal 

to 25mV. As a result, and Eqn. (19), we get: 

 𝛷″ −𝑚2𝛷 = 0.                        (24) 

Then the analytical solution of electrical potential equation can be derived via Eqn. (24) with 

corresponding boundary condition (21) as follows:  

Φ = 
𝜉 sinh (𝑚𝜂)

sinh (𝑚)
,      (25) 

4.2 Solution of momentum equations  

The Homotopy perturbation technique [59-61] can be used to solve the coupled differential 

equations (16-18), we built the following equation as  

𝐻(𝑓, 𝑝 ) = (1 − 𝑝)(𝐿(𝑓) − 𝐿(𝑓0)) + 𝑝 (𝐿(𝑓) − 𝑆𝜂𝑓
′′′ + 𝑆𝑓𝑓′′′ − 𝑆𝑓′′𝑓′ − 𝑆Ω𝑔′),   (26) 

𝐻(𝑔, 𝑝 ) = (1 − 𝑝)(𝐿(𝑔) − 𝐿(𝑔0)) + 𝑝 (𝐿(𝑔) − 𝑆𝜂𝑔
′ + 𝑆𝑓𝑔′ − 𝑆𝑔𝑓′ − 𝑆Ω𝑓′),        (27) 

Let us write 

𝑓 = 𝑓0 + 𝑝 𝑓1 + 𝑝𝑓2….,             (28) 

𝑔 = 𝑔0 + 𝑝 𝑔1 + 𝑝𝑔2….,                        (29) 

It is possible to write the solution of Eqs. (16) and (18) explicitly as for 𝑝 → 1 up to the first few 

iterations. 
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𝑓 = 𝐶1 + 𝐶2𝑦 + 𝐶3e
−𝑎2𝑦 + 𝐶4e

𝑎2𝑦 − 𝑎4(e
−𝑚𝑦 + e𝑚𝑦) + (𝑒(−𝑦(𝑎2+𝑚)))(16𝐶3𝑆𝑎2

8𝑎4

+ 32𝐶5𝑎2
8𝑚𝑒(𝑦(𝑎2+𝑚)) − 5𝐶3𝑆𝑚

7𝑒(𝑚𝑦) + 32𝐶7𝑎2
8𝑚𝑒(𝑚𝑦) − 5𝐶4𝑆𝑚

7𝑒(𝑦(2𝑎2+𝑚))

+ 32𝐶8𝑎2
8𝑚𝑒(𝑦(2𝑎2+𝑚)) − 8𝐶5𝑎2

2𝑚7𝑒(𝑦(𝑎2+𝑚)) + 48𝐶5𝑎2
4𝑚5𝑒(𝑦(𝑎2+𝑚))

− 72𝐶5𝑎2
6𝑚3𝑒(𝑦(𝑎2+𝑚)) − 8𝐶8𝑎2

2𝑚7𝑒(𝑚𝑦) − 72𝐶7𝑎2
6𝑚3𝑒(𝑚𝑦) − 8𝐶8𝑎2

2𝑚7𝑒(𝑦(2𝑎2+𝑚))

+ 48𝐶8𝑎2
4𝑚5𝑒(𝑦(2𝑎2+𝑚)) − 72𝐶8𝑎2

6𝑚3𝑒(𝑦(2𝑎2+𝑚)) + 64𝑆𝑎2
6𝑎4𝑚𝑒

(𝑦(𝑎2+2𝑚))

− 8𝐶6𝑎2
2𝑚7𝑦𝑒(𝑦(𝑎2+𝑚)) + 48𝐶6𝑎2

4𝑚7𝑦𝑒(𝑦(𝑎2+𝑚)) − 72𝐶6𝑎2
6𝑚3𝑦𝑒(𝑦(𝑎2+𝑚))

+ 30𝐶3𝑆𝑎2
2𝑚5𝑒(𝑚𝑦) − 45𝐶3𝑆𝑎2

4𝑚3𝑒(𝑚𝑦) + 32𝑆𝑎2
2𝑎4𝑚

5𝑒(𝑎2𝑦) − 144𝑆𝑎2
4𝑎4𝑚

3𝑒(𝑎2𝑦)

+ 30𝐶4𝑆𝑎2
2𝑚5𝑒(𝑦(2𝑎2+𝑚)) − 45𝐶4𝑆𝑎2

4𝑚3𝑒(𝑦(2𝑎2+𝑚)) + 32𝑆𝑎2
2𝑎4𝑚

5𝑒(𝑦(𝑎2+2𝑚))

− 144𝑆𝑎2
4𝑎4𝑚

3𝑒(𝑦(𝑎2+2𝑚)) − 16𝐶4𝑆𝑎2
8𝑎4𝑒

(2𝑦(𝑎2+𝑚)) − 56𝐶3𝑆𝑎2
7𝑎4𝑚

+ 7𝐶2𝐶3𝑆𝑚
7𝑒(𝑚𝑦) + 32𝐶6𝑎2

8𝑚𝑦𝑒(𝑦(𝑎2+𝑚)) + 16𝐶4𝑆𝑎2
8𝑎4𝑒

((2𝑎2𝑦))

− 16𝐶3𝑆𝑎2
8𝑎4𝑒

(2𝑚𝑦) + 20𝐶3𝑆𝑎2
6𝑚𝑒(𝑚𝑦) + 7𝐶2𝐶4𝑆𝑚

7𝑒(𝑦(2𝑎2+𝑚)) + 64𝑆𝑎2
6𝑎4𝑚𝑒

(𝑎2𝑦)

− 8𝐶3𝑆𝑎2
2𝑎4𝑚

6 + 40𝐶3𝑆𝑎2
3𝑎4𝑚

5 − 64𝐶3𝑆𝑎2
4𝑎4𝑚

4 + 16𝐶3𝑆𝑎2
5𝑎4𝑚

3

+ 56𝐶3𝑆𝑎2
6𝑎4𝑚

2 + 20𝐶4𝑆𝑎2
6𝑚𝑒(𝑦(2𝑎2+𝑚)) − 2𝐶3𝑆𝑎2

2𝑚7𝑦2𝑒(𝑚𝑦)

+ 12𝐶3𝑆𝑎2
4𝑚5𝑦2𝑒(𝑚𝑦) + 18𝐶3𝑆𝑎2

6𝑚3𝑦2𝑒(𝑚𝑦) + 2𝐶1𝐶3𝑆𝑎2𝑚
7𝑒(𝑚𝑦)

− 8𝐶1𝐶3𝑆𝑎2
7𝑚𝑒(𝑚𝑦) − 28𝐶2𝐶3𝑆𝑎2

6𝑚𝑒(𝑚𝑦) − 96𝐶2𝑆𝑎2
6𝑎4𝑚𝑒

(𝑎2𝑦)

+ 56𝐶4𝑆𝑎2
7𝑎4𝑚𝑒

(𝑎2𝑦) − 2𝐶4𝑆𝑎2
2𝑚7𝑦2𝑒(𝑦(2𝑎2+𝑚)) + 12𝐶4𝑆𝑎2

4𝑚5𝑦2𝑒(𝑦(2𝑎2+𝑚))

− 18𝐶4𝑆𝑎2
6𝑚3𝑦2𝑒(𝑦(2𝑎2+𝑚)) − 56𝐶3𝑆𝑎2

7𝑎4𝑚𝑒
(2𝑚𝑦) − 2𝐶1𝐶4𝑆𝑎2𝑚

7𝑒(𝑦(2𝑎2+𝑚))

+ 8𝐶1𝐶4𝑆𝑎2
7𝑚𝑒(𝑦(2𝑎2+𝑚)) − 28𝐶2𝐶4𝑆𝑎2

6𝑚𝑒(𝑦(2𝑎2+𝑚)) − 10𝐶3𝑆𝑎2𝑚
7𝑦𝑒(𝑚𝑦)

+ 40𝐶3𝑆𝑎2
7𝑚𝑦𝑒(𝑚𝑦) − 96𝐶2𝑆𝑎2

6𝑎4𝑚𝑒
(𝑦(𝑎2+2𝑚)) + 8𝐶4𝑆𝑎2

2𝑎4𝑚
6𝑒(2𝑦(𝑎2+𝑚)) − 

40𝐶4𝑆𝑎2
3𝑎4𝑚

5𝑒(2𝑦(𝑎2+𝑚)) + 64𝐶4𝑆𝑎2
4𝑎4𝑚

4𝑒(2𝑦(𝑎2+𝑚)) − 16𝐶4𝑆𝑎2
5𝑎4𝑚

3𝑒(2𝑦(𝑎2+𝑚))

− 56𝐶4𝑆𝑎2
6𝑎4𝑚

2𝑒(2𝑦(𝑎2+𝑚)) + 10𝐶4𝑆𝑎2𝑚
7𝑦𝑒(2𝑦(𝑎2+𝑚)) − 40𝐶4𝑆𝑎2

7𝑚𝑦𝑒(2𝑦(𝑎2+𝑚))

− 12𝐶1𝐶3𝑆𝑎2
3𝑚5𝑒(𝑚𝑦) + 18𝐶1𝐶3𝑆𝑎2

5𝑚3𝑒(𝑚𝑦) − 42𝐶2𝐶3𝑆 𝑎2
2𝑚5𝑒(𝑚𝑦)

+ 63𝐶2𝐶3𝑆𝑎2
4𝑚3𝑒(𝑚𝑦) − 8𝐶1𝑆 𝑎2

2𝑎4𝑚
6𝑒(𝑎2𝑦) + 40𝐶1𝑆 𝑎2

4𝑎4𝑚
4𝑒(𝑎2𝑦)

− 32𝐶1𝑆 𝑎2
6𝑎4𝑚

2𝑒(𝑎2𝑦) − 40𝐶2𝑆 𝑎2
2𝑎4𝑚

5𝑒(𝑎2𝑦) + 184𝐶2𝑆 𝑎2
4𝑎4𝑚

3𝑒(𝑎2𝑦)

− 8 𝐶4𝑆 𝑎2
2𝑎4𝑚

6𝑒(2𝑎2𝑦) − 40 𝐶4𝑆 𝑎2
3𝑎4𝑚

5𝑒(2𝑎2𝑦) − 64 𝐶4𝑆 𝑎2
4𝑎4𝑚

4𝑒(2𝑎2𝑦)

− 16 𝐶4𝑆 𝑎2
5𝑎4𝑚

3𝑒(2𝑎2𝑦) + 56 𝐶4𝑆 𝑎2
6𝑎4𝑚

2𝑒(2𝑎2𝑦) + 8 𝐶3𝑆 𝑎2
2𝑎4𝑚

6𝑒(2𝑚𝑦)

+ 40 𝐶3𝑆 𝑎2
3𝑎4𝑚

5𝑒(2𝑚𝑦) + 64 𝐶3𝑆 𝑎2
4𝑎4𝑚

4𝑒(2𝑚𝑦) + 16𝐶3𝑆 𝑎2
5𝑎4𝑚

3𝑒(2𝑚𝑦)

− 56 𝐶3𝑆 𝑎2
6𝑎4𝑚

2𝑒(2𝑚𝑦) + 12𝐶1𝐶4𝑆𝑎2
3 𝑚5𝑒(𝑦(2𝑎2+𝑚)) − 18𝐶1𝐶4𝑆𝑎2

3 𝑚5𝑒(𝑦(2𝑎2+𝑚))

− 42𝐶2𝐶4𝑆𝑎2
2 𝑚5𝑒(𝑦(2𝑎2+𝑚)) + 63𝐶2𝐶4𝑆𝑎2

4 𝑚3𝑒(𝑦(2𝑎2+𝑚)) + 60𝐶3𝑆 𝑎2
3𝑚5𝑦𝑒(𝑚𝑦)

− 90 𝐶3𝑆 𝑎2
5𝑚3𝑦𝑒(𝑚𝑦) + 8𝐶3𝑆 𝑎2

8𝑚𝑦2𝑒(𝑚𝑦) + 8𝐶1𝑆 𝑎2
2𝑎4𝑚

6𝑒(𝑎2+2𝑚)

− 40 𝐶1𝑆 𝑎2
4𝑎4𝑚

4 𝑒(𝑦(𝑎2+2𝑚)) + 32 𝐶1𝑆 𝑎2
6𝑎4𝑚

4 𝑒(𝑦(𝑎2+2𝑚))

− 40𝐶2𝑆 𝑎2
2𝑎4𝑚

5 𝑒(𝑦(𝑎2+2𝑚)) + 184𝐶2𝑆 𝑎2
4𝑎4𝑚

3 𝑒(𝑦(𝑎2+2𝑚)) + 8 𝑆𝑎2
2𝑎4𝑚

6 𝑒(𝑎2𝑦)

− 40𝑆𝑎2
4𝑎4𝑚

4𝑦 𝑒(𝑎2𝑦) + 32𝑆𝑎2
6𝑎4𝑚

2𝑦 𝑒(𝑎2𝑦) − 60𝐶4𝑆𝑎2
3𝑚5𝑦 𝑒(𝑦(2𝑎2+𝑚))

+ 90𝐶4𝑆𝑎2
5𝑚3𝑦 𝑒(𝑦(2𝑎2+𝑚)) + 8𝐶4𝑆𝑎2

8𝑚𝑦2 𝑒(𝑦(2𝑎2+𝑚)) − 8𝑆𝑎2
2𝑎4𝑚

6𝑦𝑒(𝑦(𝑎2+2𝑚))

+ 40𝑆𝑎2
4𝑎4𝑚

4𝑦𝑒(𝑦(𝑎2+2𝑚)) − 32𝑆𝑎2
6𝑎4𝑚

2𝑦𝑒(𝑦(𝑎2+2𝑚)) + 56𝐶4𝑆𝑎2
7𝑎4𝑚𝑒

(2𝑦(𝑎2+𝑚))

+ 4𝐶1𝐶4𝑆𝑎2
2 𝑚7𝑦𝑒(𝑦(2𝑎2+𝑚)) − 24𝐶1𝐶4𝑆𝑎2

4 𝑚5𝑦𝑒(𝑦(2𝑎2+𝑚))

+ 36𝐶1𝐶4𝑆𝑎2
6 𝑚3𝑦𝑒(𝑦(2𝑎2+𝑚)) + 

84𝐶2𝐶4𝑆𝑎2
3𝑚5𝑦𝑒(𝑦(2𝑎2+𝑚)) − 126𝐶2𝐶4𝑆𝑎2

5𝑚3𝑦𝑒(𝑦(2𝑎2+𝑚)) − 8𝐶2𝐶4𝑆𝑎2
8𝑚𝑦2𝑒(𝑦(2𝑎2+𝑚)) +

8𝐶2𝑆𝑎2
2𝑎4𝑚

6𝑦𝑒(𝑦(𝑎2+2𝑚)) − 40𝐶2𝑆𝑎2
4𝑎4𝑚

4𝑦𝑒(𝑦(𝑎2+2𝑚)) + 32𝐶2𝑆𝑎2
6𝑎4𝑚

2𝑦𝑒(𝑦(𝑎2+2𝑚)) +

2𝐶2𝐶3𝑆𝑎2
2𝑚7𝑦2𝑒(𝑚𝑦) − 12𝐶2𝐶3𝑆𝑎2

4𝑚5𝑦2𝑒(𝑚𝑦) + 18𝐶2𝐶3𝑆𝑎2
6𝑚3𝑦2𝑒(𝑚𝑦) +

2𝐶2𝐶4𝑆𝑎2
2𝑚7𝑦2𝑒(𝑦(2𝑎2+𝑚)) − 12𝐶2𝐶4𝑆𝑎2

4𝑚5𝑦2𝑒(𝑦(2𝑎2+𝑚)) + 18𝐶2𝐶4𝑆𝑎2
6𝑚3𝑦2𝑒(𝑦(2𝑎2+𝑚)) −



13 
 

16𝐶1𝐶3𝑆𝑎2
8𝑚𝑦𝑒(𝑚𝑦) + 14𝐶2𝐶3𝑆𝑎2𝑚

7𝑦𝑒(𝑚𝑦) − 56𝐶2𝐶3𝑆𝑎2
7𝑚𝑦𝑒(𝑚𝑦) − 16𝐶1𝐶4𝑆𝑎2

8𝑚𝑦𝑒(𝑦(2𝑎2+2𝑚)) −

14𝐶2𝐶4𝑆𝑎2𝑚
7𝑒(𝑦(2𝑎2+2𝑚)) + 56𝐶2𝐶4𝑆𝑎2

7𝑚𝑦𝑒(𝑦(2𝑎2+2𝑚)) + 4𝐶1𝐶3𝑆𝑎2
2𝑚7𝑦𝑒(𝑚𝑦) −

24𝐶1𝐶3𝑆𝑎2
4𝑚7𝑦𝑒(𝑚𝑦) + 36𝐶1𝐶3𝑆𝑎2

6𝑚3𝑦𝑒(𝑚𝑦) − 84𝐶2𝐶3𝑆𝑎2
3𝑚5𝑦𝑒(𝑚𝑦) + 126𝐶2𝐶3𝑆𝑎2

5𝑚3𝑦𝑒(𝑚𝑦) −

8𝐶2𝐶3𝑆𝑎2
8𝑚𝑦2𝑒(𝑚𝑦) − 8𝐶2𝑆𝑎2

2𝑎4𝑚
6𝑦𝑒(𝑎2𝑦) + 40𝐶2𝑆𝑎2

4𝑎4𝑚
4𝑦𝑒(𝑎2𝑦) − 32𝐶2𝑆𝑎2

6𝑎4𝑚
2𝑦𝑒(𝑎2𝑦)))/

(8𝑎2
2𝑚(𝑎2

2 −𝑚2)2(4𝑎2
2 −𝑚2)),                          (30) 

𝑔(𝑦) = 𝐶9𝑒
−𝑎20𝑦 + 𝐶10𝑒

𝑎20𝑦 −
𝑎21

𝑎20
2 −

𝑎23𝑒
−𝑎2𝑦

2(𝑎20
2 +𝑎2𝑎20)

+
𝑎23𝑒

−𝑎2𝑦

2(−𝑎20
2 +𝑎2𝑎20)

−
𝑎24𝑒

𝑎2𝑦

2(𝑎20
2 +𝑎2𝑎20)

+
𝑎24𝑒

𝑎2𝑦

2(−𝑎20
2 +𝑎2𝑎20)

−

𝑎22𝑦

𝑎20
2 +

𝑎20𝑎25𝑒
𝑚𝑦

−𝑎20
2 +𝑎20𝑚

2 +
𝑎20𝑎25𝑒

−𝑚𝑦

−𝑎20
2 +𝑎20𝑚

2,                                     (31) 

The above-mentioned constants are defined in Appendix.  

5. NUMERICAL SOLUTION WITH MATLAB AND VALIDATION 

The nonlinear coupled dimensionless ordinary differential equations (16, 18, 19) with boundary 

conditions (Eqn. 21) do not permit analytical solutions. Therefore, a numerical solution is 

obtained using the shooting technique in MATLAB [53]. This quadrature procedure reduces the 

differential equations of higher order i.e. the momentum and electrical potential Eqns.  (16, 18, 

19) to first-order equations: 

𝑦1 = 𝑓;

𝑦2 = 𝑓
′

𝑦3 = 𝑓
″

𝑦4 = 𝑓
‴

𝑦4
′ = 𝑆(3𝑦3 + 𝜂𝑦4 − 𝑦1𝑦4 + 𝑦3𝑦2 + 𝛺𝑦6) + 𝑀

2𝑦3 − 𝑈𝑒𝑚
2 𝑐𝑜𝑠ℎ(𝑦7)

𝑦5 = 𝑔

𝑦6 = 𝑔
′

𝑦6
′ = 𝑆(2𝑦5 + 𝜂𝑦6 − 𝑦1𝑦6 + 𝑦5𝑦2 − 𝛺𝑦2) +𝑀

2𝑦5
𝑦7 = 𝛷

𝑦8 = 𝛷
′

𝑦8
′ = 𝑚2 𝑠𝑖𝑛ℎ(𝛷) }

 
 
 
 
 

 
 
 
 
 

   (32) 

According to the boundary conditions (21), the corresponding initial conditions are introduced 

as: 

𝑦1(0) = 𝛽, 𝑦2(0) = 1, 𝑦5(0) = 0, 𝑦7(0) = 0

𝑦3(0) = 𝑎1, 𝑦4(0) = 𝑎2, 𝑦6(0) = 𝑎3, 𝑦7(0) = 𝑎4.
}      (33) 

To implement Eqn. (33), we assume that 1 2 3, ,a a a  and 
4

a are at 0 =  at the beginning of the 

problem. MATLAB software is used to construct a programme based on this approach. Also, the 
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present boundary conditions ( )0 1f  =  and ( )1 0f  =  are converted into the form of ( )0f A =  

which is solved by using shooting method. A comparison is conducted between the solutions of 

Wang [54] for Newtonian squeezing flow (a very special case of the present model) and the 

current MATLAB solution, for values of ( )1f   i.e. skin friction (dimensionless wall shear stress 

or velocity gradient) at the upper plate, for various values of the squeezing parameter, S with 

0; 0; 0; 0 0.M Ue A and = = =  = =  This data corresponds to absence of magnetic field, 

electro-osmosis, non-rotation and a non-permeable (solid) plate as considered in the study by 

Wang [54]. The findings of the proposed model are in good agreement and correlation with the 

results of Wang [54], which are reported in table -1 of this paper. Excellent correlation was 

obtained for both small and high values of S, confirming confidence in the present MATLAB 

code. Also, the present MATLAB results have been compared with well-known semi analytical 

method known as the He Homotopy perturbation technique and are clearly portrayed in Fig. 2 

for fixed value of 𝜉 = 0.5, 𝑆 = 0.5, 𝛽 = 0.1, 𝛺 = 0.1,𝑚 = 1.5, 𝑈𝑒 = 1 and  𝑀 = 0.309. Very 

good correlation of 𝑓(𝜂) & 𝑔(𝜂) are attained between the HPM and MATLAB BVP4c results. 

Confidence in the present MATLAB solutions is therefore justifiably high.  

Table 1 Comparison result of present solution and existing solution [54] for various values of 

the squeezing parameter, S with 0; 0; 0; 0 0.M Ue A and = = =  = =  

 

S 

Upper plate skin friction  ( )1f   

Wang [54] solution Present solution 

0 -3 -3 

0.09403 -3.0665 -3.066372403275870 

0.4341 -3.2969 -3.294282184859250 

1.1224 -3.714 -3.707994385020350 

 

6. NUMERICAL RESULTS AND DISCUSSION 

A detailed parametric study has been conducted to investigate the influence of key emerging 

parameters i.e. squeezing parameter S, Hartmann number M, electric field parameter Ue , 

electroosmosis parameter m , zeta potential parameter  , rotation parameter   and suction 
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parameter   on the velocity profiles, pressure gradient, and upper wall skin friction. These are 

visualized as graphs in Figs.3-18. All data has been prescribed carefully based on realistic 

EMHD lubricating flows [42, 55, 56]. 

Figs. 3-9 illustrate the evolution of axial velocity and transverse velocity profiles across the entire 

gap between the parallel plates, for various parameters. Fig. 3 shows the effect of S on the axial 

velocity ( )f    and transverse velocity ( )g   distributions. Both separating (S > 0) and closing 

(S < 0) are examined, which are two important scenarios in lubrication designs. Increase in the 

value of the squeezing parameter acts to suppress the axial velocity, ( )f  in the lower half space 

of the gap (0 < < 0.5) whereas it enhances axial velocity in the upper half space (0.5 <  < 1.0). 

A cross-over is computed at the centreline of the gap ( = 0.5).   

 

 

Fig.2 Comparison results between Homotopy Perturbation Method (HPM) and MATLAB 

BVP4c command for fixed value of 𝜉 = 0.5, 𝑆 = 0.5, 𝛽 = 0.1, Ω = 0.1,𝑚 = 1.5, 𝑈𝑒 = 1 

and  𝑀 = 0.309. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

f,
 g

 

 

HPM result of f()

BVP4c result of f()

BVP4c result of g()

HPM result of g()

f()

g()



16 
 

 

Fig.3 Impact of squeezing parameter S  on the axial velocity 'f  and transverse velocity g for 

fixed values of 1; 1; 1.5; 0.5; 0.5M Ue m  = = = = =  and 1. =  

 

Fig.4 Impact of magnetic parameter M  on the axial velocity 'f  and transverse velocity g for 

fixed values of 2; 1; 1.5; 0.5; 0.5S Ue m  = = = = =  and 1. =  
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Fig.5 Impact of electric field parameter Ue  on the axial velocity 'f  and transverse velocity g

for fixed values of 2; 1; 1.5; 0.5; 0.5S M m  = = = = =  and 1. =  

 

Fig.6 Impact of electroosmosis parameter m  on the axial velocity 'f  and transverse velocity 

g for fixed values of 2; 1; 1.5; 0.5; 0.5S Ue M  = = = = =  and 1. =  
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Fig.7 Impact of zeta potential parameter 𝜉 on the axial velocity 'f  and transverse velocity g

for fixed values of 2; 1; 1.5; 1; 0.5S Ue m M = = = = =  and 1. =  

 

Fig.8 Impact of rotation parameter   on the axial velocity 'f  and transverse velocity g for 

fixed values of 2; 1; 1.5; 0.5; 0.5S Ue m  = = = = =  and 1.M =  
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Fig.9 Impact of suction parameter   on the axial velocity 'f  and transverse velocity g for 

fixed values of 2; 1; 1.5; 0.5; 1S Ue m M= = = = =  and 1. =  

 

Fig.10 Impact of squeezing parameter S  on the pressure gradient /dp d  for fixed values of 

1; 1; 1.5; 0.5; 0.5M Ue m  = = = = =  and 1. =  
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Fig.11 Impact of magnetic parameter M  on the pressure gradient /dp d  for fixed values of 

2; 1; 1.5; 0.5; 0.5S Ue m  = = = = =  and 1. =  

 

Fig.12 Impact of rotation parameter   on the pressure gradient /dp d  for fixed values of 

1; 1; 1.5; 0.5; 0.5M Ue m  = = = = =  and 2.S =  
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Fig.13 Impact of electroosmosis parameter m  on the pressure gradient /dp d  for fixed 

values of 1; 1; 2; 0.5; 0.5M Ue S  = = = = =  and 1. =  

 

Fig.14 Impact of electric field parameter Ue  on the pressure gradient /dp d  for fixed values 

of 1; 2; 1.5; 0.5; 0.5M S m  = = = = =  and 1. =  
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Fig.15 Impact of electric field parameter Ue  on the upper wall skin friction ( )1f  against S   

for fixed values of 1; 1.5; 0.5; 0.5M m  = = = =  and 1. =  

 

Fig.16 Impact of electroosmosis parameter m ,  on the upper wall skin friction ( )1f  against

S   for fixed values of 1; 1; 0.5; 0.5M Ue  = = = =  and 1. =  
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Fig.17 Impact of magnetic parameter M  on the upper wall skin friction ( )1f  against S   for 

fixed values of 1; 1.5; 0.5; 0.5Ue m  = = = =  and 1. =  

 

Fig.18 Impact of rotation parameter   on the upper wall skin friction ( )1f  against S   for 

fixed values of 1; 1; 1.5; 0.5 0.5.M Ue m and = = = = =   
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As the plate surfaces move closer together, the fluid is physically constrained under the 

squeezing force and deceleration is induced in the axial velocity in the lower channel half space. 

However, momentum is re-distributed by virtue of conservation and this generates acceleration 

in the upper half space. The squeezing parameter, S. features in the modified shear terms in the 

axial momentum Eqn. (18), viz, −𝑆(3𝑓″ + 𝜂𝑓‴ − 𝑓𝑓‴ + 𝑓″𝑓′ +𝑔′). The effect of squeezing 

(S < 0) renders these terms positive which assists the axial flow and results in acceleration in the 

lower half space. Separating plates (S > 0) results in a negative version of the terms and this 

inhibits the axial flow in the lower half space. Also, it is observed from Fig.3 that positive S 

(separating plates) however, generates a boost in transverse velocity g which is sustained across 

the entire gap. Transverse flow acceleration is therefore induced with the plates moving apart. 

The opposite effect i. e. flow deceleration accompanies a negative value of S (squeezing). Both 

effects are maximized at the centreline of the gap. Unlike the axial velocity, there is no switch in 

the topology of the transverse velocity at the mid-point of the gap; the behaviour is consistent at 

all locations across the gap. There is also significant modification in the terms, 

−𝑆(2𝑔 + 𝜂𝑔′ − 𝑓𝑔′ + 𝑔𝑓′ − 𝛺𝑓′) in the transverse momentum Eqn. (16). In addition, both 

axial and transverse velocity fields are strongly coupled so there exists a substantial interplay 

between both velocity components. Acceleration in the axial flow is thereby compensated for by 

deceleration (retardation) in the transverse flow and vice versa. It is noteworthy that S = 0 

corresponds to the case where the plates are stationary, and the gap depth is constant; this 

naturally produces profiles which fall between the S >0 and S< 0 cases.   

Fig.4 shows the evolution of axial and transverse velocity with Hartmann number, M.  A strong 

damping in axial velocity is generated in the lower half space with increment in Hartmann 

number, indicating that the axial flow is inhibited significantly with stronger magnetic field 

intensity. This effect is reversed in the upper half space where strong flow acceleration is 

produced, and a reflective symmetry is computed in the profiles about the mid-point of the 

channel. This modification in axial velocity response is again attributable to the re-distribution 

in momentum in the gap. Viscous hydrodynamic force is equivalent to magnetic (Lorentz) body 

force when M = 1, as noted by Cramer and Pai [56]. The impact of magnetohydrodynamics is 

zero when M = 0; this electrically non-conducting case achieves therefore a maximum magnitude 

in the lower half space whereas it is associated with a minimal magnitude in the upper half space. 

Therefore, while the Lorentzian magnetohydrodynamic body force, −𝑀2𝑓′′, in Eqn. (18) has an 

inhibiting effect in the lower half of the gap this body force is assistive in the upper half space. 

In addition, it is evident in Fig. 4 that greater Hartmann number i.e. higher intensity of magnetic 
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field produces a sustained deceleration in the transverse flow across the gap. velocity 

progressively. The Lorentzian body force in Eqn. (16) i. e. −𝑀2𝑔, therefore strongly damps the 

transverse flow at all values of transverse coordinate, . The non-magnetic case, M = 0, produces 

strong transverse flow acceleration across the gap. It is pertinent also to mention that significantly 

greater magnitudes are computed for the axial velocity than the transverse velocity, irrespective 

of location in the gap or the parameter being varied, in Figs. 3 and 4. Furthermore negative 

velocities are never computed indicating that axial or transverse backflow never arise anywhere 

in the gap. Axial flow topologies are always decaying from the lower plate to the upper plate, 

whereas the transverse velocity exhibits a parabolic distribution across the gap with a maximum 

at the centreline.  

Dimensionless axial velocity and transverse velocity patterns for positive and negative values of 

the electric field parameter Ue are shown in Fig. 5. The electric field component has a critical 

role in regulating the squeezing flow. As per the convention adopted in Fig. 1, for which the 

positive axial direction is from left to right, the electrical field parameter value (electrical field 

parameter) is negative; however, it is positive when the electrical field direction is reversed (right 

to left). Axial velocity is enhanced for negative Ue in the lower half space (acceleration) whereas 

it is depleted in the upper half space (retardation). The contrary behaviour is computed for 

positive Ue. Again, axial velocity decays from the lower plate where it is always a maximum to 

the upper plate where it is a minimum.  Transverse velocity is also found to be elevated in the 

lower half space, albeit weakly, with negative Ue whereas it is suppressed with positive Ue. This 

trend is reversed in the upper half space of the gap. Effectively the orientation of the axial 

electrical field is responsible for either inducing acceleration or retardation in both velocity 

components as simulated via the electrical field parameter, 𝑈ℎ𝑠 = −
2𝑘𝐵𝑇𝐻𝜀𝑒𝑓𝐸𝑥

𝜇𝑧𝑒
. Significant 

manipulation in the flow characteristics can be achieved therefore both with magnetic field (as 

studied earlier in Fig. 4) and the electrical field, which are mutually orthogonal.   

Fig. 6 displays the behaviour across the gap of axial and transverse velocity components 

(𝑓 ′(𝜂)&𝑔(𝜂)) with variation in electroosmosis parameter, m. This critical parameter features in 

the axial momentum Eqn. (18) in the term, +𝑈𝑒𝑚2𝑐𝑜𝑠ℎ(𝛷), which couples this equation to the 

electrical potential Eqn. (19). Furthermore, 𝑚2 = 𝐾2𝐻2(1 − 𝑎𝑡) where 𝐾2 = −
2𝑧2𝑒2𝑛0

𝜀𝑒𝑓𝑘𝐵𝑇𝐻
 is the 

Debye-Hückel parameter. There is therefore a powerful influence of electro-osmosis via ionic 

mobility in the flow on the axial velocity field experienced via m, and in turn via coupling of the 
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axial momentum Eqn. (18) to the transverse momentum Eqn. (16), the transverse velocity field 

is also indirectly influenced. The electro-osmotic body force effect is negated when m = 0. Strong 

axial flow deceleration is produced in the lower half space of the gap between the plates,  

0 0.5  with increment in m, indicating that ion mobilization encourages axial flow in this 

zone. However, the contrary response is observed in the upper half space, 0.5 1   where 

higher values of m manifest in a significant axial flow acceleration. Axial velocity profiles also 

become increasingly parabolic with greater m values. Axial flow velocities will generally 

decrease near the lower plate as the thickness of the electric double layer (EDL) is reduced i. e. 

corresponding to an increase in electroosmotic parameter, m, since EDL and m are inversely 

proportional. The opposite effect will be induced near the upper plate.  Transverse velocity is 

also damped in the lower half space with greater electroosmotic parameter, m, (i. e. thinner EDL) 

although the effect is less prominent than in the axial velocity. A weak acceleration in transverse 

flow is computed in the upper half space of the gap. Overall, the axial flow demonstrates a much 

greater sensitivity to the electro-osmotic parameter since it is the dominant (bulk) flow in the 

regime and is primarily influenced by ionic distributions which in turn are affected by the applied 

voltage across the gap and the axial field orientation.  

The impact of the zeta potential parameter 𝜉 on the velocity profiles(𝑓 ′(𝜂)&𝑔(𝜂)) is illustrated 

in Fig. 7. The zeta potential parameter 𝜉 =
𝑧𝑒𝜉̃

𝑘𝐵𝑇̃𝐻̃
arises in the top plate boundary condition viz, 

𝛷(1) = 𝜉.  It is known that in bio-microfluidics, large zeta potential can influence the flow [28, 

57] in electro-osmotic systems, although lower and intermediate values generate mild 

modifications in velocity fields. The values examined here i.e.   = 0 (vanishing zeta potential), 

1, 2 are not excessively high. However, under the action of the axial electrical field, Ex, with 

fixed charges on the inner surfaces of the plates, positively charged cations from the bulk solution 

are attracted creating a double layer with positive charge density that decreases exponentially as 

the distance from the plate increases. A potential difference is mobilized in close proximity to 

the plate surface and is known as the zeta potential which is intimately linked to the electrostatic 

nature of the plate surfaces. Therefore, as zeta potential parameter is elevated there is a tendency 

for cations to be transported in the direction of the cathode and entrain via dragging, electrolyte 

molecules creating an intensification in the electroosmotic flow (EOF). This produces the weak 

deceleration in axial flow in the lower half space with a compensatory weak acceleration in the 

upper half space. However, the zeta potential difference increment is not sufficiently strong to 

initiate any modifications in the transverse flow which remains essentially invariant across the 
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entire gap. It is also noteworthy that increased ionic strength of the electrolyte (desirable in 

efficient lubrication [18]) produces stronger double-layer compression and hence a decreased 

zeta potential, and a concomitant decrement in electro-osmotic body force. Therefore, while 

alterations may arise in the transverse flow with very high zeta potential differences, which may 

be explored in future studies, lower zeta potential is more appropriate for the current study.  

Fig. 8 shows the influence of the rotation parameter   on the axial velocity ( )f  and 

transverse velocity ( )g  profiles. The Coriolis body force is simulated in the term, -S(g/) in 

the axial momentum Eqn. (18) and the term + S(f /) in the transverse momentum Eqn. (18). The 

rotational effect is therefore generated by the cross-play of velocity components. Increment in 

rotational parameter,  , therefore accentuates the -S(g/) term (an inhibiting force) which leads 

to a deceleration in the axial flow in the lower half space and partially encroaches into the upper 

half space zone. Further towards the upper plate, via momentum conservation, the axial flow is 

weakly accelerated.  However the + S(f /) is assistive and strongly enhanced transverse velocity 

across the entire gap with increment in rotation parameter ( ). For the case,   = 0, rotational 

effects are negated i. e. only axial momentum is considered, and the transverse velocity vanishes 

as observed in the figure.  A noticeable sensitivity in the squeezing flow is present with strong 

rotational effect, and this may be exploited to achieve desired flow characteristics in dual disk 

lubrication systems. Even at high values of  , flow reversal is never computed as confirmed by 

the consistently positive values of both axial and transverse velocity.  

Fig. 9, illustrates the influence of lower plate suction parameter on axial and transverse velocity 

components, (𝑓 ′(𝜂)&𝑔(𝜂)). The upper plate is solid. However lateral mass influx out of the gap 

is achieved via the lower disk boundary condition, 𝑓(0) = 𝛽, in Eqn. (21). As 𝛽 =
2𝑉0

𝑎𝐻
 is 

increased, the intensity of fluid mass removal via the lower plate is increased. This causes the 

ionic liquid to adhere more strongly to the plate and thickens the boundary layer. A strong axial 

flow deceleration is computed with increasing 𝛽, and this is maintained across the gap due to the 

damping in the flow. A peak axial velocity is computed for the solid lower plate case (𝛽 =0) near 

the gap centreline. However, this peak is displaced to the lower plate with increasing suction. A 

weaker suppression in transverse velocity is induced with increasing suction. However, the peak 

velocity is always observed at the centre of the gap irrespective of whether the lower plate is 

impervious (𝛽=0) or strong suction is present (𝛽=0.5). The transverse velocity profiles are 
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always symmetric about the gap centreline (=0.5). Effectively an excellent facility for 

regulating the flow characteristics is available via the inclusion of a lower plate. 

Figs. 10–14 depict the effects of the key parameters on the pressure gradient, /𝑑𝜂 . The influence 

of both positive and negative squeezing parameter (S) i. e. separating (S > 0) and approaching (S 

< 0) plates, on the pressure gradient distribution 𝑑𝑝/𝑑𝜂 is seen in Fig. 10. With (S < 0) since the 

plates approach each other, squeezing is generated, and a negative pressure gradient is produced 

across the gap. This decays from the lower plate to the upper plate in a linear fashion. However, 

with separating (S > 0) plates, greater space is afforded to the lubricant and a positive pressure 

distribution is obtained which grows in a monotonic profile from the lower disk to the upper 

disk. For the case of stationary plates (S = 0) at a fixed distance apart, no pressure gradient is 

induced, as expected, since there is no modification in the stresses applied to the intercalated 

fluid.    

The influence of magnetic parameter M on the pressure gradient 𝑑𝑝/𝑑𝜂 is displayed in  Fig. 11. 

As can be observed in the image, an unfavourable pressure gradient grows in the neighbourhoods 

of both plates as the Lorentz force increases. However, this adverse pressure gradient reduces in 

the central gap zone channel as the Lorentz force diminishes i. e. with a decrement in Hartmann 

number. In the central zone, strong magnetic field (M = 2) still sustains a favourable (positive) 

pressure gradient, which is critical for load carrying capacity of the system. For the electrically 

non-conducting case (M = 0), minimum pressure gradient arises near the lower and upper plates 

whereas a maximum value is observed at the centre of the gap. However, pressure gradient 

profiles are skewed towards the upper plate and not symmetrical about the centreline location, 

irrespective of the value of Hartmann number. Maximum pressure gradient is computed at the 

upper disk for the strongest magnetic field case (M = 2). 

Fig. 12 shows the effects of the rotation parameter   on the pressure gradient 𝑑𝑝/𝑑𝜂. It is clear 

from this that a considerable amount of rotation produces a positive pressure gradient at the lower 

plate but a much higher value of pressure gradient arises at the upper plate. Several trends in the 

pressure gradient may be seen in the main flow regime. The pressure gradient in the lower half 

of the gap is adverse, the pressure gradient in the centre is reduced, and the pressure gradient in 

the upper half space is favourable, with increasing rotational body force effect.  A much steeper 

gradient is computed for pressure gradient profiles in the upper half space than in the lower half 

space. In addition, it should be noted that an oscillatory topology is computed at the highest value 

of the rotation parameter   = 2 indicating that with the most intense rotation (i. e. greatest 
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angular velocity, , as 
2

a


 =  )  there is flow instability generated in the regime. Lower values 

ensure a more consistent response in pressure gradient implying that a judicious selection for 

rotational velocity is required in lubrication design. In Fig. 10 several values have also been 

highlighted at distinct locations in the gap - 𝜂 = 0.05,0.5&0.85.  

Figs. 13 and 14 show the collective effects of the electroosmosis parameter m and the electric 

field parameter 𝑈𝑒 on the pressure gradient, 𝑑𝑝/𝑑𝜂. It is apparent that as the electroosmosis 

parameter m  is increased and for positive electric field parameter 𝑈𝑒 (i.e. reversed axial 

electrical field direction), the pressure gradient is elevated at the lower and upper plates whereas 

it is diminished in the core zone. Asymmetry of the pressure gradient profiles is also observed 

again about the centre line of the gap. The electro-osmotic parameters therefore modify the 

pressure gradient across the gap but maintain positive values at every location. This ensures an 

effective load carrying capacity in the lubrication design. Negative pressure gradient never arises 

even at relatively strong values of axial electrical field as simulated via the 𝑈ℎ𝑠 = −
2𝑘𝐵𝑇𝐻𝜀𝑒𝑓𝐸𝑥

𝜇𝑧𝑒
 

and electrical double layer (EDL) thickness as analyzed via the parameter, 𝑚2 = 𝐾2𝐻2(1 − 𝑎𝑡) 

in Eqn. (18). Pressure distribution in the gap is therefore effectively manipulated with the electro-

osmotic effects.  

Figs. 15–18, present the influence of the electric field parameter 𝑈𝑒, electroosmosis parameter

m , Hartmann number M  and rotation parameter    on the upper disk skin friction coefficient 

( )1f   versus squeezing parameter S . The upper wall skin friction coefficient exhibits a linear 

decay as the squeezing parameter changes from negative S < 0 (approaching plates i. e. 

squeezing) to positive S > 0 (separating plates) conditions. Skin friction is substantially depressed 

with positive electric field parameterUe  whereas it is enhanced with negative positive electric 

field parameter 𝑈𝑒 (Fig. 15). A strong decrement in skin friction also accompanies an increase 

in electroosmosis parameter m  (Fig. 16) and Hartmann magnetic number M  (Fig. 17) indicating 

that strong axial flow deceleration is induced at the upper disk of the lubrication system with a 

reduction in EDL thickness and stronger magnetic field intensity (greater Lorentz magnetic 

forces). Thus, the upper plate experiences slower shearing and lower skin friction is computed. 

A distributed electromagnetic ionic lubrication system can therefore benefit from the 

simultaneous application of electrical and magnetic fields, when ionic magnetized working 

lubricants are deployed.  
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Fig. 18 shows that with increasing rotation parameter, , the upper plate skin friction is reduced 

for higher values of negative S and positive S. However, at intermediate values of S (-0.2< S< 

0.2) the skin friction is not tangibly altered. In other words, with weak departure (separating 

plates) or weak squeezing (approaching plates) the Coriolis body force exerts no significant 

effect on the upper disk skin friction. Maximum magnitude of skin friction is produced for the 

non-rotating scenario ( = 0) when S = 01 (strong squeezing). However, the minimal magnitude 

of skin friction is produced for strongest rotation (( = 4), for the strong plate separating case (S 

= 1). Axial flow acceleration is therefore maximized for the former case and minimized for the 

latter at the upper disk. A significant alteration in viscous drag at the upper disk is therefore 

achievable with the appropriate combination of squeezing and rotation parameters in the regime.  

7. CONCLUSIONS  

A theoretical study of the squeezing flow of a smart ionic magneto-tribological fluid with zeta 

potential effects, intercalated between two parallel plates rotating in unison, under the simultaneous 

application of electric and magnetic fields, has been presented.  The lower disk permits lateral mass 

flux (suction or injection). The formulation features a more robust approach to the traditional 

Poisson-Boltzmann equation model. A similarity transformation is used to transform the governing 

equations into ordinary differential equations, which are then numerically solved with appropriate 

boundary conditions at the disks using MATLAB software (bvp4c solver). Via graphical 

visualization of velocity profiles, pressure gradients and the upper disk coefficient of skin friction, 

several key characteristics of squeezing flow are analysed. The computations show that: 

(i) In the lower half space of the gap, increasing the electric field parameter Ue and 

electroosmosis parameter m  (inverse EDL parameter) induces a rise in axial and 

transverse velocities, whereas the converse behaviour is generated in the upper half space 

of the gap. 

(ii) An increase in the rotation parameter   leads to a rise in axial velocity in the lower half 

space, with the opposite effect produced in the upper half space.  

(iii) The pressure gradient is reduced in the gap core zone with elevation in Hartmann 

magnetic number M, electrical field parameter, ,Ue electro-osmotic parameter m  and 

rotation parameter, .  

(iv) The upper disk skin friction coefficient decays in a linear fashion as the squeezing 

parameter changes from negative S < 0 (approaching plates i. e. squeezing) to positive S 

> 0 (separating plates) conditions. 
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(v) Upper disk skin friction is markedly reduced with positive electric field parameterUe  

whereas it is enhanced with negative positive electric field parameterUe .  

(vi) Upper disk skin friction is depleted with increment in electroosmosis parameter m  and 

Hartmann magnetic number.  

(vii) Pressure gradient profiles are asymmetric about the centre line of the gap and are skewed 

towards the upper disk. 

(viii) Pressure gradient is enhanced at the lower and upper plates whereas it is diminished in 

the core zone with an increment in electroosmosis parameter m  and for positive electric 

field parameter 𝑈𝑒 (i. e. reversed axial electrical field direction).   

(ix) An increase in rotational parameter,  , results in a strong transverse velocity 

enhancement across the entire gap from the lower disk to the upper disk. 

(x) Increasing zeta potential parameter generates a weak deceleration in axial flow in the 

lower half space with a compensatory weak acceleration in the upper half space. 

However, the zeta potential difference increment has no tangible influence on the 

transverse velocity across the entire gap. 

(xi) A strong axial flow deceleration is computed with increasing lower disk suction 

parameter, 𝛽, and this is sustained across the gap. A weaker decrement in transverse 

velocity is induced with increasing suction. 

The present study has revealed some interesting insights into rotating EMHD 

(electromagnetohydrodynamic) squeezing flows of relevance to micro-tribological designs. 

However, attention has been confined to Newtonian fluid behaviour. Future studies may 

implement non-Newtonian models for ionic magnetic lubricants e.g. microstructural, viscoelastic 

etc. Furthermore, bio-inspired lubrication systems are also growing in popularity which feature 

biological doping of squeeze films with micro-organisms [58].  
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