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+e present study deals with the electrically conducting micropolar nanofluid flow from a vertical stretching surface adjacent to a
porous medium under a transverse magnetic field. Eringen’s micropolar model is deployed for non-Newtonian characteristics and the
Buongiorno nanofluid model employed for nanoscale effects (thermophoresis and Brownian motion). +e model includes double
stratification (thermal and solutal) and also chemical reaction effects, heat source, and viscous dissipation. Darcy’s model is employed
for the porousmedium and a Rosseland diffusion flux approximation for nonlinear thermal radiation.+e nonlinear governing partial
differential conservation equations are rendered into nonlinear ordinary differential equations via relevant transformations. An
innovative semi-numerical methodology combining the Adomian decomposition method (ADM) with Padé approximants and
known as ADM-Padé is deployed to solve the emerging nonlinear ordinary differential boundary value problem with appropriate wall
and free stream conditions in MATLAB software. A detailed parametric study of the influence of key parameters on stream function,
velocity, microrotation (angular velocity), temperature, and nanoparticle concentration profiles is conducted. Furthermore, skin
friction coefficient, wall couple stress coefficient, Nusselt number, and Sherwood number are displayed in tables.+e validation of both
numerical techniques used, i.e., ADM and ADM-Padé, against a conventional numerical 4th order Runge–Kutta method is also
included and significant acceleration in convergence of solutions achieved with the ADM-Padé approach.+e flow is decelerated with
greater buoyancy ratio parameter whereas microrotation (angular velocity) is enhanced. Increasing thermal and solutal stratification
suppresses microrotation. Concentration magnitudes are boosted with greater chemical reaction parameter and Lewis number.
Temperatures are significantly enhanced with radiative parameter. Increasing Brownian motion parameter depletes concentration
values. +e study finds applications in thermomagnetic coating processes involving nanomaterials with microstructural characteristics.

1. Introduction

+e study of boundary layer flow and heat transfer in a
mixture of fluids flowing across a continuous extending
surface has numerous industrial applications, including
thermal polymeric coating flows, surface deposition and
finishing, enrobing, and mechanical handling equipment such

as conveyors [1, 2]. Crane [3] was among the first researchers
to study the viscous Newtonian boundary layer equations for
two-dimensional continuous flow across a flat, incompressible
elastic sheet traveling in a straight line. He established a good
foundation for subsequent studies involving multiple thermal
and electromagnetic effects. Mishra et al. [4] recently inves-
tigated heat and mass transfer in magnetized viscoelastic fluid
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with conducting of a viscoelastic (Walters B’) fluid on a
stretching surface. +is study also included chemical reaction
and non-uniform heat source effects, which are commonly
encountered in materials processing.

Mass transfer is a common occurrence in a wide variety of
industrial technologies including metallurgical processing,
food manufacture, and electromagnetic (smart) coating dy-
namics. It may involve multiple species diffusing through a
fluid and is often accompanied with heat transfer. Whereas
Fick’s law is usually deployed for species diffusion, for thermal
conduction the Fourier law is required. Due to the diverse
applications in chemical, nuclear, and mechanical process and
materials fabrication systems (extrusion, coating, enrobing,
etc.), mathematical models of the combined effect of mass
transfer and chemical reaction both with and without elec-
tromagnetic fields have stimulated considerable interest
among engineers and scientists [5, 6]. In high temperature
applications, radiative heat transfer is also encountered (in
addition to thermal conduction and thermal convection) and
usually an algebraic flux model is employed in simulations to
compute the effect of radiative flux on transport phenomena.
Numerous authors [7–9] investigated the radiative convective
heat and mass transport in magnetohydrodynamic (MHD)
flows. Pattnaik et al. [10] investigated the unsteady magne-
tohydrodynamics free convection flow, heat, andmass transfer
with variable temperature and concentration from an inclined
surface embedded in a saturated constant permeability porous
medium. +ey observed that the transport characteristics and
substantially modified with heat source, inclination, porous
drag force, and magnetic body force effects. Pattnaik et al. [11]
also computed the influence of heat flux caused by a con-
centration and temperature gradient on an unsteady hydro-
magnetic flow from an infinite vertical porous plat, noting that
the temperature and velocity are significantly altered by the
magnetic field strength. In [12], it was noted that chemical
reaction, heat source, and suction/injection at the wedge wall
all have a significant effect on MHD boundary layer flow.

In many materials processing operations, non-Newtonian
(rheological) fluids are utilized. +ese exhibit characteristics
which deviate significantly from viscous Newtonian fluid
models. Many non-Newtonian models are available including
viscoplastic (Bingham), viscoelastic (Maxwell, Oldroyd-B),
shear thinning pseudoplastic (Carreau, Cross, etc.). However,
these models merely modify the shear stress tensor and do not
include microstructural effects. +e particles suspended in
liquids deployed in many materials processing operations can
spin; i.e., these fluids have a microstructure. Such effects
cannot be simulated with standard non-Newtonian models.
+erefore, a new branch of fluid dynamics, micromorphic
fluid mechanics, was introduced by Eringen in the 1960s [13]
which successfully simulates the angular velocity or micro-
rotation of particles and molecules in non-Newtonian fluids.
A simplification of the general micromorphic fluid model is
the micropolar model [14] which restricts the degrees of
freedom of the particles and also neglects axial contraction/
extension of microelements. +is model and its modification
to include thermal effects (thermo-micropolar model [15])
has proved immensely popular and has been deployed in
many excellent studies since many different colloidal

suspensions, smart fluids, and biological fluent media (e.g.,
blood, synovial fluid) can be accurately simulated by
micropolar theory. A further advantage of micropolar fluid
theory is that, by neglecting the spin (gyratory motion of
microelements), the classical Navier–Stokes Newtonian
model can be retrieved. Motivated by coating applications,
many researchers have analyzed the external boundary layer
flows of micropolar fluids from different geometries. +ese
investigations have usually deployed advanced numerical
methods since the boundary value problems investigated are
highly nonlinear. Bhargava and Takhar [16] used a variational
finite element method to compute the stagnation micropolar
heat transfer characteristics on a translating surface. A
number of magnetohydrodynamics coating flows of micro-
polar fluids have also been studied in recent years. Ezzat et al.
[17] studied MHD micropolar coating heat transfer with
thermal relaxation effects using Laplace transform and nu-
merical approaches. Many other interesting applications of
magnetic coating flows have been reviewed by Douglas [18]
including microstructural effects, for which the micropolar
fluid model is very appropriate. Mishra et al. [19] have further
examined the effects of double stratification, i.e., thermal and
solutal stratification in magneto-convective flows of micro-
polar fluids with heat generation and buoyancy effects. All
these studies have confirmed the substantial modification in
thermal, species, and flow characteristics computed with
micropolar models compared with either Newtonian or
simpler non-Newtonian models.

Nowadays, conventional fluids are being progressively
superseded in favor of nanofluids due to their superior thermal
properties. Choi and Eastman [20] introduced nanofluids as
colloidal suspensions of base fluids containing nanoparticles.
Base fluids include oils, polymers, water, etc. Nanoparticles
include metallics and non-metal oxides, carbides, and nitrates.
Popular nanoscale models used for simulating nanofluid
transport characteristics are the Tiwari-Das model and the
Buongiorno two-component nanofluid model. +e latter fea-
tures a species concentration equation for nanoparticles and
also emphasizes thermophoretic body force and Brownian
motion dynamics effects. Wakif et al. [21] developed a gen-
eralized Buongiorno nanofluid model with the purpose of
analyzing the effect of magnetic field on hydrodynamic sta-
bility. Nanofluids improve the thermal conductivity of low-
conducting fluids such as ethylene glycol, engine oil, or water.
Nanofluids therefore achieve enhanced heat conductivities
which makes them more favourable for engineering and
technological processes than conventional base fluids.
Nanofluids have been employed extensively in a wide variety
of technical applications, including heat exchangers, thermal
engineering, cancer therapy, propulsion, tribology, and bio-
medicine. Additionally, there are several applications of
magnetic fields in physics, medicine, and engineering. In
magnetic materials processing, as noted earlier, external
magnetic fields can be deployed to regulate flow characteristics
and also manipulate the thermo-solutal dynamics in smart
electrically conducting functional liquids such as electro-
conductive polymers. Flow patterns are significantly influ-
enced by the intensity and organization of themagnetic field in
the fluid. +e magnetic field exerts an effect on the colloidal
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fluid particles, altering the fluid’s concentration and heat
transmission characteristics. A magnetic nanofluid is a
nanofluid with electrically conducting properties imparted by
nanoparticles which permit the liquid to be manipulated by an
external magnetic field. Flows of magnetic nanofluids can be
simulated by combining magnetohydrodynamics of viscous
fluids with nanofluid models such as the Buongiorno model.
Hayat et al. [22] computed the influence of magnetic field on
the flow of Casson magnetic nanofluid over a stretching
surface. Bhatti et al. [23] evaluated the impact of thermo-
diffusion and diffusion thermal parameters on a hyperbolic
tangent magnetized nanofluid under the effect of Hall current.
Khan et al. [24] investigated computationally the nonlinear
thermal radiation flux effects on hydromagnetic Sisko
nanofluid flow with convective boundary conditions.

+e above studies did not simultaneously consider mi-
crostructural and nanofluid characteristics in magnetohy-
drodynamic flow from a stretching surface in a porous
medium. Motivated by developing a more comprehensive
model for actual magnetic non-Newtonian nanofluids, the
current work investigates the radiative-convective chemically
reacting flow of magnetized nanofluid over a vertical stretching
surface to a porous medium with thermal and solutal strati-
fication, heat source, and viscous heating effects.+e Rosseland
fluxmodel is used for thermal radiation, Eringen’s micropolar
fluid model is deployed for microstructural rheological fea-
tures, and the Buongiorno nanoscale model is utilized to
simulate nanoscale effects. 9e novelty of the present article is
therefore the simultaneous consideration of multiple effects-
chemical reaction, thermal radiation, double stratification,
micropolar non-Newtonian, and nanofluid characteristics in
magnetohydrodynamic stretching sheet flow.To solve the novel
boundary value problem, a semi-analytical/numerical ap-
proach is employed, i.e., Adomian decomposition method

(ADM), is used in collaboration with Padé approximants.
Graphs and tables are used to illustrate the impact of key
parameters on heat, mass, and momentum characteristics.
Extensive interpretation of the results is included from a
physical viewpoint. Comparison of the ADM-Padé approach
with numerical Runge–Kutta quadrature is also included.+e
simulations are relevant to magnetic nano-polymer coating
fabrication processes.

2. Mathematical Model

We consider two-dimensional steady incompressible MHD
chemically reacting micropolar nanofluid boundary layer
coating flow over a vertical stretching surface to a Darcian
isotropic porous medium under thermal and species
buoyancy effects in an (x, y) coordinate system. +ermal
and solutal stratifications, as well as nonlinear thermal ra-
diation, are all taken into account.+e x-axis is plotted along
the vertical surface and the y-axis is normal to this (Figure 1).
A uniformmagnetic field of strength B0 is applied transverse
to the vertical surface, invoking a Lorentzian magnetic body
force along the surface plane. +e vertical sheet stretches
with a linear velocity Uw � ax where a> 0 represents the
stretching rate constant. Hall current and Ohmic dissipation
are ignored. However, a heat source is present and viscous
dissipation is included. A first-order homogenous chemical
reaction (destructive) is considered. Buongiorno’s model is
used for the nanofluid and Eringen’s micropolar model for
microstructural rheology characteristics.

Under the above assumptions, the governing boundary
layer conservation equations for mass, momentum, angular
momentum (microrotation), energy, and nanoparticle
species (conservation) for the regime may be shown to take
the following form:
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+e relevant boundary conditions at the surface (wall)
and in the free stream are prescribed as

u � Uw � ax , v � 0 , N � − m
zu

zy
, T � Tw � T0 + bx , C � Cw � C0 + cx, aty � 0,

u⟶ 0 , N⟶ 0 , T⟶ T∞ � T0 + dx , C⟶ C∞ � C0 + ex, asy⟶∞

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (6)

Here, equation (1) indicates the mass conservation equa-
tion i.e. the equation of continuity. Equation (2) is the linear
momentum conservation equation. Equation (3) is the angular
momentum conservation equation. Equations (4) and (5) are
the energy and mass (solutal) conservations equations, re-
spectively. +e left-hand sides of each of equations (2)–(5)
represent the convective derivative and the first term on the
right-hand side terms denotes diffusion term for the corre-
sponding profiles. In the Eringen micropolar model, there are
two different viscosities, i.e., fluid dynamic viscosity and vortex
viscosity. +e third term of equation (2) is due to the resistivity
offered by the magnetic field and the Darcian drag due to the
porous medium fiber impedance. +e last two terms represent
the mixed convection effects dictated by both thermal and
solutal buoyancy. Equation (3), i.e., the microrotation/angular
momentum conservation, includes spin effects of the micro-
elements. +e third term on the right-hand side of the energy
conservation equation (4) is the thermal radiation flux term

(Rosseland), the fourth term indicates the coupling effect of
viscous dissipation, and the last term is the additional heat
source/sink. Further, the 2nd term on the right-hand side of the
species (concentration) conservation equation (5) is due to
thermal diffusion and the last term represents a first-order
chemical reaction effect. Following Rosseland’s approximation
[25] for nonlinear thermal radiation, the net radiation heat flux
can be defined as follows:
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Implementing in the energy boundary layer equation (4)
leads to
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Figure 1: Geometrical configuration.
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We introduce the following similarity transformations:
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Substitution of equations (10) in (2)–(9) generates the
transformed dimensionless boundary layer equations for
linear momentum, angular momentum, energy, and species,
with associated boundary conditions, as follows:
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All parameters are defined in the nomenclature.

3. Physical Quantities of Engineering Interest

+e skin friction (Cf), wall couple stress coefficient (Cs),
Nusselt number (Nux), and Sherwood number (Shx) are
important quantities for materials processing operations.
+ese take the following form:
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4. Solution of the Nonlinear Boundary
Value Problem

4.1. Adomian Decomposition Method. Adomian [26] de-
veloped a robust semi-analytical method to solve linear and
nonlinear differential/algebraic equations named the Ado-
mian decomposition method (ADM). +is method also uses
the concept of series solutions. ADM has been shown to be
generally excellent for solving highly strong nonlinear sci-
entific problems [27]. +e principal objective of ADM is to
achieve a unified series solution of linear/nonlinear ordinary
differential equations (ODEs) or partial differential equa-
tions (PDEs) in initial and boundary value problems (IVPs
and BVPs). In this method, the nonlinear operator is
decomposed into a series of functions. +e nonlinear cou-
pled transformed ordinary differential equations (11)–(14)
are solved semi-analytically using ADM. +e details of the
procedure of ADM for the present magnetic micropolar
nanofluid stretching sheet problem are as follows:

To rewrite equations (11)–(14), we introduced the op-
erators L1 � (d3/dη3)(•) and L2 � d2/dη2(•) and the in-
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+e initial guess solutions as well as recursive expres-
sions are as follows:
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2θ2′ + Pr fθ′ + Nb θ′ϕ′ + Nt θ2′􏼔 􏼕 +(1 + K)EcPrf2″ + PrSθ

1 + R d 1 +(Tr − 1)θ{ }
3

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(35)

ϕm+1(η) � L
− 1
2 PrLeKc ϕ − fϕ′ −

Nt

Nb
θ″􏼚 􏼛. (36)

Equations (35) and (36) can be simplified by truncating
the binomial expansion of the denominator of equation (35).
Assuming all the linear as well as nonlinear terms of the
right-hand side of equations (33)–(36) in series form and
taking m � 0, 1, 2, . . ., the recursive relations (33)–(36) can
be solved. Evaluating the unknowns numerically using the
MATLAB BVP solver and taking some specific values of

pertinent parameters as K � 0.1, M � 1, Kp � 0.2,

λ � 5, δ � 3, Tr � 2,Pr � 2, S � 0.01, Ec � 0.5, Nb � 0.5,

Nt � 0.5, Le � 3, t � 0.5, R d � 2, Kc � 1, m � 0.5, and
s � 0.5, we get the approximate analytical solutions for
stream function, microrotation, temperature, and nano-
particle concentration profiles as follows:

f(η) � η − 1.07505η2 + 1.944η3 − 1.24795η4 + 1.11907η5 − 1.01231η6 + 0.87583η7 − 0.4367η8􏽮

+ 0.08453η9 − 0.00598η10 + 0.0001η11,
(37)

ω(η) � 1.07505 + 1.0774η + 0.53752η2 + 1.20007η3 − 1.06184η4 + 0.00261η5 + 0.04127η6

+ 0.03194η7 + 0.01546η8 − 0.001593η9 − 0.00008η10,
(38)

θ(η) � 0.5 + 1.86154η − 3.84474η2 − 1.56η3 − 11.63709η4 + 24.37027η5 + 80.5245η6

− 189.281η7 + 313.405η8 − 498.357η9 − 47.85η10 + 12.456η11 − 1479.3385η12

+ 377.8η13 − 565.5η14 − 3209.4η15 + 130.6η16 − 1309.12η17 − 3571.4η18 − 1261.499η19,

(39)

ϕ(η) � 0.5 − 1.557η + 2.423η2 + 0.5204η3 + 6.0827η4 − 12.133η5 − 40.6603η6

+ 94.785η7 − 156.44η8 + 248.9η9 + 23.82η10 − 6.1η11739.6η12 − 188.9η13

+ 282.8η14 + 1604.7η15 + 65.3η16 + 654.56η17 + 1785.7η18 + 630.8η19 + 1784.4η20.

(40)

All the functions and coefficients are used in truncated
forms. To increase the accuracy in the solution of the present
boundary value problem, we have adopted Padé approx-
imants after applying ADM.

4.2. Padé Approximant. A Padé approximation of f(η) on
[a, b] can be expressed as a rational function that contains
two polynomials, say PN(η) as the numerator and QM(η) a
denominator of degrees N and M, respectively [28]. +e
notation [N/M] is used to denote the quotient. To obtain
better results, we have combined the differential transform
method and the diagonal Padé approximants [N/N] and
used them in the process. Padé approximants are widely
used (Baker and Morris, [28]) to accelerate the convergence
of a given series. Arain et al. [29] also used Padé approx-
imants in conjunction with a differential transform method
(DTM) to compute the viscoelastic magnetic nanofluid flow
between rotating disks. We have considered the function
f(η) in power series form as

f(η) � 􏽘
∞

i�0
ciη

i
. (41)

+e notation ci, i � 0, 1, 2, . . ., represents the coefficients
of the power series#, and f(η) is the associated function.+e
[L/M] Padé approximant is a rational fraction defined by

f(η) �
a0 + a1η + a2η

2
· · · · · · + aLη

L

b0 + b1η + b2η
2

· · · · · · · · · + bMηM
. (42)

+e Maclaurin series expansion of equation (42) agrees
with equation (41). In equation (42), a number of coefficients
in the numerator and denominator are L + 1 and M + 1,
respectively. +ese numbers suggest [L/M] is to fit the series
expression in equation (41) with orders 1, η, η2, . . . , ηL+M. In
the notation of formal power series,

􏽘

∞

i�0
ciη

i
�

a0 + a1η + a2η
2

+ · · · + aLη
L

b0 + b1η + b2η
2

+ · · · + bMηM
+ 0 ηL+M

􏼐 􏼑. (43)

Equating the coefficients of ηL+1, ηL+2, . . . , ηL+M, we get
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bMcL− M+1 + bM− 1cL− M+2 + · · · + b0cL+1 � 0

bMcL− M+2 + bM− 1cL− M+3 + · · · + b0cL+2 � 0

. . .

bMcL + bM− 1cL+1 + · · · + b0cL+M � 0

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (44)

Taking i< 0, ci � 0 and b0 � 1, equation (44) can be
written in matrix form as

cL− M+1 cL− M+2··· cL+1

cL− M+2 cL− M+3··· cL+2

cL cL+1··· cL+3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

bM

bM− 1

. . .

b0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� −

cL+1

cL+2

. . .

cL+M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (45)

+e values of bi can be found from the above expression
and from equation (43) we obtain

a0 � c0,

a1 � c1 + b1c0,

a2 � c2 + b1c1 + b2c0, . . . ,

aL � cL + 􏽘

min[L/M]

i�1
bicL− i.

(46)

Combining equations (43) and (45) enables the deter-
mination of the coefficients of the numerator and denom-
inator which are called Padé equations. +e diagonal Padé
approximations [L/L] are as follows:

fPADE[2/2] �
η − 2.14283 η2

1 − 1.06783 η − 3.09232 η2
, (47)

fPADE[3/3] �
η − 0.611151 η2 + 1.23251 η3

1 + 0.463849 η − 0.213254 η2 + 0.116795 η3
, (48)

ωPADE[2/2] �
1.075 − 0.744369 η − 1.57866 η2

1 + 0.309425 η + 1.27806 η2
, (49)

ωPADE[3/3] �
1.075 + 0.0814601 η + 0.1195197 η2 + 1.658441 η3

1 + 1.07765 η + 0.690438 η2 + 0.569551 η3
, (50)

θPADE[2/2] �
0.5 + 1.07996 η − 7.95329 η2

1 − 1.56407 η − 2.39198 η2
, (51)

θPADE[3/3] �
0.5 + 1.10348 η − 5.46546 η2 + 13.7339 η3

1 − 1.51704 η − 2.40853 η2 + 9.95237 η3
, (52)

ϕPADE[2/2] �
0.5 − 2.36152 η + 3.84434 η2

1 − 1.60704 η − 2.16487 η2
, (53)

ϕPADE[3/3] �
0.5 − 2.30314 η + 6.25394 η2 − 3.7424 η3

1 − 1.49028 η + 3.01817 η2 + 8.09971 η3
. (54)

5. Result and Discussion

+e graphical results produced for variation of several
emerging parameters will be discussed in this section.
Earlier, Ramzan et al. [30] validated the present computer
programs by including certain additional parameters, such
as the porosity parameter in the momentum equation,
Eckert number, and heat source parameter in the energy
equation. +e solution process is a strong advantage of the
present ADM approach. We use approximate analytical
ADM solutions to refine each profile and thereafter deploy
the Padé approximant of various orders to refine each
profile. Both results are, however, compared to the

traditional numerical technique (Runge–Kutta shooting
method). Figure 2 shows comparison plot for all the profiles
with solution obtained by ADM-Padé, ADM, and numerical
shooting, with some default assigned values of the physical
parameters K � 0.1, M � 1, Kp � 0.2, λ � 5, δ � 3, Tr � 2,
Pr � 2, S � 0.01, Ec � 0.5, Nb � 0.5, Nt � 0.5, Le � 3,
t � 0.5, R d � 2, Kc � 1, m � 0.5, and s � 0.5. +is indicates
a good correlation between the convergence procedures of
the methodologies employed in this study.

+e comparison of the stream function, velocity,
microrotation, temperature, and concentration profiles is
illustrated in Figures 3–7 for the numerical method, Ado-
mian decomposition method (ADM), and the novel semi-
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analytical method, ADM-Padé-approximant. +ese graphs
show the importance of the Padé-Approximant method as it
converges more rapidly than ADM on its own when
compared with numerical methods such as the 4th-order
Runge–Kutta method (shooting technique). +is encour-
aged us to study the behavior of different profiles of a
micropolar-nanofluid flow by deploying Padé-approximant
after using ADM.

+e study shows since ADM requires some computer
programs to calculate the values of f″(0),ω′(0), θ′(0), and
ϕ′(0) to find the initial solution, recurrence functions using

these initial solutions give the final solutions as equations
(37)–(40). After getting the recurrence solutions, the diag-
onal Padé Approximant of an order [3/3] is used for the
graphical and tabular presentations. +e study shows the
diagonal Padé approximant gives accelerated convergent
solutions. Figures 3–7 confirm these observations.

In Figure 8, the impacts of magnetic parameter (M),
microgyration parameter (m), mixed convection parameter
(λ), and temperature difference parameter (δ) on velocity
parameter have been studied. Figure 8(a) shows that velocity
is strongly suppressed with increasing magnetic parameter,
M. Lorentz force − (M)f′ is created by the imposition of the
magnetic field on the conducting fluid, which retards the
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Figure 2: Validation of stream function, velocity, microrotation,
temperature, and concentration profiles.
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boundary layer flow and increases momentum boundary
layer thickness. Higher values of M clearly elevate Lorentz
force which produces strong deceleration. +e converse
response is observed with large permeability parameter, Kp.
+e Darcian body force is inversely proportional to Kp as
observed in Figure 9(a), via the term. − (M + Kp− 1)f′ in the
momentum equation (11). Higher Kp values imply greater
permeability and therefore a decrease in solid matrix fibers
in the porous medium. +is reduces the Darcian drag force
and accelerates the boundary layer flow leading to a decrease
in momentum boundary layer thickness. Figure 8(b) shows
that velocity is strongly damped with an increment in
micropolar parameter,m. +is parameter appears in the wall
boundary condition (14) and relates to the nature of the

microelements spin effect at the boundary. For the New-
tonian case m� 0, velocity is a maximum. Figure 8(c) shows
that for increasing values of mixed convection parameter (λ)

that enhances the fluid velocity near the boundary for η≤ 1
and afterward it decelerates the fluid. +ermal buoyancy as
simulated in the parameter λ � (Gr/Re2) therefore has a
complex relationship with the linear velocity field.
Figure 8(d) presents the influence of the buoyancy ratio
parameter, i.e., δ � (βc(ρp − ρf)(Cw − C∞)/βt(1 − C∞)

(Tw − T∞)ρf) on velocity evolution. +is parameter ex-
presses the relative contribution of solutal (nano-
particle species) buoyancy force to thermal buoyancy
force. For negative values of δ, these buoyancy forces
oppose each other and for positive values they assist
each other. It is apparent that for δ � − 3 there is a strong
acceleration in the flow (linear profiles) whereas the
opposite trend is computed for δ � +3 (parabolic
profiles). +ese trends are sustained at all values of
transverse coordinate, δ.

Figures 9(a)–9(c) visualize the velocity evolution with
different values of the micropolar material parameter (K),
Prandtl number (Pr), and thermal stratification parameter
(t). Here, non-zero values of material parameter K indicate
the non-Newtonian characteristics of the fluid. K � (k/μ)

expresses the ratio of micropolar vortex viscosity to New-
tonian dynamic viscosity. Momentum boundary layer
thickness is clearly reduced with greater micropolar pa-
rameter since the velocity is elevated strongly at all values of
transverse coordinate. With elevation in Prandtl number,
there is a weak enhancement in velocity. At Prandtl number
of 1, both momentum and thermal diffusion rates are equal
for the magnetic micropolar nanofluid. However, as Pr is
increased, the thermal diffusion rate (and thermal con-
ductivity) is decreased, and the momentum diffusion rate is
much higher. +is results in acceleration of the boundary
layer flow and decrease in momentum boundary layer
thickness. Higher values of Prandtl number (Pr � 10)

correspond to actual magnetic coating materials [18].
Figure 9(c) shows that as a thermal stratification parameter
(t � (d/b)) increases, the sheet temperature reduces which
induces a boost in the velocity profiles. +is parameter
features in the wall boundary condition, θ � 1 − t, in
equation (15) and clearly exerts a strong influence on ve-
locity distribution. Greater thermal stratification produces a
decrease in momentum boundary layer thickness in the
stretching flow regime.

Figure 10 visualizes the impact of (a) M (b) m (c) λ (d) δ
on microrotation profile, i.e., angular velocity, in the pres-
ence/absence of Kp. Maximum angular velocity is generally
observed at the wall (sheet). With increment in magnetic
parameter, M, there is a strong increase in microrotation,
i.e., microelements spin faster in the magnetic micropolar
nanofluid. +is is maintained at all values of transverse
coordinate. Greater permeability Kp however generates a
reduction in angular velocity, i.e., suppresses the gyratory
motion of microelements. Figure 10(b) also demonstrates
that the microrotation is elevated significantly with an in-
crease in micropolar surface parameter (m). It is noteworthy
that when the value of the microgyration parameter (m)
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Figure 8: Impact of (a) M, (b) m, (c) λ, (d) δ on velocity profile.
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increases from m � 0, i.e., when microelements are unable to
rotate (strong concentration) to m � 1 (turbulent boundary
layer flows), the microrotation profile is enhanced.
Figure 10(c) shows that angular velocity is an increasing
function of mixed convection parameter (λ) in conjunction
with the permeability parameter, Kp. Microrotation is
therefore clearly elevated with greater mixed convection
parameter values. Figure 10(d) shows that positive incre-
ment in buoyancy ratio parameter (δ) also produces an
acceleration in the flow; i.e., the velocity is enhanced for the
assisting thermal and species buoyancy case (δ > 0) whereas
it is reduced for the opposing buoyancy case (δ < 0). It is also
noteworthy that all profiles converge asymptotically to the
free stream, confirming the imposition for an adequate
infinity boundary condition in the ADM-Padé
computations.

Figures 11(a)–11(c) illustrate the impact of micropolar
vortex viscosity material parameter (K), Prandtl number
(Pr), and thermal stratification parameter (t) on angular
velocity. Increasing values of K are observed in Figure 11(a)
to strongly damp the angular velocity profile, indicating that
with increased vortex viscosity the microelements are
constrained in their gyratory motion. +e opposite effect is
computed with increasing Prandtl number, for which in
Figure 11(b), there is a boost in the angular velocity
(microrotation). +e greater momentum diffusivity relative

to thermal diffusivity associated with higher Prandtl num-
bers assists the spin of microelements with reverse trend as
expected in case of increasing higher values of Prandtl
number (Pr). Figure 11(c) shows that the microrotation is
depleted with greater thermal stratification parameter
(t � (d/b)). As with other plots, the effect is most profound
near the sheet surface (wall). +e decrease in wall sheet
temperature associated with higher thermal stratification
reduces linear momentum and angular momentum in the
boundary layer regime. Angular velocity is therefore
supressed as microelement rotation is subdued.

Figure 12 portrays the impact of (a) thermal radiation,
Rd (b) temperature ratio parameter, Tr, (c) Prandtl number,
and (d) heat source, S on the temperature distribution.
Figure 12(a) shows that the radiation from electromagnetic
waves energizes the flow and elevates temperatures further
from the sheet towards the free stream. However closer to
the wall there is a decrement in temperatures with greater
thermal radiation effect. With larger temperature ratio, as
seen in Figure 12(b), temperature is suppressed near the wall
whereas it is elevated significantly further from the wall.
Increasing Prandtl number results in a decrease in tem-
peratures computed further from the wall (Figure 12(c)).
Increasing heat source parameter, S, clearly consistently
boosts the temperatures at all locations from the wall to the
free stream.+is parameter represents hot spots in materials
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Figure 10: Impact of (a) M, (b) m, (c) λ, (d) δ on microrotation profile in presence (Kp � 100)/absence (Kp � 0.1) of Kp.
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processing which can be used to provide a boost in thermal
energy during fabrication operations [18]. +ermal
boundary layer thickness is elevated with greater heat source
parameter. In all profiles, a temperature overshoot is also
computed near the wall.

Figure 13 illustrates the influence of (a) K and t (b) Ec (c)
Nb (d) Nt on temperature profiles. Figure 13(a) shows that
with increment in stratification parameter (t) temperatures
are reduced and thermal boundary layer thickness is de-
creased. However, with increase in micropolar vortex pa-
rameter, K, temperatures are strongly enhanced, and
thermal boundary layer thickness is increased. Increasing
Eckert number, Ec, in Figure 13(b) produces a strong ele-
vation in temperatures. +e viscous dissipation is boosted
owing to a greater conversion of kinetic energy in the flow to
frictional heat with greater Eckert number. +is energizes
the flow and increases thermal boundary layer thickness.+e
temperature peak is also progressively displaced further
from the wall (sheet) with greater Eckert number.
Figure 13(c) shows that, with greater Brownian motion
parameter (Nb), temperatures are initially suppressed near
the wall whereas they are strongly elevated shortly thereafter,
and this temperature enhancement is sustained towards the
free stream. +ermal boundary layer thickness is therefore
enhanced generally with greater random motion of the
nanoparticles (Brownian dynamics). Figure 13(d) shows that
with increasing thermophoresis parameter (Nt) there is a
sustained elevation in temperature at all locations from the
wall to the free stream.+emigration of nanoparticles under
a temperature gradient is known as thermophoresis. +is

energizes the flow and increases thermal boundary layer
thickness.

Figure 14 illustrates the influence of (a) Lewis number,
Le and thermal stratification parameter t (b) chemical re-
action parameter, Kc (c) Brownian motion parameter Nb,
and thermophoresis parameter Nt on nanoparticle con-
centration profiles. Figure 14(a) shows that there is a strong
decrement in concentration magnitudes with greater Lewis
number and also stratification parameter.+e Lewis number
is the ratio of thermal diffusivity with respect to mass dif-
fusivity. With the increase in Lewis number, a slower dif-
fusion process of the solutal concentration is encountered,
resulting in the concentration boundary layer decreasing
and a suppression in species (nanoparticle) diffusion rate.
Figure 14(b) indicates that with an increase in chemical
reaction parameters again there is a depletion in nano-
particle concentration values. +e reaction is first-order
homogenous and destructive, as simulated in the equation
(14), via the term − PrLeKcϕ. +is implies that nanoparticles
react and are converted to another species. +erefore,
physically the concentration of original nanoparticles, i.e.,
ϕ(η), must decrease with more intense chemical reaction
effect (greater Kc values) as verified in Figure 14(b). Finally,
Figure 14(c) visualizes the collective influence of Nb and Nt
on nanoparticle concentrations. A boost is observed with
greater thermophoresis effect whereas a decrement is
computed with greater Brownian motion. +e increased
ballistic collisions of nanoparticles with higher Nb result in
opposition to species diffusion which decreases concentra-
tions and a thinner concentration boundary layer thickness
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Figure 11: Impact of (a) K, (b) Pr, (c) t on microrotation profile.
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Figure 12: Impact of (a) Rd, (b) Tr, (c) Pr, (d) S on temperature profile.
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Figure 13: Impact of (a) K, (b) Ec, (c) Nb, (d) Nt on temperature profile.
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However increasing thermophoretic body force effect, Nt,
encourages the migration of nanoparticles under the tem-
perature gradient towards colder regions in the boundary
layer and this elevates nanoparticle concentration and
therefore produces a greater solutal (nanoparticle) con-
centration boundary layer thickness.

Finally, Tables 1–3 provide the results of the skin friction
Cf, wall couple stress (dimensionless microrotation gradient
at the wall) Cs, local Nusselt number Nux, and local
Sherwood number, Shx ADM-Padé computations with re-
spect to various contributing parameters. Table 1 shows the
influence of micropolar material parameter, K, magnetic
parameter, M, permeability parameter, Kp, mixed convec-
tion parameter, λ, and buoyancy ratio parameter, δ on skin
friction and couple stress coefficients. +e skin friction
(linear shear stress function) and the couple stress coefficient
both increase as the material parameter increases. With
increasingM values (greater Lorentzian drag effect), the skin
friction and couple stress coefficient are however suppressed.
With increasing permeability effect (Kp), there is a decrease
in Darcian porous impedance and the skin friction and wall
couple stress are both enhanced. Elevation in mixed con-
vection parameter λ depletes skin friction and also couple
stress coefficient, whereas an increment in the buoyancy
ratio parameter δ produces the opposite effect; i.e., it in-
creases the skin friction at the sheet and also boosts the
couple stress coefficient. +e local Nusselt number Nux

quantifies the relative contribution of thermal convection to

thermal conduction at the sheet surface and is tabulated for
various parameters in Table 2. It is evident that increasing
thermal radiation (Rd) and temperature ratio (Tr) param-
eters strongly enhances local Nusselt number; i.e., they
produce a greater transfer of heat from the boundary layer to
the wall. An increment in Eckert number (Ec) and the heat
source parameter (S) however suppresses the local Nusselt
number Nux since these parameters heat the boundary layer
and elevate temperatures. +is will suppress the heat
transferred to the wall and will decrease Nux magnitudes.
Table 3 shows the variation of local Sherwood number Shx

for different values of Brownian motion (Nb), thermo-
phoresis parameter (Nt), Lewis number (Le), and chemical
reaction parameter (Kc). Increment in Brownian motion
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Figure 14: Impact of (a) Le, t (b) Kc, (c) Nb, and Nt on concentration profile.

Table 1: Skin friction and wall couple stress coefficient.

K M Kp λ δ Cf Cs

0 1 0.2 5 5 − 0.5973 0.4133
0.1 − 0.649 0.4463
0.1 2 0.3638 0.2599

3 0.0827 0.0967
1 0.3 1.25 0.8259

0.5 1.8019 1.218
0.2 2 − 1.3116 − 0.6112

3 − 0.6418 − 0.2967
5 3 − 0.2952 − 0.1214

4 − 0.7607 0.1564
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parameter (Nb) strongly reduces local Sherwood number,
i.e., decreases the mass transfer of nanoparticles from the
boundary layer stretching regime to the wall (sheet). +e
converse effect is computed for increasing thermophoresis
parameter (Nt), which elevates the local Sherwood number
Shx, i.e., results in greater migration of nanoparticles to the
wall. Similarly, increments in Lewis number (Le) and
chemical reaction parameter (Kc) are both favourable for
enhancing the rate of mass transfer of nanoparticle solute to
the wall; i.e., stronger chemical reaction and higher thermal
diffusivity produce greater diffusion of nanoparticles to the
wall and a thinner concentration boundary layer thickness.

6. Conclusions

Inspired by more robust simulations of magnetic non-
Newtonian nanofluid materials processing operations, a
mathematical model has been developed for electrically
conducting micropolar nanofluid flow from a vertical
stretching surface adjacent to a porous medium under a
transverse magnetic field. Eringen’s micropolar model has
been deployed for non-Newtonian characteristics and the
Buongiorno nanofluid model employed for nanoscale ef-
fects (thermophoresis and Brownian motion). +e model
also includes double stratification (thermal and solutal) and
also chemical reaction effects, heat source, and viscous
dissipation. Darcy’s model is employed for the porous
medium and a Rosseland diffusion flux approximation for
nonlinear thermal radiation. +e nonlinear governing
partial differential conservation equations are rendered
into nonlinear ordinary differential equations via relevant
transformations. An innovative semi-numerical method-
ology combining the Adomian decomposition method
(ADM) with Padé approximants and known as ADM-Padé

is deployed to solve the emerging non-linear ordinary
differential boundary value problem with appropriate wall
and freestream conditions in MATLAB software. A de-
tailed parametric study of the influence of key parameters
on stream function, velocity, microrotation (angular ve-
locity), temperature, and nanoparticle concentration pro-
files is conducted. Furthermore, skin friction coefficient,
wall couple stress coefficient, Nusselt number, and Sher-
wood number are displayed in tables. +e validation of
both numerical techniques used, i.e., ADM and ADM-
Padé, against a conventional numerical 4th-order Runge
Kutta method is also included and significant acceleration
in convergence of solutions achieved with the ADM-Padé
approach. +e main findings of the current study may be
summarized as follows:

(i) +e flow is decelerated with greater buoyancy ratio
parameter whereas microrotation (angular veloc-
ity) is enhanced

(ii) Increasing thermal and solutal stratification sup-
presses microrotation

(iii) Concentration magnitudes are boosted with
greater chemical reaction parameter and Lewis
number

(iv) Temperatures are significantly enhanced with ra-
diative parameter

(v) Increasing Brownian motion parameter depletes
concentration values whereas increasing thermo-
phoresis parameter enhances concentrations

(vi) Increases in Lewis number and chemical reaction
parameter both enhance the local Sherwood
number

(vii) An increment in Eckert number and the heat
source parameter reduces local Nusselt number
whereas they elevate temperatures and increase
thermal boundary layer thickness

(viii) Greater magnetic parameter (stronger Lorentzian
drag effect) reduces the skin friction and couple
stress coefficient

(ix) With increasing permeability effect, there is a
decrease in Darcian porous impedance and the
skin friction and wall couple stress are both
elevated

(x) Elevation in mixed convection parameter λ re-
duces skin friction and also couple stress coeffi-
cient, whereas greater buoyancy ratio parameter
increases the skin friction at the sheet and also
boosts the couple stress coefficient

(xi) ADM-Padé method achieves faster convergence
and improved accuracy relative to conventional
ADM or Runge–Kutta numerical approaches

+e present study finds applications in thermomagnetic
coating processes involving nanomaterials with micro-
structural characteristics. Future studies may consider en-
tropy generation minimization via the second law of
thermodynamics.

Table 2: Nusselt number.

Rd Tr Ec S Nux

2 2 0.5 0.01 0.3147
3 0.9333
2 3 0.8827

4 1.381
2 1 0.2074

2 − 0.3889
0.5 0.02 0.5117

0.03 0.4977

Table 3: Sherwood number.

Nb Nt Kc Le Shx

0.1 0.5 1 2 1.1994
0.2 1.1233
0.5 0.1 1.0611

0.2 1.0664
0.5 3 1.7908

5 2.287
1 1 0.8116

3 1.2974
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Nomenclature

a: Stretching rate constant [s− 1]

t: +ermal stratification parameter
T: Temperature of the fluid [K]

b, c, d: Dimensionless constants
Tr: Temperature ratio parameter [K]

B0: Magnetic field strength
T0: Reference temperature [K]

C: Concentration field [Kgm− 3]

Tw: Temperature at wall surface [K]

C0: Reference concentration [Kgm− 3]

T∞: Ambient temperature [K]

Cw: Concentration at the wall of the surface
Uw: Velocity of the surface [ms− 1]

C∞: Ambient concentration [Kgm− 3]

u, v: Fluid velocities along x, y axes [ms− 1]

DT: +ermophoretic diffusion coefficient
DB: Brownian diffusion coefficient
Ec: Eckert number
x, y: Coordinate axes along and perpendicular to the

surface
f: Dimensionless stream function
g: Gravitational acceleration [ms− 2]

Gr: +ermal Grashof number.

Greek Symbols

j: Micro inertia density
ϕ: Dimensionless concentration [Kgm− 3]

k: Vortex viscosity
ω: Dimensionless stream function
K: Micropolar material parameter
ρf: Density of fluid [Kgm− 3]

k∗: Mean absorption coefficient
ρp: Density of nanoparticles [Kgm− 3]

Kc: Chemical reaction parameter
σ: Electrical conductivity [Ω− 1m− 1]

Kp: Porosity parameter
σ∗: Stefan–Boltzmann constant
k∗p: Permeability of porous medium
βc: Volumetric coefficient of solutal expansion
K∗r : Reaction rate constant
Le: Lewis number
βT: Volumetric coefficient of thermal expansion
M: Magnetic parameter
m: Microgyration parameter
μ: Dynamic viscosity [Kgm− 1s− 1]

N: Angular velocity component [ms− 1]

αf: +ermal diffusivity [m2s− 1]

Nb: Brownian motion parameter
η: Similarity variable
Nt: +ermophoresis parameter
θ: Dimensionless temperature [K]

Pr: Prandtl number
λ: Mixed convection parameter
Q: Heat source
δ: Buoyancy ratio parameter
qr: Radiative heat flux

c: Spin gradient viscosity
Rd: Radiation parameter
τ: Relative heat capacity
Re: Local Reynolds number
S: Dimensionless heat source.

Subscripts

s: Solutal stratification parameter
f: Base fluid.
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