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Abstract: We study modulation instability (MI) in both anomalous and normal dispersion regimes 

of a coherently coupled system. It is found that there exist three types of MI spectra with distinct 

characteristics termed baseband, passband, and zero-baseband based on the instability analysis of 

the in-phase and out-of-phase CW solutions. The coherent coupling nonlinearity is the source of 

the passband and zero-baseband variants. Guided by analytical predictions, we investigate 

numerically the excitation of rogue waves on weakly perturbed in-phase and out-of-phase 

continuous wave solutions in the parameter space where different kinds of MI exist. Simulations 

provide supporting evidence that rogue waves can only emerge in regimes where baseband or 

zero-baseband MI occurs. Moreover, the peak intensity of rogue waves in the case of baseband MI 

is greater than in the zero-baseband case. Finally, a combination of analysis and numerics 

uncovers the parameter conditions necessary for the generation of rogue waves. 
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1. Introduction 

Rogue waves (RWs) – initially observed as giant waves appearing suddenly on the ocean 

surface – have become important when describing nonlinear phenomena across many physical 

contexts [1-7]. Although some uncertainty still remains on the exact origins of RWs, there is 

general agreement that modulation instability (MI) and the collision of breathers are important 

building blocks [8-12]. Recently, researchers found that MI is a necessary but not sufficient 

condition for RW generation [13-15]. In other words, some kinds of MI are not responsible for the 

excitation of RWs. Within the framework of the Manakov and Fokas-Lenells equations, Baronio et 

al. [13, 14] discovered that baseband MI (defined as the spectral region of MI containing the 

zero-frequency perturbation as a limiting case) coincides with RW generation, while passband MI 
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(the spectral region of MI not including the zero-frequency perturbation) leads only to a train of 

nonlinear oscillations. Also importantly, Zhao et al. [15] found that RWs may emerge from MI 

with a resonance perturbation by investigating the connections between instability and several 

nonlinear waves governed by nonlinear Schrödinger (NLS) equations. Chen et al. [16, 17] 

investigated the RW on periodic standing wave and its relation with the MI of periodic standing 

wave. Therefore, a detailed study of MI and its link to RWs in different nonlinear systems is 

instructive for uncovering the true origin of RWs. 

MI describes the exponential growth of small perturbations on a continuous wave (CW) 

background. It is related to many important nonlinear processes in addition to RW formation, such 

as supercontinuum generation [18] and soliton generation [19]. Although linear stability analysis 

has limitations that have been corrected using the exact weakly nonlinear theory of wave 

propagation, it still plays a significant role for MI analysis [20, 21]. Based on linear stability 

analysis, it is found that the MI of freely-propagating waves only occurs in the focusing regime for 

a nonlinear system governed by the standard NLS equation [20]. However, in multi-component 

generalizations, the focusing regime is not a necessary condition for MI. For example, MI can 

exist in the defocusing regime due to the cross-phase modulation between two different waves [22, 

23]; subsequent experiments with two polarization modes [24, 25] verified that theoretical 

prediction. Indeed, MI in multi-component systems is a more complicated problem than in typical 

single-component systems, and so they potentially yield new and rich RW patterns [26-28]. For 

example, Chan et al. [26] discovered additional MI regimes and novel RW structures linked to 

group-velocity mismatch in coupled multi-wave systems. The novel wave-based phenomena 

found in coherently coupled systems give rise to additional complexity due to the existence of 

additional mechanisms for energy transfer between the two constituent waves [29, 30]. 

An obvious question to pose is, what happens to perturbed CW solutions in coherently 

coupled systems with different parameters? Furthermore, in which parameter spaces can RWs be 

excited? And what is the difference between the properties of RWs in the various parameter spaces? 

To answer these questions, in section 2 we investigate MI in a coherently coupled nonlinear 

system by using the linear stability analysis, and discuss the influence of coherent coupling on MI 

spectra. Based on that analysis, in section 3 we study numerically the emergence of RWs in 

parameter spaces where different kinds of MI are present. We also obtain the parameter conditions 

for RW generation. Conclusions are drawn in section 4. 

2. Modulation instability in the coherently coupled nonlinear Schrödinger system 

A coherently coupled nonlinear system can be described by the following system of two 

dimensionless NLS-type equations [29], 
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Here, u  and v  are the wave envelopes, 1  represents the nonlinearity coefficient, while 2  

and 3  denote incoherent and coherent coupling coefficients, respectively. In nonlinear fiber 

models, z  and t  are the propagation distance and time respectively; 1  and 2  are the self- 

and cross-phase modulation coefficients, respectively, while 3  
is the four-wave mixing 

coefficient (which can be neglected in the case of large birefringence) [30, 31]. In the context of 

Bose-Einstein condensates, z  and t  are, respectively, the time and the space coordinates; 1  

and 2  are the intra- and inter-component strengths, while 3  describes the pair-transition effect 

caused by the interaction between atoms [32]. 

System (1) has the CW solution 

 01 0( , ) exp ( )u z t A i z t = + ,                        (2a) 

 01 0( , ) exp ( )v z t A i z t =  + .                       (2b) 

Here, 0A ,   and 
2 2

1 2 3 0( )A    = + + −  are the amplitude, frequency, and wave number, 

respectively. These waves are in-phase or out-of-phase when the “+” or “-” sign, respectively, is 

adopted in Eq. (2b).  

For 3 1 2  = − , system (1) possesses the more general CW solution 

 02 1( , ) exp ( )u z t A i z t = + ,                       (3a) 

 02 2( , ) exp ( )v z t A i z t = + ,                       (3b) 

where 
2 2 2

1 1 2( )A A  = + − . Finally, when 1 2  = =  and 3 0 = , system (1) reduces to the 

Manakov equation, for which the well-known CW solution is [13, 33] 

 03 1 1 1( , ) exp ( )u z t A i z t = + ,                    (4a) 

 03 2 2 2( , ) exp ( )v z t A i z t = + ,                   (4b) 

where 
2 2 2

1 2( )j jA A  = + − , 1,2j = . 

The effect of birefringence on the MI of CW solution (3) is studied in Ref. [27], and RWs 

with ultra-high amplitudes are presented in Ref. [29]. The link between the type of MI and RWs in 



the Manakov system is revealed in Ref. [13] by comparing the existence condition of the RW 

solution and the parameter spaces where different MI regimes occur. Here, we are interested in 

quantifying how novel effects arising from the interactions between parameters 1 , 2  and 3  

impact their MI spectra and potential for RW generation. Therefore, we consider the CW solution 

(2) and begin by perturbing it according to 

 01 1( , ) ( , ) 1 ( , )u z t u z t q z t= + ,                       (5a) 

 01 2( , ) ( , ) 1 ( , )v z t v z t q z t= + .                      (5b) 

The functions 1q  and 2q
 
represent weak perturbations (i.e., having magnitudes much less 

than unity) in the two components. Substituting Eq.(5) into Eq. (1) and ignoring high-order terms 

of perturbation, one can obtain the following linearized equations 

2 * 2 2 * 2

1 1 1 1 3 0 1 1 3 0 1 2 0 2 2 3 0 22 + ( ) ( ) ( 2 ) 0z t ttiq i q q A q A q A q A q        + + + + − + + + = ,  (6a) 

2 * 2 2 * 2

2 2 2 1 3 0 2 1 3 0 2 2 0 1 2 3 0 12 + ( ) ( ) ( 2 ) 0z t ttiq i q q A q A q A q A q        + + + + − + + + = .  (6a) 

Assuming the weak perturbations 1q  and 2q  have the form [20, 22, 34, 35] 

   1 11 12( , ) exp ( ) exp ( )q z t q i Kz t q i Kz t= − + − − ,         (7a) 

   2 21 22( , ) exp ( ) exp ( )q z t q i Kz t q i Kz t= − + − − ,          (7b)
 

where K  and   are the wave number and frequency of the perturbations, we substitute the 

weak perturbation (7) into Eq. (6), and then obtain a set of four linear coupled equations as 

following 
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where 
2 2 2

0 1 0 3A A   = −  − . 

In order to admit nontrivial solutions of the set of equations (8), the determinant of the 4 4  

matrix in Eq. (8) requires to vanish, which results in the following dispersion relation 

4 3 2

3 2 1 0 0K B K B K B K B+ + + + = ,                         (9) 
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3 8B = −  .                                                         (10d)

Dispersion relation (9) possesses two pairs of roots, 

1,2 12K  =    ,                            (11a) 

3,4 22K  =    ,                            (11b) 

where the discriminants are 
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Since MI arises from a non-vanishing imaginary part of K , the signs of the discriminants in 

Eqs. (12a) and (12b) are associated with the existence of any instability. CW solution (2) is thus 

robust against small perturbations when 1  and 2  are both positive, and susceptible to 

perturbations when at least one of them is negative. The MI gain spectrum exhibits two pairs of 

spectral sidebands when 1  and 2  are both negative. Here, we define MI-A and MI-B for 

parameter regimes where 1 0   and 2 0  , respectively. Obviously, the MI characteristics of 

the CW solution are determined both MI-A and MI-B. It is also worth noting that if pairs of 

perturbation amplitudes are the same, i.e. 11 21=q q  and 12 22=q q  in Eq. (7), then dispersion 

relation (9) will reduce to a quadratic equation whose two roots are given in Eq. (11a). In that case, 

MI is determined solely by 1  [cf. Eq. (12a)]. 

One may quantify MI by way of dispersion relation (9). For definiteness in the following 

analysis, we set 1 =
 
(anomalous dispersion) or 1 = −  (normal dispersion). Schematic plots 

of the MI-A gain 1,22Im( )AG K=  versus the frequency   and the coherent coupling 

nonlinearity 3  are shown in Fig. 1. It can be seen that MI-A occurs when 3  exceeds the 

threshold value th1 1 2= ( )  − +  for anomalous dispersion [Fig. 1(a)], but it occurs when 3  is 



less than the threshold value th1  for normal dispersion [Fig. 1(b)]. In both regimes, MI-A 

behaves exactly like baseband MI [Fig. 1(c)]. 

 

Fig.1. Schematic plots of MI-A gain as functions of frequency   and coherent coupling nonlinearity 
3  in the 

(a) anomalous and (b) normal dispersion regimes. (c) The cross-sectional views of (a) for 3 1 2> -( )  +  and (b) 

for 3 1 2< -( )  + . The cyan solid lines in (a) and (b) represent 2 2

0 1 2 3=2 ( ) /A     + + . The adopted 

parameters are 1=1 , 2 2 = − , (a) =1 , (b) 1 = − . 

 

Fig.2. Schematic plots of MI-B gain as functions of frequency   and coherent coupling nonlinearity 
3  in the 

(a) anomalous and (b) normal dispersion regimes for different relations between 
1  and 

2 . The green solid line 

and green dotted line denote 2 2

0 34A   = −  and 2 2

0 1 2 32 ( )A     = − − , respectively. The adopted parameters 

are 1=1 , (a1) =1 , 2 2 = − , (a2) =1 , 2 1 = , (a3)
 

=1 , 2 2 = , (b1) 1 = − , 2 2 = − , (b2)
 

1 = − , 

2 1 = , (b3) 1 = − , 2 2 = . 

Figure 2 depicts the dependence of the MI-B gain 3,42Im( )BG K=  on   and 3  for 

different relations between 1  and 2 . There is again a threshold value, 

th2 1 2sgn[ ] max{sgn[ ] ( ),0}    =   − ; MI-B occurs when 
3 th2   for anomalous dispersion, 

and when 
3 th2   for normal dispersion. It is worth noting that there is a stable critical point 

3 2 1c  = −  for 1 2   in the anomalous dispersion regime, and for 1 2   in the normal 



dispersion regime. Figure 3 shows cross-sectional views of the MI-B gain spectra in Fig 2 for 

different 3 . It is evident that MI-B behaves rather differently from MI-A because two other 

kinds of spectral structure appear in addition to the familiar baseband contribution (blue solid 

lines). One kind (black dash-dot lines) behaves exactly like passband MI [13, 14]. The 

characteristics of the other (red dotted lines) are qualitatively different from those of both 

baseband and passband MI; this second kind is referred to as zero-baseband MI. 

 

 

Fig.3. The corresponding cross-sectional views of the MI-B gain spectra in Figs. 2(a1-a3) and (b1-b3) at different 

3 . 

 

Fig.4. Division of the 1 2[ ]   plane in the (a) anomalous and (b) normal dispersion regimes. Zones 1 to 9 for (a) 

and (b) are specified in the text. 

As mentioned above, the instability of the CW solution is determined by both MI-A and 

MI-B. By comparing the values of 3  corresponding to the boundaries between different MI 

regimes in Fig. 1 and Fig. 2, the 1 2[ ]   plane in both dispersion regimes can be divided into 

nine zones. As shown in Fig. 4(a), the zones for anomalous dispersion are labelled Zone 1 



2 1 0   , Zone 2 
1 20    − , Zone 3 

2 10   −  , Zone 4 
2 10    , Zone 5 1 2 0 =  , 

Zone 6 1 20    , Zone 7 2 1 0 −   , Zone 8 1 2 1 2&     − , and Zone 9 1 2 0 =  . 

Similarly, the nine zones for normal dispersion are labelled Zone 1 
2 1 0   , Zone 2 

1 20    − , Zone 3 
1 2 1 2&    −  , Zone 4 1 2 0 =  , Zone 5 1 20    , Zone 6 

2 1 0 −   , Zone 7 2 10    − , Zone 8 1 2 0   , and Zone 9 1 2 0 =   , as shown in 

Fig. 4(b). The dependence of MI gain on   and 3  in the different zones for anomalous and 

normal dispersion regions is shown in Figs. 5 and 6, respectively. It can be seen that if MI occurs, 

only the baseband contribution is present in both anomalous and normal regimes when the 

coherent coupling nonlinearity is absent ( 3 =0 ). Therefore, the existence of passband and 

zero-baseband contributions is due to the presence of 3  alone. More detailed analysis reveals  

 

 

Fig.5. Schematic plots of anomalous-dispersion MI gain as functions of frequency   and coherent coupling 

nonlinearity 3  for different parameter spaces located in zones 1 to 9. The adopted parameters are =1 , (a) 

1 1 = − , 2 2 = − , (b) 1 1 = , 2 2 = − , (c)
 1 2 = , 2 1 = − , (d) 1 2 = , 2 1 = , (e)

 1 1 = , 2 1 = , (f) 1 1 = , 

2 2 = , (g) 1 1 = − , 2 2 = , (h) 1 2 = − , 2 1 = , (i) 1 1 = − , 2 1 = − . 



 

Fig.6. Schematic plots of the normal-dispersion MI gain as functions of frequency   and coherent coupling 

nonlinearity 
3  for different parameter spaces located in zones 1 to 9. The adopted parameters are 1 = − , 

(a), 1 1 = − , 2 2 = − , (b) 1 1 = , 2 2 = − , (c)
 1 2 = , 2 1 = − , (d) 1 1 = , 2 1 = , (e)

 1 1 = , 2 2 = , 

(f) 1 1 = − , 2 2 = , (g) 1 2 = − , 2 1 = , (h) 1 2 = − , 2 1 = − , (i) 1 1 = − , 2 1 = − . 

that for anomalous dispersion, the introduction of 3 0   may lead to passband and 

zero-baseband MI, while 3 0   can lead only to zero-baseband MI (see Fig. 5). However, for 

normal dispersion, the introduction of 3 0   can lead only to zero-baseband MI, while 3 0   

may lead to passband and zero-baseband MI (see Fig. 6). It should be noted that the above results 

are based on the analysis of CW solution (2). 

3. RW excitation by localized perturbation in different parameter spaces 

Having been fairly exhaustive exploring MI in Section 2, it is clear that there are many new 

possible avenues for potential RW excitation. Using the split-step Fourier method, we now 

perform simulations in different parameters spaces to solve perturbed initial-value problems of the 

form 

 01 1(0, ) (0, ) 1 ( )u t u t g t= + ,                       (13a) 

 01 2(0, ) (0, ) 1 ( )v t v t g t= + ,                       (13b) 



where ( )ig t ( 1,2i = ) denotes local disturbances at 0z = . Three common forms for 

perturbations were tested: Gaussian 2

0( ) exp[ ( ) / ]i i i ig t t t w= − − , super-Gaussian 

4

0( ) exp[ ( ) / ]i i i ig t t t w= − − , and hyperbolic secant 
0( ) sech[( ) / ]i i i ig t t t w= −  [36, 37], where 

in each case the real constants 
i , 

iw , and 
0it  determine the initial amplitudes, widths, and 

positions, respectively. The simulations were found to be largely independent of whatever form 

was used, which is a finding consistent with Ref. [36]. Hence, for illustrative purposes, only a 

selection of results for Gaussian perturbations is shown here. 

 

Fig.7. Typical numerical results for the in-phase CW solution with Gaussian perturbations for different parameter 

spaces in Fig. 5(a) when 1 2( ) ( )g t g t . 1 , 2 , and 3  are located in the parameter spaces of Fig. 5(a), where 

(a) baseband MI, (b) modulation stability, (c) zero-baseband, and (d) passband MI occur. The other parameters are 

1=0.01 , 1=0.5w , 01=0t , 2 =0 . A RW is highlighted by a red dashed ellipse in (a) and (c). 



We begin by considering the evolution of an in-phase wave when the two initial perturbations 

differ from one another, i.e. 1 2( ) ( )g t g t . Figures 7(a)-7(d) present typical numerical solutions 

from the various parameter spaces in Fig. 5(a), where baseband MI, modulation stability, 

zero-baseband MI and passband MI occur, respectively. These simulations show that a RW 

(highlighted by a red dashed ellipse) can be excited in the parameter spaces for baseband and 

zero-baseband MI [Figs. 7(a) and 7(c)]. However, the solution splits into sets of pulses in the 

parameter spaces for modulation stability and passband MI [Figs. 7(b) and 7(d)]. Moreover, the 

maximal intensity of the RW in the case of zero-baseband MI is somewhat smaller than that in the 

case of baseband MI [compare Figs. 7(c) and 7(a)]. 

We have also performed extensive simulations of the in-phase CW solution in different 

parameter spaces of Figs. 5(b-i) and Fig. 6, along with the corresponding out-of-phase CW 

solution. The results were always consistent with those presented in Fig. 7 though, for brevity, 

they are omitted here. The key physical prediction to emerge is that a RW can be excited from 

both in-phase and out-of-phase CW solutions in parameter spaces where baseband or 

zero-baseband MI occur. In contrast, perturbations to an in-phase or out-of-phase CW solution 

tend to cause a splitting into pulses in parameter spaces where passband MI or modulation 

stability occurs.  

Combining the analysis of MI with supporting simulations, it can be inferred that when MI 

occurs, a RW can be excited if  3 th3 1 2 1 2min 0, , ( )      = − − +  in the anomalous dispersion 

regime, or if  3 th4 1 2 1 2max 0, , ( )      = − − +  in the normal dispersion regime. Some special 

cases of these results have been reported elsewhere. Based on system (1) with =1 / 2 , 

1 3=  =  and 2 =2  , Ling et al. [38] obtained the RW solution for =1  but reported soliton 

solutions only for = 1 − ; Zhang et al. [39] found that MI occurs when =1  and that 

modulation stability appears for = 1 − . In our work, the parameter space with =1  

corresponds to the red line in Fig. 5(f), where baseband MI appears; the parameter space with 

= 1 −  corresponds to the stable critical point shown by red line in Fig. 5(a). Sun et al. [40] took 

the in-phase CW solutions as a seed and obtained RWs via the Darboux transformation of system 

(1) with =1 , 1 =2 , 2 =4 , and 3 2 = − . The parameter space in Ref. [40] corresponds to the 

magenta line in Fig. 5(f), where baseband MI occurs. Obviously, the conclusions presented here 

are more general. 

Finally, we consider the evolution of CW solutions subject to identical initial perturbations, 

i.e. 1 2( ) ( )g t g t= . As mentioned in Section 2, when the perturbations in the two components are 



the same, dispersion relation (9) possesses only one pair of roots 1,2K , so that MI is completely 

determined by MI-A. In such a scenario, only baseband MI exists. Figures 8(a)-8(d), respectively, 

show a set of simulations for perturbed in-phase CW solutions under the condition 1 2( ) ( )g t g t=  

for the different parameter spaces of Fig. 5(a). It can be seen that a RW (highlighted by the red 

dashed ellipse) can be excited from a perturbed in-phase CW solution in the parameter space 

where baseband MI occurs, while the same solution splits into smaller pulses in other parameter 

spaces (which is agreement with the analysis in Section 2). 

 

Fig.8. Typical numerical results for the in-phase CW solution with Gaussian perturbations for different 

parameter spaces in Fig. 5(a) when 1 2( ) ( )g t g t= . The adopted parameters in (a-d) are the same as those in Figs. 

7(a-d), respectively, except for 2 =0.01 , 2 =0.5w , and 02 =0t . A RW is highlighted by a red dashed ellipse in (a), 

and only the u component is presented (the v component shows very similar behaviour). 

4. Conclusions 

In the framework of coherently coupled system (1), we have mapped out the MI 

characteristics of the in-phase and out-of-phase CW solutions in both anomalous and normal 

dispersion regimes. It has been found that when the initial perturbations in the two components are 

identical, only baseband MI can occur. However, when the initial perturbations are different 

(thereby introducing a symmetry-breaking element), there appears a richer and much more 

intricate spectral structure: baseband, passband, and zero-baseband MI. Moreover, one may 

attribute coherent coupling nonlinearity directly to the existence of passband and zero-baseband 

MI phenomena. 

Based on the analysis of dispersion relation (9), we have addressed numerically the 

possibility of exciting RWs from in-phase and out-of-phase CW solutions (subject to Gaussian 

perturbations) in those parameter spaces where three types of MI are supported. Simulations have 



revealed that RWs emerge only when baseband or zero-baseband MI occur. Moreover, the peak 

intensities of RWs in the zero-baseband case are typically less than those in the baseband case. 

By combining analysis and numerics, we have found that when MI is present, RWs can be 

generated by perturbing either in-phase or out-of-phase CW solutions if 3  exceeds the threshold 

th3  in the anomalous dispersion regime, or if 3  falls below the threshold th4  in normal 

dispersion regime. Our results, thus, extend over the entire parameter space of system (1) and, in 

that way, go beyond what has been published to date [27, 39]. Moreover, the thresholds reported 

here are key research findings that are essential for identifying regions of parameter space capable 

of supporting RW formation without needing to solve system (1) directly. 
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