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Abstract

Breast cancer is one of the most common diseases among women worldwide. It is consid-

ered one of the leading causes of death among women. Therefore, early detection is neces-

sary to save lives. Thermography imaging is an effective diagnostic technique which is used

for breast cancer detection with the help of infrared technology. In this paper, we propose a

fully automatic breast cancer detection system. First, U-Net network is used to automatically

extract and isolate the breast area from the rest of the body which behaves as noise during

the breast cancer detection model. Second, we propose a two-class deep learning model,

which is trained from scratch for the classification of normal and abnormal breast tissues

from thermal images. Also, it is used to extract more characteristics from the dataset that is

helpful in training the network and improve the efficiency of the classification process. The

proposed system is evaluated using real data (A benchmark, database (DMR-IR)) and

achieved accuracy = 99.33%, sensitivity = 100% and specificity = 98.67%. The proposed

system is expected to be a helpful tool for physicians in clinical use.

1. Introduction

Breast cancer is one of the most commonly diagnosed malignancies in women around the

world [1]. In 2018, breast cancer reached approximately 15% of registered cases of cancer-linked

death among women [2, 3]. Breast abnormalities can be detected by self-examination, physi-

cians, or imaging techniques. The only way to assure whether there is cancer or not is biopsy

[4]. There are several breast imaging techniques (for examples ultrasound, mammography. . .

etc), which are currently being used for early detection of breast cancer [5]. The leading and

most popular screening modality is the mammography due to the relatively high-accuracy, low-

cost, and high detectability [6, 7]. Mammograms can provide an effective imaging tool for high

accuracy for breast cancer detection and classification. However, its performance is known to

be weak in some cases especially for patients with dense breast tissues [8]. Moreover, it may lead
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to sever side-effects related to ionized radiation for young age ladies [9]. Moreover, it is known

that observing small size lesion less than 2 mm is difficult using mammograms [10]. These limi-

tations lead to a high interest in thermography, which is an emerging technology in breast can-

cer screening. Thermography is a radiation-free, low-cost, non-inclusive, and non-invasive

technique [11]. Therefore, it can be used to detect early-stage breast cancer in young women

and individuals with dense breasts.

The main idea of thermography is that all living bodies emit infrared (IR) above absolute

zero [1, 8]. A thermal infrared camera converts IR radiation into electrical signals, which are

shown as a thermogram, in the breast thermography modality [12]. Therefore, potential

abnormalities are emphasized and separated from normal tissue as it has a different tempera-

ture scale [13, 14]. Breast thermography has several advantages over mammography, including

its ability to work with dense breast tissues, effectiveness across all age groups, and ease of use

for male patients [5]. Thermography is known for being safe (non-ionized radiation), quick,

and leads to early detection of breast cancer [5]. Fig 1 presents the procedure for breast

thermography.

Breast area segmentation is a technique for separating the breast region from other parts of

the body in thermal images, is an important step in any breast cancer detection system [15]. As

much as possible, the extracted region must include all breast tissues, ducts, lobules and lymph

nodes. Breast segmentation process ranges from a totally manual to a fully automatic. Because

of the unique properties of each breast, which make them amorphous, and the lack of clear

boundaries in this type of images, most scientific researches prefer to extract the breast region

by using manual or semi-automatic extraction process.

During the last decades, scientific researches were focused on machine learning methods

concerned with the diagnosis of breast cancer using thermography; some researchers concen-

trate their work on determining the size and location of tumors; but others have been concen-

trated on characteristics such as acquisition protocols and breast quadrants. Deep learning is

one of machine learning methods, which uses multilayer convolutional neural networks

(CNN) [16]. Deep learning has the ability to automatically extract features from a training

dataset [7]. In recent years, scientists have achieved promising results with CNNs for the diag-

nosis of breast cancer. In the past, the usage of CNNs for the diagnosis of breast cancer with

thermal images was not widely used, maybe because of the efficiency of CNNs in comparison

with texture or statistical features, or because of the high of computational load [17]. In recent

years, CNNs were considered as one of the leading methods for pattern recognition.

The thermal image contains incorporates superfluous areas as neck, shoulder, chess and

other parts of the body which behaves as noise during the training in CNN models. However,

thermography images are difficult to process due to low-resolution in image spatial domain, it

is necessary to extract the breast area from the thermal images which considered as a critical

task as the results of the classification process are highly depended on segmentation results.

As previously mentioned, breast cancer is considered one of the leading causes of death

among women. Therefore, early detection is necessary to save lives. Thermography imaging is

an effective diagnostic technique which is used for breast cancer detection with the help of infra-

red technology, but it is dependent on the radiologist’s ability to interpret the thermogram. To

the best of knowledge, the prior work has some limitations such as: (1) the limitation of the

dataset, (2) some researches of the related work did not consider segmentation of the breast

area before classification or extract the breast area manually, (3) some segmentation models

removed parts of the breast, and (4) some researches evaluate their model by calculating the

accuracy metric only. However, if the dataset is unbalanced, model’s high accuracy rate does

not guarantee its ability to discriminate distinct classes equally [18]. Therefore, a fully automatic

breast cancer detection system from thermograms is needed to diagnose the disease.
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In this study, we propose a fully automatic breast cancer detection system. First, U-Net net-

work is utilized to automatically extract and isolate the breast area from the rest of the body in

thermograms. Second, we propose a deep learning model, which is trained for the classifica-

tion of abnormal breast tissues using thermal images. The proposed method consists of three

main phases, resizing, breast area segmentation and deep learning model for classification. In

resizing phase, the thermal images are resized to a smaller size to accelerate computation. In

breast area segmentation phase, the breast region is extracted automatically by using U-Net

network. In deep learning model for classification phase, we proposed a deep learning model

based two-class CNN, which is trained from scratch and used for the classification of normal

and abnormal breast tissue.

The main contribution of this paper is as following:

1. Extracting and isolating the breast area automatically from other parts of thermal images by

using CNN (U-Net).

2. Proposing a deep learning model for the classification of normal and abnormal breast tis-

sues from thermograms

3. Evaluating the performance of the proposed model using accuracy, sensitivity and

specificity.

4. Comparing the proposed model with state-of art methods.

The structure of the paper is as follows. Section 2 explains the literature review and Section

3 explains the proposed method. Section 4 contains the experimental results. Finally, the paper

is discussed in section 5 and concluded in section 6.

2. Literature review

The majority of efforts related to the diagnosis of breast cancer from thermogram use the web

available DMR-IR database [19]. In this section, we will present a review of some studies using

the DMR-IR database.

Any Computer-Aided Detection (CAD) system for breast cancer detection can be separated

into principally three phases: segmentation process, feature extraction and classification. The

thermal image contains incorporates superfluous areas as neck, shoulder, chess and other

parts of the body, but during the training in CNN models or during the feature’s identification

process, this data acts as noise. Therefore, several authors have focused their research on

decrease as much non-relevant information as possible and extracting region of interest (ROI)

Fig 1. Breast thermography procedure (thermal image is aquired at room temperature = 22˚C).

https://doi.org/10.1371/journal.pone.0262349.g001
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instead of identifying patterns in thermograms. Mahmoudzadeh et al. [20] used extended hid-

den Markov models (EHMM), BayesNet and Random Forest for the optimization of breast

segmentation techniques. But, the proposed method can be used only as a first stage in auto-

matic or semi-automatic system. Also, the of the algorithm need to be improved in case of

online application. Ali et al. [1] proposed an automatic segmentation method for ROI extrac-

tion from breast thermograms based on the normal and abnormal breasts based on statistical

and texture features extracted from ROI. But, the presented method has a limitation of dataset.

Also, by this method some lower parts of the breast will be removed. Gaber et al. [8] Proposed

an enhanced segmentation method based on both Neutrosophic sets (NS) and optimized Fast

Fuzzy c-mean (F-FCM) algorithm. Then, they used different kernel functions of Support Vec-

tor Machine (SVM) to detect normal and abnormal breast. They obtained accuracy = 92.06%,

recall = 96.55% and precision = 87.50%. But, the proposed segmentation method implemented

on a limited number of dataset.

The main process in CAD system is Feature Extraction. This aims to extract certain features

from a breast thermogram, analyze and compare these features to obtain significant results.

This process will reduce the complexity of classification process. Araujo et al. [21] presented a

symbolic data analysis on 50 patients’ thermograms and obtained the interval data in the sym-

bolic data analysis and statistical analysis. They proposed three-stage feature extraction

method. In the first stage, maximum and minimum temperature value from thermal images

processed by morphological operations are extracted. In the second stage, interval features are

extracted and continuous features are produced. In the third stage, Fisher’s criterion is used to

transform the continuous features to new feature space which produce the input data to the

classification process. They used a leave-one-out cross validation method during the training

process. They reached sensitivity = 85.7% and specificity = 86.5%. De Santana et al [22] study

the performance of several classification techniques and group the thermal images into one of

the following groups: benign lesion, malignant lesion and cyst with the use of Haralick and

Zernike descriptors for attributes extraction. They use Artificial neural networks (ANN),

Multi-layer perceptron (MLP), Extreme learning machines(ELM), decision trees (DT) and

Bayesian classifiers to perform the classification. They achieved accuracy of 76.01% by using

MLP as classifier with 10-fold cross validation. Milosevic et al. [23] extracted 20 Gray Level

Co-occurrence Matrices (GLCM) features from 40 thermal images. They used Support Vector

Machine (SVM), K-Nearest Neighbor (kNN) and Naïve Bayes (NN) as Classifiers. Also, they

used K-fold cross validation method with K = 5 and achieved accuracy = 92.5% by using kNN

classifier and Sensitivity = 85.7% by using SVM and Naïve Bayes as classifier. The proposed

system extracted the breast area manual and results can’t be generalized due to limitations of

the dataset. Dey et al. [24] extract 112 features by using texture features and entropy features.

They used DT, KNN, SVM1 and SVM-RBF (SVM2) as classifiers. The proposed system

attained an overall accuracy>89%. But, the breast area is extracted manually and a limited

number of dataset is used to evaluate the proposed system Francis et al. [25] presented a curve-

let transform-based feature extraction approach to detect breast abnormality from thermal

images. The curvelet transform enhances the accuracy of the classification process by repre-

senting edges and distinctiveness in curves in an image. They obtained accuracy = 90.91%,

Sensitivity = 81.82% and Specificity = 100% by using SVM as classifier. Pramanik et al. [26]

calculated discrete wavelet transform to determine the initial feature point image of each ther-

mal image. They used Principal Component Analysis (PCA) to reduce feature matrix dimen-

sion. Also, they used a feed-forward Perceptron on 306 thermal images and achieved

accuracy = 90.48%, sensitivity = 87.6% and specificity = 89.73%. Rajinikanth et al. [27] pro-

posed an automated breast cancer detection system from thermal images. They used two fea-

ture extraction pipelines (1) saliency enhancement, morphological segmentation and GLCM
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feature mining and, (2) Local-Binary-Pattern (LBP) enhancement and feature extraction.

Then, serial feature integrations are implemented and Marine-Predators-Algorithm (MPA) is

used to choose the optimized features. The optimized features are used to evaluate the perfor-

mance of different SVM classifiers. They achieved accuracy of 93.5 by using SVM cubic

(SVM-C) and SVM Coarse Gaussian (SVM-CG).

Deep learning approaches have recently been developed to extract characteristics and

improve the efficiency of medical image analysis. Deep learning is one of machine learning

methods, which uses multilayer convolutional neural networks (CNN). Unlike other feature

extraction techniques, the CNN is able to extract the features of the images from the dataset

directly. This type of feature extraction is used to extract features from different parts of the

image using convolution. Mambou et al. [28] proposed a deep neural network (DNN) model

depending on a pre- trained Inception V3 model [29] for the classification of sick breast and

healthy breast. They involved SVM classifier in the case of an uncertainty in the output of the

DNN; additionally, they catch attention to the breast’s physical model camera sensitivity.

Gomaz et al. [17] study the impact of data preprocessing, data augmentation and the size of

database versus a proposed set of CNN models. Also, they used a tree Parzen estimator to

develop a CNN hyper-parameters fine- tuning optimization model. They achieved an accuracy

of 92% and F1-score of 92%. Cabıoğlu and Oğul [30] designed various CNNs by using transfer

learning technique. They achieved an accuracy of 94.3%, a precision of 94.7% and a recall of

93.3%. But, they didn’t use a segmentation method to extract the breast area from other parts

of the thermal images. Barbosa et al. [31] used deep-wavelet neural networks(DWNN) as a fea-

ture extraction technique. They found that when features’ number increases, by adding addi-

tional levels in the DWNN, better performance can be achieved in solving the classification

problem. They obtained 95% of sensitivity and 79% of specificity. Based on bio-data, image

analysis, and image statistics. Ekici and Jawzal [32] suggested a new technique for feature

extraction. To classify the breast images as normal or suspicious, they used a CNN optimized

by the Bayes algorithm. They achieved accuracy around 99%.

From the discussed related work above, it could be remarked that the prior work has some

limitations such as:

1. some related work used a small number of the dataset as in [8, 23].

2. some related work did not consider segmentation of the breast area before classification

such as in [30] or extract the breast area manually such as in [23, 24].

3. some segmentation models such as in [1] removed parts of the breast.

4. some work has been evaluated by only calculating the accuracy metric only such as in [32].

However, the high accuracy rate of a model does not ensure its ability to distinguish differ-

ent classes equally if the dataset is unbalanced [39].

Therefore, a fully automated breast cancer detection system from thermograms is needed

and should be evaluated by not only the accuracy but also the most related metrics such as sen-

sitivity and specificity.

3. Proposed method

To automate and improve the accuracy of thermography systems, we designed a deep learn-

ing-based system which integrates U-Net network and a proposed deep learning model. The

proposed system is a combination two important methods: U-Net network and a two-class

CNN-based deep learning model. First, U-Net is a convolutional network architecture which

proved very strong in biomedical segmentation and very fast compared with other methods
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[33]. U-Net is used in our system to automatically extract and isolate the breast area from

other parts of the body which act as noise in the detection system. Second, the two-class CNN-

based deep learning model is trained from scratch to extract more characteristics from the

dataset that is helpful in training the network and improve the efficiency of the classification

process. The novelty of the proposed system lays in using U-Net network for automating the

segmentation process and building a deep learning model which use the output of U-Net to

classify the given thermogram. The combination between U-Net and our proposed deep learn-

ing model proved to be effective as it achieved accuracy = 99.33%, sensitivity = 100% and

specificity = 98.67%.

The proposed method is divided into three phases, image resizing, breast area segmentation

and deep learning model for classification. Fig 2 summarized the proposed method in a flowchart.

3.1 Image resizing

The thermal images are of size 680 × 480 pixels and its computation time will be high due to

the limitation of the PC capabilities used in this study. So, the thermal images are resized to a

smaller size of 228 × 228 pixels for faster computation.

3.2 Breast area segmentation using deep learning (CNN)

The thermal image contains unnecessary areas as neck, shoulder, chess and other parts of the

body which acts as noise during the training in CNN models. The aim of this phase is remov-

ing unwanted regions and using the areas destined to have cancer as the input of the CNN

model for training and testing.

Because finding a large training dataset in medical problems is challenging, Ronneberger

et al. proposed the U-NET network structure [33], a convolutional network architecture for

biomedical segmentation that has a good influence on smaller training datasets [34]. So, we

use U-net network for breast area segmentation from thermal images. U-net consists of a con-

tracting path (left side) and an expansive path (right side). The contracting path consists of

two 3x3 convolutions (unpadded convolutions) that are applied repeatedly, each followed by a

rectified linear unit (ReLU) and a 2x2 max-pooling operation with stride 2 for downsampling.

The number of feature channels is doubled with each downsampling step. In the expansive

Fig 2. Flowchart of the proposed method.

https://doi.org/10.1371/journal.pone.0262349.g002
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path, an upsampling of the feature map is followed by a 2x2 convolution that halves the num-

ber of feature channels, a concatenation with the proportionally cropped feature map from the

contracting path, and two 3x3 convolutions, each followed by a ReLU. Also, U-net has some

advantages such as it has a simple structure, less parameters, needs very few images for training

(approximately 30 per application) and the training time is relatively short compared with

other networks [35]. Example of U-net architecture is shown in Fig 3. The initial input dimen-

sion in UNet is depicted as 572x572. But, we define the network, so we can change the input

dimension in the input layer to the desired one.

In U-Net, to decrease the resolution of the input image, an initial set of convolutional layers

are combined with max-pooling layers. Then, in sequence, a number of convolutional layers

paired with upsampling operators are applied in order to increase the resolution of the input

image. When these two pathways are combined, a U-shaped graph is created, which can be

used to perform image segmentation. Fig 4 shows example of using U-net network for breast

area segmentation.

3.3 Deep learning model for classification

Convolution layer, Rectified Linear Activation Function (RELU) layer, max pooling layer,

fully connected layer, and dropout layer are the five parts of a CNN model. The most signifi-

cant part of CNN is the convolution layer. It consists of trainable filters and updates its param-

eters at each iteration. RELU layer is the most preferred layer in CNN architectures as it speeds

up the training process. Max pooling layer is used to reduce parameter size and control overfit-

ting. Neurons in fully connected layer are a regular neural network. Dropout layer is used to

prevent overfitting.

A two-class CNN-based deep learning model, which is trained from scratch and used to

classify normal and abnormal breast tissue, is proposed. The network has nine layers, as illus-

trated in Fig 5, with the first six being convolutional layers and the remaining three being fully

connected layers. In the proposed model, the first layer filters the input image, of size

228 × 228 pixels, with 64 kernels of size 7 × 7 with a stride of 6 pixels. Kernels of the first layer

are with depth = 3, which define the number of color channels of the input thermogram

image. After applying max-pooling, which is used to enhance the robustness and reduce the

Fig 3. Example of U-Net architecture [33].

https://doi.org/10.1371/journal.pone.0262349.g003
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computation, the output of the first layer is used as input for the second layer, filtering it with

128 kernels of size 3 × 3 × 64. Without pooling layers, the third, fourth, and fifth levels are con-

nected to each other. The third layer consists of 256 kernels with a size of 3 × 3 × 128. The

fourth layer has 256 kernels of size 3 × 3 × 256 and the fifth layer consists of 256 kernels with a

size of 3 × 3 × 256. The sixth layer is connected to the fifth layer with max-pooling layer and

has 256 kernels of size 3 × 3 × 256. On top of the convolutional layers, two fully-connected lay-

ers of 1024 neurons are connected to each other. The number of neurons in the third fully-

connected layer equals the number of classes. The output of the convolutional and the max-

pooling layers is calculated by Eqs (1) and (2), respectively.

Oconv ¼
I � K þ 2P

S
þ 1 ð1Þ

Opooling ¼
I � PS

S
þ 1 ð2Þ

Fig 4. Example of breast area segmentation with U-Net.

https://doi.org/10.1371/journal.pone.0262349.g004

Fig 5. Architecture of the proposed deep learning model.

https://doi.org/10.1371/journal.pone.0262349.g005
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where Oconv is the size of the output of the convolutional layer, I is the size of the input layer, K
is the size of kernels used in the convolutional layer, P is padding, S is the stride of the convolu-

tion operation, Opooling is the size of the output of the max-pooling layer and Ps is the pool size.

The CNN model was implemented using the Matlab 2019b platform running on a laptop com-

puter system with the following specifications: Intel (R) Core (TM) i7-2670 CPU@2.20GHZ

with 8 GB RAM.

4. Experimental results

To evaluate the proposed method, a benchmark database (DMR-IR) [19] was used. This data-

base is created by collecting the IR images from the Hospital of UFF University and published

publicly with the approval of the ethics committee where consent should be signed by any

patient. This study used a set of 1000 frontal thermogram images, captured using a FLIR SC-

620 IR camera with a resolution of 640 × 480 pixels from this database (including 500 normal

and 500 abnormal subjects). These images contain breasts in various shapes and sizes (see Fig

6). The dataset is split for segmentation and classification into training, validation and testing

sets with the ratio 70:15:15, randomly. The dataset description is included in Table 1.

4.1 Breast area segmentation using deep learning (CNN)

During the training of breast segmentation phase with U-Net network, Adaptive Moment Esti-

mation (ADAM) method was used as optimized algorithm with number of epochs = 30. Also,

the training process was started with initial learning rate = 1.0e−3. The learning rate used a

piecewise schedule and dropped by a factor of 0.3 every 10 epochs to allow the network to

train quickly with a higher initial learning rate. The network trained with an 8-batch size to

save memory. Fig 7 shows examples of breast area segmentation results.

4.2 Evaluation of the deep learning model

Classification Metrics evaluate the performance of the model and measure how good or bad

the classification is.

Accuracy: Represents how many instances are completely classified correctly. It is calcu-

lated by dividing the total number of predictions by the number of right predictions. It is

Fig 6. Different cases of breast (a) small breast (b) large breast (c) asymmetric breast.

https://doi.org/10.1371/journal.pone.0262349.g006
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calculated by Eq (3)

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð3Þ

Sensitivity: Is calculated based on how many patients have the disease are correctly esti-

mated. It is calculated by Eq (4)

Sensitivity ¼
TP

TP þ FN
ð4Þ

Specificity: Is calculated based on how many patients do not have the disease are predicted

right. It is calculated by Eq (5)

Specif icity ¼
TN

TN þ FP
ð5Þ

• True Positive (TP) refers to a positive-class sample that has been successfully classified by a

model.

• False Positive (FP) refers to a sample that should have been classed as negative but was

instead classified as positive.

• True Negative (TN) refers to a negative-class sample that has been successfully classified by a

model.

Table 1. Dataset description.

Dataset categories Dimension Training Validation Testing Total

Normal 640x480 350 75 75 500

Abnormal 640x480 350 75 75 500

https://doi.org/10.1371/journal.pone.0262349.t001

Fig 7. Breast area segmentation resuls (a) thermal image (b) ground truth (c) output.

https://doi.org/10.1371/journal.pone.0262349.g007
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• False Negative (FN) refers to a sample that should have been classed as positive but was

instead classified as negative.

The accuracy metric indicates how many of the model’s predictions were right. However, if

the dataset is unbalanced, a model’s high accuracy rate does not guarantee its ability to differ-

entiate distinct classes equally. In specifically, in the classification of medical images, it is nec-

essary to develop a model with the ability be applied to all classes. In cases, sensitivity and

specificity should be used to provide information about the performance of the model. Sensi-

tivity measures [3] the percentage of patient have the disease that the proposed model correctly

predicted. Specificity measures the percentage of patient do not have the disease and correctly

estimated by the proposed model. These two evaluation metrics measure the ability of the

model to decrease FN and FP predictions.

In the training process, we use Adaptive Moment Estimation (ADAM)method as solver

with batch size of 60 and number of epochs = 30. Also, the training process was started with

initial learning rate = 2.0e−3. According to the training parameters, we achieve accu-

racy = 99.33%, sensitivity = 100% and specificity = 98.67%. The training progress and the con-

fusion matrix of the proposed model are shown in Figs 8 and 9, respectively.

4.3 Impact of changing the training options on the classification process

We further study the impact of the training options on the classification accuracy, sensitivity

and specificity. In Table 2, we show the influence of three different solvers, Stochastic Gradient

Descent with Momentum(SGDM) [36], Adaptive Moment Estimation (ADAM) [37] and

Root Mean Square propagation(RMSprop) [38]. In this table, the training process was started

with initial learn rate = 2.0e−3, batch size was = 60 and number of epochs was = 30. The impact

of starting the training process with different number of epochs is shown in Table 3. In

Table 3, ADAM was used as solver with batch size of 60 and the initial learn rate of the training

process was 2.0e−3. In Table 4, we show the impact of using different batch size, in the training

process, on the classification accuracy, sensitivity and specificity. In this table, ADAM was

used as solver with number of epochs = 30 and the initial learn rate was 2.0e−3. In Table 5, we

show the impact of starting the training process with 32 different initial learning rates on the

Fig 8. The training progress of the proposed deep learning model.

https://doi.org/10.1371/journal.pone.0262349.g008
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classification accuracy, sensitivity and specificity. In this table, ADAM was used as solver with

batch size = 60 and number of epochs = 30

4.4 Performance of pretrained CNN models on the dataset

The performance of different pretrained CNN models such as ResNet18, GoogleNet [22],

VGG16 and AlexNet is performed on the same Dataset [39]. A comparison between the evalu-

ation metrics of pretrained CNN models and the proposed model is shown in Table 6. Accord-

ing to results in Table 6, we note that the performance of the proposed model is better than the

performance of other CNN models on this dataset except VGG16Net.

4.5 Impact of training/testing data size

The impact of dataset size is measured on the performance of the proposed model. Fig 6 plots

the performance of three evaluation metrics on different dataset size. In this part of the experi-

ment, ADAM was used as solver, number of epochs = 30, batch size = 60 and validation

data = 15%. Fig 10 shows that the dataset size is critical on the classification process.

4.6 Performance of machine learning classifier on the dataset

We further study the performance of machine learning classifier such as SVM, KNN and Deci-

sion Tree on the classification process on the same dataset. First, we extract texture features by

using Gray Level Co-occurrence Matrices (GLCM) [40] and Histogram of Oriented Gradients

(HOG) [41]. Then, we distinguish between normal and abnormal breast tissue by using the

classifiers. A comparison between the performance of machine learning classifiers with GLCM

and HOG features extraction methods and the proposed model are shown in Tables 7 and 8.

Fig 9. The confusion matrix of the proposed model.

https://doi.org/10.1371/journal.pone.0262349.g009

Table 2. Comparison between solvers (initial learn rate = 2.0e−3, number of epochs = 30 and batch size = 60).

Solver Accuracy (%) Sensitivity (%) Specificity (%)

ADAM 99.33 100 98.67

SGDM 84.17 100 68.33

RMSprop 50 100 0.0

https://doi.org/10.1371/journal.pone.0262349.t002
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4.7 Statistical analysis

To analyze the evaluation of the proposed system statistically, we perform the analysis of vari-

ance (ANOVA) test [18, 42], where the proposed system is compared with ResNet18, Google-

Net and VGG16 networks. The result of the ANOVA test is shown in Table 9. To reject the

null hypothesis, the p-value in the ANOVA test should be less than 0.05. According to Table 9,

the p−value is less than 0.05. so, the null hypothesis was rejected by the results of ANOVA test.

5. Discussion

In this study, we propose a fully automatic breast cancer detection system. The proposed sys-

tem uses U-Net network to extract the breast area from thermal images and propose a deep

learning model, which is trained for the classification of abnormal breast tissues using thermal

images. The proposed system consists of three main phases, resizing, breast area segmentation

and deep learning model for classification. In resizing phase, the thermal images are resized to

a smaller size to accelerate computation. In breast area segmentation phase, the breast region

is extracted automatically by using U-Net network. In deep learning model for classification

phase, we proposed a two-class CNN-based deep learning model, which is trained from scratch

and used for the classification of normal and abnormal breast detection.

The experimental results obtained show an overview of our contribution in (1) extracting

the breast area from the thermal images automatically (2) studying the impact of the training

options on the classification accuracy, sensitivity and specificity. (3) comparing between the

performance of pretrained CNN models such as ResNet18, GoogleNet, AlexNet, VGG16Net

and the proposed model. (4) comparing between machine learning classifier such as SVM,

KNN and Decision Tree and the proposed model. In Table 2, we study the influence of three

different solvers, SGDM, ADAM and RMSprop on the classification process. From Table 2, we

Table 3. The impact of using different number of epochs on the classification accuracy, sensitivity and specificity (solver = ADAM, initial learn rate = 2.0e−3, batch

size = 60).

Number of Epochs Accuracy (%) Sensitivity (%) Specificity (%)

10 88.67 94.67 82.67

20 97.33 100 94.67

30 99.33 100 98.67

40 100 100 100

50 100 100 100

https://doi.org/10.1371/journal.pone.0262349.t003

Table 4. Impact of using different batch size on the classification accuracy, sensitivity and specificity

(solver = ADAM, initial learn rate = 2.0e−3, number of epochs = 30).

Batch Size Accuracy (%) Sensitivity (%) Specificity(%)

10 50 100 0.0

20 100 100 100

30 100 100 100

40 100 100 100

50 100 100 100

60 99.33 100 98.67

70 98.67 100 97.33

80 95.83 100 91.67

90 91.33 100 82.66

100 83.33 100 66.67

https://doi.org/10.1371/journal.pone.0262349.t004
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can note that ADAM has the best behavior. In Table 3, we study the impact of starting the

training process with different number of epochs. From Table 3, we can obtain that when the

number of epochs is increased, accuracy, sensitivity and specificity values are increased. We

further study the impact of using different batch size, in the training process, on the

Table 5. Impact of starting the training process with different initial learn rate on the classification accuracy, sensitivity and specificity (solver = ADAM, batch

size = 60 and number of epochs = 30).

Initial learning rate Accuracy(%) Sensitivity(%) specificity(%)

9.0 e−01 50 100 0.0

8.0 e−01 50 100 0.0

7.0 e−01 50 100 0.0

6.0 e−01 50 100 0.0

5.0 e−01 50 100 0.0

4.0 e−01 50 100 0.0

3.0 e−01 50 100 0.0

2.0 e−01 50 100 0.0

1.0 e−01 50 100 0.0

9.0 e−02 50 100 0.0

8.0 e−02 50 100 0.0

7.0 e−02 50 100 0.0

6.0 e−02 50 100 0.0

5.0 e−02 50 100 0.0

4.0 e−02 50 100 0.0

3.0 e−02 50 100 0.0

2.0 e−02 50 100 0.0

1.0 e−02 50 100 0.0

9.0 e−03 50 0.0 100

8.0 e−03 50 0.0 100

7.0 e−03 83.33 100 66.67

6.0 e−03 41.07 10.0 73.33

5.0 e−03 51.67 5.0 98.33

4.0 e−03 56.67 13.33 100

3.0 e−03 83.33 100 66.67

2.0 e−03 99.33 100 98.67

1.0 e−03 99.33 100 98.67

9.0 e−04 100 100 100

8.0 e−04 100 100 100

7.0 e−04 100 100 100

6.0 e−04 100 100 100

5.0 e−04 100 100 100

https://doi.org/10.1371/journal.pone.0262349.t005

Table 6. Comparison between the performance metrics of different CNN models and the proposed model.

CNN model Accuracy Sensitivity Specificity

ResNet18 93.3 88.0 98.7

GoogleNet 79.33 84.00 74.67

AlexNet 50.0 0.0 100

VGG16 100 100 100

Proposed CNN 99.33 100 98.67

https://doi.org/10.1371/journal.pone.0262349.t006
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classification process in Table 4. From this table, we can obtain that when the batch size = 10

the behavior of the classification process is very bad and when the batch size value is from 20

to 50, accuracy, sensitivity and specificity have constant values. Also, when the batch size is

greater than 50, the accuracy and specificity values are decreased but the sensitivity has a con-

stant value. In Table 5, we show the impact of starting the training process with different initial

learning rates on the classification process. From Table 5, it is obtained that when the learning

rate is greater than 3.0 e−03, the behavior of the classification process becomes very bad except

at learning rate = 7.0 e−03. In Table 6, we perform a comparison between the performance of

pretrained CNN models such as ResNet18, GoogleNet, AlexNet, VGG16Net and the proposed

model. From Table 6, we can note that the performance of the proposed model is better than

the performance of other CNN models on this dataset except VGG16Net. In Fig 6, the impact

of dataset size is measured on the performance of the proposed model. From Fig 6, we can

note that when the training data size is increased and the testing data size is decreased the

accuracy values of the proposed model is increased except when the testing data size = 10%. In

addition, we compare between the performance of machine learning classifiers with GLCM

and HOG features extraction methods and the proposed model in Tables 7 and 8 and we can

note that our proposed model has the best result of the performance metrics. From Table 8, we

can note that KNN and Decision Tree classifiers have a very bad results on this dataset with

HOG features.

To further evaluate our proposed system, as shown in Table 10, a comparison between the

proposed system and other studies based on breast area segmentation and breast cancer detec-

tion is performed. From this table, we can note that the dataset used by our proposed system is

large compared with the dataset of some related work. Also, our system extracts the breast area

Fig 10. Evaluation metrics over different dataset size.

https://doi.org/10.1371/journal.pone.0262349.g010

Table 7. Comparison between the performance metrics of different machine learning classifier with texture features and the proposed model.

Classifier Accuracy(%) Sensitivity(%) specificity(%)

SVM 89.33 86.67 92.0

KNN 53.33 64.0 42.67

Decision Tree 82.67 96.00 96.0

Proposed method 99.33 100 98.67

https://doi.org/10.1371/journal.pone.0262349.t007
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Table 8. Comparison between the performance metrics of different machine learning classifier with HOG features and the proposed model.

Classifier Accuracy(%) Sensitivity(%) specificity(%)

SVM 78.28 73.33 86.67

KNN 20.0 20.0 20.0

Decision Tree 40.0 58.67 21.33

Proposed method 99.33 100 98.67

https://doi.org/10.1371/journal.pone.0262349.t008

Table 9. Results of the ANOVA test of the proposed model and CNN models.

Model P-value

ResNet18 0.0423

GoogleNet 0.0173

VGG16 0.0023

https://doi.org/10.1371/journal.pone.0262349.t009

Table 10. Comparison with other studies on breast cancer detection (n = normal, ab = abnormal, Ea = Early, Ac = Acute).

Ref. Segmentation method #patients /

Thermograms

Classification Method Results

[8] an enhanced segmentation method based on both

Neutrosophic sets (NS) and optimized Fast Fuzzy c-

mean (F-FCM) algorithm.

63 thermograms (29 N /

34 AB)

SVM Classifier Accuracy = 92.06%

Precision = 87.5%

Recall = 96.55%

[23] Manual 40 thermograms (26 N /

14 AB)

SVM, Naïve Bayes and KNN

classifier

Accuracy = 92.5% and

Sensitivity = 78.6% with KNN

Accuracy = 85% and

Sensitivity = 85.7% with SVM

Accuracy = 80% and

Sensitivity = 85.7% with Naïve

Bayes

[24] Manual 68 thermograms (26 Ea

/ 42 Ac)

DT, KNN, SVM and SVM-RBF Accuracy = 95.59%,

Sensitivity = 96% and

Specificity = 95.35% with

SVM-RBF

[25] Canny edge detection methods followed by gradient

operators and Hough transform for boundary

detection

Thermograms of 22

women (11 N / 11AB)

SVM Classifier Accuracy = 90.91%,

Sensitivity = 81.82%

Specificity = 100%

[26] Otsu’s threshold to remove background followed by a

reconstruction technique.

306 thermograms (183

N / 123 AB)

Feed-forward artificial neural

network with gradient decent

Accuracy = 90.48%,

Sensitivity = 87.6%,

Specificity = 89.73%

[27] Manual 600 thermograms (300

N / 300 AB)

SVM-C Accuracy = 93.5%,

Sensitivity = 93%,

Specificity = 94%

[30] Not defined 282 thermograms (147

N / 135 AB)

CNN using transfer learning Accuracy = 94.3%

Precision = 94.7%

Recall = 93.3%

[32] Projection profile analysis 140 patients (98 N / 32

AB)

Convolutional Neural

Networks optimized by Bayes

algorithm

Accuracy = 98.95%

Proposed

method

U-Net network 1000 thermograms (500

N / 500 AB)

Two-class CNN-based deep

learning model

Accuracy = 99.33%,

Sensitivity = 100%,

Specificity = 98.67%

https://doi.org/10.1371/journal.pone.0262349.t010
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automatically by using U-Net network, but some related work doesn’t used segmentation

method and other extract it manually. In addition, the evaluation metric of our proposed sys-

tem is better than related work. So, the proposed system outperformed other models. Further-

more, Statistical analysis by ANOVA test indicates the viability of the proposed system. In

addition, the proposed system is domain-independent, so it has the ability to be applied to var-

ious computer vision tasks.

It is worth mention that the study has some limitations: the computation time of the seg-

mentation process is high due to the limitation of the PC capabilities used in this study as well

as the proposed deep learning model for classification has a bad behavior when the learning

rate is greater than 3.0 e−03

6. Conclusion

Breast cancer is one of the most commonly diagnosed malignancies in women around the

world. Several researches have worked on breast cancer segmentation and classification using

variety of imaging techniques. Thermography imaging is an effective diagnostic approach

which is used for breast cancer detection with the help of infrared technology. In this paper,

we propose a fully automatic breast cancer detection system. The proposed method is divided

on three main stages. First, the thermal images are resized to a smaller size to accelerate com-

putation. Second, the breast region is extracted automatically by using U-Net network. Third,

Table 11. Table of abbreviation.

Abbreviation Definition

CNN Convolutional Neural Networks

CAD Computer-Aided Detection

ROI Region of Interest

EHMM Extended Hidden Markov Models

NS Neutrosophic Sets

F-FCM Fast Fuzzy C-Mean

SVM Support Vector Machine

KNN K-Nearest Neighbor

NN Naïve Bayes

DT Decision Tree

PCA Principal Component Analysis

DNN Deep Neural Network

DWNN Deep-Wavelet Neural Networks

RELU Rectified Linear Activation Function

ADAM Adaptive Moment Estimation

SGDM Stochastic Gradient Descent with Momentum

RMSprop Root Mean Square propagation

TP True Positive

TN True Negative

FP False Positive

FN False Negative

GLCM Gray Level Co-occurrence Matrices

HOG Histogram of Oriented Gradients

n normal

ab abnormal

https://doi.org/10.1371/journal.pone.0262349.t011
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a deep learning model based two-class CNN is proposed and trained from scratch for the clas-

sification of normal and abnormal breast tissue.

Based on the experimental results, the proposed model achieved accuracy = 99.33%, sensi-

tivity = 100% and specificity = 98.67%. In Table 10, a comparison between the proposed sys-

tem and other studies based on breast area segmentation and breast cancer detection is

performed. Furthermore, Statistical analysis by ANOVA test indicates the viability of the pro-

posed system. In addition, the proposed system is domain-independent, so it has the ability to

be applied to various computer vision tasks. In future study, we will investigate deep learning

models which can highlight and label defect region using thermal images.

List of abbreviations

Table 11 presents the definition of the abbreviations used in this paper.
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