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ABSTRACT 

In this study, a mathematical model is developed for analyzing the time-dependent magneto-

convective flow and heat transfer characteristics of an electrically conducting (functional) third-

grade Reiner-Rivlin non-Newtonian nanofluid from a moving or stationary hot cylinder in the 

presence of magnetic field and thermal radiation. A well-tested convergent Crank-Nicolson type 

finite difference algorithm is employed to solve the transformed, nonlinear boundary value 

problem. The Tiwari-Das nanofluid volume fraction model is adopted for nanoscale effects and 

the Rosseland algebraic flux model for radiative heat flux effects. It has been shown that the shape 

of nanoparticles remarkably contributes to the enhancement of heat transfer. Several metallic 

nanoparticle types such as Al2O3, Cu, and TiO2 are examined. It is found from the investigation 

that the viscoelastic nanofluid with TiO2 nanoparticles results in more heat transfer than the other 

nanoparticles. Lower velocity and higher temperature values are computed at transient conditions 

with a higher third-grade fluid parameter for the flow of nanofluid (Al2O3-SA). The plots of 

transient friction and heat transfer coefficients are visualized at the surface of a hot cylinder. The 

tabulated heat transfer coefficient is comparatively more for the moving cylinder than the 

stationary cylinder. Detailed validation of results of the numerical scheme with previous studies is 

included. The simulations find applications in coating deposition (enrobing) of magnetic 

nanomaterial at high temperatures, functional nanomaterial synthesis, etc. 

KEYWORDS: Unsteady MHD Non-Newtonian nanofluid flow, Vertical Cylinder, Convection 

and Radiation, Numerical, Functional coating.  

NOMENCLATURE 

A           volume fraction function 

Al2O3     Alumina  

B           volume fraction function 

Cu        Copper 

C           volume fraction function 
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𝐶𝑝         specific heat at constant pressure 

𝐶𝑓         dimensionless average momentum transport coefficient 

D           volume fraction function 

𝑑

𝑑𝑡
          material time derivative 

E           thermal conductivity ratio (nanofluid to base fluid)  

g′          acceleration due to gravity 

𝐺𝑟         Grashof number 

𝐼            identity tensor 

𝑘            thermal conductivity  

𝑀         magnetic body force parameter 

𝑁𝑟        conduction-radiation parameter 

𝑁𝑢        average heat transport coefficient  

𝑃           fluid pressure 

𝑃𝑟         Prandtl number  

𝑞𝑟          radiative heat flux 

𝑟           radial coordinate 

𝑟𝑜           radius of the cylinder   

𝑅          dimensionless radial coordinate 

𝑆1
′ , 𝑆2

′ , 𝑆3
′   Rivlin and Ericksen stress tensors  

𝑡𝑟          trace 

𝑡            dimensionless time 

𝑡′           time 

TiO2       Titanium oxide 

𝑇′          temperature  

𝑇           dimensionless temperature 
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𝑇∗∗        matrix transposition  

𝑥           axial coordinate 

𝑋          dimensionless axial coordinate 

𝑢, 𝑣      velocity components in (𝑥, 𝑟) coordinate system 

U, V     dimensionless velocity components in X, R directions, respectively 

 

Greek letters 

α1
′ , α2

′ , β1
′ ,  β2

′ ,  β3
′       rheological material moduli 

β𝑇        volumetric thermal expansion coefficient  

σ          electrical conductivity    

β    non-dimensional third-grade fluid parameter 

𝜏′          Cauchy stress tensor 

𝜌          density  

𝜑         volume fraction of nanoparticles 

𝜇          dynamic viscosity  

𝜗          kinematic viscosity 

𝜎∗        Stefan-Boltzmann constant 

𝜅∗        mean absorption coefficient 

Subscripts 

f, g      grid levels in (X, R) coordinate system 

𝑛𝑓      nanofluids 

𝑏𝑓      base fluid 

𝑠         solid nanoparticles 

w       wall conditions 
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∞      ambient conditions 

Superscripts 

h        time level 

 

1. INTRODUCTION 

The science of nanomaterials has emerged as a significant area in 21st-century technology. The 

synthesis of nanomaterials takes place at the nanoscale and these nano-sized materials may be in 

the form of films, tubes, wires, rods, shells, fibers, polymeric structures, spherical particles, and 

many other shapes. The colloidal mixture of these nanomaterials in the regular base fluid (which 

has weaker thermophysical properties such as thermal conductivity) has furnished a new class of 

functional fluids called ‘nanofluids’ (with improved thermophysical characteristics such as 

thermal diffusivity and conductivity, viscosity, and coefficient of convective heat transfer, etc.). 

The strategic deployment of these nanomaterials (i.e., nanofluids) has witnessed remarkable 

success in many heat transfer applications like industrial heating/cooling appliances, industrial 

transportation, heat exchangers, solar collectors, nuclear power plants, granular and fiber thermal 

insulation, petroleum displacement liquids, catalytic reactors, aircraft wing coatings, marine anti-

fouling, and anti-corrosion coatings, etc. Yet, further applications are emerging in biomedical 

engineering and include drug delivery, wound healing, tissue regeneration, biomagnetic nano-

pharmacodynamics, etc. The nanoparticle geometrical shape (spherical, cylindrical, or other), size 

(in nanometers), and volume fraction (i. e. percentage doping) in the base fluid are key factors 

controlling the efficacy of thermo-physical behavior of the nanofluid. Masuda et al. [1] verified 

an increment in thermal efficiency by introducing ultra-fine solid particles in a regular fluid, 

utilizing solid metallic particles, and confirming a substantial increase in thermal conductivity. 

They demonstrated that particles of the smallest size (nano) in base fluid with the greatest surface 
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area are responsible for high rates of heat transfer. Xuan and Li [2] have provided experimental 

verification for how nanoparticle volume fraction accounts for amplified thermal conductivity. 

Putra et al. [3] have examined how different types of material (metallic or non-metallic or some 

oxides) and concentration of particles (nano-sized) enhance the thermal performance of 

nanofluids. Timofeeva et al. [4] also confirmed the effect of size (in nanoscale) of particles on the 

elevation in global thermal conductivity. The stability of nanofluids is also critical for their 

efficiency during implementation in different systems and has been examined rigorously by Yu 

and Xie [5].  

The above review of literature on nanofluids is largely confined to Newtonian behavior (linear 

relation of stress and strain). Nevertheless, there are numerous distinctive rheological 

characteristics exhibited by nanofluids which confirm the non-linear relationship of stress and stain 

such as relaxation of stress, non-linearity of creeping, threshold stress, normal stress differences, 

variation in viscosity, shear thickening/thinning, temperature-dependent viscosity, and memory. 

These typical behaviors are inefficiently explained by the classical viscous (Navier-Stokes) model. 

There are many experimental results which have proven that nanofluids show strong non-

Newtonian behavior. These characteristics may be attributable to the addition of nanoparticles to 

the base fluid (which modifies the rheology) or indeed be associated with the base fluid itself prior 

to doping with nanoparticles (e. g. polymeric coating base fluids). Tseng and Chen [6] 

experimentally investigated the pseudoplastic (shear-thinning) flow of suspensions of nickel-

terpineol. Tseng and Lin [7] deployed a variety of viscoplastic (“yield stress”) rheological models 

such as the Casson, Bingham, and Herschel-Bulkley models to determine the yield stress of 

suspensions of titanium oxide under different shear rates. Kathy Lu [8] showed experimentally 

that nanofluids comprising Al2O3 and CNT- Al2O3 (CNT-carbon nanotube) exhibit shear-thinning 

properties with variation in the shear rate. Chen et al. [9] demonstrated the concentration and 

temperature dependent rheology of nanofluids. Phuoc and Massoudi [10] have reported that 

nanofluids exhibit yield stress and behave as a viscoplastic non-Newtonian fluid. Chen et al. [11] 
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have given experimental results on temperature and concentration dependent non-Newtonian 

nanofluid behavior and have furthermore validated their results theoretically. Hojjat et al. [12] 

observed the non-Newtonian behavior of nanofluid by taking the base fluid as non-Newtonian 

fluid with 0.5 wt. %  aqueous solution of carboxymethyl cellulose. Kole and Dey [13] showed that 

the addition of nanoparticles to base fluids generates significant non-Newtonian behavior of the 

resulting nanofluid. Non-Newtonian nanofluid mechanics provides a more refined model for real 

nanoliquids compared with conventional Newtonian nanofluids, and as such enables a more 

realistic assessment of actual industrial systems including the melting of nano-polymers, nano-

doped biological liquids (e. g. blood, synovial fluid), coatings, adhesives, paints etc. 

For simulation of thermofluid dynamics behaviour of real nanofluids, it is essential to consider 

suitable ‘non-Newtonian theory’ combined with an appropriate ‘nanoscale model’. There are many 

efficient rheological models (rate type, integral type, and differential type) to explain the non-

linear behavior of stress-strain in nanofluids. These include the micropolar model [14], second-

order viscoelastic model [15], Williamson model [16], Reynolds exponential viscosity model [17] 

Ostwald-DeWaele power-law model [18]. The fluid models of differential type (i.e., models of the 

Reiner-Rivlin family) are primarily concerned with characterizing polymer flows which are known 

to exhibit a complex relationship between the stress history and deformation gradient. One of the 

differential types with high non-linearity of stress and strain is the third-grade fluid model. This 

class of fluid is characterized by shear thinning (inverse relationship of shear viscosity and shear 

rate) or shear thickening (direct relationship of shear viscosity and shear rate) and quite accurately 

captures the rheological behaviour of real viscoelastic polymers [19], [20]. Of course, there are 

other alternative constitutive viscoelastic models including the second-order model, Oldroyd-B, 

Walters-B short memory model, FENE-P model, Johnson-Segalman model, or the upper 

convected Maxwell (UCM) model. However, many of these models are special cases of the more 

general third-grade fluid model which features stress relaxation and retardation effects.  In 

addition, the third-grade model satisfactorily explains fluid such as slurries, biological liquids, 
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certain coolants, lubricants, and of course polymeric coatings. Many excellent studies have been 

communicated on convective heat transfer of third-grade fluid flows [21-27].  There have also 

appeared a number of interesting works which have scrutinized third-grade rheological nanofluid 

flows. Hiremath et al. [28] investigated the third-grade nanofluid flow from a convectively heated 

vertical cylinder and examined heat transfer characteristics for different material parameter effects. 

The dissipative two-layer buoyancy-driven channel flow of third-grade nanofluid was simulated 

by Farooq et al. [29]. Nadeem and Saleem [30] have considered the spin boundary layer flow of a 

third-grade nanofluid on a vertical revolving cone geometry. Khan et al. [31] have deployed 

shooting and finite difference techniques for computing steady-state boundary layer convective 

flows of third-grade nanofluid. Qayyum et al. [32] have employed the third-grade viscoelastic 

model to investigate hydromagnetic radiative nanofluid flows with thermophoresis and Brownian 

motion under Newtonian heating conditions.  Hayat et al. [33] have employed the homotopy 

analysis method to compute third-grade nanofluid boundary layer flows with heat source and 

chemical reaction effects. All these studies clearly show the deviation of thermal flow and heat 

transfer characteristics of non-Newtonian viscoelastic third-grade nanofluid from results computed 

with the simpler Newtonian fluid model.  

The current work aims to explore numerically the enhancement in heat transfer by adding 

nanoparticles to magnetohydrodynamic viscoelastic polymer coating flow on a stationary/moving 

cylinder under a radial magnetic field. The present research article describes in detail the 

numerical computation of this functional nanopolymeric coating flow regime, based on an 

unconditionally stable implicit finite difference scheme. This enables the determination of the 

effect of volume fraction on functional non-Newtonian nanofluids flow over a moving vertical 

cylinder, a problem which has been explored without complex rheology or a variety of different 

nanoparticles in [34], [35] & [36]. Three metallic nanoparticles i.e. Al2O3, Cu, and TiO2 are studied 

to compute the relative heat transfer characteristics. The Tiwari-Das nanoscale and Rosseland 

radiative flux models are deployed. In particular, the considered flow is time-dependent free 
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convective laminar boundary layer flow. The present flow model considers a specific example of 

third-grade non-Newtonian fluid as Sodium Alginate (SA). Many authors have already used SA as 

a non-Newtonian fluid [37-42]. Alumina (Al2O3), Copper (Cu), and Titanium oxide (TiO2) are the 

nanoparticles and Sodium Alginate (SA) is the base fluid. The steady and unsteady flow variables, 

heat transfer coefficient, and skin friction are computed with appropriate initial and boundary 

conditions using the implicit Crank-Nicolson numerical scheme. Further, the thermal nano-coating 

has advantages as it provides high thermal conductivity, durability and sustainability (it can call 

“greener”). Also, it is hydrophobic by nature offers least surface energy and greater surface area. 

The thermal performance of many industrial and automobile components such as blades of gas 

turbine, heat exchangers, and landing gear components of aerospace can be improved with the help 

of thermal nano-coating which enhance wear resistance and dissipates heating. Furthermore, it can 

lengthen the life components via mitigation of oxidation, abrasion, corrosion, and swarfing. Nano-

coatings even can improve the hydrophobicity to the surface of geometry which is in contact with 

fluid by enhancing heat transfer performance with minimum frictional energy losses. Therefore, 

thermal nano-coatings have significant applications in coating, tribological, and sustainable 

features to working geometrical surfaces. Finally, the application of this research work is in high 

temperature thermal nano-coating, polymer and fabrication technology. The present study has 

thus far not appeared in the scientific literature.      

2. MAGNETIC NANOFLUID THIRD-GRADE VISCOELASTIC FLOW MODEL  

The current study examines the electrically conducting viscoelastic third-grade nanofluid over a 

semi-infinite moving (or stationary) cylinder (radius r0) which is directed vertically under static, 

transverse radial magnetic field 𝑀0 (depicted in Fig. 1). Electromagnetic induction and Ohmic 

dissipation effects are negated. Axial (𝑥-axis) and radial (𝑟-axis) coordinates are taken into account 

to describe the flow-domain, where the 𝑥-axis is positioned along the cylinder and the 𝑟-axis is 

oriented in the direction normal to the cylinder. At the beginning of flow (i.e., at 𝑡′ = 0), both solid 
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(cylinder) and fluid (third-grade nanofluid) maintain the common temperature 𝑇∞
′ . The cylinder 

starts moving in the axial direction (translation) with constant velocity 𝑢0 for 𝑡′ > 0. At the same 

time, a temperature gradient (temperature difference) is introduced, so as to increase the cylinder 

surface temperature to 𝑇𝑤
′ . With further advancement in time, a constant temperature is preserved i. 

e. isothermal conditions are achieved. The non-Newtonian third-grade (SA- Sodium Alginate) based 

nanofluid contains different kinds of nanoparticles such as TiO2, Cu, and Al2O3. 

 

Fig. 1. Physical description of coating flow of magnetic nano-polymer over a cylinder. 

The considered nanofluids in the current study are simulated as a single-phase fluid system. Also, 

the establishment of local thermal equilibrium between the nanoparticles and third-grade fluid is 

necessary to satisfy the no-slip condition. The thermophysical conditions of the nanoparticles & 

base fluid are listed in Table 1.   

2.1 Description of the non-Newtonian fluid (third-grade fluid) model with constitutive relation: 

Equation (1) presents the “Cauchy’s stress-tensor (𝜏′)” for the viscoelastic third-grade fluid having 

compatible relations thermodynamically (Fosdick and Rajagopal [19]):  

Third-grade nanofluid 

(Al2O3 - SA) 

Nanoparticles 

𝑀0 
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𝜏′ = −𝑃𝐼 + 𝜇𝑆1
′ + α1

′ 𝑆2
′ + α2

′ 𝑆1
′ 2

+ β
1
′ 𝑆3

′ + β
2
′ (𝑆1

′𝑆2
′ + 𝑆2

′ 𝑆1
′) + β

3
′ (𝑡𝑟𝑆1

′ 2
)𝑆1

′               (1)   

Here, α𝑙
′  (𝑙 = 1,2) and β𝑙

′  (𝑙 = 1,2,3) are temperature-dependent material components, −𝑃𝐼 

denotes the spherical portion of  𝜏′(stress-tensor), and 𝑆𝑙
′ (𝑙 = 1,2,3) are ‘Rivlin-Ericksen tensor 

matrices’ represented through Eq. (2):    

𝑆1
′ = (𝛻𝑽)𝑇∗∗

+ 𝛻𝑽  , 𝑆𝑙
′ =

𝑑𝑆𝑙−1
′

𝑑𝑡
+ (𝛻𝑽)𝑇∗∗

𝑆𝑙−1
′ + 𝑆𝑙−1

′ (𝛻𝑽),   𝑙 = 2,3 ….                (2)  

The transpose of matrix, gradient operator, velocity vector are symbolized as 𝑇∗∗, 𝛻, 𝑽  

respectively.  
𝑑

𝑑𝑡
  designates the material derivative where 

𝑑

𝑑𝑡
(∙) = (

𝜕

𝜕𝑡
+ 𝑽𝛻) (∙). The inequality 

described by ‘Clausius-Duhem’ and the least possible value of ‘Helmholtz free-energy’ at the 

condition of equilibrium are the minimum criteria to be satisfied by the current fluid model 

(viscoelastic third-grade fluid). Hence, third-grade fluid requires the following restrictions.  

𝜇  0;       α1
′   0;          |α1

′ + α2
′ | ≤ √24𝜇β3

′                                                                         (3.a) 

β1
′ = 0;               β2

′ = 0;               β3 
′   0                                                                               (3.b) 

Substitution in Eqn. (1), leads to: 

 𝜏′ = −𝑃𝐼 + 𝜇𝑆1
′ + α1

′ 𝑆2
′ + α2

′ 𝑆1
′ 2

+ β3
′ (𝑡𝑟𝑆1

′ 2
)𝑆1

′                                                                 (4) 

Further, boundedness criteria, stability and fluid thermodynamics, studies are similarly explained 

as the second-grade fluid model (investigated by Dunn and Fosdick [55], for β3 
′ = 0, constitutive 

relation reduces to second-grade fluid model). Fosdick and Straughan [56] revealed that the non-

physical results are observed for α1
′ < 0 & asymptotic stability criteria for  α1

′  0. 

The considered flow model is axisymmetric. This axisymmetric thermal convective flow of a 

viscoelastic third grade nanofluid in the presence of ‘transverse radial magnetic field (𝑀0)’ from 

the moving cylinder (velocity 𝑢0) is characterized by the subsequent ‘momentum’ and ‘energy’ 
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equations [43] including Boussinesq’s approximation [44] in the occurrence of thermal radiative 

flux are presented as [23], [27], [28], [36]: 

∂(𝑟𝑢)

∂𝑥
+

∂(𝑟𝑣)

∂𝑟
= 0             (5) 

The considered cylindrical geometry is under the influence of a transverse magnetic field of 

intensity 𝑀0 as described in Fig. 1. The magnetic Reynolds number is presumed to be very small, 

therefore the interaction of the induced magnetic field in the axial direction with the flow of the 

third-grade nanofluid (which is electrically conducting) can be ignored i.e. magnetic field is not 

distorted.              

𝜕𝑢

𝜕𝑡′ + 𝑣
𝜕𝑢

𝜕𝑟
+ 𝑢

𝜕𝑢

𝜕𝑥
=

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓
g′(𝑇′ − 𝑇∞

′ ) + 𝜗𝑛𝑓
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

α1
′

𝜌𝑛𝑓
[

𝜕3𝑢

𝜕𝑟2𝜕𝑡′ +
1

𝑟

𝜕2𝑢

𝜕𝑟𝜕𝑡′ + 𝑣
𝜕3𝑢

𝜕𝑟3 

                                              +2
𝜕𝑣

𝜕𝑟

𝜕2𝑢

𝜕𝑟2 + 3
𝜕2𝑢

𝜕𝑟2

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑟

𝜕2𝑣

𝜕𝑟2 + 4
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
+

𝑣

𝑟

𝜕2𝑢

𝜕𝑟2 +
𝑢

𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
+  

                                                
3

𝑟

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑟
+ 𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟

𝜕𝑣

𝜕𝑟
] +

α2
′

𝜌𝑛𝑓
[

2

𝑟

𝜕𝑢

𝜕𝑟

𝜕𝑣

𝜕𝑟
+

2

𝑟

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑟
+ 2

𝜕2𝑢

𝜕𝑟2

𝜕𝑢

𝜕𝑥
+ 

                                                   +2
𝜕2𝑣

𝜕𝑟2

𝜕𝑢

𝜕𝑟
+ 2

𝜕𝑣

𝜕𝑟

𝜕2𝑢

𝜕𝑟2 + 4
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
] +

β3 
′

𝜌𝑛𝑓
[

2

𝑟
(

∂𝑢

∂𝑟
)

3

+ 6 (
∂𝑢

∂𝑟
)

2 ∂2𝑢

∂𝑟2 +

                                                4 (
∂𝑢

∂𝑟
)

2 ∂2𝑢

∂𝑥2 + 2
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
] −

𝜎𝑀0
2𝑢

𝜌𝑛𝑓
         (6) 

where, (𝑢, 𝑣) denotes the components of velocity in the (x, r) directions. 

∂𝑇′

∂𝑡′ + 𝑢
∂𝑇′

∂𝑥
+ 𝑣

∂𝑇′

∂𝑟
=

𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

1

𝑟

∂

∂𝑟
(𝑟

∂𝑇′

∂𝑟
) −

1

(𝜌𝐶𝑝)
𝑛𝑓

1

𝑟

∂

∂𝑟
(𝑟𝑞𝑟)      (7) 

The appropriate initial and boundary conditions are imposed as follows: 

𝑡′ ≤  0:     𝑇′ = 𝑇∞
′  ,    𝑣 = 0,   𝑢 = 0                             for all 𝑥 and 𝑟 

𝑡′ > 0:      𝑇′ = 𝑇𝑤
′ ,     𝑣 = 0,   𝑢 = 𝛾𝑢0                              at 𝑟 = 𝑟0                          

                   𝑇′ = 𝑇∞
′ ,    𝑣 = 0,   𝑢 = 0                                  at  𝑥 = 0                                  

                  𝑇′ → 𝑇∞
′ ,    𝑣 → 0,   𝑢 → 0,

𝜕𝑢

𝜕𝑟
→ 0                   as  𝑟 → ∞    (8) 
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The density, thermal expansion coefficient, and heat capacitance for the nanofluid are calculated 

using the functions in the Tiwari-Das nanoscale model:  

𝜌𝑛𝑓 = (1 − φ)𝜌𝑏𝑓 + φ𝜌𝑠 

                                                    (𝜌𝛽)𝑛𝑓 = (1 − φ)(𝜌𝛽)𝑏𝑓 + φ(𝜌𝛽)𝑠                               (9) 

                                                  (𝜌𝐶𝑝)
𝑛𝑓

= (1 − φ)(𝜌𝐶𝑝)
𝑏𝑓

+ 𝜑(𝜌𝐶𝑝)
𝑠
 

Also, the thermal conductivity of nanofluid is considered via the Hamilton and Crosser model [45] 

i.e.,  

                                                       
𝑘𝑛𝑓

𝑘𝑏𝑓
=

𝑘𝑠+(𝑛−1)𝑘𝑏𝑓−(𝑛−1)𝜑(𝑘𝑏𝑓−𝑘𝑠)

𝑘𝑠+(𝑛−1)𝑘𝑏𝑓+𝜑(𝑘𝑏𝑓−𝑘𝑠)
                               (10) 

where, 𝑛 defines the shape of the nanoparticle. Precisely, 𝑛 = 3 𝑎𝑛𝑑 3/2 indicate spherical and 

cylindrical nanoparticles, respectively (refer to Table. 2).  

By assuming the ‘Rosseland’s approximation’ (Brewster [46]), the radiative heat flux 𝑞𝑟 which is 

directed in the radial (transverse) direction is expressed as, 

                                                                    𝑞𝑟 =  −
4𝜎∗

3𝜅∗

𝜕𝑇′4

𝜕𝑟
                                               (11) 

For adequately smaller temperature differences within the fluid flow  𝑇′4
may be analyzed as a 

linear function of the temperature, so that the Taylor series for 𝑇′4
 about 𝑇∞

′ , after ignoring higher 

order terms, is specified by: 

                                                               𝑇′4
≅ 4𝑇′𝑇′

∞
3

− 3𝑇′
∞
4

                                        (12) 

By virtue of Eqns. (11) & (12), Eq. (7) emerges as: 

                   
∂𝑇′

∂𝑡′ + 𝑢
∂𝑇′

∂𝑥
+ 𝑣

∂𝑇′

∂𝑟
=

𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

1

𝑟

∂

∂𝑟
(𝑟

∂𝑇′

∂𝑟
) +

16𝜎∗𝑇′
∞
3

3(𝜌𝐶𝑝)
𝑛𝑓

𝜅∗

1

𝑟

∂

∂𝑟
(𝑟

∂𝑇′

∂𝑟
)                   (13) 

Invoking the following non-dimensional quantities: 
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𝑋 =
𝑥𝜗𝑏𝑓

𝑢0𝑟0
2 ,           𝑅 =

𝑟

𝑟0
,             𝑈 =

𝑢

𝑢0
,                 𝑉 =

𝑣𝑟0

𝜗𝑏𝑓
,                𝑡 =

𝑡′𝜗𝑏𝑓

𝑟0
2 ,   

 𝑇 =
𝑇′−𝑇∞

′

𝑇𝑤
′ −𝑇∞

′ ,       𝐺𝑟 =
g′(β𝑇)𝑏𝑓𝑟0

2(𝑇𝑤
′ −𝑇∞

′ )

𝑢0𝜗𝑏𝑓
,       𝑃𝑟 =

𝜗𝑏𝑓

𝛼𝑏𝑓
 ,          𝑀 =

𝜎𝑀0
2𝑟0

2

𝜇𝑏𝑓
,      𝑁𝑟 =

𝑘𝑏𝑓𝜅∗

4𝜎∗𝑇′
∞
3       

α1 =
α1

′

𝜌𝑏𝑓𝑟0
2 ,            α2 =

α2
′

𝜌𝑏𝑓𝑟0
2 ,             β =

β3 
′ 𝑢0

2

𝜌𝑏𝑓𝑟0
2𝜗𝑏𝑓

,     β′ =
β3 

′ 𝜗𝑏𝑓

𝜌𝑏𝑓𝑟0
4                       (14) 

Implementing Eqn. (14) in the conservation Eqns. (5), (6), (13), and Eqn. (8), hence, the following 

system of non-dimensional governing equations with boundary conditions is produced:  

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0                           (15) 

 𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
+

𝜕𝑈

𝜕𝑡
= 𝐴𝐶(𝐺𝑟)𝑇 + 𝐴𝐵

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝑈

𝜕𝑅
) + 𝐴α1 [

𝜕3𝑈

𝜕𝑅2𝜕𝑡
+

1

𝑅

𝜕2𝑈

𝜕𝑅𝜕𝑡
+ 𝑈

𝜕3𝑈

𝜕𝑋𝜕𝑅2 + 𝑉
𝜕3𝑈

𝜕𝑅3 +

                         
𝑈

𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+

𝑉

𝑅

𝜕2𝑈

𝜕𝑅2 + 2
𝜕𝑉

𝜕𝑅

𝜕2𝑈

𝜕𝑅2 + 3
𝜕2𝑈

𝜕𝑅2

𝜕𝑈

𝜕𝑋
+

𝜕𝑈

𝜕𝑅

𝜕2𝑉

𝜕𝑅2  + 4
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅
 +  

3

𝑅

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅
] 

                         +𝐴α2 [
2

𝑅

𝜕𝑈

𝜕𝑅
(

𝜕𝑉

𝜕𝑅
+

𝜕𝑈

𝜕𝑋
) + 2

𝜕2𝑈

𝜕𝑅2 (
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
) + 2

𝜕𝑈

𝜕𝑅
(

𝜕2𝑉

𝜕𝑅2 + 2
𝜕2𝑈

𝜕𝑋𝜕𝑅
)] 

                           +𝐴β [
2

𝑅
(

𝜕𝑈

𝜕𝑅
)

3
+ 6

𝜕2𝑈

𝜕𝑅2 (
𝜕𝑈

𝜕𝑅
)

2

] + 𝐴β′
[4

∂2𝑈

∂𝑋2 (
𝜕𝑈

𝜕𝑅
)

2
+ 2

𝜕2𝑈

𝜕𝑋𝜕𝑅

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅
] − 𝐴𝑀𝑈      (16) 

𝑈
𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑅
+

𝜕𝑇

𝜕𝑡
=

𝐷

𝑃𝑟
(𝐸 +

4

3𝑁𝑟
) (

𝜕2𝑇

𝜕𝑅2 +
1

𝑅

𝜕𝑇

𝜕𝑅
)                                   (17) 

𝑡 ≤  0:   𝑇 = 0 ,    𝑉 = 0,      𝑈 = 0                           for all 𝑋 and 𝑅 

𝑡 >  0:  𝑇 = 1,      𝑉 = 0,     𝑈 = 𝛾                           at  𝑅 = 1           

              𝑇 = 0 ,    𝑉 = 0,        𝑈 = 0                            at  𝑋 = 0                                     (18) 

               𝑇 → 0 ,    𝑉 → 0,       𝑈 → 0,
𝜕𝑈

𝜕𝑅
→ 0             as  𝑅 → ∞    

where,  

𝐴 =
1

[(1−𝜑)+𝜑
𝜌𝑠

𝜌𝑏𝑓
]

 ;         𝐵 =
1

(1−𝜑)2.5   ;                  𝐶 = [(1 − 𝜑) + 𝜑
(𝜌𝛽)𝑠

(𝜌𝛽)𝑏𝑓
]  ;   
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  𝐷 =
1

[(1−𝜑)+𝜑
(𝜌𝐶𝑝)

𝑠
(𝜌𝐶𝑝)

𝑏𝑓
]

  ;           𝐸 =
𝑘𝑛𝑓

𝑘𝑏𝑓
     

               (19) 

3. FINITE DIFFERENCE SOLUTION PROCEDURE 

3.1 Discretization 

Eqns. (15)-(18), constitute a dimensionless nonlinear thermofluid dynamic boundary value 

problem which does not have a solution with the analytical procedure. However, numerical 

procedures can provide a solution with high accuracy. In this respect, an implicit finite difference 

(Crank-Nicolson type [47]) procedure is deployed which is unconditionally stable. The discretized 

equations for Eqns. (15) to (17) are obtained as:  

𝑈𝑓,𝑔
ℎ+1−𝑈𝑓−1,𝑔

ℎ+1 +𝑈𝑓,𝑔
ℎ −𝑈𝑓−1,𝑔

ℎ

2∆𝑋
+

𝑉𝑓,𝑔
ℎ+1−𝑉𝑓,𝑔−1

ℎ+1 +𝑉𝑓,𝑔
ℎ −𝑉𝑓,𝑔−1

ℎ

2∆𝑅
+ 𝑉𝑓,𝑔

ℎ+1(𝐽𝑅) = 0                                  

                                  (20) 

𝑈𝑓,𝑔
ℎ+1−𝑈𝑓,𝑔

ℎ

∆𝑡
+ 𝑈𝑓,𝑔

ℎ (𝑈𝑓,𝑔
ℎ+1−𝑈𝑓−1,𝑔

ℎ+1 +𝑈𝑓,𝑔
ℎ −𝑈𝑓−1,𝑔

ℎ )

2∆𝑋
+ 𝑉𝑓,𝑔

ℎ (𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

4∆𝑅
  

 = 𝐴𝐶(𝐺𝑟)
𝑇𝑓,𝑔

ℎ +𝑇𝑓,𝑔
ℎ+1

2
+ 𝐴𝐵(𝐽𝑅)

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

4∆𝑅
 

+𝐴𝐵
(𝑈𝑓,𝑔−1

ℎ+1 −2𝑈𝑓,𝑔
ℎ+1+𝑈𝑓,𝑔+1

ℎ+1 +𝑈𝑓,𝑔−1
ℎ −2𝑈𝑓,𝑔

ℎ +𝑈𝑓,𝑔+1
ℎ )

2(∆𝑅)2 +𝐴α1 [
(𝑈𝑓,𝑔−2

ℎ+1 −2𝑈𝑓,𝑔
ℎ+1+𝑈𝑓,𝑔+2

ℎ+1 −𝑈𝑓,𝑔−2
ℎ +2𝑈𝑓,𝑔

ℎ −𝑈𝑓,𝑔+2
ℎ )

4(∆𝑅)3(∆𝑡)
  

+
(𝑈𝑓,𝑔+1

ℎ+1 −𝑈𝑓,𝑔−1
ℎ+1 +𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2(∆𝑅)(∆𝑡)
+ 𝑉𝑓,𝑔

ℎ   
(𝑈𝑓,𝑔+2

ℎ+1 −2𝑈𝑓,𝑔+1
ℎ+1 +2𝑈𝑓,𝑔−1

ℎ+1 −𝑈𝑓,𝑔−2
ℎ+1 +𝑈𝑓,𝑔+2

ℎ −2𝑈𝑓,𝑔+1
ℎ +2𝑈𝑓,𝑔−1

ℎ −𝑈𝑓,𝑔−2
ℎ )

4(∆𝑅)3   

+
(𝑉𝑓,𝑔+1

ℎ −𝑉𝑓,𝑔−1
ℎ )

2∆𝑅

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

(∆𝑅)2               

+3
(𝑈𝑓,𝑔

ℎ −𝑈𝑓−1,𝑔
ℎ )

(∆𝑋)

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

2(∆𝑅)2 +
(𝑉𝑓,𝑔−1

ℎ −2𝑉𝑓,𝑔
ℎ +𝑉𝑓,𝑔+1

ℎ )

4(∆𝑅)2   
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(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

(∆𝑅)
+

(𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

∆𝑅

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓−1,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓−1,𝑔−1

ℎ )

2(∆𝑋)(∆𝑅)
+

(𝐽𝑅)𝑉𝑓,𝑔
ℎ

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

2(∆𝑅)2 +

(𝐽𝑅)𝑈𝑓,𝑔
ℎ

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓−1,𝑔+1

ℎ+1 −𝑈𝑓,𝑔−1
ℎ+1 +𝑈𝑓−1,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓−1,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ +𝑈𝑓−1,𝑔−1

ℎ ) 

4(∆𝑅)(∆𝑋)
+

3(𝐽𝑅)
(𝑈𝑓,𝑔

ℎ −𝑈𝑓−1,𝑔
ℎ )

(∆𝑋)

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

4(∆𝑅)
+

3(𝐽𝑅)

8

(𝑉𝑓,𝑔+1
ℎ −𝑉𝑓,𝑔−1

ℎ )

∆𝑅

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

(∆𝑅)2
] +

𝐴α2 [(𝐽𝑅)
(𝑉𝑓,𝑔+1

ℎ −𝑉𝑓,𝑔−1
ℎ )

∆𝑅

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

∆𝑅
+  (𝐽𝑅)

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

2(∆𝑅)
  

(𝑈𝑓,𝑔
ℎ −𝑈𝑓−1,𝑔

ℎ )

(∆𝑋)
+

(𝑈𝑓,𝑔
ℎ −𝑈𝑓−1,𝑔

ℎ )

(∆𝑋)

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

(∆𝑅)2 +
(𝑈𝑓,𝑔+1

ℎ+1 −𝑈𝑓,𝑔−1
ℎ+1 +𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2∆𝑅
  

(𝑉𝑓,𝑔−1
ℎ −2𝑉𝑓,𝑔

ℎ +𝑉𝑓,𝑔+1
ℎ )

(∆𝑅)2 +
(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2(∆𝑅)

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓−1,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓−1,𝑔−1

ℎ )

(∆𝑋)(∆𝑅)
+

(𝑉𝑓,𝑔+1
ℎ −𝑉𝑓,𝑔−1

ℎ )

2(∆𝑅)
 

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

(∆𝑅)2 ] + 𝐴β [(𝐽𝑅)
(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

3

4(∆𝑅)3 +

3
(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2

4(∆𝑅)2

(𝑈𝑓,𝑔−1
ℎ+1 −2𝑈𝑓,𝑔

ℎ+1+  𝑈𝑓,𝑔+1
ℎ+1 +𝑈𝑓,𝑔−1

ℎ −2𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔+1

ℎ )

(∆𝑅)2 ] +

𝐴β′ [
(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2

(∆𝑅)2

(𝑈𝑓−1,𝑔
ℎ −2𝑈𝑓,𝑔

ℎ +𝑈𝑓+1,𝑔
ℎ )

(∆𝑋)2 +
1

8

(𝑈𝑓,𝑔
ℎ −𝑈𝑓−1,𝑔

ℎ )

(∆𝑋)

(𝑈𝑓,𝑔+1
ℎ −𝑈𝑓,𝑔−1

ℎ )

(∆𝑅)
    

(𝑈𝑓,𝑔+1
ℎ+1 −𝑈𝑓−1,𝑔+1

ℎ+1 −𝑈𝑓,𝑔−1
ℎ+1 +𝑈𝑓−1,𝑔−1

ℎ+1 +𝑈𝑓,𝑔+1
ℎ −𝑈𝑓−1,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ + 𝑈𝑓−1,𝑔−1

ℎ )

(∆𝑋)(∆𝑅)
] − 𝐴𝑀 [

𝑈𝑓,𝑔
ℎ +𝑈𝑓,𝑔

ℎ+1

2
]   

                        (21) 

𝑇𝑓,𝑔
ℎ+1−𝑇𝑓,𝑔

ℎ

∆𝑡
+ 𝑈𝑓,𝑔

ℎ
(𝑇𝑓,𝑔

ℎ+1−𝑇𝑓−1,𝑔
ℎ+1 +𝑇𝑓,𝑔

ℎ −𝑇𝑓−1,𝑔
ℎ )

2∆𝑋
+ 𝑉𝑓,𝑔

ℎ
(𝑇𝑓,𝑔+1

ℎ+1 −𝑇𝑓,𝑔−1
ℎ+1 +𝑇𝑓,𝑔+1

ℎ −𝑇𝑓,𝑔−1
ℎ )

4∆𝑅
  

 =
𝐷

𝑃𝑟
(𝐸 +

4

3𝑁𝑟
) [

(𝑇𝑓,𝑔−1
ℎ+1 −2𝑇𝑓,𝑔

ℎ+1+𝑇𝑓,𝑔+1
ℎ+1 +𝑇𝑓,𝑔−1

ℎ −2𝑇𝑓,𝑔
ℎ +𝑇𝑓,𝑔+1

ℎ )

2(∆𝑅)2  + (𝐽𝑅)
(𝑇𝑓,𝑔+1

ℎ+1 −𝑇𝑓,𝑔−1
ℎ+1 +𝑇𝑓,𝑔+1

ℎ −𝑇𝑓,𝑔−1
ℎ )

4(∆𝑅)
]   

         (22) 
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The considered flow domain is defined by the limits (boundaries): 𝑋𝑚𝑖𝑛 = 0,  𝑋𝑚𝑎𝑥 = 1, 𝑅𝑚𝑖𝑛 =

1 and 𝑅𝑚𝑎𝑥 = 20 (where 𝑅𝑚𝑎𝑥 implies to 𝑅 = ∞). The temperature Eqn. (22) and momentum 

Eqn. (21) equations are discretized for all internal mesh points (𝑓, 𝑔) at specific ‘𝑓 - level’ can be 

reduced to ‘tridiagonal’ and ‘penta-diagonal’ system of equations which are respectively 

represented as:    

𝐴1δ𝑓,𝑔−1
ℎ+1 + 𝐵1δ𝑓,𝑔

ℎ+1 + 𝐶1δ𝑓,𝑔+1
ℎ+1 = 𝐷1                                                                                           (23)       

𝐴2γ𝑓,𝑔−2
ℎ+1 + 𝐵2γ𝑓,𝑔−1

ℎ+1 + 𝐶2γ𝑓,𝑔
ℎ+1 + 𝐷2γ𝑓,𝑔+1

ℎ+1 + 𝐸2γ𝑓,𝑔+2
ℎ+1 = 𝐹2                                            (24)          

At (h+1)th level, ‘tridiagonal’ [47] and ‘penta-diagonal’ [48] algorithms are used to solve the system 

of Eqns. (23) and (24). Here, 𝛿 & 𝛾 represent 𝑇 & U, respectively. Details on these algorithms can 

be found in [23], [24]. The computational procedure commences initially to find a solution for the 

temperature field (solving Eqn. (22) for 𝑇) and thereafter the numerical code solves for the velocity 

field i. e. Eqn. (21) for 𝑈. The generated 𝑈, 𝑇 values are used explicitly to calculate 𝑉 from Eqn. 

(20). 

3.2 Validation test of the Crank-Nicolson numerical scheme 

Validation of the implemented numerical scheme (Crank-Nicolson finite difference method) is 

carried out in two-step process. In the first stage of validation, mesh independence ensures the 

accuracy of the scheme. In the second stage, the simulated results are validated with previous 

literature.  

 

3.2-1 Mesh Independence 

The proposed grid system for the current study is optimized by a ‘grid-independency test’ and 

thereby mesh density can be selected to be computationally accurate but also economically 

desirable. Table 3 documents the optimal grid-size (i.e., 100 X 500) which attains sufficient 

accuracy (any other refinement in the mesh-size does not support an improvement in the accuracy). 
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Correspondingly, ‘time-independency test’ offers the finest time-step size Δ𝑡 (𝑡 = ℎΔ𝑡, ℎ =

0, 1, 2, … ) = 0.01 as provided in Table 4.  

3.2-2 Comparison with former special cases from the literature  

The transient plots of numerical solutions for 𝐶𝑓
̅̅ ̅ and 𝑁𝑢̅̅ ̅̅  provide a good basis for benchmarking 

with previous simpler models from the literature. The case of fluid flow past a cylinder (𝛾 = 0) 

allows a comparison with previously published results, to verify the preciseness of the Crank 

Nicolson computational code. Therefore, in the present model, nanoscale effects (such as volume 

fraction, 𝜑) and viscoelastic behaviour of third-grade fluid (α1, α2, β) are ignored, and 

furthermore, the magnetic field is neglected (M = 0 i.e. electrically non-conducting scenario) and 

thermal radiation negated (Nr = 0) so that the general model developed in this article is reduced to  

Newtonian flow (i.e., α1 = α2 = β = β′ = 0) and then matches exactly the model reported in  

Rani and Kim [49] (𝛾 = 0). Fig. 2 (comparison graph) confirms the accuracy of the Crank-

Nicolson code which achieves a very close correlation with the results in [49].  

4. GRAPHICAL RESULTS AND DISCUSSION 

The velocity and temperature graphs of the third-grade nanofluids under steady and 

unsteady conditions are visualized in Figs. 3-15 for the impact of key thermophysical, 

hydrodynamic and nanoscale parameters such as volume fraction (𝜑), third-grade fluid parameter 

(𝛽), Prandtl number (𝑃𝑟), Grashof number (𝐺𝑟) and radiative parameter (𝑁). Steady-state graphs 

of (U & 𝑇) for variation of β & 𝜑 over a moving (𝛾 = 1) and stationary (𝛾 = 0) cylinder are 

drawn. Transient results of skin friction and heat transfer rate for variation of third-grade parameter 

and volume fraction are additionally depicted through graphs. Present work includes four types of 

nanofluids containing nanoparticles (TiO2, Cu, and Al2O3) with non-Newtonian third-grade fluid 

as base fluid. Throughout the study α1 = α2 = 0.001 and modified third-grade parameter β′ =

0.001. Effect on rate of heat transfer by changing the shape of the nanoparticles is also plotted. 

The considered range of volume fraction of nanoparticle is 0 ≤ 𝜑 ≤ 0.04, since sedimentation of 
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nanoparticle takes place when 𝜑 > 8%. In the current problem, the shape of the nanoparticles is 

spherical with thermal conductivity and dynamic viscosity (refer to model (i) in Table 2). On these 

details, the following subsections provide a comprehensive discussion.  

Comparative results Al2O3-SA nanofluid for stationary and moving cylinder 

The computed numeric values reflect the relative heat transfer due to the convective flow of third-

grade nanofluid (Al2O3-SA) over moving and stationary cylinders. Here, the movement of the 

cylinder is signified by the boundary condition referred to in Eq. (18) i.e., 𝛾 = 0 or 1. Table 5 

presents that heat transfer significantly increases from stationary (𝛾 = 0) to moving (𝛾 = 1) 

cylinder. Also, the following discussion clearly represents the results on the velocity of the flow 

and temperature of the flow regime for both cases (i.e., 𝛾 = 0 &1). 

Table 1. Thermophysical conditions of the nanoparticles and base fluid (Mahanthesh et al. (2016) 

and Rajesh et al. (2017)). 

 

 𝝆(kgm-3) 𝒌(Wm−1k−1) 𝑪𝒑(kg−1k−1) 𝜷 × 𝟏𝟎−𝟓(k−1) 

C6H9NaO7 (SA) 989 4175 0.613 0.99 

Al2O3 3970 765 40 0.85 

TiO2 4250 686.2 8.9528 0.90 

Cu 8933 385 401 1.67 

 

Table 2. Dynamic viscosity and thermal conductivity for different shapes of nanoparticles (Rajesh 

et al. (2017)).  

 

Model Shape of 

nanoparticles 

Dynamic viscosity Thermal conductivity 

(i) Spherical 𝜇𝑛𝑓 =
𝜇𝑏𝑓

(1 − 𝜑)2.5 𝑘𝑛𝑓

𝑘𝑏𝑓
=

𝑘𝑠 + 2𝑘𝑏𝑓 − 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑏𝑓 + 𝜑(𝑘𝑏𝑓 − 𝑘𝑠)
 

(ii) Spherical 𝜇𝑛𝑓 = 𝜇𝑏𝑓(1 + 7.3𝜑 + 123𝜑2) 𝑘𝑛𝑓

𝑘𝑏𝑓
=

𝑘𝑠 + 2𝑘𝑏𝑓 − 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑏𝑓 + 𝜑(𝑘𝑏𝑓 − 𝑘𝑠)
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(iii) Cylindrical 𝜇𝑛𝑓 =
𝜇𝑏𝑓

(1 − 𝜑)2.5 𝑘𝑛𝑓

𝑘𝑏𝑓
=

2𝑘𝑠 + 𝑘𝑏𝑓 − 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)

2𝑘𝑠 + 𝑘𝑏𝑓 + 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)
 

(iv) Cylindrical 𝜇𝑛𝑓 = 𝜇𝑏𝑓(1 + 7.3𝜑 + 123𝜑2) 𝑘𝑛𝑓

𝑘𝑏𝑓
=

2𝑘𝑠 + 𝑘𝑏𝑓 − 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)

2𝑘𝑠 + 𝑘𝑏𝑓 + 2𝜑(𝑘𝑏𝑓 − 𝑘𝑠)
 

 

Table 3. Grid independency test. 

 

 

Grid size 

Average Nusselt number  

𝛂𝟏 = 𝛂𝟐 = 𝛃′ = 𝟎. 𝟎𝟎𝟏, 𝛃 = 𝟎. 𝟎𝟔, 𝝋 = 𝟎. 𝟎𝟒, 𝑷𝒓 = 𝟔. 𝟐, 𝑮𝒓 =
𝟏𝟎, 𝑴 = 𝟎. 𝟎𝟎𝟏, 𝑵 = 𝟎. 𝟎𝟏 

25X125 0.5165231000 

50X250 0.5199731000 

100X500 0.5288731000 

200X1000 0.5211731000 

 

 

Table 4. Time independency test. 

 

 

Time step size 

(∆𝒕) 

Average Nusselt number  

𝛂𝟏 = 𝛂𝟐 = 𝛃′ = 𝟎. 𝟎𝟎𝟏, 𝛃 = 𝟎. 𝟎𝟔, 𝝋 =
𝟎. 𝟎𝟒, 𝑷𝒓 = 𝟔. 𝟐, 𝑮𝒓 = 𝟏𝟎, 𝑴 = 𝟎. 𝟎𝟎𝟏, 𝑵 =

𝟎. 𝟎𝟏 

0.1 0.5288700000 

0.08 0.5288700000 

0.05 0.5288705000 

0.02 0.5288727000 

0.01 0.5288731000 

 

Table 5. Comparing heat transfer coefficient between stationary and moving cylinders for 

different values of β and 𝜑.  

 

Third-grade 

fluid 

parameter 

(𝛃) 

Volume 

fraction 

parameter 

(𝝋) 

Heat transfer coefficient 

measured at stationary 

cylinder (𝜸 = 𝟎)  

(𝑵𝒖)̅̅ ̅̅ ̅̅  

Heat transfer 

coefficient measured at 

moving cylinder (𝜸 =
𝟏)  

(𝑵𝒖̅̅ ̅̅ ̅̅ ) 

0.02 0.02 0.5210 0.5621 

0.02 0.03 0.5364 0.5789 

0.02 0.04 0.5522 0.5960 

0.04 0.04 0.5381 0.5844 

0.06 0.04 0.5288 0.5767 
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Table 6. Effects of Prandtl number (𝑃𝑟), Grashof number (𝐺𝑟) & radiative parameter (𝑁) on heat 

transfer coefficient for the stationary cylinder. 

 

 

Prandtl 

number 

(Pr) 

 

 

Radiative 

parameter 

(Nr) 

 

Grashof 

number 

(Gr) 

 

Temporal 

maximum (𝒕) 

of 

 𝑻 

 

Steady-

state 

time 𝒕 

 

Maximum 

temperature 

(𝑻)  

at 𝑿 = 𝟏  

Heat transfer 

coefficient 

measured at 

stationary 

cylinder (𝜸 = 𝟎)  

(𝑵𝒖)̅̅ ̅̅ ̅̅  

6.2 0.01 10 0.63 5.36 0.9460 0.5522 

13.4 0.01 10 0.73 3.89 0.9301 0.7128 

13.4 0.02 10 0.85 5.56 0.9131 0.8818 

13.4 0.02 05 1.08 5.85 0.9238 0.7681 
 

 

 

 

Fig. 2 Comparison result for a Newtonian fluid 
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Fig. 3 Transient non-dimensional velocity profile for variation of third-grade fluid parameter and 

volume fraction. 

 

 

Fig. 4 Transient non-dimensional temperature profile for variation of third-grade fluid parameter 

and volume fraction. 
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Fig. 5 Steady dimensionless velocity profile for variation of third-grade fluid parameter and 

volume fraction. 

 

 

Fig. 6 Steady-state dimensionless temperature profile for variation of third-grade fluid parameter 

and volume fraction. 
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Fig. 7 Steady-state dimensionless velocity profile for variation of third-grade fluid parameter and 

volume fraction: moving cylinder. 

 

 

 

Fig. 8 Steady-state dimensionless temperature profile for variation of third-grade fluid parameter 

and volume fraction: moving cylinder. 
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Fig. 9 Skin friction values for different values of third-grade fluid parameter and volume 

fraction. 

 

 

Fig. 10 Nusselt number values for different values of third-grade fluid parameter and volume 

fraction. 
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Fig. 11 Steady-state dimensionless velocity plot for different parameter; (a) Prandtl number, (b) 

radiative parameter & (c) Grashof number. 

 

 

Fig. 12 Steady-state dimensionless temperature plot for different parameter; (a) Prandtl number, 

(b) radiative parameter & (c) Grashof number. 
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Fig. 13 Effect of shape of nanoparticles on the rate of heat transfer with variation in volume 

fraction values. 

 

 

Fig. 14 Rate of heat transfer for various nanofluids. 
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(a) 

 

(b) 

Fig. 15 Steady-state contour plots of velocity (U), temperature (T) for variation of (a) third-grade 

fluid parameter; (b) volume fraction, keeping all other parameters fixed. 
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(i)Transient profiles of the stationary cylinder (𝛾 = 0); 

The numerically simulated transient velocity (U) profile of Al2O3-SA third-grade nanofluid for 

variation of third-grade fluid parameter (𝛽) and volume fraction (𝜑) (keeping other parameters 

constant) at a specific location (1, 2.25) is depicted in Fig. 3. The U curves maintain a particular 

trend i.e., initial growth is observed in the curves which then reach a peak value, and eventually a 

time-independent state is attained. Also, t << 1 is the time where the conductive mode of heat 

transfer dominates over the convective mode. At later stages in time, the contrary behaviour is 

present i. e. convection heat transfer dominates conduction heat transfer. From Fig. 3, the 𝑈 curves 

of Al2O3-SA third-grade nanofluid at 𝜑 = 0.04 show a decreasing trend with amplifying values of 

𝛽. Significant deceleration is induced in the viscoelastic nanofluid boundary layer coating flow 

with a stronger rheological effect since viscosity is increased and momentum diffusion rate is 

reduced. Hydrodynamic boundary layer thickness will therefore be increased on the cylinder 

periphery. Similarly, 𝑈 profile of Al2O3-SA at constant 𝛽 = 0.02, increases with increasing volume 

fraction (𝜑). In other words, the enhanced doping of the nanoliquid modifies the viscosity and 

accelerates the flow resulting in a thinner hydrodynamic (velocity) boundary layer thickness on 

the cylinder surface. In both cases i.e., with increasing 𝜑 or 𝛽 values, the time taken to attain the 

steady-state increases. It can also be observed that magnitude of a peak value of the velocity of 

Al2O3-SA nanofluid increases for amplifying values of 𝜑 (or 𝛽) at constant 𝛽 (or 𝜑).        

   Transient non-dimensional temperature (T) curves of Al2O3-SA third-grade nanofluid for 

variation of 𝛽 (third-grade fluid parameter) and of 𝜑 (volume fraction) at the coordinates (1, 1.45) 

are shown graphically in Fig. 4. Here, 𝑃𝑟 =  6.2, 𝐺𝑅 =  10, 𝑁 =  0.01 & 𝑀 =  0.001. 

Initially, these profiles are elevated with time and thereafter become independent of time. 

Temperature is therefore boosted with progression in time and thermal boundary layer thickness 

is enhanced on the cylinder surface. Temperature curves show a similar transient behavior at any 

location in the flow-domain. It is also apparent that with increment in viscoelastic parameter, 𝛽, T 
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curves overlap with each other at the initial stages in time. A similar response is observed with 

variation in 𝜑 value. This overlapping nature of the curves is due to the heat conduction effect 

which is most prominent at the initial time. After reaching the temporal peak, temperature 

distributions clearly deviate from each other and show significant variation with modification in 

𝛽 or 𝜑. The third-grade fluid parameter i.e., 𝛽 defines the effect of viscoelasticity in boundary 

layer flow (i.e. relative effect of elastic & viscous forces). As 𝛽 augments, the viscosity nature 

stimulates & the elastic behavior of the fluid decreases which slowdowns the flow. A decreased 

velocity of the fluid is presented clearly in Fig. 3. Correspondingly, because of greater viscosity & 

lesser elastic properties, the collisions between the fluid particles (greater momentum diffusion) 

enhance hence resulting in heating of the boundary layer. The magnitude of temperature value 

therefore noticeably amplifies for higher 𝛽 value at 𝜑 = 0.04, and thermal boundary layer 

thickness is maximized for this scenario. Furthermore the 𝑇 profile for 𝛽 = 0.02 increases as 𝜑 

enhances. Higher 𝜑 value increases the number of nanoparticles in the flow-field hence there will 

be more heat transfer. 

(ii)Steady-state profiles of the stationary cylinder (𝛾 = 0); 

Steady-state velocity (𝑈) curves of Al2O3-SA third-grade nanofluid at constant 𝑃𝑟, 𝐺𝑟, 𝑁 & 𝑀 with 

variations in β and 𝜑 are represented in Fig. 5. In this case, the cylinder is stagnant. The 𝑈 curves 

for non-Newtonian nanofluid (Al2O3-SA) follow the same topology for variation of both 

parameters (𝜑 and β ). In both cases (i.e., increasing 𝛽 or 𝜑), 𝑈 i. e. velocity magnitude increases 

(flow acceleration is induced), eventually attaining a maximum value, and then gradually 

decreases to 𝑈 =  0. Here, reaching the peak value (𝑈𝑚𝑎𝑥) needs more time with lower values of 

viscoelastic parameter 𝛽 or volume fraction 𝜑. The 𝑈 profiles in the region 0 <  𝑅 <  3.5, exhibit 

a decreasing trend whereas for the region after 𝑅 =  3.5, they show an increasing trend with 

increasing 𝛽. The viscoelasticity, therefore, has a complex interplay with momentum diffusion in 

the boundary layer and this is dependent on location. 
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At coordinates (1, 1.15), the dimensionless temperature (𝑇) evolution with the radial coordinate,  

𝑅 for Al2O3-SA nanofluid and variation in 𝛽 and 𝜑 (with maintained values of 𝑃𝑟, 𝐺𝑟, 𝑁 & 𝑀) is 

displayed in Fig. 6. Since the temperature is also a function of time, 𝑇 curves initially take the 

value 𝑇 =  1 (i.e., boundary condition preserved at the hot surface of a cylinder) and with progress 

in time, the magnitudes are reduced, plummeting finally to the lowest value (i.e., 𝑇 =  0 in the 

free stream). Also, heat transfer by conductive mode can be observed at the starting time. As 𝛽 

amplifies, the thermal boundary layer thickness is boosted; however, the opposite effect is induced 

in the 𝑇 profile with increasing values of 𝜑. It is also noteworthy that the temperature, 𝑇, curve 

attains the steady-state stage earlier with increment in 𝛽 or 𝜑. 

(iii) Steady-state profiles of moving cylinder (𝛾 = 1); 

Figure 7 displays the time-independent plot of velocity for third-grade nanofluid (Al2O3-SA) 

versus 𝑅 (radial direction) for different values of 𝜑 and 𝛽 where 𝑃𝑟, 𝐺𝑟, 𝑁 & 𝑀 are maintained at 

a constant value. Here, the considered curved geometry (‘cylinder’) is impulsively moving (𝛾 =

1) with velocity 𝑢0. As such the velocity of natural convective flow of nanofluid is witnessed and 

it starts from 𝑈 = 1 to attain the 𝑈𝑚𝑎𝑥 then drops to 𝑈 = 0. The pattern is the same with either 

variation in 𝜑 or 𝛽. The greater β (or 𝜑) is, the thicker the momentum (hydrodynamic) boundary 

layer will be at the surface of the hot cylinder. The results are more distinctly visible by varying 𝛽 

than 𝜑. Here again, the time taken to achieve the steady-state time is reduced with increasing 𝛽 or 

𝜑, indicating that both viscoelasticity and nanoparticle volume fraction exert a tangible effect on 

the transient behaviour of the velocity in addition to spatially dependent behaviour. 

Likewise, the steady-state graph for temperature variation in the radial direction for the moving 

cylinder is drawn with varying values of third-grade parameter 𝛽 or volume fraction 𝜑, keeping 

other parameters as constant (refer to Fig. 8). Whether the hot cylinder is stationary or moving 

with velocity 𝑢0, the observations are almost similar i.e., as 𝜑 magnifies, the thermal boundary 
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layer thickness is diminished. Also, for higher 𝛽, the thermal boundary layer thickness is elevated 

and more efficient transport of heat in the bulk fluid is achieved.  

Results on coefficients of heat transfer and skin friction 

Many industrial applications of nano polymers, material processing, and coating dynamics demand 

the calculation of 𝑁𝑢̅̅ ̅̅  (heat transfer coefficient) and 𝐶𝑓
̅̅ ̅ (skin friction) – these quantities are 

therefore also evaluated here for third-grade nanofluid (Al2O3-SA) which helps in designing 

coating thicknesses and sustaining the quality of the finished product. The dimensionless quantities 

to calculate i.e. 𝐶𝑓
̅̅ ̅ and 𝑁𝑢̅̅ ̅̅  are given through the following equations. 

                                               𝐶𝑓
̅̅ ̅ =

𝐵

𝑅𝑒
∫ (

𝜕𝑈

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
                                             (25) 

                                             𝑁𝑢̅̅ ̅̅ = −𝐸 ∫ (
𝜕𝑇

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
                                          (26) 

where, 𝑅𝑒 =
 𝑢0𝑟0  

𝑣𝑓
 is local (radial) characteristic Reynolds number. 

The influence of third-grade fluid parameter (𝛽) and the volume fraction (𝜑) on the coefficient of 

skin friction is plotted through Fig. 9 for constant values of 𝑃𝑟, 𝐺𝑟, 𝑁 & 𝑀. All 𝐶𝑓
̅̅ ̅ curves increase 

to a maximum value slightly, descend to a lower value then with progress in time take constant 

values. As 𝛽 is raised,  𝐶𝑓
̅̅ ̅ drops to lower values i.e., retardation is produced in the third-grade 

nanofluid (Al2O3-SA) which is also corroborated with the computations shown in Fig. 3. This 

interesting observation is due to the fact that as 𝛽 enhances the viscoelastic property of third-grade 

nanofluid intensifies i. e. elastic forces interact differently with viscous force. The momentum 

diffusion is inhibited and skin friction i. e. the shear stress at the cylinder surface is reduced. Figure 

9 also shows results for varying 𝜑 i.e., with augmented values of 𝜑, surface skin friction (𝐶𝑓
̅̅ ̅) 

increases which can be confirmed from Fig. 3. Volume fraction (𝜑) evaluates the number of 

nanoparticles in the base fluid (third-grade fluid i.e., Sodium Alginate). Here, a higher value of 𝜑 

means more nanoparticles (Al2O3) which result in a high frictional value (𝐶𝑓
̅̅ ̅) due to a strong 
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reduction in the global viscosity of the nanofluid which is exacerbated with intensified collisions 

between the nanoparticles.  

Figure 10 reflects the results for wall heat transfer rate (𝑁𝑢̅̅ ̅̅ ) at 𝑅 = 1 (heated surface of a cylinder) 

for different values of 𝜑 & β (𝑃𝑟, 𝐺𝑟, 𝑁 & 𝑀 are constants). At starting time, the 𝑁𝑢̅̅ ̅̅  profile drops 

drastically to smaller values, amplifies thereafter a time-independent state ensues. For an 

increasing value of 𝛽 (third-grade fluid parameter), 𝑁𝑢̅̅ ̅̅  also being a function of time, is observed 

to decrease. This result is significant since for greater values of 𝛽, it has earlier been established 

that higher temperature values are noticed i. e. heating arises in the boundary layer flow with 

stronger viscoelasticity which manifests in a thicker thermal boundary layer and more efficient 

transfer of heat from the cylinder surface (refer Fig. 4 and Eq. 26). Increasing 𝛽 value means 

stronger bond formation between the third-grade nanofluid particles i. e. a tighter matrix structure 

which enhances the viscoelastic effect. This raises the temperature of the nanofluid (Al2O3-SA) 

regime which is reflected in Fig. 10. Hence, it heats up the boundary layer regime which implies 

a reduction in 𝑁𝑢̅̅ ̅̅  value (i.e., rate of heat transfer to wall of the cylinder). For augmenting values 

of 𝜑 (volume fraction), the more number of nanoparticles are added to the flow-field, hence 𝑁𝑢̅̅ ̅̅  

increases due to greater heat transfer. Figure 4 also is consistent with this result. 

 

Effects of Prandtl number (𝑷𝒓), Grashof number (𝑮𝒓) and radiative parameter (𝑵) 

For variation in third-grade fluid parameter and volume fraction values, with the constant 

transverse magnetic field (𝑀0), 𝑁𝑢̅̅ ̅̅  as a function of time at the wall of the stationary cylinder (𝛾 =

0) is presented through Figs. 11 & 12. In these plots, the influence is shown for 𝑃𝑟, 𝐺𝑟 & 𝑁 effects.  

Amplified 𝑃𝑟 or 𝑁 value reduces the peak velocity of the nanofluid flow. However, 𝑈𝑚𝑎𝑥 increases 

with greater 𝐺𝑟. The thickness of the thermal boundary layer diminishes for intensified 𝑃𝑟 or 𝑁 

value. A qualitatively similar response is computed via augmenting 𝐺𝑟. Increasing Grashof 

number corresponds to elevation in thermal buoyancy force relative to viscous hydrodynamic 

force. This exacerbates thermal convection currents which accelerate the flow but deplete the 
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temperature, a classical result in convection flows. A decrease in temperature value is observed as 

the Prandtl number relates the momentum and thermal diffusivity. Hence, it has control over the 

relative thickness of momentum and thermal boundary layers.  Also, a similar observation is 

noticed for greater 𝑁 values, since the rate of energy transport to the flow-field decreases with the 

radiation effect. In this regard, Table 5 shows that, as any of the parameters 𝑃𝑟, 𝐺𝑟 or 𝑁 intensifies, 

then 𝑁𝑢̅̅ ̅̅  (heat transfer rate to the surface cylinder) enhances since temperatures are reduced in the 

bulk fluid, as established earlier. From Table 6, it is verified that 𝑇𝑚𝑎𝑥 decreases and 𝑁𝑢̅̅ ̅̅  (based 

on Eqn. (26)) increases for growing values of 𝑃𝑟, 𝐺𝑟 & 𝑁. The time for achieving steady-state 

reduces for higher 𝑃𝑟 (or  𝐺𝑟) and lower 𝑁.         

 

Shape of the nanoparticle 

Figure 13 depicts the rate of heat transfer at 𝑅 = 1 (on the surface of the cylinder) for the radiative 

convective flow of third-grade nanofluid by changing the shape of nanoparticles (Al2O3) and 

varying volume fraction of the nanofluid. The shape of nanoparticles shows a considerable impact 

on heat transfer characteristics. In this study, spherical and cylindrical shaped nanoparticles are 

considered. Heat transfer of flow of third-grade fluid based nanofluid significantly changes by 

varying 𝑛 (i.e., the shape of nanoparticle).  It is abundantly clear that Nusselt number (𝑁𝑢̅̅ ̅̅ ) is 

greater for spherical shaped nanoparticles of Al2O3 than cylindrical shaped ones for any particular 

volume fraction. In mathematics, the sphere is known to possess the unique property of having a 

maximum volume for the minimum surface area. This enables more nanoparticles to be doped into 

the regime compared with cylindrical geometries and produces a greater overall surface area for 

micro-convection between the nanoparticles and the engulfing base fluid. As a result, the effective 

thermal conductivity 𝑘𝑛𝑓 is boosted and this produces exceptional elevations in increased 𝑁𝑢̅̅ ̅̅ . 

These observations have been confirmed in many laboratory experiments and indeed in the larger-

scale deployment of metallic nanofluids in the coating and other industries. Also, in both cases of 

𝑛, 𝑁𝑢̅̅ ̅̅  augments for the amplified value of 𝜑. Overall, it may be deduced therefore that both 
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nanoparticle shape and doping percentage (volume fraction) impart thermal enhancement 

properties to base fluids. 

 

Different types of nanoparticle 

Figure 14 displays the computational results on heat transfer (𝑁𝑢̅̅ ̅̅  at 𝑅 = 1) on the wall of the 

heated curved geometry (cylinder) for third-grade fluid (Sodium Alginate)-based nanofluid for 

different nanoparticle types (nanomaterials). The current study considers Alumina (Al2O3), Copper 

(Cu), and Titanium oxide (TiO2) as metallic/metallic oxide nanoparticles for natural convective 

heat transfer coating flow. All other parameters (𝑃𝑟, 𝐺𝑟, 𝑁, 𝑀 & 𝜑) are kept constant. Hear, all 

𝑁𝑢̅̅ ̅̅  curves follow the same pattern. It is noticed that by changing the nanoparticles in the base fluid 

the gap between the 𝑁𝑢̅̅ ̅̅  curves is not significant; however, it is clearly observed that third-grade 

fluid (SA) based nanofluid with Titanium oxide (TiO2) achieves the highest 𝑁𝑢̅̅ ̅̅  value i.e., the 

maximum computed rate of heat transfer to the solid surface of cylinder compared with other 

nanoparticles. The nanofluid with Cu nanoparticles has a lesser heat transfer rate than others, even 

though copper possesses a higher thermal conductivity which will produce higher temperatures 

within the bulk fluid but lower heat diffusion to the wall, and this is probably also attributable to 

the base fluid contribution. It is known that Nusselt number is the ratio of convective to conductive 

heat transfer i.e., as Cu exhibits the highest thermal conductivity, Sodium Alginate with Cu 

nanoparticles has the lowest 𝑁𝑢̅̅ ̅̅  value. Copper will therefore energize the bulk fluid most (highest 

temperatures) and produce a thicker thermal boundary layer but will perform least best in terms of 

transferring heat to the cylinder surface from the bulk fluid (boundary layer regime). 

Contour plots 

The rectangular 2D X-R plane represents the contour lines of U & T  (flow variables) of third-

grade nanofluid (Al2O3-SA) for the variation of third-grade fluid parameter (Fig. 15 (a)) and 

volume fraction (Fig. 15 (b)) of nanofluid with coordinates  0 <  𝑋 <  1, 0 <  𝑅 <  6. Here, all 

other parameters are maintained to have constant values such as 𝛼1 = 𝛼2 = 𝛽′ = 0.001, 𝑃𝑟 =
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 6.2, 𝐺𝑅 =  10, 𝑁 =  0.01 & 𝑀 =  0.001. It may be inferred from Fig. 15 (a) that as 𝛽 

amplifies U & T profiles are slightly displaced from the hot cylinder surface. This result is 

confirmed by the observation that the contour line of U labeled as 1.80 shifts from 𝑅 =  5.57 to 

5.77 and the contour line of T labeled as 0.14  as  𝑅 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑓𝑟𝑜𝑚 4.18 to 4.25.  Similarly, for 

different values of 𝜑, U and T contour lines migrate and increasingly approach the heated wall 

(cylinder surface). Here also the T -lines labeled as 0.14 shift from 𝑅 = 4.20 to 𝑅 = 4.11. Figures 

15 (a) & (b) confirm that the third-grade nanofluid (Al2O3-SA) temperature contours are also 

markedly altered with variation in 𝛽 and 𝜑 values.   

 

5. CONCLUDING REMARKS 

A theoretical and computational study has been described to quantify the collective influence of 

thermal radiation, magnetic field, volume fraction, and geometric shape of nanoparticles on the 

axisymmetric unsteady convective hydromagnetic boundary layer coating flow of a viscoelastic 

third-grade nanofluid (Al2O3-SA) external to a moving/stationary vertical cylinder. An implicit 

numerical scheme (Crank Nicolson) has been adopted to solve the transformed, dimensionless 

nonlinear boundary value problem. Mesh (grid) independence tests and benchmarking with 

previous simple models from the literature have been included to confirm the accuracy of the 

numerical code. The influence of key parameters i. e. time (t), Prandtl number (𝑃𝑟), Grashof 

number (𝐺𝑟), radiative flux (𝑁), and third-grade fluid parameter (𝛽). Also, heat transfer 

characteristics have been analyzed to examine the impact of volume fraction (𝜑), nanoparticle 

shape (𝑛), and type of nanoparticle. The key results derived from the study can be summarized as 

follows: 

➢ Transient velocity and temperature of third-grade nanofluid (Al2O3-SA) increase and 

decreases, respectively with higher volume fractions.  

➢ With the increment in third-grade (viscoelastic) fluid parameter, time-dependent velocity 

is reduced and temperature is enhanced.   
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➢ Steady-state plots (Al2O3-SA) drawn for moving and stationary cylinders show that heat 

transfer rates are strongly modified with variation in third-grade fluid parameter.  

➢ Heat transfer characteristics i.e. Nusselt number of Al2O3-SA increase for higher volume 

fractions and lower third-grade fluid parameter values.  

➢ The surface skin friction value is augmented for greater volume fraction and smaller third-

grade fluid parameter value.  

➢ For higher Grashof number (Gr), Prandtl number (𝑃𝑟) and radiative parameter (𝑁), Nusselt 

number is boosted. 

➢ Spherical shaped nanoparticles of Al2O3-SA show a significantly higher thermal 

performance relative to cylindrical shaped ones. 

➢ Third-grade nanofluid with TiO2 nanoparticles produces relatively higher heat transfer 

rates than other nanoparticles (Al2O3 and Cu). 

➢ Increasing radial magnetic field decelerates the boundary layer flow whereas it elevates 

temperatures. 

➢ The time taken for both velocity and temperature to attain the steady-state situation is 

dramatically influenced by viscoelasticity and nanoparticle volume fraction.  

As mentioned earlier, the current study has immediate applications in functional (field responsive) 

magnetic nanomaterial coating dynamics. In particular, Sodium Alginate, a base liquid (third-

grade fluid) has significant potential as a biopolymer coating for next generation aerospace and 

mechanical/chemical components. Additionally, it may have some possible advantages in wound 

healing biotechnologies [50] and biocompatible, muco-adhesive, and biodegradable polymers 

[51]. The synthesis of these coating nanomaterials is often conducted at high temperatures wherein 

thermal radiative effects are appreciable [52] and magnetic induction [53, 54] can arise. However, 

in such operations, viscous heating i. e. loss of kinetic energy, and furthermore energy losses due 

to entropy generation may also arise, which have been ignored in the present study, which has also 

been confined to Boussinesq flows. Future work may consider viscous dissipation, thermodynamic 
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second law analysis of non-Boussinesq polymer flow of third grade nanofluid [57-61], the porous 

effect [62], Falkner-Skan flow [63], different non-Newtonian nanofluids [64], [65] and hybrid 

nanofluids [66], [67] will be communicated soon.  
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