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SUMMARY

The design of digital trajectory-tracking controllers for robotic manipulators is a 

challenging task, since such manipulators are multivariable non-linear plants. In 

addition, in many applications of robotic manipulators, it is required that very 

high-accuracy trajectory-tracking performance be achievable even in the 

presence of unpredictable payload variations. These requirements can all be 

met to some extent by application of the previously developed fast-sampling 

digital PID controllers to robotic manipulators. Indeed, for such controllers, it is 

possible to prove a series of very reassuring robustness results using only the 

Markov parameters associated with locally linearised representations of robotic 

manipulators.

However, these theoretical optimisation results for digital PID controllers are 

only valid as sampling periods become vanishingly small. In practice, of course, 

the sampling periods of digital controllers remain non-zero; but, in such cases, 

no theoretical optimisation results are available. There is, therefore, a great 

need for some alternative optimisation procedure that will facilitate the non- 

asymptotic design of digital PID controllers for robotic manipulators.

This design need is addressed in this thesis. In particular, the following 

evolutionary optimisation techniques are used to design digital trajectory­

tracking controllers for robotic manipulators:



(i) genetic algorithms,

(ii) non-adaptive evolution strategies

(iii) adaptive evolution strategies.

ui

It is shown that, with increasing effectiveness, these techniques are very useful 

in the design of high-accuracy digital PID controllers. These techniques are 

illustrated by the presentation of simulation results for a typical three-link robotic 

manipulator performing a range of demanding trajectory-tracking tasks in the 

presence of unpredictable payload variations. In addition, these evolutionary 

optimisation techniques are also used in the design of unconstrained digital PID 

controllers, in which all elements of the controller matrices are used as the 

design parameters.

In order to validate these evolutionary design techniques in practice, an 

experimental laboratory investigation is also undertaken. This involves the 

practical implementation, in the case of a direct-drive two-link robotic 

manipulator, of digital PID trajectory-tracking controllers designed using 

evolutionary techniques. The results thus obtained indicate that such 

optimisation techniques greatly facilitate the tuning of digital PID controllers for 

robotic manipulators under practical non-asymptotic conditions.
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CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION

In a world where industry is constantly pushing for optimal performance, control 

engineers are being compelled to strive hard when designing or tuning the 

many thousands of controllers implemented in different forms world-wide in vital 

sectors of the economy, e.g. in the growing numbers of industrial robots. The 

development of control system design techniques which can be enhanced by 

incorporating simple optimisation techniques is a pressing necessity. The 

development of new theoretical and computational methods for the design of 

machines which, in some sense are controlled so as to exhibit ‘intelligent’ 

behaviour by emulating the behaviour of biological systems, is therefore 

considered to be a big step in the exploration of fundamental problems in 

control theory and also in the solution of a number of practical design problems. 

[Porter (1989)]

1.2 ROBOT DYNAMICS

It is commonly claimed in much literature concerning robot control that the

dynamics of robotic manipulators are highly non-linear and that there is strong
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dynamic coupling between joints. Two formulation methods are used to model 

the dynamics of such robotic manipulators, namely, the Euler-Lagrange 

formulation (see Appendices B and C) and the recursive Newton-Euler 

formulation [Luh et al (1980)] [Paul (1981)]. The former facilitates the modelling 

of complex systems, whilst the latter is computationally more efficient and better 

suited for real-time control applications. A simple description of the motion of 

robotic manipulators was derived using vectorial mechanics in [Me Innis and Liu 

(1986)]. By using this vectorial approach, dynamical models are obtained with a 

direct physical interpretation.

The use of the mechanical/electrical analogy known as the ‘bond graph’ was 

proposed to describe linear mechanical systems via electrical networks and was 

initially launched by Paynter (1960) and Rosenberg (1968). This technique was 

later extended to cope with non-linear mechanical systems by Rosenberg and 

Karnopp (1983). However, limitations remained since bond graphs do not 

directly express the energy flows involved in mechanical systems. Another 

expression of non-linear mechanical systems via a network was proposed by 

Anderson (1995) on the basis of general Hamiltonian systems, which did not 

describe internal energy flows between elementary operational blocks such as 

resistors, gravity capacitor blocks, kinetic inductors, etc.

The attempt at expressing the Lagrangian dynamics of a robot manipulator and

analysing its control via a non-linear position-dependent circuit was presented
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by Arimoto (1994) as another language for describing robot dynamics. The first 

work explicitly describing the idea of introducing a class of non-linear position- 

dependent circuits is found in Arimoto (1995).

In addition to the motion of the robotic manipulator, the dynamics of robotic 

systems includes actuators dynamics and sensors dynamics. In fact, electric 

motors are the actuators usually employed in robotic manipulators to provide 

the necessary forces and torques for motion. These electrical actuators are 

normally voltage-controlled devices and, therefore, possess armature 

inductances that should be incorporated into the system dynamics. In that case, 

a complete dynamical model including both electrical and mechanical parts 

would be a third-order differential equation. However, the response of a third- 

order system can be accurately emulated by a second-order model when the 

electrical time constant is significantly small compared with the mechanical time 

constant [D'Azzo and Houpis (1995)]. The electrical time constant is a function 

of motor inductance which is very small in most practical situations, so that the 

complete system model can then be accurately represented by a second-order 

system. Besides the frequently neglected dynamics of actuators, there are 

nnany other sources of dynamics in a given robotic system: for example, 

dynamics of power amplifiers for actuators and sensor dynamics. Such 

dynamics are usually neglected and thus classified as unmodeled dynamics.
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1.3 MODERN CONTROL THEORY AND ROBOT CONTROL

1.3.1 REVIEW OF MODERN CONTROL THEORY

In the early 1930s, Nyquist (1932) and Black (1934) used their theoretical work 

to establish control engineering as a discipline in its own right. These 

foundations were later strengthened by the contributions of Bode (1945) and 

Wiener (1949), with the frequency-domain approach, and Evans (1948) (1950), 

with the introduction of the root-locus method. However, since all these 

methods were mainly dedicated to linear Single Input-Single Output (SISO) 

systems, there were difficulties in applying them in the case of complex 

industrial plants such as robotic manipulators which are non-linear Multiple 

Input-Multiple Output (MIMO) systems, with possibly time-varying 

characteristics. It is, therefore, evident that methods for the design of control 

systems for complex industrial plants should provide multivariable control laws. 

Such methods should guarantee good performance in the face of the 

uncertainties inherent in complex, non-linear, and time-varying plants such as 

robotic manipulators.

The control theory developed through the late 1950s may be categorised as 

conventional control theory and this has been effectively applied to many 

control-design problems, especially for SISO systems. Since then, control 

theory has been developed for the design of more complicated systems and
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more notably for MIMO systems. In the late 1950s, several authors, including 

Bellman (1957) and Kalman (1960) in the United States and Pontryagin (1963) 

in the U.S.S.R, began again to consider the ordinary differential equation (ODE) 

as a model for control systems. Much of this work was stimulated by the new 

field of control of artificial earth satellites, in which the ODE is the natural form 

for writing the model. This endeavour was supported by digital computers, 

which could be used to carry out calculations unthinkable 10 years before. The 

work of Lyapunov (1893) was translated into the language of control at about 

this time, and the study of optimal controls, begun by Wiener (1949) and Phillips 

(1951), was extended to the optimisation of trajectories of non-linear systems 

based on the calculus of variations [Kalman (1963)]. Much of this work was 

presented at the first conference of the newly formed International Federation of 

Automatic Control held in Moscow in 1960. This work did not use the frequency 

response or the characteristic equation but worked directly with the ODE in 

“normal” or “state” form and typically called for the extensive use of computers. 

Space travel had become possible only because of the advent of modern 

control theory. Indeed, areas such as trajectory optimisation and minimum-time 

and/or minimum-fuel problems, which are very important in space travel, can be 

readily handled by modern multivariable control theory. The introduction of the 

digital computer and its compatibility with multivariable control theory was 

crucial in solving important problems associated with the manoeuvring, 

guidance, and tracking of aircraft, missiles, and space vehicles.
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This approach, which is now often called modern control to distinguish it from 

the classical control methods of Bode and others, was given considerable 

attention by engineers and yielded comprehensive design procedures for linear 

multivariable plants as proposed by Kalman (1963) in order to solve the linear 

optimal control problem. Indeed, the optimal control problem, sometimes 

referred as the Linear Quadratic Regulator (LQR) or Linear Quadratic Gaussian 

(LQG) problem, for control system design is concerned with the minimisation of 

a cost function involving error and control signals. However, this procedure 

suffers from some drawbacks since the choice of quadratic performance criteria 

for non-aerospace problems is not easy and also because the use of a state- 

feedback law causes severe difficulties when not all the states are available for 

measurement and feedback. These LQR/LQG systems therefore incorporate 

the use of observers to ‘recover’ inaccessible states by the introduction of an 

observer [(Luenberger (1966)] which increases the complexity of the feedback 

loop. Moreover, these methods were also complicated by the problem of 

observer transients, ie, the period before the estimated state variables converge 

to their true values. As a result, attempts were made to avoid state feedback by 

using output feedback in the solution of optimal control problems [Levine and 

Athans (1970)]. In the same period, as linear multivariable optimal controllers 

development was underway, a great deal of effort was also directed towards 

gaining a deeper insight into the structure of linear systems.

In this new approach, the structural concepts of controllability and observability
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due to Kalman (1960) were exploited by Gilbert (1963) to produce the 

relationship between state-space and transfer-function descriptions. Since most 

physical systems exhibit MIMO behaviour with highly interactive dynamics, the 

realistic representation of many systems calls for high-order dynamics 

equations. This undoubtedly leads to complexity in the system’s analysis and 

control. Thus, the idea of working with the simplest possible representation of 

systems became attractive and compelled several authors to work on obtaining 

minimal realisations and reduced-order models. However, it was clear that 

minimal realisations must be achieved in such a way as to preserve all the 

important characteristics of the system or process. Therefore, algorithms were 

soon developed for obtaining minimal-order state-space realisations from the 

transfer-function matrices [Ho and Kalman (1966), Davidson et al (1978)]. Thus, 

as a result of the theoretical work of Falb and Wolovich (1967) and Rosenbrock 

(1968, 1970), and others, a basis was formed on which numerous new design 

techniques were built. However, some of these methods suffered from their 

inability readily to guarantee the tracking accuracy and decoupling capability of 

the various channels in closed-loop systems incorporating multivariable plants.

Since the introduction of the multivariable Hoc control theory by Zames (1981) to 

address the problem of designing a controller which minimises the /-/«, closed- 

loop transfer-function matrix, this methodology has received much attention 

[Francis and Doyle (1986), Glover and MacFarlane (1989)] in recent years. 

However, one major problem in this design procedure is that in most cases a
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model of the whole plant is needed, and the controllers resulting from Hx design 

methodology can sometimes be mathematically complicated [Carr and Grimble 

(1992)]. Further development resulted in the formulation of the mixed H2 and /-/«, 

control approach [Bernstein et al (1989) and Zhou et al (1990)]. It was thus 

clear that H2 and /-/„ control designs are quite useful for robust performance 

design in the presence of parameter perturbations and uncertain disturbances. 

However, conventional output feedback designs of mixed H2 and Hx optimal 

control turned out to be rather complicated and not easily implemented for 

practical industrial applications [Chen et al (1995)]. The extension of /-/«, control 

theory to non-linear dynamical systems was effected by Van Der Schaft (1991, 

1992) and Ballet al(1993).

The Quantitative Feedback Theory (QFT) developed by [Horowitz (1979)] is an 

example of another multivariable control design technique which uses feedback 

control to achieve desired system performance. This is a very powerful design 

method when plant parameters vary over a broad range of operating conditions 

[D'azzo and Houpis (1995)]. However, it involves a lengthy procedural design 

process even for the simplest of systems. It is thus important to note, for 

example, that during the development and flight testing of a QFT flight control 

system for an unmanned research vehicle [Sheldon and Rasmussen (1994)], 

the controller had to be re-designed at several stages of development. 

However, this inconvenience has not prevented control engineers from using 

this powerful design methodology which was even developed in the case of
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Multiple Input Single Output (MISO) systems as a CAD package by Yaniv 

(1992) or as a multivariable control toolbox for MATLAB/SIMULINK (MathWorks 

1994).

The previously mentioned ‘curse’ of dimensionality associated with realistic 

representations of physical systems posed formidable computational problems 

for the analysis and control of these systems. Indeed, the presence of some 

‘parasitic’ parameters such as small time constants, masses, moments of inertia 

is often the cause of the increased order and ‘stiffness’ of these systems. This 

stiffness, attributed to the simultaneous occurrence of ‘slow’ and ‘fast’ 

phenomena, gives rise to different time scales. The singular perturbation and 

time-scale methods, ‘gifted’ with the two remedial features of dimensional 

reduction and stiffness relief, are considered as a boon to control engineers. 

These techniques have attained a certain level of maturity in the theory of 

continuous control systems described by ordinary differential equations. The 

idea of singular perturbations in differential equations was first introduced to 

control theory by Kokotovic and Sannuti (1968), and further progress in this 

direction was achieved by Kokotovic and Perkins (1972). Some of the particular 

problems considered are multivariable systems with state feedback [Porter 

(1974, 1977, 1982), Grujic (1979) and Bradshaw and Porter (1979, 1981)], and 

output feedback [Porter and Bradshaw (1981)]. Other related problems are 

concerned with eigenvalues as proposed by Porter and Shenton (1975a), 

Moore (1976) and Chow (1978), transfer function matrices as investigated by
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Porter and Shenton (1975b), and frequency domain characteristics as studied 

by Luse and Khalil (1985). The fact that the theory of difference equations is in 

most respects akin to that of ordinary differential equations leads to the singular 

perturbation analysis being successfully extended to discrete systems [Locatelli 

and Schiavoni (1976)]. In the beginning, attempts to model discrete systems 

with slow and fast behaviour in strictly perturbed structure faced some stability 

problems [Comstock and Hsiao (1976), and Reinhardt (1979)]. However, with 

the formulation of some other types of singularity pertubed structures, there has 

been considerable interest in the analysis of two-time-scale discrete systems 

[Phillips 1980, Naidu and Rao (1981, 1985), and Mahmoud (1982, 1986).

In other relevant work, Porter and his associates at the University of Salford 

[Porter and Shenton (1975a, b), Porter and Bradshaw (1979a ,b), Bradshaw 

and Porter (1980a, b), Porter (1982), Porter et al (1985), Porter and Manganas 

(1985, 1987)] have developed design techniques for high-performance set-point 

tracking systems which are conceptually and computationally easy to 

implement. These controllers, which ensure ‘tight’ and non-interacting set-point 

tracking together with disturbance rejection, are robust in the face of plant- 

parameter variations [Porter and Othman (1990), Porter and Abidin (1990a)]. 

Furthermore, the design of such controllers is remarkably simple since, even in 

the case of complex and highly interactive multivariable plants only the step- 

response matrices of such plant are required in the synthesis of control laws. 

These remarkable features proved to be essential when tackling non-linear
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time-varying plants such as robotic manipulators [Porter and Abidin (1991a)]. In 

addition, following the guidelines advocated by Porter (1989) for designing 

practical intelligent digital controllers for multivariable plants, the application of 

powerful optimisation techniques using genetic and fuzzy-genetic 

methodologies in the design of robotic controllers and the associated 

identification processes was presented by Porter, Sangolola and Zadeh (1994) 

and Porter and Zadeh (1995a, b).

In the aftermath of the development of the feedback-amplifier design procedure 

described by Bode (1945), feedback control of industrial processes was 

becoming standard. This field, characterised by processes that are highly 

complex and also non-linear and subject to relatively long time delays between 

actuator and sensor, developed Proportional-Integral-Derivative (PID) control. 

PID controllers, the bread and butter of control engineering practice, are found 

in large numbers in all industries. They come in many different forms and are 

also embedded in various kinds of special purpose control systems. Most 

feedback loops are controlled by this most common control algorithm or some 

minor variation of it. However, although PID controllers are common and well 

known, they are often poorly tuned. Evidence of this can be found in the control 

rooms of most industrial plants. Thus, the derivative action in PID controllers is 

frequently switched off for the simple reason that it is difficult to tune properly. 

Nevertheless, enormous progress has been made since PID controllers were 

first described by Callender et al (1936). The association of PID controllers with
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the different SISO and MIMO design techniques led to the pressing need to 

provide systematic tuning of such controllers so that the full and optimal 

performance of the application of these controllers could be achieved [AstrOm 

and HOgglund (1988)]. The ongoing process of acquiring computer power offers 

interesting possibilities to provide automatic tuning as well as adaptation to 

changing operating conditions as is commonly the case in real industrial 

process. The development and use of autotuning devices offered several 

advantages. Since automatic tuning is faster than manual tuning, the 

commissioning time for installation of new processes was decreased. Automatic 

tuning also means that the tuning is made systematically, even for the simplest 

control loops. The simplicity is an advantage for those loops that do not require 

any sophisticated controller. However, there are some drawbacks. The simple 

structure gives the controller limited behaviour. Indeed, control loops with large 

dead-time or other kinds of complex dynamics are hard to control efficiently with 

traditional PID controllers. On the other hand, controllers based on methods that 

require much a priori information often have a pretune phase that helps the 

operator in the choice of such information. Hence, the autotuning devices 

available on the market today differ with respect to the amount of prior 

knowledge needed. For more difficult control problems, the controllers are often 

tailor-made. Simple PID controllers are then not appropriate, but rather robust 

PID controllers relying on automatic tuning methods with more sophisticated 

properties such as intelligence and adaptation are required.
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1.3.2 ROBOT CONTROL

The role of robot control is to integrate all the outputs supplied from the robot 

sensing system into the of control inputs that are able to realise the movements 

required in performing the tasks imposed on robots. In the early generations of 

robot control, when roboticists were enthusiastically dreaming of intelligent 

robots that could undertake humans tasks, many people took it for granted that 

robot control would soon be accomplished by simply applying the outstanding 

achievements of modern control theory to robots. However, despite these 

achievements, the difficulties in understanding human motor control and vision 

have greatly upset the dream of producing human-like intelligent robots before 

entering the new millennium. Despite this temporary failure to produce what sci- 

fi movies describe as “humanoids”, a great deal of work has been accomplished 

on the control of complex non-linear systems such as robotic manipulators.

One of the major tasks assigned to robotic manipulators is to track given 

positional trajectories with high accuracy. In order to achieve accurate control of 

a robot during the execution of such tasks, feedback control is used. The 

simplest and most common controllers, which are extensively used in current 

industrial robotic manipulators, are proportional-plus-derivative (PD) controllers 

[Cra/g( 1989), Fu et al (1987), and An and Atkeson (1989)]. These PD 

controllers contain no dynamical models of manipulators. In fact, these simple
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PD control laws are used in decentralised control schemes in which the robotic 

system is considered as a set of independent sub-systems which can be 

stabilised by local servos [Vukobratvic and Stokic (1985)]. Therefore, PD 

controllers can usually achieve satisfactory performance for robotic 

manipulators which are indirectly driven by geared systems because coupling 

effects become negligible due to the associated high gear ratios. However, in 

recent years, direct-drive manipulators have begun to play an increasingly 

important role in many industries. There is no gearing between motors and arm 

links in direct-drive robotic manipulators, and coupling effects therefore become 

significant. Nevertheless, the usefulness and effectiveness of such PD 

controllers were comprehensively discussed in [Kawamura et al (1988)]. The 

asymptotic stability of such linear PD controllers for highly non-linear robotic 

manipulators was also discussed in [Asada and Slotine (1986)] using 

Lyapunov's method. It was argued that such linear PD controllers are useful not 

only for positioning but also for trajectory tracking [Kawamura et al (1988)] 

[Koditshek (1987)]. However, PD controllers ensure the asymptotic stability of 

position control if the gravity term can be compensated carefully by installing 

weight-balancers at some manipulators links or feedforward control on the basis 

of real computation for the gravity term. This result was first obtained by 

Takegaki and Arimoto (1981). But, without compensating for the gravity term, 

any PD controller for set-point positional control results in a steady-state error 

as long as the dynamics of the robot manipulator are subjected to gravity 

forces. In order to remedy this flaw, an integral term of positional errors can be
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introduced together with PD terms and thus leads to asymptotic stability of 

positioning in a local sense. Indeed, most stability and tuning analyses have 

been carried out by assuming local PD or PID control of robotic manipulators 

which have been modelled by second-order linear systems.

However, this tuning procedure becomes only approximate when there are 

large dynamical interactions and significant non-linearities within dynamical 

models. In such cases, the tuning procedure is usually performed by a trial-and- 

error process [An et al (1988), Desilva (1995)]. Recently, a tuning procedure for 

PID control of robotic manipulators has been proposed [Kelly (1995)] in which 

lower bounds on proportional and derivative matrices have been obtained by 

invoking Lyapunov's direct method for set-point control. In addition, Kelly (1995) 

has also reported some other relevant work on the stability of such controllers 

for robotic manipulators and has emphasised that it is very hard to extract an 

explicit tuning policy for the gains of such linear controllers from these results. 

However, Kelly (1995) has not proposed any tuning procedure for finding 

optimal gains such that a specified cost function can be optimised. Indeed, it is 

very difficult to find optimal gains for such linear controllers when they are 

applied to the non-linear and coupled dynamical models of robotic manipulators. 

Moreover, the problem of finding optimal gains becomes even more complex 

when multivariable (centralised) linear PD or PID controllers are used for robotic 

manipulators instead of monovariable (decentralised) controllers.
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Another approach for robot control is linear perturbation adaptive control in 

which a perturbed control effort is used to correct the nominal control effort 

based on the nominal model of a robotic manipulator. A MRAC Lyapunov-based 

design technique was used in [Takegaki and Arimoto (1981)] in order to derive 

the adaptation law for the perturbed control effort. Similarly, a self-tuning design 

technique based on the discrete-time model of the desired trajectory was used 

in Lee and Chung (1982. 1984).

Most of the research in adaptive control for robotic manipulators has proceeded 

by using the structure of the manipulator dynamics, and these schemes were 

accordingly called model-based adaptive controllers in [Colaugh et al (1995)]. 

The first globally convergent, non-linear adaptive control law for these schemes 

was developed by Craig et al (1986), in which the structure of the computed- 

torque method was maintained whilst the unknown regrouped dynamical 

parameters of the manipulator were modified adaptively in a Lyapunov sense. 

In this approach, the inertia matrix of the robotic manipulator needs to remain 

bounded during adaptation of the dynamical parameters. Similarly, Slotine and 

Li (1987,1988) proposed an adaptive control algorithm which consists of a PD 

feedback part and a full dynamical feedforward compensation part with the 

unknown parameters being estimated adaptively. In this adaptive control 

algorithm, zero steady-state joint velocity errors, rather than zero steady-state 

joint position errors, are guaranteed. In order to modify the algorithm, a sliding 

surface was used such that zero steady-state errors for joint position were also
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guaranteed. The use of inverse dynamics of robotic manipulators for adaptive 

control schemes was also reported by Spong and Ortega (1990) and Dawson 

and Lewis (1991) in which the approach of Craig et al [1986] was modified so 

as to avoid the need for inverting the inertia matrix of a robotic manipulator 

during adaptation. A summary description of all these adaptive controllers for 

robotic manipulators can be found in [Hsia (1986)] and [Ortega and Spong 

(1988)]. However, the main drawback of these controllers is the computational 

complexity of the adaptive schemes [Sadegh and Horowitz (1990)], which 

require the on-line computation of many non-linear functions of joint positions 

and velocities. Digital implementation of these schemes may therefore require a 

slow sampling rate, which in turn may degrade the performance of the 

controller. Such adaptive control schemes are accordingly rather too 

complicated for routine industrial use and have therefore failed to replace the 

relatively simple PD or computed-torque/PD controllers frequently used in 

practical applications of industrial robots.

In a different approach, another control algorithm that was used for robotic 

manipulators introduced sliding mode control [Young (1978), Slotine (1985) 

,and Su and Leung (1993)]. The control law in this case is generally a switching 

controller in which the controller is designed such that the sliding mode occurs 

on the predefined sliding surface. However, these types of controller frequently 

suffer from chattering as a result of the use of high switching frequencies and 

the presence of unmodelled dynamics of the system.
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The extension of H* control theory to non-linear dynamical systems due to Van 

Der Schaft (19921, 1992) and others has promoted the use of Hx control for 

robotic manipulators in line with the general theoretical approaches mentioned 

by Astolfi and Lanari (1994a, b). In addition to this early promotion of the 

application of the /-/«, control theory to robotic manipulators, Arimoto (1995d, 

1996) proposed a simplification of the treatment of Hoc control theory for robotic 

manipulators on the basis of physical interpretations of energy conservation and 

dissipation in mechanical systems. However, the analytical complexity of the H«, 

-tuning problem for highly non-linear electromechanical systems such as robotic 

manipulators favours the use of simpler alternative control methodologies. More 

recently, a new optimal control approach to robust control of robotic 

manipulators in the framework of Lin (1997) has been proposed by Lin and 

Brandt (1998). This solves the robust control problem by solving the optimal 

control problem, which is much easier to accomplish in many cases. However, 

although this most recent approach is fundamentally different from all the 

previous approaches, it bears resemblance to the robust saturation approach in 

the sense that some kind of Lyapunov argument is used. Among other 

approaches, it is also relevant to refer to the learning control approach 

introduced in the work of Arimoto et al (1984) and Arimoto (1990) which was 

subsequently further extended by Gorinevsky et al (1997). It is also relevant to 

note that the use of the powerful QFT method might be effective for time- 

varying plants such as robotic manipulators which parameters vary over a broad
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range of operating conditions [D’azzo and Houpis (1995)]. However, as 

previously mentioned, the lengthy procedural design process involved in the 

case of complex systems such as robotic manipulators would ultimately favour 

straightforward simpler design methodologies.

1.4 EVOLUTIONARY COMPUTATION

Although the origin of evolutionary computation (EC) can be traced back to the 

late 1950’s and early 1960's [Box (1957) and Bremermaan (1962)], this field 

remained relatively unknown to the broader scientific community for almost 

three decades. This was largely due to the lack of available powerful computer 

platforms at that time, but also due to some methodological shortcomings of the 

early approaches [Fogel (1995)]. However, the fundamental work of Holland 

(1962), Rechenberg (1965), Schwefel (1968), and Fogel (1962) served 

gradually to change this picture during the 1970 s. There is currently a 

remarkable and steady increase of interest of the scientific, academic, and 

industrial communities in EC as a clear demonstration of the scientific and 

economic relevance of this field.

In view of the significant effort invested in the area of evolutionary computation, 

it was necessary for EC advocates to justify this effort by displaying the benefit 

of EC compared to other approaches. BDck et al (1997) therefore argued that
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the most significant advantage of using evolutionary search methods lies in the 

gain of flexibility and adaptability to the task at hand, in combination with robust 

performance (although this depends on the problem class) and global search 

characteristics. In fact, EC should be understood as a general adaptable 

technique which is especially well suited to solving difficult multi-dimensional 

optimisation problems. However, as pointed out by Porter (1997), it is 

necessary to be careful not to confuse mere algorithmic novelty with real 

practical utility.

The majority of current implementations of evolutionary algorithms descend 

from the two strongly related but independently developed techniques:

i) Genetic Algorithms (GA)

ii) Evolution Strategies (ES)

GA and ES, which were originally developed respectively by Holland (1975) 

and, Rechenberg (1973) and Schwefel (1975), are search procedures based on 

natural evolution. Both GA and ES are, in fact, strongly influenced by classic 

Darwinian evolutionary theory, and mimic the mechanics of natural selection 

and the natural genetics of biological organisms, in which the "survival of the 

fittest " is the basis for the evolution of natural populations during many 

generations. Indeed, all natural species survive by adapting themselves to the 

environment, which is the basic underlying theme of both GA and ES. There is
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competition in nature between individuals in a population such that those which 

have unfit characteristics will be eliminated in the subsequent generations. 

However, those individuals which are most successful in surviving will attract 

mates and will therefore have the largest numbers of offspring: each offspring 

inherits some characteristics from each parent. GA and ES use this analogy 

with natural behaviour and are thus able to evolve solutions to real-world 

problems by exploring and finding solutions through the search in either a 

multidimensional Euclidean space or various discrete spaces. Indeed, in many 

industrial optimisation (control, job-machine assignment, scheduling or 

planning) problems, the cost function could be non-differentiable and/or 

discontinuous with various forms of constraints. This global random search 

approach has been recognised as an attractive future direction in the 

optimisation of industrial systems.

GA and ES provide an iterative procedure, which works with populations of 

individuals. Each individual may represent a solution to a problem and has a 

'score' showing its fitness as a solution. During the next iteration, called a 

generation, an objective performance measure is used to assess the fitness of 

each solution. Then, on the basis of these fitnesses, a selection mechanism 

determines which solution should be maintained as parents of the subsequent 

generation. Since both GA and ES are inherently parallel, all strings or 

individuals evolve simultaneously without central co-ordination. Thus, the 

population gets more chance to converge toward an optimal solution of the
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problem. However, the differences between GA and ES are characterised by 

the type of alteration that are imposed on solutions to create “offspring”, the 

methods employed for selecting new parents, and the data structures that are 

used to represent solutions. More details on GA and ES are given in Appendix 

A.

It is evident that GA and ES are different from other optimisation and search

methods in the following principal respects:

i) By working with a population of individuals (potential solutions) rather 

than a single individual, GA and ES reduce the chance of getting stuck 

on a false optimum.

ii) GA and ES offer the flexibility of using either real or binary representation 

of encoded search space, thus adding efficiency to the search 

procedure.

in) GA and ES require values only of the relevant objective function, rather 

than values of its derivative, thus broadening the applications of GA and 

ES.

iv) Both GA and ES use probabilistic transition rules, rather than

deterministic transition rules.
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The increased interest of the scientific community in the EC approach during 

the last decade has considerably helped to promote this new trend of artificial 

intelligence as an optimisation technique by highlighting the advantages of the 

EC techniques over their non-evolutionary counterparts. In addition, this decade 

of development for EC has also served as a fertile ground for the cultivation of 

diverse opinions within the EC community on the relative merits of individual EC 

techniques. EC effectiveness extends to a broad field of applications, but of 

course with a corresponding loss of efficiency when applied to the classes of 

simple problems classical for which traditional procedures have been 

specifically devised.

The advantages of using evolutionary techniques compared with other 

optimisation techniques for real complex optimisation problems were addressed 

in Goldberg (1989) and Beasly et al (1993) in the case of GA and by Schwefel 

(1997) in the general case of EA. In addition, there are some explanatory 

comparisons of GA, hill climbing, and simulated annealing [Michalewicz (1992)] 

that clearly show the uniqueness and superiority of genetic algorithms. 

Moreover, Porter (1995) has shown that genetic design techniques are 

frequently superior to non-genetic techniques in the following principal respects 

in control problems:

(i) there is no conceptual difference between solving multivariable and
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monovariable control problems,

(ii) practical constraints such as hard amplitude and rate limits on 

inputs and outputs can be readily satisfied,

(iii) robustness requirements can be explicitly introduced with great 

ease.

In his survey of the use of EC for control engineering, Dracopoulos (1997) 

PQyjĝ ygoj ^ g  most successful applications of GA in control engineering in either 

their pure or hybrid form (mostly used with neural networks and fuzzy logic). In 

order to demonstrate the power of these techniques Dracopoulos (1997) 

describes how a hybrid genetic controller can be successfully applied to the 

control of complex (even chaotic) dynamic systems in the case of the 

detumbling and attitude control of a satellite.

Since the first engineering application of GA to pipeline optimisation by 

Goldberg in 1983, there has been an increasing usage of GA in many different 

search and optimisation problems. In fact, the range of applications of GA for 

practical real world problems is vast. Thus, for example, a wide range of 

application case studies was collected in [Davis (1991)] comprising GA 

applications in aircraft design, telecommunications, robot trajectory generation, 

neural network synthesis, fault diagnosis, scheduling, and some other 

angineering applications. GA were also used to optimise the performance of GA
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on a given of function optimisation problem in a two-level genetic algorithm 

design [Grefenstette (1986)]. In addition, it was shown that GA can be 

effectively used for automatic path planning and collision-free path generation 

for robotic systems [Davidor (1990)] [Solano and Jones (1994)]. In other work, 

Porter and Allaoui (1996) successfully proposed the use of GA in the synthesis 

of optimal control policies for manufacturing systems.

In the use of GA for control system optimisation, some early researches were 

reported in Porter and Jones (1992) and Krishnakumar and Goldberg (1992). 

Indeed, Porter and Jones (1992) used GA to design optimal PID controllers for 

the same plant as that investigated non-genetically by Polak and Mayne (1976). 

It was shown by Porter and Jones [1992] that the genetic approach is much 

simpler than that of the rather complicated non-genetic optimisation algorithms 

previously proposed by Polak and Mayne (1976). Hunt (1992) has used GA to 

tackle the problem of synthesising LGQ and H«. optimal controllers. GA were 

also used successfully in the area of system modelling and identification 

[Kristinson and Dumont (1992)] [Maclay and Dorey (1992)]. In this area, GA 

were used effectively in a parallel structure to estimate a hydraulic system 

parameters in a heavy-duty hydraulic-actuated manipulator by Sepehri et al 

(1994). Furthermore, GA were also used to identify the dynamical model of a 

direct-drive robotic manipulator in a way that is very suitable for practical use 

[Porter et al (1994)].
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On the other hand, ES which were used by Schwefel (1965, 1968) and Lichtfu/3 

(1965) in their initial version were subsequently improved. These algorithms 

were used to deal with applications like the travelling salesman problem or TSP 

[Herdy (1991)], in training neural networks [Salomon [1991)], in the design of a 

truss bridge [Rechenberg (1995)]. However, besides these non control 

engineering applications, ES were also used successfully in control system 

optimisation of industrial problem such as production planning [Porter (1997)], 

in the synthesis of optimal control policies for manufacturing systems [Porter 

and Merzougui (1997)], in effectively solving job-scheduling problems [Porter 

and Zadeh (1998)] and in the synthesis of robust digital trajectory-tracking 

controllers for robotic manipulators [Porter and Allaoui (1998)].

It is thus evident that there is increasing interest in GA and ES and their 

applications. This indicates that both the academic and industrial communities 

are seriously considering the potential of the EC techniques as a future direction 

adapted to the challenges and requirements of the new millennium.
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CHAPTER 2

2.1 SCOPE OF THE THESIS

The design of tracking systems, in which the plant output is required to track or 

follow accurately the command input, has been for many years an important issue 

in control engineering and has therefore been extensively investigated. This 

requirement of accurate tracking is of paramount importance in many industrial 

processes that are automated by means of robotic technology. Indeed, a robotic 

manipulator is a typical system for accurately tracking specific trajectories while 

moving parts and tools in its work-space.

In order to achieve the required high-accuracy performance of robotic 

manipulators, it is necessary to choose suitable control algorithms which exhibit 

excellent tracking behaviour. The importance of such control algorithms becomes 

evident when it is considered that the dynamical equations governing the motion 

of robotic manipulators are highly coupled and non-linear. Even more importantly, 

the unavailability of an accurate and precise linearised model will ultimately result 

in failure in the majority of currently available control design methodologies. 

These contentions led to the choice of the fast-sampling PID digital controllers of 

Porter and Abidin (1990b) which overcome the problem of obtaining an accurate 

linearised model by utilising data directly obtained from input/output 

measurements in the time-domain.
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However, although the theoretical results of Porter and Abidin (1990) greatly 

facilitate the design of digital trajectory-tracking controllers, these results are valid 

only asymptotically (i.e., as the sampling frequency of the digital PID controllers 

becomes infinite). In practice, of course, the sampling frequencies of such digital 

controllers must remain finite; but it has so far proved impossible to obtain 

theoretical non-asymptotic results.

The core problem in robot control is that the optimal values of the control 

parameters are not known and there is no straightforward algorithm to discover 

them. In the case of fast-sampling digital PID controllers, the design engineer 

must often resort to the manual tuning of important parameters to achieve 

increasingly high performances. Indeed, it was mentioned by Porter (1995) that 

the selection of a suitable set of tuning parameters for that type of controller is 

frequently difficult, even if expert systems are used for this purpose [Porter 

(1989)]. The obtained performance will, therefore, in most cases lack optimality. 

Ideally, powerful optimisation algorithms should be implemented in order to 

automate this tuning process. One aim of this thesis is accordingly the extension 

to robotic-control systems from flight-control systems of the work by Porter and 

Hicks (1994) on optimal design using genetic algorithms. The resulting automated 

optimisation technique is intended to determine the various controller tuning 

parameters under non-asymptotic conditions. The procedures presented in this 

thesis are thus the natural extension of the previous non-robotic studies of Porter
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and Jones (1992) and Porter, Mohamed and Jones (1993). In these studies, it 

was shown that evolution-like mechanisms can automate the process of controller 

tuning without requiring accurate and complex knowledge of the control 

environment.

The use of evolutionary computational techniques, rather than traditional search 

and optimisation procedures, is stimulated by the limitations in terms of ‘efficiency’ 

or ‘robustness’ of traditional optimisation procedures. These used techniques such 

as hill-climbing (gradient method), simulated annealing, exhaustive search, linear 

and non-linear programming [Hicks (1994)]. Indeed, whilst these traditional 

techniques have been successfully used in various fields, they often exhibit 

limitations. Thus, they are frequently not robust to changes in the domain of 

application and often fail to find global optimal in functions when they are 

surrounded by local optimal. In particular, they do not offer an escape from the 

curse of dimensionality inherent in very complex systems such as robotic 

manipulators. The success of such traditional techniques using conventional 

procedures occurs either in situations where the systems can be modelled with 

accuracy, or when the number of plausible parameter values is small enough to 

be tested exhaustively [Davidor (1991)]. As a result of these limitations the use of 

traditional optimisation techniques when designing a fast-sampling digital PID 

controller for complex systems such as robotic manipulators is therefore likely to 

produce poorly tuned controllers.
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In recent years, the availability of fast processors and large memory PCs, in 

addition to parallel processing mainframe facilities, has promoted the use of 

evolutionary computation (which encompasses techniques such as genetic 

algorithms, evolution strategies and evolutionary programming) to solve 

engineering design problems. However, as pointed out by Porter (1997), it is 

necessary to be very careful not to confuse mere algorithmic novelty with real 

practical utility. In addition, it is argued by Beck et al (1997) that the most 

significant advantage of using evolutionary search — in contrast to classical or 

standard methods—  lies in the gain of flexibility and adaptability, in combination 

with robust performance and global search characteristics.

In this thesis, it is shown that the automated tuning of optimal controller 

parameters can be effectively achieved using strongly related evolutionary 

approaches such as genetic algorithms (GA) (Appendix A.1) and evolution 

strategies (ES) with non-adaptive and adaptive variants (Appendix A.2). Genetic 

algorithms, introduced by Holland (1975) and subsequently described by 

Goldberg (1989) and others, were originally proposed as a general model of 

adaptive processes; but by far the largest application of the technique has 

occurred in the domain of optimisation. Evolution strategies, as developed by 

Rechenberg (1973) and extended by Schewfel (1991) and others, were initially 

designed with the objective of solving difficult discrete and continuous parameter 

optimisation problems.
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In fact, both genetic algorithms and evolution strategies are strongly influenced by 

classic Darwinian evolutionary theory, combined with the selectionism of 

Weismann and the genetics of Mendel (Fogel (1997)). These epochal results 

culminated, following the work of Fisher (1930), Haldane (1932) and Wright 

(1932), in the neo-Darwinism synthesis. In their application to practical problem 

solving .genetic algorithms and evolution strategies begin with populations of 

competing alternative solutions. New solutions are then created by randomly 

altering the existing solutions, and an objective measure of performance is then 

used to assess the “fitness” of each solution. On the basis of these “fitnesses”, a 

selection mechanism determines which solutions should be maintained as 

“parents” for the subsequent generation. The differences between genetic 

algorithms and evolution strategies are characterised by the type of alterations 

that are imposed on solutions to create “offspring", the methods employed for 

selecting new parents, and the data structures that are used to represent 

solutions.

It is convenient to begin the investigations presented in this thesis by describing 

the previously established techniques for the non-evolutionary design of fast­

sampling digital PID controllers for robotic manipulators of Porter and Abidin 

(1990b). This desciption is followed by the use of genetic algorithms to achieve 

the optimal robustified design of digital fast-sampling trajectory-tracking PID 

controllers for robotic manipulators under non-asymptotic conditions. Then, 

evolution strategies with both non-adaptive and adaptive variants are used as an
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alternative technique in the design of optimal robustified digital fast-sampling PID 

trajectory-tracking controllers for robotic manipulators, for both the constrained 

and unconstrained designs. In each design case presented in this thesis, initial 

comparisons are made between the performance of ‘evolutionarily’ tuned 

controllers and that of their ‘non-evolutionarily ‘ tuned counterparts. This is 

followed by comparisons between the performances of different variants of the 

‘evolutionarily’ tuned controllers. These results demonstrate the effectiveness of 

powerful but simple genetic algorithms, non-adaptive evolution strategies or 

adaptive evolution strategies in the selection of controller parameters so as to 

provide the required high-accuracy tracking performance of robotic manipulators. 

This demonstration of the powers of evolutionary design methodologies is 

proffered in the belief that, as mentioned by Porter (1995), control engineering has 

been revolutionised by an increasing interest in with the emulation of biological 

processes such as those involved in evolution.

2.2 OUTLINE OF THE THESIS

This thesis is divided into six parts. In Part I, Chapter 1 briefly describes the 

challenge facing control engineers who strive for optimal performance by resorting 

to new theoritical and computational methods in an industrial world invaded by 

complex machines such as robots, gives a brief survey of the robot dynamics 

analysis, presents and discusses previous approaches and research contributions
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in the field of modern control and robot control, introduces genetic algorithms and 

evolution strategies as evolutionary computation optimisation techniques, and 

surveys the applications of such techniques to non-robotic and robotic control 

problems. Chapter 2 presents an outline of the objectives of this thesis.

In Part II, the non-evolutionary design of digital trajectory-tracking controllers is 

considered. Indeed, Chapter 3 describes the asymptotic design of PID trajectory­

tracking controllers using non-evolutionary fast-sampling techniques.

In Part III (Chapters 4, 5, 6 and 7), the constrained genetic design of fast-sampling 

error-actuated digital trajectory-tracking PID controllers is considered. Chapter 4 

presents the genetic design of digital trajectory-tracking controllers for robotic 

manipulator in the presence of sudden changes of payload. Chapter 5 introduces 

the design of digital trajectory-tracking PID controllers for robotic manipulators 

using both non-adaptive and adaptive evolution strategies. The use of different 

performance measures in the evolutionary design of digital controllers for robotic 

manipulators for typical trajectory-tracking tasks is investigated in Chapter 6. 

Chapter 7 presents an evaluation of the performance of the evolutionary designed 

digital tracking-trajectory controllers for robotic manipulators.

•n Part IV, Chapter 8 the unconstrained genetic design of fast-sampling error- 

actuated digital trajectory-tracking PID controllers is considered. In such cases, 

the designer has the ability freely to choose values of the elements of the
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multivariable controllers matrices without being constrained by formal design 

equations.

In Part V, Chapter 9 demonstrates the practical utility of the developed 

evolutionary design method for digital controllers for robotic manipulators. The use 

of evolutionary design procedures is illustrated by the implementation of digital 

PID trajectory-tracking controllers for a two-link direct-drive robotic manipulator.

In Part VI (Chapter 10), the conclusions that emerge from the use of these 

evolutionary design procedures are presented and recommendations for further 

work are suggested.

Finally, Appendix A gives a brief introduction to the genetic algorithms and 

evolution strategies used as evolutionary optimisation techniques in this thesis. In 

Appendix B, the dynamical model of the three-link robotic manipulator used in 

Parts II, III and IV is derived. In Appendix C, the dynamical model of the two-link 

direct-drive robotic manipulator used in the practical implementation of Part V is 

derived. Appendix D describes the practical two-link direct-drive robotic 

manipulator used for experimental purposes.



PART II

CONSTRAINED DESIGN OF DIGITAL TRAJECTORY-TRACKING 
CONTROLLERS USING SINGULAR PERTURBATION METHODS
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CHAPTER 3

DESIGN OF FAST-SAMPLING DIGITAL CONTROLLERS FOR ROBOTIC 
MANIPULATORS USING SINGULAR PERTURBATION METHODS

3.1 INTRODUCTION

The design of effective digital trajectory-tracking controllers for robotic 

manipulators constitutes a difficult problem in control engineering, because 

such manipulators are non-linear multivariable plants with time-varying 

parameters. However, it was shown by Porter and Abidin (1990a) that the 

design of digital trajectory-tracking controllers for completely irregular 

multivariable plants (i.e., plants like most robotic manipulators) can be readily 

effected by using the singular perturbation methodologies of Porter et al (1985) 

for the design of fast-sampling error-actuated digital multivariable PID 

controllers.

These design methodologies are characterised by the following very important 

features:

1) only the first and second Markov parameters of the linear components 

of such plants are required in the controller design;

2 ) the design can be further simplified by introducing the step-response 

matrices of linear multivariable plants instead of the first and second 

Markov parameters;
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3) the robustness characteristics of the controller can be expressed in 

terms of the step-response matrices of the nominal and actual plants

This chapter summarises the prominent features of the methodology for the 

design of fast-sampling digital PID controller for completely irregular linear 

multivariable plants developed by Abidin (1991) using the singular perturbation 

methodologies of Porter et al (1985).

These general results are illustrated by the design of a fast-sampling error- 

actuated digital PID controller for the three-degree-of-freedom robotic 

manipulator previously investigated by Petropoulakis (1986).

3.2 SYSTEM CONFIGURATION

It was shown by Abidin (1991) that the design of digital trajectory-tracking 

controllers for completely irregular linear multivariable plants can be readily 

effected by using the methodologies of Porter et al (1985).

The digital trajectory-tracking systems under consideration, as shown in Figure 

3-1, consist of linear multivariable plants together with digital PID controllers. 

These multivariable plants are assumed to exhibit minimum-phase
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characteristics and therefore to be amenable to fast-sampling error-actuated 

digital control [Bradshaw and Porter (1980a)]. Such plants are governed on the 

continuous-time set T = [0, +°o) by state and output equations of the respective 

forms [Manganas (1985)]

x(t) = Ax(t) + Bu(t) (3.1)

and

y(t) = Cx(t), (3.2)

where

A =
A n A n

A n An,
9T (3.3)

B =
On-I 

B2 j
e 9T' , (3.4)

c  = [c , Cl] e , (3.5)

and
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X(t) =
Xi(t)

X 2(t).
e 9T • (3-6)

In these equations, x(t) e Sln is the plant state vector, u(t) e is the plant input 

vector, y(t) e is the plant output vector, A is the plant matrix, B is the input 

matrix, C is the output matrix, xi(t) e 9 t ‘, x2(t) e An e S i{n4}x{n4\ An e 9 t<n4>xl, 

A2] e 9 ilx(,hl), a 22 e 9 tlxl, B2 e 9txl,C, e 9 tlx(n'l),C2 e 9 i,xl. Furthermore, in view of 

the assumed complete irregularity of the plants, the first Markov parameter, CB 

e 9 iul, of the continuous-time open-loop plant [Abidin (1991)] is such that

rank CB = 0 , (3.7)

and the full rank second Markov parameter, CAB e 9 tul, is such that

rank CAB = / . (3.8)

In order to design digital trajectory-tracking controllers for such plants, it is 

convenient to model these plants on the discrete-time set 7>= {0,T, 2T,...} by the 

respective state and output equations

x{(k + l)T} = ®x(kT) + 'i,u(kT) (3.9)

and
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y(kT) = Yx(kT) (3.10)

where

3> =  eAT

* = J
0

eAt Bdt = TB +

T2 . o r
— A +.. . + —
2 ! / !

T2 T
AB+.

2 ! i !
i- 1 ► nxl

(3.11)

(3.12)

and

r  = C e 9 itol . (3-13)

•n equations (3.9), (3.10), (3.11) and (3.12), /„ e 9inxn is the identity matrix, Te 

is the sampling time period, and k e {0,1 ,2 ,...}.

The fast-sampling digital PID controllers incorporated in such trajectory-tracking 

systems are governed on the discrete-time set 7>= {0,T, 2T,...} by control-law 

equations of the form [Porter et al( 1985)]

u(kT) = K,r(kT) + K 2z(kT) . (3.14)

ln equation (3.14), K, e 9?xl and K2 e 9txl are the proportional and integral
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controller matrices, and the vectors r(kT) e  St and z(kT) e  are generated in 

accordance with the difference equations [Porter (1987)]

s{(kT + 1 )T } = -as (kT)  + e(kT) , (3-15)

r(kT) = — (1 + a)Ds(kT) + 'h  + j O j e ( k T ) , (3.16)

and

z{(k + 1)T} = z(kT) + Tr(kT). (3.17)

Moreover, in equations (3.15), oc e  (-1, +1], s(kT) e  e(kT) -  v(kT) - y(kT) e  is

the error vector, v(kT) is the set-point command vector, and the derivative matrix

T> e  9txl is such that

Now, it is convenient to express the design equations of Porter et al (1985) for 

the proportional and integral controller matrices in equation (3.14) in the forms 

[Porter (1987)]

= T H - \ T ) Z ( T I i  + 2 D y i e f t lxl (3.19)

and
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K 2 = p T H - l ( T ) Z ( T I l  + 2 D ) - 1  e /x/ (3.20)

In equations (3.19) and (3.20),

£ = <Jl , (a  e +) (3.21)

is the positive diagonal tuning matrix,

D = S I , ( S  e 9 i + ) (3.22)

is the positive diagonal derivative matrix, and p is the positive tuning parameter. 

Furthermore, in equation (3.20),

H ( T )  = T] C e A t  B d t  (3-23)
o

is the step-response matrix of the open-loop plant with state-space triple (A,B,C) 

Qoverned by the state-space equations (3.1) and (3.2).

It is evident from equations (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), 

and (3.16) that such discrete-time closed-loop tracking systems are governed 

0ri TV by state and output equations of the respective forms [Abidin (1991)]
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x { ( K + \ ) ) T  = Ax(KT) + Bu(KT) (3.24)

and

y(t) = Cx(KT)

In equations (3.24) and (3.25),

x(KT) =
~z(KT) ~xx(KT)

_x(KT)_ M k t ).
g 9T+2/ ,

(3.25)

(3.26)

A =
A n  A ¡2 

A 21 A 22.
€  f t n+2lxn+2l (3.27)

5 = e f t n+2lxl (3.28)

and

c  = [0z.2i , Q ]  e f t /x"+2/ ,

where

(3.29)

■4//
I, , -2((1 + a  )D

0, , - a I ,
G <̂ 2k2/ (3.30)

A n
~(TIi + 2D)C 

- C
e f t 2lxn (3.31)
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An = V K i  - ' F £ i - ( 1  + gOD e9* nx2 l (3.32)

A 22 = 0 - ' F £ i ( / ,  + - D ) C 9T (3.33)

B i =
(TL + 2D) 

h
2M (3.34)

B2 = xi /7:i(// + - D ) e 3 l “ ' , (3-35)
7

C ,=[Ci C2]e5Kkn ■ (3-36)

The transfer-function matrix relating the plant output vector to the command 

input vector of the closed-loop discrete-time tracking system governed by 

equations (3.24) and (3.25) evidently has the form [Abidin (1991)]

G(z)
z l 21 ~ A11 > A 12

-1
B i

[0 1,21 > C / l
_ All ’ z l n ' A 22 _ J b 2_

(3.37)
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3.3 ASYMPTOTIC PROPERTIES OF CLOSED-LOOP SYSTEM AS T-» 0

3.3.1 ANALYSIS

In order to study the asymptotic properties of the closed-loop system as r —» 0, 

it is essential to express the following matrices in their partitioned forms to

facilitate the block-diagonalisation of the closed-loop plant matrix [Abidin 

(1991)]:

=
A/ A 2

A 3 A 4

A] 2 —

L“ 2J

¿21= [©I © i]

C, — [a  | A 2 ] ,

^2 — [0,1 ]

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

where

lxn~2l A 4 e , S, 2
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©, eSRta-2',  0 2 eSR", A, eSRta~2', A2 e 91“ , and rank A2=/.

Indeed, by introducing the matrices [Abidin (1991)]

Q = AjS,  + A 2H2 e ^ i lxl with rank Q = l, (3.43)

E ^ A jA j + A 2A 2 e ^Klxn~21 - (3-44)

Y = A tA 3 + A2A 4 e 9?w with rank Y = l, (3-45)

and by using the explicit expression for Kj and K2 given by equations (3.19) and 

(3.20) in equation (3.37), equations (3.38), (3.39), (3.40), (3.41), (3.42), (3.43), 

(3.44) and (3.45) facilitate the block-diagonalisation procedure. This, using the 

results of Porter and Shenton (1975a), indicates that the closed-loop transfer 

function G(z) assumes, as 0, the asymptotic form [Abidin (1991)]

r(^ ) = [(z -  l)(z + a ) I t + cr(z + 1)// ] * cr(z +1)*/ • (3.46)

In addition, block diagonalisation [Abidin (1991)] indicates that the poles of the 

closed-loop transfer function matrix assume the asymptotic values given by the 

elements of the set Z/ u  Z2 u  Zj u  Z4 as T-> 0. This block diagonalisation 

procedure also reveals the following characteristics [Abidin (1991)]:
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1. The ‘slow’ modes Zsi of the closed-loop system which correspond as T-> 0 to 

the poles Zi u  Z2, where

Z, =  { Z G C : \ z I l - I l + T p I l \ =  0} (3-47)

and

Z 2 = < z e C: z i, -  I ,  + T (  0  + a  
2 S )

0 (3.48)

become asymptotically uncontrollable but remain observable as T—>0.

2 The ‘slow’ modes Z,2 of the closed-loop system which correspond as T 0 to

the poles Z3, where

Z, = {zeC|z/n_2;- / n_2i + r{A 1- A 2̂ A , - 5 ,a l(n  -YA jA ,  =0}, (3.49)

become asymptotically unobservable but remain controllable as T—> 0.

3. The -fasv modes Z, of the closed-loop system which correspond as r - 0  to 

the poles Z4, where
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Z4 = {ze C : | (z - l ) (z  + a)/ ,  + o(z+1)/,|  = 0} , (3.50)

remain both controllable and observable as T-> 0.

Thus, as stated by Manganas (1985), the increasingly fast closed-loop 

behaviour as T-> 0 is a consequence of the fact that the slow modes 

corresponding to the transmissions zeros Zi u  Z2 of the PID controller become 

asymptotically unobservable, whilst the slow modes corresponding to the 

transmission zeros Z3 of the open-loop plant become asymptotically 

uncontrollable. Furthermore, only the fast modes corresponding to the poles Z4 

remain both controllable and observable as T-> 0 and therefore appear in the 

outputs of the system.

In view of the fact that robotic manipulators are non-linear systems with time- 

varying plant parameters, it is in most cases a very difficult and time- consuming 

Process to try to obtain an accurate model. The major problem is that the values 

°f the parameters in the model are often not known accurately: this is 

Particularly true of frictional effects [Craig (1986)]. Therefore, it is relevant to 

consider the robustness characteristics of fast- sampling digital PID controllers 

for completely irregular plants established by Porter and Abidin (1990a). In this 

context, robustness is the ability of such controllers to cope with the disparities 

between the actual and nominal plant parameters without causing instabilities . 

The nominal plant parameters are those parameters used in the actual design 

°f the digital PID controllers.
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Now, in order to investigate these robustness characteristics of the fast­

sampling digital PID controllers, it is convenient to express the design equations 

(3.19) and (3.20) of Porter et al (1985) for the proportional and integral 

controller matrices in the forms [Porter (1987)]

K { = T H ~ l ( T )U T I l  + 2 D y ] E ^ lxl (3.51)

and

K 2 = p T H ~ l ( r )S (7 7 i  + 2 D )  l e ^ lxl (3-52)

In equations (3.51) and (3.52),

H  ( T )  = ] c e A t B d t  (3-53)
o

•s the step-response matrix of the nominal open-loop plant with state-space 

triple ( A,B,C)  which is used for design purposes in obtaining the controller for 

the actual open-loop plant with state-space triple (A,B,C) governed by equations 

(3.1) and (3.2). Then, by using the explicit expressions for K\ and Kz given by 

ecluations (3.51) and (3.52) in equation (3.37), the results of Porter and Shenton 

0975a) from the singular perturbation analysis of transfer function matrices can 

b© used to elucidate the required robustness characteristics.



Chapter 3 49

Thus, it follows from equation (3.37) that the transfer function matrix of the 

closed-loop digital tracking system assumes as T  —» 0 the asymptotic form 

[Abidin (1991)]

r (z) = [(z -l)(z  + a ) / / +  a ( C A B ) ( C A B ) ~ l ] 1 a ( C A B ) ( C A B ) ~ [ . (3.54)

In addition, the poles of the closed-loop transfer function matrix assume the 

asymptotic values given by the elements of the set Z, u  Z2 \j  Z3 u  Z4 as T  —> 0 

where

Z, = { Z e C : \ z I ,  -  1,  +  T p I ^ O }  , (3.55)

Z 2 = z e C: z / , - / ; + r
(

\

(1 + a 
25

0 (3.56)

Z, = (zeC|z ln_2l- I n_2l + T { \  -  A ^ A , - Z f l ' W - YA.'A, = 0}, (3.57)

and

Z4 = { z e  C: (z -  1 )(z + a)I, + cr(z + \){CAB){CABy' = 0} . (3.58)

I* is important to note that only equations (3.54) and (3.58) are affected by the
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disparity between the nominal plant with second Markov parameter CAB  and 

the actual plant with the second Markov parameter CAB. Indeed, equation 

(3.58) indicates that this disparity will affect the values of the elements of Z , and 

therefore tend to alter the stability characteristics of the closed-loop system; 

whilst equation (3.54) indicates that it will also destroy the diagonality of r(z) 

and therefore tend to alter the non-interacting response characteristics of the 

closed- loop system. However, as expected, these equations reduce to the 

previously presented equations (3.46) and (3.50) in case the actual and nominal 

plants coincide.

3-3.2 SYNTHESIS

It was shown by Abidin (1991) that a sufficient condition for tracking to occur is 

that the closed-loop poles defined by equations (3.55), (3.56), (3.57) and (3.58) 

satisfy the stability condition

Z , u Z 2 u Z , u Z 4 c  D'  , (3 -59)

where D' is the open unit disc.

Therefore, in view of equations (3,55), (3.56), (3.57) and (3.58), the stability 

requirement (3.59) will be satisfied for sufficiently fast sampling frequencies if 

the controller tuning parameters a, 5, o and p are chosen such that both Z ic D



Chapter 3 51

and Z2 c  D' for sufficiently small sampling periods since Z3 c  D' in the case of 

minimum-phase plants [Manganas (1987)]. Indeed, since the set of 

transmission zeros [Porter and D’Azzo (1977)]

Z, = { s e C \sln_2l -{A , - A 2A2A, - H . a 1(n- -YA2 A, = 0}<=C (3.60)

where C  is the open left half-plane, it follows [Abidin (1991)] in view of equation 

(3.57) that Z3 c  D‘ for sufficiently small sampling periods in the case of 

minimum-phase plants.

Furthermore, in view of equations (3.55) and (3.56), both Z, c  D‘ and Z2 c  D‘ 

for sufficiently small sampling periods for any choice of positive diagonal tuning 

parameters o e * *  and p a S* and any choice of the controller parameter a e 

within the permissible interval (-1 , +t]- [Manganas (198 )]

It follows [Abidin (1991)] that the crucial requirement for set point tracking

. * 7a <- D" These considerations thus leadcase of minimum-phase plants is that U  c  u  .

to the following main results of Porter and Abidin (1990a) in establishing the 

robustness of fast-sampling digital controllers for completely irregular plants:

Robustness Theorem [Porter and Abidin (1990a)]

In the case of a completely irregular minimum-phase linear multivariable plant,
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there exists a fast-sampling digital PID controller that causes set-point tracking 

to occur for any plant parameter variation such that all the numbers 

fl,.(/ = l,2,3,...,2Z) lie within the unit disc, where { ^ , , i 2, . . . , i2;}/s  the spectrum 

of the matrix

n = 0,
cel, -  o{CAB)(CAB) (1 -  a ) I{ -  (7(CAB)(CAB)~l

(3.61)

In interpreting this robustness theorem, it is important to note that CAB is the 

second continuous-time Markov parameter of the nominal plant and CAB is the 

second continuous-time Markov parameter of the actual plant. In addition, it is 

evident that

( C A B ) ( C A B ) ~ l = lim  H ( T ) H  ~ l ( T ) , (3 62)t o v • /

where H(T ) is the open-loop step-response matrix of the nominal plant given 

by equations (3.53) and

H ( T )  = ] c e A t  Belt (3.63)
o

is the open-loop step-response matrix of the actual governed by equation (3.1)

and (3.2). This means that [Porter and Abidin (1990)] the robustness theorem
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can be conveniently applied in order to assess robustness characteristics in the 

absence of explicit state-space models of plants provided that step-response 

matrices are available from input/output tests.

Moreover, the following typical interesting corollary of the robustness theorem 

can be readily derived:

Bobustness Corollary [Porter and Abidin (1990a)]

In the case of a completely irregular linear multivariable plant, there exists a 

test-sampling error-actuated digital PID controller that causes set-point tracking 

to occur for any plant-parameter variation such that all the numbers coi

( i = 1 a r e  real and lie on the open interval (0,(1 + a)/cr) for any admissible 

value of a  e (-1, +1] where {¿y,,co2,...,col }  is the spectrum of the matrix

(CAB)(CAB)~l .

3-4 DESIGN PROCEDURE FOR ROBOTIC CONTROLLERS

In order to demonstrate the effectiveness of the digital PID trajectory-tracking 

controllers proposed by Porter and Abidin (1990a), the use of such a controller 

ls considered in detail in this section in the case of a three-link direct-drive 

robotic manipulator. It will be made clear later in this section that such robotic
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manipulators are completely irregular multivariable plants, and that the design 

of controllers for such devices is therefore amenable to the design method 

presented in section 3.2.

3.4.1 MANIPULATOR DYNAMICS

Since any robotic manipulator is basically a set of links connected at joints, the 

configuration of such a device at any instant is uniquely described by the joint- 

angle vector

(3.64)

where l is the number of degrees of freedom and 4 (¡=1 ,2 ,...,/) are the joint

angles.

The kinetic energy of such a manipulator can then, accordingly, be expressed in 

the form

T  ( 8 , 8 )  =  - 0 r  M ( 8 ) 8  
2

(3.65)

where 8 = d i À , . . . A is the angular-velocity vector and M{8 ) is the
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manipulator inertia matrix which depends on the joint-angle vector

Furthermore, in terms of the potential energy, V(0 ), of the manipulator, the 

Lagrangian of the system is given by [Bejczy (1974), Mackiewicz (1973)]

L = T[ 0 , d \ - V ( 9 ) (3.66)

Once the Lagrangian has been obtained, the manipulator dynamic equations for 

the joints (k=1,2, ,/) can be easily derived using the Lagrange-Euler formulation 

[Bejczy (1979)]

d '  dL^
dt <00 j æ

(3.67)

where r  e 9?' is the input torque vector applied at the joints (k=1,2,...,/).

Thus, by substituting equation (3.65) into equation (3.66) and using equation 

(3.67), the dynamic equations of a manipulator for the joints (k=1 ,2 ,...,/) can be 

expressed in the vector-matrix form [Craig (1986), Bejczy (1974)]

T = M (0)0+c(0,0) + g(0) (3.68)
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In equation (3.68), c{6,6) is the vector of coriolis and centrifugal torques,

#(6)is the vector of gravity torques, and t = is the input torque

vector. The non-linear coriolis, centrifugal and gravity torque vectors are often

combined as the vector n{6,0). Equation (3.68) can then accordingly be 

expressed in the form

T= M (d)d+n{9,9) , (3.69)

where n(Q,d) = c{6,6) + g{6) is the entire non-linear torque vector.

3.4.2 CONTROL SCHEME

Cue to the non-linear dynamical characteristics of robotic manipulators, there is 

no ‘standard method ‘ by which to represent their equations in state-space 

forms. However, the method adopted in this thesis consists in treating the 

non-linear terms in equation (3.69) as disturbances [ Li (1986;, Petropoulakis 

(1986^, Choi and Bien (1988; and Abidin (1991)]. In fact, in the singular 

Perturbation design technique, the resulting controller matrices are the same 

whichever method is chosen to represent the manipulator dynamics,.
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The control scheme commonly used in robot-control systems is depicted in 

Figure 3.1. In this scheme, the task description, expressed in terms of the 

sequence of desired end-effector coordinates in cartesian space, is transformed 

using inverse kinematics to a series of angular positions in the joint space. The 

angular positions thus obtained can then be used as reference inputs to the 

closed-loop system. The control action, therefore, involves the joint-torque 

vector and is generated from the error vector in joint space. This method is 

popular since the inverse kinematic transformation can be performed off-line.

The discrete-time tracking system under consideration, as shown in Figure 3.2, 

consists of a robotic manipulator, together with a digital error-actuated 

trajectory-tracking PID controller. This robotic manipulator is governed on the 

continuous-time set T = [0, +°°) by state and output equations of the respective 

forms [Bradshaw and Porter (1980a)]

x(t) = Ax(t) +  Bu(t) + Ed(t) (3.70)

and

y(t) = Cx(t) (3-71)

ln equation (3.70) and (3.71), x(t) e 9T is the plant state vector, u(t) e f t 1 is the 

Plant input vector, d (f)e9 t' is the disturbance input vector, y (f)e9 t' is the
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plant output vector, A e cRnxn is the plant matrix, 5eSR'“ ' is the input matrix, 

E e SR“ ' is the disturbance input matrix, and Ce SRto' is the output matrix.

In the case of robotic manipulators, these equations have the explicit forms 

[Petropoulakis (1986)]

x(t) = X, (t) 

x2(t)

0 „ I i ■ * , ( 0 1 ' 0 , '

0 , . o , _ _ * 2 ( 0 _
T

A .

u(t) + 0,
e 2

\d(t) (3-72)

and

y(t) = (3.73)

where x , = [0, ,02,...,0 ,]J e SR' is the joint-angle vector,

* 2 =
nT

&\,62,...,0, SR' is the joint angular-velocity vector,

u ~ \ t\ ^ 2 is the input torque vector, 0/e SR 1x1 is the zero matrix, h

6 is the identity matrix, B2= M  ''(xi) e  9tlxl, E2= M ''(xj) n(xj, x2) e  9 t l ,

M(x]) e  9 i lxl is the manipulator inertia matrix, and n(xi, x2) e  9 i l is the vector of 

centrifugal, coriolis, and gravitational torques. It is important to note that the 

dimension of the plant state vector is n=2l.
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It is also clear from equations (3.72) and (3.73) that, in the terminology of 

equations (3.70) and (3.71),

rank CB = 0 , (3.74)

and

rank CAB = l (3.75)

In view of equations (3.74) and (3.75), such robotic manipulators are completely 

Irregular multivariable plants and are, therefore, amenable to control by the 

trajectory-tracking PID controllers described in section 3.2.

furthermore, by using the definition of the matrix exponential in the form

;UT) =1 + AT + — A 2+...+ —  A '+...
2 ! i\

(3.76)

the step-response matrix of the nominal open-loop plant can be calculated 

substituting equation (3.76) into equation (3.53). This yields [Petropoulakis 

(1986)]
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where M(xu ) is the inertia matrix chosen at a design position 

xu = \pu ,0ld,...,0 ld]T and the rest of the variables are as defined in section 3.2.

Similarly, by using equations (3.51) and (3.52), the proportional and integral 

controller matrices can be expressed in the forms [Abidin (1991)]

* i = |  )I(77„,+2D)"1 , (3.78)

and

* 2  = P ^ M ( x u )U T I, +2D)~ ' (3.79)

It thus follows [Abidin (1991)] that the corresponding closed-loop transfer- 

function of a manipulator in the neighbourhood of the design position,xu , under 

fast-sampling digital PID controller assumes, as T —> 0, the asymptotic form

r = [ ( z - 1 Xz -  00/, + o(z ■+ l)M(x, r 1 M(xul)]"' o(z+ l)M(x,)"' M(xu) . (3.80)

addition, the poles of the closed-loop transfer function matrix assume the 

asymptotic values given by the elements of set Z, u Z 2 u Z 4 as T -> 0, where
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Z, = {ZeC:\zI l - I l + TpI,\ = 0} (3.81)

Z 2 = z e C: zl, + T
r ( l + a  , 28

\
I {3.82)

and

Z4 = {zeC:  ( z - l ) ( z  + a) I ,  + cr(z+ 1) A T 1 (jt.)A f (*,,,) =0 } .  (3.83)

Furthermore, using a result from Rosenbrock (1970), it is easily shown that this 

Plant has no transmission zeros. Indeed, the closed-loop poles corresponding to 

Z? given by equation (3.57) are non-existent for robotic manipulators since 

n -  21 = o . Thus, the set Z? reduces to

Z3 = 0  . (3-84)

Now, in order to ensure that the closed-loop system is stable it is required that 

all the poles of the transfer function matrix lie within the open unit disc D'. 

Moreover, since it is clear from equations (3.81) and (3.82) that Z\ c  D and Z2 c  

D' for sufficiently small sampling periods for any choice of positive controller 

Parameters 8 e 9t+ and p e 3T and any choice of the controller parameter a  e 

within the permissible interval (-1, +1], the crucial requirement for stability of 

tli® robotic manipulator control is that Z4 c  D' . In view of the Robustness
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Corollary (see page 19), this stability condition is equivalent to the requirement 

that all the eigenvalues of A/(jc,)~' M( x ]d) are real and lie on the the open 

interval (0, ( l + a ) / cr).

3.5 ILLUSTRATIVE EXAMPLE

The design of fast-sampling digital PID controllers for trajectory-tracking 

systems incorporating robotic manipulators can be conveniently illustrated by 

considering the three-degrees-of-freedom manipulator previously considered by 

[Petropoulakis (1986)] (See Figure 3.3 and Appendix B) . In this case, the 

manipulator is governed on T = [0, +°°) by state and output equations of the 

respective forms [Petropoulakis (1986)]

M ( Q ) Q +  n(Q,Q)= x (3-85)

and

y = f ( 6 )  , <a86)

J- ^
where 0 = [0, ,02,03]T e 9 î3 is the joint-angle vector, t = [t 1,t 2,t 3] is the 

joint-torque vector, y = [2ce,,y É.,ze]T s 913 is the position vector of the end-
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effector in cartesian space. In addition,

M  (ft) =
mn 0 0
0 m22 m23 e f t 3'3 (3.87)

0 w32 W33_

with

m„ = (mia 2 + m2r2) sin2 02 + Ia] +m2b2 sin2 ft3 - 2 m2fcr, sinft2 sinft3 ,(3.88)

ra22 = m,a2 + m2r,2 + 1 a2 (3.89)

m23 = m32 = -m 2br{ cos(62 -  63) (3.90)

m33 = m2fc2 + / fl3 (3.91)

•s the inertia matrix,

n(0,0) =

n,

n2 e
n3

(3.92)

with

n, = 2(m,a2 + m2r,2) sin ft2 cosft2 0, ft2-2m2br, cosft2 sin ft, 0, ft2 

+ 2m2b(b sin ft, -  r, sin ft2) cos ft, ft3
(3.93)
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n2 = -tr^br, sin(02 -  03) 9\ -  (ra, a1 + m, rx) sin02 cos 92 9] 

+ m^r, cos02 sin9S 0^-{mxa + m2rx)gsin02
(3.94)

n2 = m2rxbs\n(02 -  92)02 + m2b(rx sin#2 - b sin92)cos92 9] 
+ m2gb sin 03

(3.95)

ls the vector of centrifugal, coriolis, and gravitational torques, and

f ( 0 )  =

(r, sin#2 -  r2 sin02) cos9X 
(rx sin92 -  r2 sin03) sin9X 

rx cos 92 -  r2 sin#3
(3.96)

is the vector of direct kinematic relationships. The numerical values of the 

inertial and kinematic parameters of the typical three-degree-of-freedom robotic 

Manipulator under consideration are given by Petropoulakis (1986).

In order to illustrate the robust performance of fast-sampling digital PID 

controllers, it is instructive to design such a controller corresponding to the 

arbitrarily selected initial end-effector position (0, 0.45, 0) m corresponding to 

the joint space coordinates (tc/2, 0.27ju, -0.27jc). This controller is then used while 

the end-effector of the manipulator is caused to track straight-line trajectories 

between the following points:
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I. (-0.5,0,-0.2) m

II. (-0.4,0.3,0) m

III. (0.3,0.3,0.3) m

IV. (0.3,0.3,0.3) m

V. (-0.45,0.35,0) m

VI. (-0.45,0.35,0)1X1

In this task, a fifth-order trajectory generator is used to interpolate between two 

successive points so that the generated torque vector produces smooth motion 

(ie, no jerk occurs). These transitions are effected with appropriate acceleration, 

cruise, and deceleration profiles in the following times [Petropoulakis (1986)]:

I II 1.5 s

II III 2.0 s

III-> IV 0.5 s

IV -> V 2.5 s

V -> VI 0.5 s

In addition, after the initial transition I II, the manipulator grasps an additional 

Payload of 5 Kg. In view of the intrinsic non-linearity of the manipulator and 

sudden variation in payload, this sequence of tracking constitutes a formidable 

test of robustness and performance for the non-adaptive controllers.

Nevertheless, when the high-accuracy trajectory-tracking digital PID controller



Chapter 3 66

parameters are tuned such that <r= 0.7, a =  0.1, 5=  0.01, p = 1 [Porter and 

Abidin (1990b)], the time variations of the real values of the spectrum of the 

matrix M{xx)~‘ M{xu ) during this sequence of tracking tasks are shown in Fig 

3.4. Clearly, the fluctuations of the spectrum of the matrix M (*,)"' M(xu ) 

always lie on the interval (0,(1 + a)/cr)=  (0,1.571) permitted by the robustness

corollary [Porter and Abidin (1990b)] and thus indicate that this controller 

remains stable during this sequence of tracking tasks for an appropriately small 

sampling period. This prediction is confirmed by the plots of the trajectory 

tracking errors e1 and e2 and the joint torques shown in Figure 3.5 (a) and 

Figure 3.5 (b) for a PID controller with a sampling time of 0.01s. The tracking 

error is defined as the distance between the actual and desired position at the 

same instant of time: its projections along and perpendicular to the desired 

trajectory are ei and e2, respectively. These graphs indicate that the controller 

Produces accurate tracking performance, with a maximum trajectory-tracking 

error of about 1 mm except for a brief transient period when the sudden variation 

°f payload occurs at 1.5s causes a transient error of 6mm. The torques 

Generated by the controller during the sequence of tracking tasks are shown in 

Figure 3.5 (b), and exhibit no practically undesirable characteristics.

3-6 CONCLUSION

The design of digital trajectory-tracking controllers for robotic manipulators
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using non-evolutionary singular perturbation techniques has been presented in 

this chapter. It has been shown that the design method of Porter and Abidin 

(1990a) for completely irregular linear multivariable plants is directly applicable 

to robotic manipulators. In particular, the robustness theorem is very useful in 

the case of robotic manipulators due to the time-varying terms characteristics of 

such systems. Finally, it is evident from the illustrative example presented in this 

chapter that, despite the occurrence of non-linear time-varying terms in robotic 

manipulators, the trajectory-tracking performance of such systems under digital 

PID control is remarkably good.

However, it is important to acknowledge the lack of an adequate method for 

computing the optimal quadruple {a  , S , <j  , p} of design parameters for fast­

sampling digital PID controllers capable of delivering the best possible 

trajectory-tracking behaviour. It is therefore necessary to develop a generally 

applicable optimisation technique for this purpose. This is a central task of this 

thesis, using various genetic and evolutionary algorithms.



Completely Irregular 
Multivariable Plants

Figure 3.1: Block diagram of fast-sampling controller for completely irregular 
linear multivariable plants
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Figure 3.2: Block diagram of trajectory-tracking system for completely irregular linear 
multivariable plants
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Figure 3.3: Three-link direct-drive robotic manipulator schematic 
representation and dimensions.
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t i *e< s >

Figure 3.4: Time-domain behaviour of the spectrum of the 
perturbation matrix M(xJ '1 M(xu) using singular 
perturbation designed digital PID controller.
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xIO-3

Figure 3.5: Time-domain behaviour o f errors and torques for
singular perturbation design of digital PID controller.
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Chapter 4

DESIGN OF DIGITAL CONTROLLERS FOR ROBOTIC 
MANIPULATORS USING GENETIC ALGORITHMS

4.1 INTRODUCTION

By using singular perturbation techniques, Porter, Manganas, and Manganas 

(1988) developed a methodology in which only the open-loop step-response 

matrices of plants are needed to design the appropriate fast-sampling error- 

actuated digital PID controllers. In the face of plant-parameter variations, Porter 

and Abidin (1990) subsequently established the robustness characteristics of such 

non-adaptive and non-evolutionary controllers in the case of completely irregular 

multivariable plants as summarised in Chapter 3. It was thus shown by Porter and 

Abidin (1990a) that the plant-parameter variations tolerable by fast-sampling error 

actuated digital PID controller can be expressed very simply in terms of the step- 

response matrices of the nominal and actual plants.

In Practice, these theoretical results are valid only asymptotically as f ~  (i.e., as 

the sampling frequency of the digital PID controller considered in Chapter 3 

becomes infinite). It has so far proved impossible to obtain theoretical non- 

asVmptotic robustness results for digital PID controllers with finite sampling 

frequencies. It is therefore desirable to develop an effective tuning procedure for 

Such non-asymptotic conditions. In this chapter, the use of genetic algorithms
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(Appendix A.1) is accordingly proposed for the design of digital trajectory-tracking 

controllers for robotic manipulators that was treated by singular perturbation 

methods in Chapter 3. This genetic design process is effected by incorporating 

the controller design equation (3.14) within the genetic algorithms so as to 

optimise the various tuning parameters. In this way, the best trajectory-tracking 

behaviour is achieved in accordance with a chosen evaluation criterion for the 

specified typical sequence of trajectory-tracking tasks presented in Chapter 3 

(which includes a sudden change of payload).

The optimal quadruple {a  , 8 , a  , p} of design parameters for fast-sampling 

digital PID controllers thus obtained allows a direct comparison to be made in the 

non-asymptotic case between the performance of those controllers with 

genetically tuned parameters and those with parameters tuned by Porter and 

Abidin (1990). In addition, it is shown that the genetic design procedure does not 

violate the robustness characteristics which need to be considered in the case of 

robotic manipulators due to the time-varying characteristics of such systems as 

Well as to the discrepancy introduced by the use of a nominal plant for design 

Purposes. Indeed, the genetic design procedure makes an implicit use of the 

robustness theorem and corollary presented in Chapter 3 by ensuring that the 

genetically designed controllers remain stable during the specified sequence of 

tracking tasks.

This genetic design approach is a natural extension to robotic control problems of

the previously obtained non-robotic results of Porter and Jones (1992), Porter,
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Mohamed and Jones (1993), and Porter and Hicks (1994).

4.2 GENETIC DESIGN PROCEDURE

The closed-loop digital trajectory-tracking system under investigation incorporates 

the following two principal components as shown in Figure 4.1

(0 an inverse kinetic transformation block which generates a desired set-point 

command vector in the joint space, v(t), in response to a set-point command 

vector in the task space, c(t);

(¡0 a multivariable PID controller that generates an appropriate control input 

vector, u(t), in response to the error between the set-point command vector, 

v(t), and the plant output vector, y(t).

is intended that such fast-sampling digital PID controller produces high- 

accuracy trajectory-tracking behaviour by causing the output vector , y(t), to 

track the set-point command, v(t).

Indeed, the digital trajectory-tracking systems under consideration, as shown in 

figure 4.1, consist of linear multivariable plants together with digital PID 

c°ntrollers. Such plants are assumed to exhibit minimum-phase characteristics
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and are therefore amenable to fast-sampling error-actuated control [Bradshaw 

and Porter (1980)]. These linear multivariable plants are governed on the 

continuous-time set T = [0,°°) by state and output equations of the respective 

forms [Manganas (1985)]

x(t) = Ax(t) + Bu(t) (4.1)

and

y(t) = Cx(t), (4.2)

where

x(t) =
Xl(t) 

X2(t)
9T • (4.3)

*n these equations, x(t) e  9 t n is the plant state vector, u(t) e  9 t  is the plant input 

v©ctor, y(t) e g i1 ¡s the plant output vector, A e is the plant matrix, B e 9 i nxl 

is the input matrix, C e  9 t lxn is the output matrix, xj(t) e 9T l,and x2(t) e  9t. 

furthermore, in view of the assumed complete irregularity of the considered 

Plants, the first Markov parameter, CB, of the continuous-time open-loop plant is 

nuM [Abidin (1991)], ie.,

CB = 0 (4.4)
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whilst the second Markov parameter, CAB, is of full rank, ie.,

rank CAB = l • (4-5)

The digital PID controllers under consideration are governed on the discrete­

time set T j = {0,T, 2T,...} by control-law equations of the form [Porter et aI 

(1985)]

u(kT) = K,r(kT) + K2 z(kT) (4.6)

In equation (4.6), K } e Stxl and K2 e Stxl are the proportional and integral 

controller matrices, whilst the vectors r(kT) e St and z(kT) e St are generated in 

accordance with the difference equations [Porter (1987)]

s{(kT  + 1 )T j = -ccs(kT) + e(kT) , (4.7)

r(kT) =-f (1 + cc)Ds(kT) +( //
V

+ e(kT),

and

(4.8)

z{(k + 1)T } = z(kT) + T r(k T ). (4.9)

Moreover, in equations (4.7), (4.8) and (4.9), a  e  (-1, +1], s(kT) e  St, e(kT) =
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v(kT) - y(kT) e  is the error vector, v(kT) is the set-point command vector, and 

the derivative matrix D e  St*1 is such that

(4.10)
rankD -  l .

The design methodology proposed by Porter and Abidin (1990) and presented 

in Chapter 3 indicates that set-point tracking behaviour can be achieved 

asymptotically if the following design equations for the fast-sampling digital PID

controllers are used:

K, = jrH~'(T)Z(TL + 2D)-'

and

K 2 = pTH~'(T  )T.(Th + 2D  ) ' ! e S t “

In these equations,

I  = 0 1 , ( 0  e 0 t + )

(4.12)

(4.13)

is the positive diagonal tuning matrix,

D = 5 1 , ( 8  e <K + )
(4.14)
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is the positive diagonal derivative matrix, and p is the positive tuning parameter 

integral-to-proportional ratio.

In addition, in equations (4.11) and (4.12),

H (T  ) = \ C B d t (4-15)
o

is the step-response matrix of the nominal open-loop plant with state-space 

triple (A,B,C)  which is used for design purposes in obtaining the controller for 

the actual open-loop plant with state-space triple (A,B,C) governed by equations 

(3-1) and (3.2).

However, it is important to remember that despite the elegance of the 

established robustness theorems of Porter and Abidin (1990) presented in 

Chapter 3, these results are restricted to the asymptotic case of fast-sampling 

error-actuated digital PID controllers for which f -» °°. Furthermore, it 

transpires that these asymptotic results involve only the pair (a,rf of design 

Parameters rather than the complete quadruple {a ,o ,pA  of design parameters 

involved in the controller design equations (4.11) and (4.12).

In tact, under asymptotic conditions, consideration is given only to the reduced 

controller parameter set (a,o), which affect most importantly the ‘fast’ modes of 

the system. The remaining controller parameters, which essentially determine 

the asymptotically uncontrollable and unobservable ‘slow’ modes of the closed-
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loop system, are often assigned fixed values in the asymptotic design process. 

Indeed, the use of fast-sampling error-actuated digital PID trajectory-tracking 

controllers guarantees the removal of ‘slow’ modes from the plant outputs, 

which in turn ensures that the discrete-time tracking systems exhibit set-point 

fracking characteristics that are both fast and non-interacting.

However, under non-asymptotic conditions for finite sampling frequencies, 

slow’ modes tend to be present in the outputs. It is therefore necessary to 

lr,vestigate the effects of both ‘fast’ and ‘slow’ modes on trajectory-tracking 

behaviour by using the complete quadruple {a,a,p,S} for such finite sampling 

frequencies.

In view of equations (3.46), there is a clear indication that the existence of a 

disparity between the nominal plant ( A,B ,C ) and the actual plant (A,B,C) will 

affect the values of the elements of Z4 (see equation 3.83) (the ‘fast’ modes) 

ancl will therefore tend to alter the stability characteristics of the closed-loop 

system. Indeed, taking into account the non-linear and time-varying nature of 

robotic manipulators, it is essential to ensure that the relevant controllers are 

r°bust. Such a process of robustification ( ie, of ensuring that excellent 

frajectory-tracking performance is maintained over a set of operating conditions) 

ls obviously crucial to the successful operation of such tracking systems.

** 's evident that the absence of a theoretical solution to the non-asymptotic

r°bustness problem highlights the need to consider the following general
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robustness problem for the non-asymptotic case [Porter and Allaoui (1995a)]'.

In the case of finite sampling frequencies, determine the set of actual plants 

with state-space triple ( A,B,C) tolerable by digital PID controllers designed for 

the nominal plant with state-space triple ( A,B,C) and characterised by the 

quadruple {a,a,p,S\ of controller design parameters.

This genetic robustification approach consists in effectively using genetic 

algorithms to solve the following version of the robustness problem [Porter and 

Allaoui (1995a)]:

In the case of finite sampling frequencies, determine the quadruple {a,o ,pA  of 

the controller design parameters such that optimal trajectory-tracking behaviour 

ls obtained when a given robotic manipulator is controlled so as to track a given 

trajectory.

^ is clear that the solution to this non-asymptotic robustness problem will 

Provide an optimal quadruple {a,o,pA  of controller design parameters which is 

dependent upon the given manipulator, the given task, and the measure of 

trajectory-tracking accuracy used in the optimisation procedure.

There are clearly many different measures of optimality. However, it is 

c°hvenient initially to regard a minimum integral over the task time, x , of the 

Euclidean norm of trajectory-tracking error vector in Cartesian space as the
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ultimate design requirement. Thus, genetic algorithms can be readily used to 

select the appropriate set of controller parameters such that

r  = Jo Ik t J d t (4.18)

ls minimised, where x is the duration of the tracking task, e(t) e is the 

trajectory-tracking error vector in Cartesian space, and ||.|| denotes the 

Euclidean norm.

However, in order to use genetic algorithms to solve this non-asymptotic

mbustness problem , it is necessary to encode the quadruple {a,a,p,<5} of

c°ntroller design parameters in accordance with a system of concatenated,

multi-parameter, mapped fixed point coding as proposed by Goldberg (1989).

Thus, each quadruple {a,a,p,8\ of controller parameters is represented by a

string of binary digits to form an individual member of a particular population.

Then, following any choice of randomly generated initial population of such

strings, successive generations of strings can be rapidly obtained using the

basic genetic operations of selection, crossover, and mutation (Appendix A.5).
|
n addition to the basic genetic operation mentioned above, a certain degree of 

el<tism which can affect both the fittest and worst individuals of a generation is 

lr|troduced. Indeed, the first step of this elitist scheme consists of insuring the 

survival of the fittest individual or chromosome amongst the entire set of two 

Recessive generations of parents and children. Whereas, the second step 

Safeguards the retention of the best or fittest of the worst individuals of two
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successive generations as the worst individual of the current generation. As a 

result, the successive generations of error-actuated digital PID controllers 

produced by the genetic algorithms tend to exhibit progressively improving 

frajectory-tracking behaviour with respect to the selected performance measure 

for any given robotic manipulator.

4.3 ILLUSTRATIVE EXAMPLE

This general procedure for the genetic design of fast-sampling digital PID 

controllers for trajectory-tracking systems, which are required to exhibit robust 

Performance in the face of the time-varying plant parameters inherent in robotic 

Manipulators, can be conveniently illustrated by reference to the three-degree- 

cf-freedom robotic manipulator previously investigated by Petropoulakis (1986). 

This manipulator was also used by Porter and Abidin (1990) to illustrate the 

asymptotic robustness results presented in Chapter 3 for fast-sampling error- 

actuated PID controllers for completely irregular linear multivariable plants. This 

robotic manipulator is governed on T -  [0, +°°] by state and output equations of 

the respective forms [Petropoulakis (1986)]

M(O)0+c{9,0) + g(0) = u , (4.19a)

and

y = f ( 6 ) (4.19b)
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The numerical values of the inertial and kinematics parameters of the typical 

three-degree-of-freedom robotic manipulator under consideration are those 

given by Petropoulakis (1986). The robotic manipulator is, for design purposes, 

considered to be in the neighbourhood of the arbitrarily selected operating point 

corresponding to the end-effector position (0,0.45,0)m which corresponds to the 

joint space coordinates (k/2, 0.27k, -0.27k) proposed by Porter and Abidin 

(1990).

The genetically designed controller is used while the end-effector of the robotic 

Manipulator is caused to track the straight-line trajectories defined in Chapter 3. 

In the same manner as in the illustrative example of Chapter 3, the robotic 

Manipulator grasps an additional payload of 5 Kg after the initial transition I —»II 

(see section 3.5) in order to test the robustness of the controller.

The structure of the computational implementation of genetic algorithms in the 

case of the trajectory-tracking system is shown in Figure 4.2. In this way, the 

genetic design of the controller for this selected trajectory- tracking task can be 

readily effected so as to minimise the cost function

r  = l0'|k < | *  <4-20>

bV determining the value of the associated optimal quadruple {ex,cr,p,S} of 

c°ntroller parameters.
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In this case, the controller parameter set {a,o,pA  is encoded in accordance 

with a system of concatenated, multi-parameter, fixed-point coding. 

Furthermore, in the genetic algorithm, a population size N=30, a crossover 

probability pc=0.6, and a set of mutation probabilities {pm= 0.008, pm = 0.3, pm = 

0.98} are used over 50 generations.

The choice of different values for the mutation probability, pm, is motivated by 

the very nature and function of mutation. Thus, when using genetic algorithms, 

the population slowly converges from the initial population, where the 

individuals are quite dissimilar, towards a state in which the individuals are quite 

similar. In this last state, further improvement may only be possible by using a 

favourable mutation probability, pm. In other words, in genetic algorithms 

Mutation is usually treated as a background operator ensuring that the 

Population consists of a diverse pool of individuals that can evolve mainly by 

crossover. In the past, common settings of the fixed mutation probability, pm, 

Were obtained in experimental investigations conducted by De Jong (1975) who 

Proposed a value pm = 0.001, by Grefenstette (1986) who proposed in turn a 

value of pm = 0.01, and by Schaffer et al (1989) who suggested values within an 

'Nerval pme [0.005 0.01].

These values for the mutation rate can be taken as guides; but other experts in 

th© field such as Back (1993) and Muhlenbein (1992) proposed different 

values. Thus, it was proposed that pm = 1// (where / is the length of the binary
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string representing the encoded controller parameters) is always a good starting 

point because it will not perform worse than any smaller setting of the mutation 

probability. However, in a later study of heuristics for setting the mutation 

probability for genetic algorithms, Back (1997) stated that it is impossible to 

draw a general conclusion from the different experimental investigations 

Proposed. This is because the optimal mutation probability is dependent on both 

population size and objective function, and this dependency affects the 

convergence of the genetic algorithm. Back (1997) concluded by 

acknowledging that no useful analytical results are known for the dependence 

of the optimal mutation probability on parameters such as population size or

objective function.

Indeed,« is commonly accepted in the genetic algorithms community that, when 

using a genetic algorithm strategy, success in any application area can only be 

determined by experimentation and tends to be problem dependent [Winter e, a I

(1995)].

'n the present computational implementation of genetic algorithms, the 

Evolutionary process involved in the genetic design of the trajectory-tracking 

'̂9>tal Pid  controller for the robotic manipulator searches for an optimal 

quadruple {a,a,p,S\ of tuning parameters. Three different sampling periods, 7 =

0-01 s, t = o 02s and 7=  0.04s, were selected so that the genetic algorithm is 

tested over a range of non-asymptotic condition. The optimal quadruple 

¡s selected by this evolutionary process so as to minimise the
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performance measure, T. In all three cases, the best performance was attained 

using the mutation probability pm = 0.008, for which the corresponding 

genetically designed controller will be referred to as the prime design in the 

remaining sections of this chapter. The results of the genetic design procedure 

for the mutation probabilities pm= 0.008, pm = 0.3, and pm = 0.98 under the non- 

asymptotic condition T=  0.01s are shown in Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 

4.9, 4.10, 4.11 and 4.12 over 50 generations. In Figures 4.3, 4.6 and 4.9, the 

associated best-of-generation and generation-average values of the cost 

function, r , for the mutation probabilities pm = 0.008, pm = 0.3, and pm = 0.98, 

respectively, are plotted against generation number. It is clearly shown in 

Tables 4.1, 4.2 and 4.3 that the optimal quadruple of controller parameters 

obtained for the best design depicted in Figure 4.12 is [a,cr,p,S\ = {0.174, 

°-83l, 16.751,0.0126}, for which the corresponding value of the cost function T = 

1 >47 x 10'3 is evidently the smallest amongst all different proposed genetically 

^signed controllers. It is also clear from Figures 4.5, 4.8 and 4.11 that the 

e'genvalues of the perturbation matrix (CAB)(CAB) corresponding to the

resign under the non-asymptotic condition T = 0.01s always lie on the interval 

(°, (1+a)/cr) permitted by the robustness corollary [Porter and Abidin (1990b)]

Presented in Chapter 3. This fact indicates that the controller system remains 

'°cally stable during the sequence of tracking tasks for the selected sampling 

Periods t  = 0.01s. This prediction is again confirmed by the plots of the 

trajectory-tracking errors and joint torques corresponding to the prime design 

shown in Figures 4.4, 4.7 and 4.10.
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Sampling Period Controller Parameters Cost Function

7 = 0.01 a a P 8 r

Asymptotic design 0.100 0.700 1.000 0.010 8.64 x 10'3

Genetic design 

(Pm= 0.008)
0.174 0.831 16.751 0.0126 1.47 x 10’3

Genetic design 

(pm = 0.30)
0.104 0.842 20.509 0.013 1.62 x 10'3

Genetic design 

[_______  (Pm =0.98)
0.161 0.796 18.258 0.018 1.66 x 10‘3

Table 4.1 Comparative results for genetic and asymptotic designs ( T = 0.01s).

Sampling Period Controller Parameters Cost Function

7 = 0.02 a a P 6 r
Genetic design 

(Pm= 0.008)
0.118 0.849 16.256 0.0690 9.67 x 10’3

Genetic design 

(Pm =0.30)
0.076 0.891 15.957 0.065 10.53 x 10’3

Genetic design 

(Pm=0.98)
0.114 0.867 18.173 0.082 10.28 x 10’3

Table 4.2 Comparative results for genetic designs ( T = 0.02s).
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Sampling Period Controller Parameters Cost Function

T = 0.04 a a P S r

Genetic design 

(Pm= 0.008)
0.062 0.893 9.222 0.135 60.91 x 10'3

Genetic design 

(Pm = 0.30)
0.086 0.898 7.893 0.111 63.67x1 O'3

Genetic design 

(Pm =0.98)
0.078 0.890 9.448 0.130 63.69x1 O'3

Table 4.3 Comparative results for genetic designs ( T = 0.04s).

fo this genetic design of fast-sampling robust PID controllers for robotic 

Manipulators, a significant improvement in performance was achieved for the 

Proposed genetically designed controllers (under the non-asymptotic condition T 

'  0-01 s) in comparison to the performance obtained under the same non- 

asVmptotic condition T = 0.01s for the controller designed by Abidin{1990b) 

Using the singular perturbation methods presented in Chapter 3. Indeed, the 

designs resulted in good trajectory-tracking accuracy characterised by a small 

peaks error of 4mm (see Figures 4.4, 4.7 and 4.10) during the transient period 

blowing the introduction of a sudden 5 Kg load. This compares very favourably 

witb the peak error of 6mm (see Figure 3.5) obtained for the controller designed 

by singular perturbation methods. In addition, the overall trajectory-tracking 

Accuracy performance measured by r = 1.47 x 103 , T =  1.62 x 103 and r  =

1-66 x 10'3 are clearly superior to their singular perturbation counterpart
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Presented in Chapter 3 which produced a value of T = 8.64 x 10‘3. This 

superiority holds for all the proposed genetically designed controllers which 

achieved values of the objective function Te[1.47 x 10'3, 1.66 x 10'3]. The 

comparative results obtained in solving this design problem genetically and by 

using the singular perturbation methods are summarised in Table 4.1. This table 

also displays the values of the optimal quadruples, {a,cr,p,ty, of controller 

Parameters and the corresponding values of the cost function.

S° far, the discussion has been confined to the performance of the genetically

designed controllers compared with their counterpart designed by singular

Perturbation methods. It is therefore relevant to extend this comparison to the

different genetic designs. Indeed, from Table 4.1 it transpires that the design

under the non-asymptotic condition T = 0.01s is to be credited with the best

Performance by achieving the smallest cost function value of all proposed

designs. However, it is clear from Table 4.1, 4.2 and 4.3 that the genetic

Procedure can be effective under different non-asymptotic condition

c°rresponding to sampling period 7= 0.01s, 7= 0.02s and 7= 0.04s. As expected,

an increase of the sampling period is accompanied by a degradation of the

Peking performance as depicted in Figures 4.14, 4.16, 4.18, 4.20, 4.22, and 

4.24. *

*t is also clear from Figures 4.3(a), 4.6(a), 4.9(a), 4.13(a), 4.15(a), 4.17(a),

4-19(a), 4.21(a) and 4.23(a) that the convergence towards the optimal cost 

Unction value is fastest in the design case corresponding to pm = 0.008. It is
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also evident that, the higher the mutation probability pm, the slower the 

convergence. In fact, large mutation probabilities have an adverse effect on the 

speed of convergence, due to their tendency to disrupt some relevant 

■nformation contained in the population of individuals during the evolutionary 

Process. Indeed, it is clear from Figures 4.3(b), 4.6(b), 4.9(b), 4.13(b), 4.15(b),

4-17(b), 4.19(b), 4.21(b) and 4.23(b), which represent the average cost function 

the population of individuals for the successive generations, that an increase 

ln the mutation probability, pm, is a source of disruption to the population of 

individuals.

It is thus evident that, when using genetic algorithms, an optimal strategy must 

maintain a balance between the exploitation of the best individuals found so far 

ar>d the continued exploration for potentially better individuals which can be 

achieved using an adequate mutation probability.

I* 's also noticeable that the larger is the sampling period T the bigger is the 

^gradation of the performance, which confirms the fact that design procedure 

°f Porter and Abidin (1990a) presented in Chapter 3 and used throughout this 

chapter derives from the fast-sampling methodologies of Porter et al (1985).

4,4 CONCLUSION

If has been shown in this chapter that genetic algorithms can be conveniently



Chapter 4 92

used to tune the parameter set {a,a,pA  for fast-sampling digital PID controllers. 

This genetic design procedure has been illustrated by the design of a trajectory­

tracking system for the three-degree-of-freedom robotic manipulator for which a 

PID digital controller was previously designed using the singular perturbation 

technique presented in Chapter 3. These genetic designs are characterised by 

an evident improvement in the trajectory-tracking performance when compared 

with that obtained from the singular perturbation design (Chapter 3 under 

identical non-asymptotic condition T = 0.01s).

In the present genetic design procedure, genetic algorithms have been used to 

‘robustify’ the fast-sampling digital PID controllers embodied in digital trajectory- 

tracking system in the case of non-linear time-varying and completely irregular 

plants for which no non-asymptotic robustness theorem currently exists. This 

process of robustification has been effected by using genetic algorithms to 

determine the optimal set of controller tuning parameters for trajectory-tracking 

tasks (which include sudden changes of payload) by making implicit use of the 

robustness corollary [Porter and Abidin (1990b)] presented in Chapter 3.

The attractive features of the genetic design procedure include simplicity of 

Performance specification, tuning flexibility, and the implicit use the robustness 

characteristics established by Porter and Abidin (1990). The simplicity of the 

Performance specification feature permits the selection of performance 

Measures which embody practical engineering constraints such as amplitude, 

or rate limits on the inputs, or outputs of complex devices such as robotic
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manipulators. The use of such performance measures is investigated in 

Chapter 6.
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Figure 4.1: Block diagram representation of the closed-loop trajectory-tracking system.
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^•9ure 4.3: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.008, T = 0.01).
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figure 4.4: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.008,T=0.01).
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figure 4.5: Time-domain behaviour of eigenvalues of plant
perturbation for genetically designed digital PID
Controller (pm = 0.008, T = 0.01).
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figure 4.6: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.3, T = 0.01).
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figure 4.7: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.3,T=0.01).
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^9ure 4.8: Time-domain behaviour of eigenvalues of plant
perturbation for genetically designed digital PID
Controller (pm = 0.3, T = 0.01).
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figure 4.9: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.98, T = 0.01).
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figure 4.10: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.98,T=0.01).
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figure 4.11: Time-domain behaviour of eigenvalues of plant
perturbation for genetically designed digital PID
Controller (pm = 0.98, T = 0.01).
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figure 4.12: Best-of-generation of the genetically tuned set of controllers 
Parameters {a ,5 ,o ,p } ( pm = 0.008, T = 0.01).
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^*9ure 4.13: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.008, T = 0.02).
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^*9ure 4.14: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.008,T=0.02).
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figure 4.15: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.3, T = 0.02).
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f '9ure 4.16: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.3,T=0.02).
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^9ure 4.17: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.98, T = 0.02).
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pigu 4.18: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.98,T=0.02).
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F*9ure 4.19: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.008, T = 0.04).
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^■gure 4.20: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.008,T=0.04).
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^■3ure 4.21: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.3, T = 0.04).
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Pi9ure 4.22: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.3,T=0.04).
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p'9ure 4.23: Best-of-generation and average-of-generation of cost function
for genetically designed controller (pm = 0.98, T = 0.04).
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F»gure 4.24: Time-domain behaviour of errors and torques for the
genetically designed digital PID controller (pm=0.98,T=0.04).
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C h a p te r 5

D E S IG N  O F  D IG ITA L  C O N T R O L L E R S  F O R  R O B O T IC  

M A N IP U L A T O R S  U S IN G  E V O L U T IO N  S TR A TE G IE S

5.1 INTRODUCTION

In Chapter 4, genetic algorithms were used for the design of robust digital 

trajectory-tracking PID controllers for robotic manipulators: such design was 

previously effected by the singular perturbation methods presented in Chapter 3. It 

was thus shown in Chapter 4 that genetic algorithms can be used to develop an 

effective tuning procedure for such controllers in the non-asymptotic case for which 

the sampling period is non-zero.

However, in the case of very complex robotic manipulators performing wide ranges 

of trajectory-tracking tasks, there is a practical need to accelerate the evolutionary 

Processes involved in the genetic robustification methodologies. This need 

Prompts the search for algorithms that are more powerful than genetic algorithms. 

,n fact, the speed of convergence is an important measure of the power of a given 

evolutionary approach. This is because sufficiently rapid convergence ensures 

that the algorithm will at least produce a local optimum within reasonable time, 

which is a critical factor for any practical application. Indeed, Back, Rudolph and 

Schwefel (1993) have shown that evolution strategies are able to achieve a rate of
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convergence which is claimed by Voigt, Muhlenbein and Cvetkovic' (1995) to be 

the best convergence rate achievable for evolutionary algorithms. Therefore, it is 

proposed in this chapter to use evolution strategies without recombination as an 

alternative to genetic algorithms for the design of digital trajectory-tracking PID 

controllers for robotic manipulators. Such evolution strategies are simpler than 

genetic algorithms (since crossover in the form of recombination is eliminated) and 

are therefore frequently less computationally burdensome than genetic algorithms.

It is therefore relevant to explore the relative merits of these alternative 

evolutionary optimisation techniques in the context of digital control system design.

In fact, two different variants of evolution strategies are proposed. The first is the 

standard non-adaptive approach which consists of using fixed mutation 

Probabilities during the evolutionary process. In contrast with this, the second 

epproach is characterised by the presence of a self-adaptative mutation 

mechanism. Moreover, it is proposed in this chapter to use the (ft + X) evolution 

strategies introduced by Schewefel (1977) (see Appendix A.2) which generate X

,,, the h best individuals from the sntir© s©t of°ffspring from n  parents and then select the // Des

A ♦ X individuals (parents and offspring). In the case of both the non-adaptive and 

adaptive evolution strategies, the evolutionary design processes are effected by 

incorporating the controller design equation (3.14) within the evolutionary 

strategies so as to optimise the various tuning parameters. In this way, the best 

trajectory-tracking behaviour is achieved in accordance with a chosen evaluation 

Performance for the specified sequence of typical trajectory-tracking tasks



Presented in Chapter 3 and 4 (which includes a sudden change of payload).
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The optimal quadruple {a, S, a, p) of design parameters for digital PID 

controllers thus obtained allows a direct comparison to be made in the non- 

esymptotlc case between the performance of those controllers with the 

evolutionary parameters tuned by evolution strategies and those with parameters 

tuned by the singular perturbation methodologies of Porter and Abidin (1990a). In 

addition, it is shown that the evolution strategies -as in the case of genetic 

algorithms- respect the robustness characteristics which need to be considered in 

the case of robotic manipulators. Indeed, the evolutionary design procedure makes 

implicit use of the robustness theorem and corollary presented in Chapter 3 by 

ensuring that the evolutionarily designed controllers remain stable during the 

specified sequence of tracking tasks.

This design approach using evolution strategies is a natural extension to robotic 

control problems of the previously obtained non-robotic results of Porter and 

Zadeh (1997) and Porter and Merzougui (1997).

5-2 EVOLUTIONARY DESIGN PROCEDURE

5-2.1 EVOLUTION STRATEGIES

ln this evolutionary design process, (// + ^-evolution strategies are used to
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design robust digital-tracking PID controllers for complex non-linear and time- 

varying parameters robotic manipulators for non-asymptotic conditions in which 

realistic and practical finite sampling periods are considered. It is evident that, 

3s in the genetic approach, it is intended that the solution of this problem provide 

an optimal quadruple, {a,cr,pA> of controller design parameters which is 

dependent upon the given manipulator, the given task, and the measure of 

trajectory-tracking performance.

In order to apply {ju + Revolution strategies to solve this non-asymptotic 

design problem, it is necessary only to encode the quadruple {a, o ,pA  of 

controller design parameters in accordance with a system of concatenated, 

multi-parameter, mapped fixed-point coding. In order to make an effective 

comparison between the performance of the different proposed evolutionary 

al9orithms (see Chapter 7), the binary representation of the quadruple {a,a,p,S} 

bsed in the genetic approach of Chapter 4 is retained.

Notice that, for the sake of consistency and easy comparison, it is also 

convenient to regard the minimum integral of the Euclidean norm of the 

trajectory-tracking error vector in Cartesian space as the ultimate design 

requirement. Thus, (p + Revolution strategies are used to select the 

aPpropriate quadruple, {a,a,pA, of controller parameters in the design 

N a tio n s  (4.7), (4.8), (4.11) and (4.12) such that
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r  = Jo I k tA dt (5.7)

is minimised, where t is the duration of the tracking task, e(t) € ^  

trajectory-tracking error vector in Cartesian space, and ||.|| denotes the 

Euclidean norm.

In order to ensure objectivity in the comparison of the performance of different 

evolutionary algorithms (see Chapter 7), the evolution strategies are started by 

randomly generating an initial population of strings as in the case of genetic 

algorithms. Successive generations of strings are then obtained using the 

evolutionary operations of selection and mutation (Appendix A.5). In this case, 

unlike that of genetic algorithms where the elitist approach affected only the 

best and worst of each generation, the greater degree of elitism has the 

Potential to affect the entire generation. Indeed, in the case of (^ + ^-evolution 

strategies, elitism consists in selecting the p best individuals from the entire set 

°f n + X individuals (parents and offspring).

5*2.2 NON-ADAPTIVE + ^-EVOLUTION STRATEGIES

,n the absence of an automated self-adaptive mutation mechanism, it is 

Squired in the case of non-adaptive (// + ^-evolution strategies to proceed 

w'th the selection of fixed mutation probabilities by means of a trial-and-error
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process. However, such a selection process provides an insight into the impact 

of fixed mutation probabilities on the behaviour of non-adaptive (// + A)- 

evolution strategies. Indeed, the choice of different values for the mutation 

probability, pm, in the non-adaptive (ju + ^-evolution strategy is motivated by 

the very nature and function of mutation. This mutation parameter has a 

significant effect on the overall performance of the recombination-free evolution 

strategies proposed in this chapter. Indeed, specialists in the field of evolution 

strategies such as Back (1997) emphasise that —due to the predominance of 

the mutation operation in recombination-free evolution strategies—  varying the 

probability of mutation has a far more dramatic effect on the performance than 

'n the case of genetic algorithms. In the latter algorithms, recombination is 

considered to be the most important search operator as advocated by Holland 

(1975),and Goldberg (1989). Indeed, those authors consider that 

recombination and selection are the minimum requirement for evolution to 

°ccur. It is also well-documented that those who emphasise the importance of 

recombination use mutation only as a dedicated background operator of small 

importance (Holland (1975)), which ensures only that the population consists of 

a diverse pool of individuals.

5-2.3 ADAPTIVE (// + ^-EVOLUTION STRATEGIES

The major quality of the (/i + A) adaptive strategy is seen in its ability to 

incorporate a self-adaptive mutation mechanism in the evolution strategy, thus
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avoiding the time-consuming task of manual tuning. Indeed, efficiency can be 

gained by changing the value of the mutation parameter during the operation of 

the algorithm by taking feedback from the current state of the search. It is 

initially convenient to describe this adaptive (m + ¿Revolution strategy for the 

particular case in which M = X, i.e., when the number of parents equals the 

number of children. Then, the strategy proceeds with the selection of the fittest 

M individuals which constitute the new generation of parents amongst the entire 

set of 2 x n  (parents + children) individuals. In order to understand the self- 

adaptive mutation mechanism, it can be initially described it in its simplest form 

for which fj, = X= 1 (Porter (1997)).

Thus, as proposed by Porter (1997), let x* be the n-dimensional binary vector

representing the parental chromosome in the A>th generation {k 0, 1, 2.....v)

an adaptive (1 + 1 (-evolution strategy. In addition, let P* e [1,n] be the 

Positive integer representing the associated current mutation rate. Moreover,

'at fc also determine the interval, l - fc. + P* 1 ° f a uniform probability 

Oistribution function, p(fc). Then, in order to generate x». end p „ „  consider

fhat mutation occurs such that

1Z4

and

& r->  P'*: (5.9)
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ln (5-8), x'fcis obtained by adding 1 to each of ß*randomly selected bits of x*; in 

(5.9), ß'* is obtained by firstly selecting an integer randomly from the interval 

[-ß*. + ß*] as the value of Aß* and by then recalculating

ß'*= ß*+ Aß* (5.10)

Next, consider the fitnesses

(5.11)

and

<*>'*= <W *) (5.12)

of the chromosomes x*and x*. Then, if there is no increase in fitness so that

V k *  <D(x'*) (5.13)

choose

= %k (5.14)

and
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P*m = P'i (5.15)

Or else, if there is an increase in fitness so that

(5.16)

choose

Xk+1 = x'k (5.17)

and

Ph i = P* (5.18)

^  other words, adaptive evolution strategies are caused to evolve as follows: if 

the current mutation parameter does not lead to an increase in fitness, then it is 

changed to its mutated value but the current chromosome is retained, or else, 

’t the current mutation parameter does lead to an increase in fitness, it is 

r®tained but the current chromosome is changed to its mutated value. Such an 

adaptive process can be readily extended to embrace the general case of
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entire populations of chromosomes for which p > 1 and X, > 1 •

In summary, the ( f i + A Revolution strategies use recombination-free evolution. 

This is characterised by a fixed mutation rate parameter strategy in the non- 

adaptive variant, and by a self-adaptive mutation rate parameters strategy in 

the adaptive version. In addition, a pronounced degree of elitism is present in

these strategies.

5.3 ILLUSTRATIVE EXAMPLE

5.3.1 SYSTEM DESCRIPTION

The use of ( „  + ¿Revolution strategies to design fast-sampling digital PID 

controllers for trajectory-tracking systems, which are required to exhibit robust 

Performance in the face of the time-varying plant parameters inherent in robotic 

manipulators, can be conveniently illustrated by reference to the three-degree- 

of-freedom robotic manipulator previously investigated by Petropoulakis (1986).

This manipulator was used by Porter and Abidin (1990b) to illustrate the 

^ym ptotic robustness results presented in Chapter 3 for fast-sampling error- 

actuated PID controllers for completely irregular linear multivariable plants. The 

sarne robotic manipulator was also used to assess the performance of the 

9®netically designed fast-sampling error-actuated PID controllers presented in
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Chapter 4. The need to make a valid comparison of the performance of the 

different proposed evolutionary algorithms motivates the choice of this same 

illustrative environment (robotic manipulator, task and performance measure). 

The robotic manipulator in question is governed on T = [0, +oo] by state and 

output equations of the respective forms [Petropoulakis (1986)]

M(0)e+c(0,O) + g(O) = u , (5.19a)

and

y = f ( 0 )  (5.19b)

The numerical values of the inertial and kinematic parameters of the typical 

three-degree-of-freedom robotic manipulator under consideration are those 

given by Petropoulakis (1986) and presented in Chapter 3. Notice that the 

highly non-linear and coupled dynamics of this type of robotic manipulator 

make it a difficult candidate for accurate trajectory control and, therefore, a 

suitable vehicle for designing error-actuated digital PID controllers using 

evolution strategies.

The evolutionary designed controllers are used while the end-effector of the 

robotic manipulator is caused to track the straight-line trajectories defined in 

Chapter 3. In the same manner as in the illustrative example of Chapter 3, the 

robotic manipulator grasps an additional payload of 5 Kg after the initial 

transition I -» II (see section 3.5) in order to test the robustness of such



Chapter 5 129

evolutionarily designed controllers. Indeed, the sudden change in the dynamics 

of the manipulator resulting from the introduction of the payload requires that 

such controllers embody the robustness characteristics needed in the face of 

such severe conditions. In fact, the acquired robustness characteristic ensure 

that the evolutionarily designed trajectory-tracking system remains stable for 

the duration of the entire task.

The structure of the computational implementation of (/i + ¿Revolution 

strategies in the case of the trajectory-tracking system is shown in Figure 5.1. 

In this way, the evolutionary design of the controller for this selected trajectory­

fracking task can be readily effected by minimising the cost function

r  = i;|kr;|| d t  , (5-20)

thus determining the associated optimal quadruple {a,a,p,i5} of controller 

Parameters.

5-3.2 NON-ADAPTIVE EVOLUTION STRATEGY

In the present case, a non-adaptive (3 0  + 30 Revolution strategy was used 

with a 16 bit representation for each of the four controller parameters and 

Solution occurred over 50 generations.
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In order to study the effect of the mutation probability, pm, on the performance 

°f the non-adaptive (30 + 30)-evo)ution strategy, the three mutation 

Probabilities, pm = 0.02, pm = 0.001 and pm -  0.9 were selected. The entire set 

of results thus obtained is presented in Tables 5.1, 5.2 and 5.3 from which it 

emerges that the controllers designed using the mutation probability pm = 0.02 

outperform those designed using the other two mutation probabilities. It is also 

clear from these tables that this outperforming trend associated with the 

mutation probability pm = 0.02 holds for all three selected sampling times T = 

0 01s, T = 0.02s, and T -  0.04s. Indeed, the resulting optimal values of the cost 

function shown in Table 5.1 indicate that the evolution strategy based on the 

mutation probability pm = 0.02 leads to significant reductions of the optimal 

values of the cost function. These reductions range between 12% and 55%, if 

the optimal values associated with the mutation probability pm = 0.02 are taken 

3s a bench-mark for comparison with those optimal values obtained using the 

mutation probability pm = 0.001, presented in Table 5.2. Similarly, these bench­

mark optimal values of Table 5.1 corresponding to the mutation probability pm = 

0.02 reveal a reduction in the range of 3% to 17% compared to those optimal 

cost function values associated with the evolution strategy based on the 

mutation probability pm = 0.9 shown in Table 5.3.

In the time-domain, the superiority of the performance of the design with Pm = 

° 02 translates into a smaller value of the peak error associated with the 

sudden introduction of the payload (see Figures 5.2.a, 5.2.b and 5.2.c). In 

Edition, this design provides smaller magnitudes of the error throughout the
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entire duration of the task (see Figs 5.3.a, 5.3.b, 5.3.c, 5.4.a, 5.4.b and 5.4.c).

Cost
Function Controller Parameters

Sampling period T r a ct P 5

0.01 0.00131 0.1246 0.8999 22.9080 0.0194

0.02 0.00904 0.0727 0.8981 12.9096 0.0383

0.04 0.06103 0.0510 0.8993 7.7487 0.0997

Table 5.1 : Evolutionarily designed ( non-adaptive ES, pm-  0.02 ) Controllers 
for different sampling times

Cost
Function Controller Parameters

Sampling period T r a CT P 5

0.01 0.00287 0.2053 0.6124 8.4140 0.0102

0.02 0.01103 0.1182 0.8285 13.2132 0.0541

0.04 0.06953 0.0532 0.8375 9.5388 0.1569

Table 5.2 : Evolutionarily designed (non-adaptive ES, pm = 0.001) Controllers 
for different sampling times
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Cost
Function Controllers Parameters

Sampling period T r a a P 5

0.01 0.00153 0.1566 0.8573 15.8305 0.0163

0.02 0.01088 0.0877 0.8688 9.8507 0.0431

0.04 0.06330 0.0816 0.8963 5.1098 0.0599

Table 5.3 : Evolutionarily designed ( non-adaptive ES, pm -  0.9 ) Controllers for 
different sampling times

It is clear from the results of Table 5.1, 5.2 and 5.3 that all three proposed non- 

adaptive evolution strategies result in an evident improvement in the trajectory­

tracking performance when compared with that obtained from the singular 

Perturbation design. Indeed, the corresponding value of the cost function T = 

8.64 x 10'3 in the latter case is 3 to 6 times larger than that obtained with non- 

captive  evolution strategies. In addition, it is important to notice that the non- 

adaptive evolution strategy corresponding to the mutation probability pm = 0.02 

shows an improvement in the optimal values of the cost function varying 

between 3% and 15% compared with their best genetically designed 

counterpart presented in Table 4.2.

The rate of evolution of non-adaptive evolution strategies is discussed later in 

^ is  chapter, and compared with that of the adaptive evolution strategies.
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5.3.2 ADAPTIVE EVOLUTION STRATEGY

In a similar way , the adaptive ( 30 + 30 Revolution strategy retains the 16 bit 

representation of each the four controller parameters over 50 generations. 

However, in the adaptive case the user is not required to specify mutation 

probabilities a priori , since these are automatically generated by the self- 

adaptive mutation mechanism incorporated in the evolution strategy.

This incorporation of self-adaptive mutation generates the results presented in 

Table 5.4. These results indicate that the adaptive evolution strategy produces 

the best performance so far. Indeed, in every run and for all three proposed 

sampling times T =  0.01s, T =  0.02s and T =  0.04s, these adaptively generated 

Assigns outperform their non-adaptively generated counterparts.

Cost
function Controller parameters

Sampling period T r a c P 5

0.01 0.00129 0.1341 0.8998 22.9808 0.0187

0.02 0.00894 0.0868 0.8981 11.3849 0.0335

0.04 0.06091 0.0501. 0.8999 8.5902 0.1161

Table 5.4 : Evolutionarily designed ( adaptive ES) controllers for different
sampling times
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5.3.3 NON-ADAPTIVE VERSUS ADAPTIVE EVOLUTION STRATEGIES

It is possible to argue that the improvement in the optimal values of the cost 

function, r, resulting from the incorporation of self-adaptive mutation is quite 

insignificant when compared to their best non-adaptive counterparts. Indeed, 

Table 5.5 confirms this claim. In the same way, the time-domain behaviour of 

the errors and torques for the adaptive designs depicted in Figures 5.5.a, 5.5.b 

and 5.5.c are practically identical to their best non-adaptive counterparts 

depicted in Figures 5.2.a, 5.2.b and 5.2.C. However, this claim is moderated by 

the fact that the adaptive evolution strategies did not require any tedious and 

time-consuming selection of optimal mutation parameters in order to attain this

level of performance.

In the case of the non-adaptive evolution strategies, the associated best-of-

generation and average-generation values of the cost function, r ,  for the 

mutation probabilities pm = 0.02, pm = 0.001, and p„ = 0.9 are shown in Figures

S.6.a, 5.6.b, 5.6.C, 5.7.3, 5.7.b, 5.7.C, 5.8,a, 5.8.b and 5.8.C, over 50 

generations. Similarly, in the case of the adaptive evolution strategies, the 

associated best-of-generation and average-generation values of the cost

function, r , are depicted in Figures 5.9.a, 5.9.b, 5.9.C. However, the initial study 

of these plots does not provide conclusive evidence regarding the rate of 

evolution of the proposed evolution strategies; But a deeper study produces 

‘he comprehensive comparative Table 5.5, from which it is possible to derive
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conclusions regarding the speeds of the different proposed evolution 

strategies. Since the best performances were attained using adaptive evolution 

strategies, the corresponding optimal values of the performance measure, r , 

are selected as benchmark values. Then, two characteristics are evaluated to 

assess the performance of the proposed evolution strategies. Thus, it is firstly 

considered that the number of generations taken for the best cost function of a 

particular evolution strategy to attain 10% of its final optimal value is an 

indication of the speed of convergence of the evolution strategy.

In addition, as an indication of the quality of this convergence, the final optimal 

value obtained by each evolution strategy is measured as a percentage 

relative to the optimal values attained by the bench-mark adaptive evolution 

strategy. It is clear from Table 5.5 that the best performances are those 

associated with the adaptive evolution strategies, and that the worst are those 

associated with the non-adaptive strategy with pm = 0.001.

If is also clear from the different values of the controller parameters shown in 

Table 5.1, 5.2, 5.3, and 5.4 that, as predicted by the theory of fast-sampling 

digital PID controllers proposed by Porter and Abidin (1990b), the optimal 

values of p reduce as the sampling time increases. It is also clear from Figure 

5.1CU, 5.l0.b and 5.10.C that the eigenvalues of the perturbation matrix 

(■CAB)(CABy1 corresponding to the adaptively designed digital PID controllers

always lie on the interval (0, (1 +a)lcr) permitted by the robustness corollary



Chapter 5 136

[Porter and Abidin (1990b)] presented in Chapter 3. This fact indicates that 

these adaptively designed controllers maintain local stability during the 

sequence of tracking tasks for the selected sampling periods T = 0.01s, T = 

0.02s, and T -  0.04s.

Number of generations (% difference from bench-mark)

Type of
-Evolution Strateov

"S n o b T = 0.02 r = 0.04

Adaptive ES 13 (0%) 4 (0%) 6 (0%)

Non-adaptive ES 
with pm = 0.001

32 (122.5%) 29 (23.4%) NA (14.2%)

Non-adaptive ES 
with pm = 0.02

20(1.6%) 8(1.1%) 7 (0.2%)

Non-adaptive ES 
with pm = 0.9

1 (18.6%) NA (21.7%) 22 (3.9%)

Table 5.5: Number of generations required fo rth® 3' ^  ^
10% of the final optimal value and percentag 
bench-mark adaptive optimal values

This design procedure for error-actuated digital PID controllers using ♦ X> 

evolution strategies represents an improvement on the genetic procedure 

Presented in Chapter 4. This improvement resides in the fact that the proposed 

recombination free *  Revolution strategies are much simpler to implement 

and yet they perform as well as, or better than, genetic algorithms.
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5.4 CONCLUSION

It has been shown in this chapter that evolution strategies in both their non- 

adaptive and adaptive variants can be conveniently used to tune the 

parameters of fast-sampling digital PID controllers. These evolutionary 

procedures have been illustrated by the design of a trajectory-tracking system 

tor the three-degree-of-freedom robotic manipulator for which a digital PID 

controller was previously designed using both the singular perturbation 

technique presented in Chapter 3 and the genetic technique presented in 

Chapter 4. These (ju + ^-evolution strategies represent a simplification and a 

refinement of genetic algorithms, and produce an evident improvement in the 

trajectory-tracking performance of the digital PID controllers.

In Chapter 6, these strategies are used in conjunction with an extended class 

°f measures of trajectory-tracking performance.
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Figure 5.2.a: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.02,T=0.Q1).
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figure 5.2.b: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.02T=0.02).
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Figure 5.2.c: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.02,T=0.04).
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Figure 5.3.a: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.001,T=0.01).
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xIO- 3

Figure 5.3.b: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Ptn=0.001,T=0.02).
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figure 5.3.c: Time-domain behaviour of errors & torques for non-adaptive
ES design of digital PID controller (Pm=0.001,T=0.04).
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Figure 5.4.a: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.9,T=0.01).
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F»gure 5.4.b: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.9,T=0.02).
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figure 5.4.c: Time-domain behaviour of errors & torques for non-adaptive
ES design of a digital PID controller (Pm=0.9,T=0.04).
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Figure 5.5.a: Time-domain behaviour of errors & torques for adaptive
ES design of a digital PID controller (T=0.01).
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xIO- 3

Figure 5.5.b: Time-domain behaviour of errors & torques for adaptive
ES design of a digital PID controller (T=0.02).



u
ly

u
2

 a
n

d
 u

3
 (

N
.m

) 
i 

p
i 

an
d

 
b
2 

(m
)

Chapter 5 150

figure 5.5.c: Time-domain behaviour of errors & torques for adaptive
ES design of a digital PID controller (T=0.04).
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Figure 5.6.a: Best-of-generation and average-of-generatlon for
evolutionarily designed controller (pm = 0.001, T *  0.01).
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Figure 5.6.b: Best-of-generation and average-of-generation for
evolutionarily designed controller (pm = 0.001, T = 0.02).
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Figure 5.6.c: Best-of-generation and average-of-generation fo r
evolutionary designed controller (pm = 0.001, T = 0.04).
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Figure 5.7.a: Best-of-generation and average-of-generation for
evolutionary designed controller (pm = 0.02, T = 0.01).
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Figure 5.7.b: Best-of-generation and average-of-generation for
evolutionary designed controller (pm = 0.02, T = 0.02).
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Figure 5.7.c: Best-of-generation and average-of-generation for
evolutionarily designed controller (pm = 0.02, T = 0.04).
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Figure 5.8.a: Best-of-generation and average-of-generation for
evolutionariiy designed controller (pm a 0.9, T = 0.01).
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^■9ure 5.8.b: Best-of-generation and average-of-generation for
evolutionarily designed controller (pm = 0.9, T = 0.02).
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Figure 5.8.c: Best-of-generation and average-of-generation for
evolutionary designed controller (pm = 0.9, T = 0.04).
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Figure 5.9.a: Best-of-generation and average-of-generation for
evolutionarily designed controller (adaptive, T = 0.01).
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Figure 5.9.b: Best-of-generation and average-of-generation for
evolutionarily designed controller (adaptive, T = 0.02).
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Figure 5.9.c: Best-of-generation and average-of-generation for
evolutionarily designed controller (adaptive, T = 0.04).
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Figure 5.10.a: Time-domain behaviour of eigenvalues of plant
perturbation for evolutionary designed digital PID 
controller (ES Adaptive T = 0.01).

Figure 5.10.b: Time-domain behaviour of eigenvalues of plant
perturbation for evolutionarily desinged digital PIO 
controller (ES Adaptive T = 0.02).



C
- *

 i»
 

*1*

Chapter 5 164

Figure 5.10.c: Time-domain behaviour of eigenvalues of plant
perturbation for evolutionary designed digital PID 
controller (ES Adaptive T = 0.04).
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Chapter 6

PERFORMANCE MEASURES IN THE DESIGN OF DIGITAL 
CONTROLLERS FOR ROBOTIC MANIPULATORS USING 

EVOLUTIONARY ALGORITHMS

6.1 INTRODUCTION

In Chapters 4 and 5, genetic algorithms and evolution strategies were respectively 

used for the design of robust digital trajectory-tracking controllers for robotic 

manipulators. It is an established fact that complex modern control systems -such 

as those for robotic manipulators- require the use of sophisticated performance 

criteria in order to assess the suitability of alternative designs. In the particular 

evolutionary design procedures presented in Chapters 4 and 5, the minimisation 

of the integral error norm for any trajectory-tracking task was regarded as the 

ultimate design requirement.

However, as pointed out by Schultz and Rideout (1961) in their survey of control 

system performance measures, the application of various alternative performance 

measures is of great interest in the evaluation of control system designs. Early 

control experts were mainly concerned with the stability of linear systems and 

therefore concentrated their work on establishing criteria that enabled the linear 

system designer to answer the question, “Is the system stable?". The complexity 

of modern control systems, for which various kinds of stability can be assessed at 

'east in the non-linear sense, compelled control system experts to conclude that
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stability alone, although a necessary requirement of a good system, does not 

9uarantee a suitable or usable system design in the practical sense.

Inevitably, the principal goal for a designer is to try to optimise a particular 

dominant performance criterion. However, the designer may also have other 

performance characteristics in mind that are deemed to be equally important when 

a range of practical considerations need to be met. In this way, it is important to 

note that alternative performance measures can be readily and effectively used in 

the evolutionary design of digital multivariable PID controllers.

In this chapter, the simplicity of specifying such performance measures is 

accordingly exploited to allow the selection of a set of three performance 

measures which embody practical engineering considerations such as trajectory­

tracking performance, and amplitude or rate limits on the inputs or outputs of 

complex devices such as robotic manipulators. Indeed, a detailed comparison is 

made of the performance of evolutionarily designed trajectory-tracking controllers 

for robotic manipulators when the following three performance measures are 

used:

(0 the integral error norm;

(ii) the weighted sum of the integral error norm and the integral error velocity 

norm;

(ill) the weighted sum of the integral error norm and the integral control effort 

velocity norm.
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These general results are illustrated by the evolutionary design of robustified 

digital trajectory-tracking PID controllers for the three-degree-of-freedom robotic 

manipulator previously considered in Chapters 3, 4, and 5.

6.2 EVOLUTIONARY DESIGN PROCEDURE

In Chapters 4 and 5, it was indicated that there are many different measures of 

optimality. However, it was convenient initially to regard the minimum integral 

over the task time, x , of the Euclidean norm of trajectory-tracking error vector in 

Cartesian space as the ultimate design requirement. Thus, genetic algorithms 

and evolution strategies were used to select the appropriate set of controller 

parameters such that

l W 0r e(t) dt (6.7)

■s minimised, where x is the duration of the tracking task, e(t) e $  is the 

trajectory-tracking error vector in Cartesian space, and ||.|| denotes the 

Euclidean norm.

it is evident that the actual process of selecting which performance measure to 

use is a problem-related matter. It is here that a certain amount of personal 

Preference is found. Thus, the choice should be governed by relevance, in that 

the particular performance measure which is selected must be a convenient one
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to use, as well as one which yields practical results. In the present case, the 

initial choice of Ti (equation 6.7) as the performance measure was most 

relevant to high-accuracy trajectory-tracking behaviour. This is because this 

measure encompasses the notion of error norm whose minimisation evidently is 

the most desirable requirement when designing high-accuracy trajectory­

tracking PID controllers for robotic manipulators. In practice, it is advisable to 

use performance measures that are useful in additionally preventing 

undesirable behaviour of the inputs and outputs. These alternative performance 

indices can therefore embody certain practical constraints such as amplitude or 

rate limits on the inputs and outputs associated with complex non-linear plants 

such as robotic manipulators.

Indeed, in order to introduce the rate limits on the outputs, it is convenient to 

consider the performance index

r  2 A e ( t ) d t (6 .8)

where % is the duration of the tracking task, eft) e 9 f l is the trajectory-tracking 

error vector in Cartesian space, Aeft) e 91l is the change in the error vector eft) 

€ $  over a sampling period, and |.|| denotes the Euclidean norm. This 

Performance index, T2, evidently takes into consideration the rate limits to be 

•mposed on the output of the system since the joint space error is defined as
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e{t) = v{ t ) - y{ t )  , (6.9)

where v(t) e  9 i l is the joint-space reference vector, and y(t) e  SR1 is the joint 

output vector of the robotic manipulator end-effector in joint space.

In contradistinction to considering the rate limits on the output, a performance 

index considering rate limits on the control inputs can be formulated in the form

A  u ( t ) d t (6. 10)

where x is the duration of the tracking task, An{t) e 9f is the change in the 

control vector u(t) e 9t  over a sampling period, and ||J denotes the Euclidean 

norm.

It is also possible to combine these three performance indices. Thus, for 

example, the cost function

r  = ^ r ,+ ^ r J + ^ r , (6.11)

can be used, where Xi, X2 and are non-negative weighting parameters.

In exactly the same manner as in Chapters 4 and 5, evolutionary algorithms can

be used to design digital trajectory-tracking PID controllers for robotic
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manipulators for any choice of performance measure. Indeed, this design 

problem is immediately amenable to the non-asymptotic approach presented in 

Chapters 4 and 5. Therefore, it is natural to adopt a similar procedure to that 

used in Chapters 4 and 5 , which consists of using both genetic algorithms and 

(X + p) -evolution strategies to solve the non-asymptotic design problem..

It is clear that the solution of this problem will provide an optimal quadruple 

{a,G,p,&i of controller design parameters which is dependent upon the given 

manipulator, the given task, and the measure of trajectory-tracking performance 

used in the optimisation procedure. It is therefore evident from equation (6.11) 

that the nature of optimality is to be determined by the choice of the parameters 

Xi, X2, and X3 .

In the same way as that used in Chapters 4 and 5 to solve the non-asymptotic 

robustness problem using genetic algorithms and evolution strategies, it is 

necessary only to encode the quadruple {a,<j,p,<$j of controller design parameters 

in accordance with a system of concatenated, multi parameter, mapped, fixed- 

point coding. Thus, each quadruple {a,o,p,di of controller parameters is 

represented by a string of binary digits. Then, following any random choice of 

the initial generation of such strings, successive generations of strings are 

obtained using the genetic operations of selection and mutation in the case of (X 

+ p)-evolution strategies, and of selection, crossover and mutation in the case 

°f genetic algorithms. These operations ensure that the successive generations 

of error-actuated digital PID controller thus produced by the genetic algorithms
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and (X + ^-evolution strategies tend to exhibit improving trajectory-tracking 

performance (in respect of the different measure of the quality of such 

performance specified by the selection of appropriate weighting parameters Xi, 

X2, and X.3 for any given manipulator).

6.3 ILLUSTRATIVE EXAMPLE

6.3.1 SYSTEM DESCRIPTION

The evolutionary design procedure can be conveniently illustrated by designing 

trajectory-tracking digital PID controllers when variants of the performance 

measures r  in equation (6.1 1 ) are used in the case of the three-degree-of- 

freedom robotic manipulator previously investigated in Chapters 4 and 5. This 

robotic manipulator is governed on T = [0, +00] by state and output equations of 

the respective forms [Petropoulakis (1986)]

M (0 ) 0 + c(0 , 0 ) + g(0 ) = u , (6.1 2 a)

and

y = f ( 0 ) (6.1 2 b)

The numerical values of the inertial and kinematic parameters of the typical

three-degree-of-freedom robotic manipulator under consideration are those
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given by Petropoulakis (1986). The robotic manipulator is, for design purposes, 

considered to be in the neighbourhood of the arbitrarily selected operating point 

corresponding to the end-effector position (0,0.45,0)m which corresponds to the 

joint space coordinates (n/2, 0.27n, -0.27n) proposed by Porter and Abidin 

(1990b).

The evolutionary designed controller is used while the end-effector of the 

robotic manipulator is caused to track the straight-line trajectories defined in 

Chapters 3, 4, and 5. In the same manner as in the illustrative example of 

Chapters 3, 4, and 5, the robotic manipulator grasps an additional payload of 5 

Kg after the initial transition I -» II (see section 3.5) in order to test the 

robustness of the controller..

The structure of the computational implementation of the evolutionary 

algorithms in the case of the trajectory-tracking system is the same as that 

shown in Figures 4.2 and 5.1. In this way, the evolutionary design of the 

controller for this selected trajectory- tracking task can be readily effected so as 

to minimise the cost function

r  = ^ r 1 + ^ r 3 + ^ r 3 , (6.13)

where \ 2 and >.3 are non-negative weighting parameters, and Ti, r 2 and T3 

are as defined in equations (6.7), (6.8) and (6.10). Thus, substituting equations 

(®-7), (6 .8) and (6.9) into equation (6.13), it follows that
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r  = A, / ;  \\e(Ol dt + X2 j ;  \\&e(l)\\ d l + A, j ;  \\Au(t)\\ d t . (6.14)

The evolutionary design of controllers for the given trajectory task can be readily 

undertaken by minimising any particular measure of performance specified by 

the designer. In particular, it is instructive to use the cost function in equation 

(6.14) in the following three particular cases:

(i) the integral error norm for which r  = T, (A,i=1, X2-  0, k3= 0);

(ii) the sum of the integral error norm and the weighted integral error velocity 

norm for which r  = T, + A ,r2 (A,i=1, Xz- 0);

(iii) the sum of the integral error norm and the weighted integral control

velocity norm for which r  = r, + (Xi=1, X2-  0).

6.3.2 GENETIC ALGORITHMS

The genetic design of PID controllers considered in Chapter 4 was that 

corresponding to the first of these cases. However, the results of performing the 

9enetic robustification procedure over 50 generations in more general cases are 

shown in Tables 6.1 and 6.2 for a population size N = 30, a crossover 

Probability pc= 0.6, and a mutation probability pm= 0.008. Thus, the results 

°htained by genetically minimising f  with h  = 1 and X3= 0, while X2 is left to
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vary within the selected interval [0, 5 x 104], are shown in Table 6.1; whilst the 

corresponding results obtained by genetically minimising r  with Xi= 1 and X2-  

0, while A.3 is allowed to vary within the interval [0, 1] are shown in Table 6.2.

X2( X, = 1,>L3= 0 ) r r , r2 r3 a a P 8

0 1.471 10-3 1.47 10‘3 1.33 10'5 3.29 0.1743 0.8312 16.7511 0.0126

103 1.571 10-3 1.50 10'3 1.06 10’5 4.05 0.1057 0.8786 18.2956 0.0199

2 x 103 1.700 10'3 1.54 10'3 1.01 10'5 3.00 0.0862 0.8568 18.6693 0.0213

3 x 103 1.729 10'3 1.59 10'3 7.63 10-6 4.06 0.1045 0.8832 19.9679 0.0255

6  x 103 1.863 10'3 1.71 10'3 4.18  10^ 4.3 0.1092 0.8810 18.2146 0.0237

5 x 104 2.161 10'3 1.80 10'3 2.49  10-* 2.6 0.0951 0.8870 11.4397 0.0178

Table 6.1: Genetic designs of PID controllers (h  = 1, X2 e [ 0, 5 x 104 ], >.3= 0 ).

_ M X , = i , x2= 0 ) r r , r2 r3 a a P 8

0 1.471 10'3 1.47 10'3 1.33 10'5 3.29 0.1743 0.8312 16.7511 0.0126

10'3 3.673 10'3 1.76 10'3 1.09 10‘7 1.88 0.1485 0.8319 10.7541 0.0124

5 x 10'3 9.985 10'3 2.28  10'3 6.21 10'6 1.54 0.1493 0.8517 15.9273 0.0304

10'2 17.67 10'2 2.62  10'3 5.28 10'* 1.51 0.1343 0.8528 13.3393 0.0295

10'1 138.9 lO'3 7.78  10'3 3.76 10'5 1.31 0.1248 0.7321 10.4856 0.0707

1 1305 10'3 17.53 10'3 1.68 10"4 1.29 0.1142 0.6997 6.0821 0.1016

Table 6.2 : Genetic designs of PID controllers ( h  = 1, X2 = 0, X3 e [ 0, 1 ]).

By varying X2, a trade-off between the individual performance indices Ti and T2 

is introduced. It is evident from Table 6.1 that, as X2 increases, the value of T2 

decreases while the value of Ti increases: this implies an increase of the 

importance of r 2 in the overall performance measure T, with the result that n  

becomes less significant in the process. The existence of such a compromise is 

demonstrated by the associated increasing ‘smoothing’ of the trajectory-tracking
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performance of the manipulator present in the time-domain behaviour of the 

error vector, eft), shown in Figures 6.2(a), 6.3(a), 6.4(a), 6.5(a) and 6.6(a). 

This is particularly visible during the transient period following the sudden 

change of pay-load, in that the greater the value of X2 the smoother is the 

transition.

It is clear that the introduction of the performance measure, T2, has the 

expected effect on the rate of variation of the error vector, eft). Indeed, a closer 

look at the different time-domain responses allows a comparison of the time- 

domain behaviour of the error vector, eft), depicted in Figures 6.1(a) 

—corresponding to the design in which only the minimisation of the 

performance index, Fi, is taken into account— with the behaviour of the error 

vector, eft), obtained for the successive values of X.2 when the performance 

index,r2 ,is considered. It is clear in Figure 6.2(a) that the transient period 

following the introduction of the pay-load is smoother than in Figure 6.1(a), 

whereas the transient peak and the amplitude of the error vector, eft), over the 

duration x of the entire task are slightly bigger. This pattern is confirmed and 

accentuated in the successive time-domain behaviours depicted in Figures 

®-3(a), 6.4(a), 6.5(a) and 6.6(a). However, this pattern of behaviour is mostly 

evident in Figure 6.6(a) which corresponds to the design with the highest value 

of A.2=5x104, where the transient oscillatory behaviour vanishes. In other words, 

the bigger is the penalisation of the performance index Y2 (bigger value of X2) in 

the overall performance index, f ,  the smaller is the numerical value of f 2 (see
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Table 6.1). In contrast to the decrease in the numerical value of the 

performance index T2, there corresponds an Increase in the numerical value of 

the performance index, Ti, caused by the increasing amplitude of the error 

vector, e(t), in the process.

Similarly, it is evident from Table 6.2 that, as X3 increases, the value of T3 

decreases while the value of IT increases. In this case, a compromise between 

the performance indices Ti and T3 is introduced as a result of varying X3 . The 

joint torques generated by the digital PID controllers consequently exhibit an 

increasingly ‘smooth’ time-domain response associated with an increase in the 

value of X3 , as shown in Figures 6.7(b), 6.8(b), 6.9(b), 6.10(b) and 6.11(b).

It is clear from these time-domain responses that the overall performance 

measure, T, which includes the performance indices r 3 and Ti, ensures 

‘smooth’ behaviour for both the error vector, e(t), and joint torque vector, u(t). 

Inevitably, the only limitation resulting from this particular combination of these 

Performance indices is the rapidly deteriorating trajectory-tracking behaviour 

resulting from the selection of large values for X3 (see Figures 6.10(a) and

6-11 (a)). Indeed, it is clear from Table 6.2 that the use of the performance 

measure r  = T, + ^ r3 (A.i=1, Xi= 0), which consists of the sum of the integral 

6|rror norm and the weighted integral control velocity norm, has an increasing 

,rnPact on the trajectory-tracking behaviour of the robotic manipulator as the 

value of the weighting parameter X3 increases. Initially, this pattern is illustrated



Chapter 6 177

by the net increase in the value of the transient peak which is 2 to 3 times 

bigger in Figures 6.10(a) and 6.11(a) than the peak value present in Figure 

6.1(a). The same trend characterises the amplitude of the error vector, e(t), 

throughout the task period x (see Figures 6.10(a) and 6.11(a)). This 

deteriorating trajectory-tracking behaviour is confirmed by the correspondingly 

large values of the performance index, IY  In fact, in order to ensure the 

existence of an appropriate trade-off between the combined performance 

indices, care must be taken to avoid using inadequate weighting parameters, 

A.3. Indeed, failing to take such a precaution can produce an unbalanced overall 

performance measure, T, thus causing the deterioration of the trajectory­

tracking performance due to the loss of significance of the performance 

measure, Ti, in the overall performance measure, T.

It is also clear from Table 6.1 and 6.2 that, for 10 out of the 11 proposed 

designs, the value of the performance measure, Fi, is smaller than that 

obtained by singular perturbation methods (see Table 4.1). This attests to the 

ability of genetic algorithms to minimise this performance measure. Indeed, 

following the study of the time-domain behaviour and the evaluation of the 

■ndividual performance indices of all 11 proposed designs, it is clear that the 

design which corresponds to the combination of the weighting parameters h  = 

1- ^2 = 0, and X3 = 5 x 10'3 is the most appropriate one. Indeed, in this particular 

Case, the time-domain responses depicted in Figures 6.8(a) and 6.8(b) exhibit a 

qualitative performance which appears to outperform the remaining proposed 

designs. This particular design is characterised by the ‘smoothness’ of the time-
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domain behaviour of the joint torques (see Figure 6.8(b)) (which is important for 

practical implementation) and by the acceptable value of its performance index 

T-i = 2.28 x 10'3 (which ensures good trajectory-tracking behaviour).

In view of the importance of the trajectory-tracking error performance measure, 

IY  (see equation (6.18)) in evaluating the quality of the trajectory-tracking 

behaviour, it is clear that the optimum setting of the controller design 

parameters must ultimately be achieved without appreciably deteriorating the 

performance measure, IY  This translates conveniently into making appropriate 

choices of the weighting parameters associated with the individual performance 

indices without adversely affecting the trajectory-tracking behaviour best 

assessed by the corresponding value of IY

6.3.3 EVOLUTION STRATEGIES

In the present case, a (30 + 30)-evolution strategy in both its non-adaptive and 

adaptive variants was used while retaining the 16 bit representation for each of 

the four controller parameters as well as the 50 generations-long evolution 

process of Chapter 5. In addition, the non-adaptive (30 + 30)-evolution strategy 

retains the best mutation strategy of Chapter 5 based on the mutation 

Probability, pm = 0.02.

It is clear from Tables 6.3 and 6.4 that the first design in each table corresponds

to the first case of Table 5.1, for which T = T, when (Xi=1, X.2= 0, and 0).
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This also applies to the first cases of the adaptive (30 + 30)-evolution strategy 

depicted in Tables 6.5 and 6.6 which correspond to their counterparts of Table

5.4. Thus, the results obtained by evolutionarily minimising r  with Xi = 1 and 

X.3= 0, while X2 is left to vary within the selected interval [0, 5 x 104], are shown 

for the non-adaptive (30 + 30)-evolution strategy in Table 6.3; whilst the 

corresponding results obtained by evolutionarily minimising r  with Xi= 1 and 

X2-  0, while X$ is allowed to vary within the interval [0, 1] are shown in Table

6.4. Similarly, the results generated by the adaptive (30 + 30)-evolution strategy 

corresponding to the same variation of the weighting parameters Xifa, and X3 

are respectively shown in Tables 6.5 and 6.6

It is clear from Tables 6.3 and 6.5 that, as in the case of genetic algorithms, the 

introduction of the performance measures, T2, plays an increasingly significant 

role in the overall performance measure, r 1t as its associated weighting 

parameter X2 increases. This implies that, as the value of T2 decreases due to 

its increasing importance in the overall performance measure, the 

corresponding value of Ti increases. Hence, the trade-off between the 

individual performance measures is introduced as the weighting parameter, X2, 

varies. As a result, the time- domain behaviour of the error vector, e(t), shown in 

Figures 6.12(a), 6.13(a), 6.14(a), 6.15(a), 6.16(a), 6.17(a), 6.23(a), 6.24(a), 

6.25(a), 6.26(a), 6.27(a) and 6.28(a) exhibits to a different degree smoother 

behaviour during the transient period following the sudden introduction of the 

Payload. Indeed, the smoothness of the transition phase intensifies with the



Chapter 6 180

increase in the value of the weighting parameter, X2. It is also clear from these 

time-domain plots that the trade-off introduced as a result of varying the value of 

X2 translates not only in the reduction of the rate of variation of the error vector, 

e(t), but also in the increase of the transient peak and of the amplitude of the 

error vector, e(t), over the duration, t, of the entire task. Thus, as formulated in 

(ii), the overall performance measure, T, takes account of the constraint on the 

rate of variation of the error vector, e(t), which causes the (30 + 30)-evolution 

strategy to generate appropriate set of controllers parameter. These latter 

parameters are obviously dependent on the value of the weighting factor, X2, 

used in the overall measure performance, T. Similarly, the result obtained in 

Tables 6.4 and 6.6 show that as X3 is permitted to vary within the interval [0, 1 ] 

while imposing X1 = 1 and X2 = 0, a trade-off between the individual 

performance measures Ti and T3 is initiated. Hence, an increase in the value of 

^3 is marked by an increase in the value of the performance index, r<\, whereas 

the same increase in the value of X3 causes the value of the performance index, 

r 3, to decrease. It is clear from equation (6.14) that, since the joint torques 

(control effort) generated by the digital PID controllers are incorporated in the 

formulation of the overall performance measure, T, varying X$ will automatically 

offect the shape of the joint torque vector, u(t), by reducing the rate of variation 

°f u(t). Indeed, the corresponding time-domain behaviour shown in Figures 

6.19, 6.20, 6.21 and 6.22 in the non-adaptive (30 + 30)-evolution strategy 

Case, and in Figures 6.29, 6.30, 6.31, 6.32 and 6.33 in the adaptive (30 + 30)- 

evolution strategy case, are characterised by the ‘smooth’ behaviour of both the
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joint torque vector ,u(t), and error vector, eft). However, a deterioration in the 

trajectory-tracking performance is detected for larger values of X3 (see the 

values of the performance index Ti in Tables 6.4 and 6.6) which requires the 

designer to take certain precautions when selecting values for the weighting 

parameter, Indeed, it is strongly recommended that the designer avoid 

excessive values of fa which will ultimately create an unbalance between the 

individual performance indices ,Ti and r 3, resulting in the deterioration of the 

tracking performance.

Finally, it is important to note from Tables 6.3, 6.4, 6.5 and 6.6 the quantitative 

superiority of the controller performance offered by the adaptive (30 + 30)- 

evolution strategy over its non-adaptive counterpart regardless of the selected 

overall performance measure, T. Most importantly, the evolution strategies in 

both variants show a better ability than genetic algorithms in successfully 

discriminating between the different optimal quadruples, {a,cr,p,fy, which 

frequently do not differ very much from each other, yet still produce rather

different time-domain behaviours.

^ ( X , = l , X j = 0
)

r r , r 2 r 3 a a P s

0 1.301 1 0 3 1.30 10‘3 1.34 10'5 3.48 0.1264 0.8999 22.9080 0.0194

i o 3 1.455 10'3 1.37 10J 9.04 10-6 3.03 0.1554 0.8920 15.1580 0.0117

2 i o 3 1.531 10'3 1.39 10'* 1.07 10° 4.51 0.1205 0.8981 21.0292 0.0165

3 103 1.577 10'3 1.42 10'3 6.64 104 4.04 0.1309 0.8986 14.6073 0.0122

6 103 1.739 10'3 1.51 10J 4.44 104 3.55 0.1405 0.8945 11.2577 0.0105

5 104 2.139 10J 1.82 10'3 6.77 10"* 3.07 0.0511 0.8542 20.2217 0.0299

Table 6.3: Non-adaptive evolution strategies designs (\i=1, X2 e [ 0, 1 ], X3=0, 
Pm =0.02).
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*̂3 (  ^1“ 1 j 
)

r r , r 2 r 3 a a P 5

0 1.301 1 0 3 1.30 10'3 1.34 10° 3.48 0.1264 0.8999 22.9080 0.0194

1 0 3 3.521 10'3 1.52 10'3 9.17 104 1.80 0.2024 0.9000 20.7422 0.0254

5 1 0 3 9.984 10'3 2.26 10'3 5.91 104 1.54 0.1495 0.8480 15.7088 0.0295

1 0 2 17.50 10_i 2.79 10‘3 4.38 104 1.47 0.1494 0.8328 13.7022 0.0319

10* 138.7 10J 7.69 10'3 4.00 104 1.31 0.0808 0.7244 9.0506 0.0585

1 1303 10'3 15.11 10'3 2.02 104 1.29 0.0564 0.6812 7.5592 0.1041

Table 6.4: Non-adaptive evolution strategies designs (Xi=1, X2-  0, X3 e [ 0, 1 ], 
Pm = 0.02).

r r , r 2 r 3 a cr P S

0 1.290 10’3 1.29 10'3 1.33 10'5 3.29 0.1341 0.8998 22.9808 0.0187

10 3 1.414 10J 1.31 10'3 1.06 10’5 4.05 0.1270 0.9000 20.3631 0.0159

2 10 3 1.563 1 0 1 1.32 10'5 1.01 10'5 3.00 0.1490 0.8959 19.0104 0.0145

3 103 1.571 10'3 1.34 10'3 7.63 104 4.06 0.1313 0.8999 15.9988 0.0129

6 103 1.731 10'3 1.48 10J 4.18 104 4.3 0.1306 0.8992 11.4939 0.0110

5 104 1.922 10'3 1.80 10'3 2.49 104 2.6 0.1006 0.8996 14.7570 0.0221

Table 6.5: Adaptive evolution strategies designs (A,i = 1, X2 e [ 0, 1 ], fa = 0).

* * U i = l ,  **=()) r r , r 2 r 3 a a P 8

0 1.290 10‘3 1.29 10J 1.33 10° 3.29 0.1341 0.8998 22.9808 0.0187

1 0 3 3.409 1 0 3 1.57 1 0 3 8.08 104 1.84 0.1497 0.8762 19.8165 0.0239

5 1 0 3 9.948 10'3 2.22 10'3 6.21 104 1.54 0.1687 0.8562 16.3611 0.0305

1 0 2 17.44 10'2 2.47 10’3 5.28 104 1.50 0.2433 0.8996 15.0344 0.0334

1 0 ‘ 138.7 10'5 7.47 10'3 3.76 104 1.31 0.0685 0.7241 9.1001 0.0569

1 1302 10‘3 14.43 104 1.68 104 1.28 0.0599 0.6858 6.1473 0.0787

Table 6.6: Adaptive evolution strategies designs { h  = 1, X2 = 0, X3 e [ 0, 1 ]).
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6.4 CONCLUSION

In this chapter, evolutionary algorithms have been used to design digital 

multivariable PID controllers for robotic manipulators for typical trajectory­

tracking tasks when various different performance measures are used. It has 

thus been shown that, by using an appropriate performance measure (which 

embodies practical engineering constraints), the set of controller design 

parameters can be readily found that determines the optimal time-domain 

behaviour of robotic manipulators for such tasks. This use of the power of 

evolutionary algorithms has been illustrated by the design of digital trajectory­

tracking PID controllers for the three-degree-of-freedom robotic manipulator 

previously investigated in Chapters 4 and 5.

The evolutionary design approach used in this chapter and in Chapters 4 and 5 

constitutes a quick and effective way of achieving good overall trajectory­

tracking performance of robotic manipulators. However, it has been shown that 

the controllers designed using genetic algorithms are outperformed by those 

designed using evolution strategies.

It is clear in this chapter that only the performance of the controllers designed 

using all three different evolutionary algorithms has been evaluated. In Chapter 

7, the performance of all three evolutionary algorithms in terms of ease of 

design and convergence characteristics will be therefore evaluated.
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Figure 6.1: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(X1 = 1;A2 = 0;A3 = 0).
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xtO"3

Figure 6.2: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A1 = 1;A2 = 103;A3 = 0).
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Figure 6.3: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A, = 1;A2 = 2 x 1 0 3;A3 = 0).
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xIO'3

Figure 6.4: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(Xy = V,X2^ Z x 1 Q 3;K ^ 0 ) .
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Figure 6.5: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A1 = 1;A2 = 6 x 103;A3 = 0).
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x iO -3

Figure 6.6: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with

= 1;A2 = 5 x 104;A3 = 0).
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x l O " 3

Figure 6.7: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A, = 1 ¡Aa = 0;A3 = 10"3).
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x 1 0 " 3

Figure 6.8: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A, = 1;A2 = 0;A3 = 5 x 10-3).
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X  I 0 “ 3

Figure 6.9: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A1 = 1;A2 = 0;A3 = 10-2).
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x l O -3

Figure 6.10: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(At = 1;X2 = 0;A3 = 10'1).
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xIO- 3

Figure 6.11: Time-domain behaviour of errors and torques for the
genetic design of a digital PID controller with
(A1 = 1;A2 = 0;A3 = 1).
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xlO-3

Figure 6.12: Time-domain behaviour of errors and torques for the
non- adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; A1 = 1;A2 = 0;A3 = 0).
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Figure 6.13: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; = 1 ;X2 = 103;A3 = 0).
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xlO-3

TI me< s  )
<b>

Figure 6.14: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; A, = 1 ;Ä2 = 2 x 103;A3 = 0).
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x IO"3

Figure 6.15: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; h, = 1;X2 = 3 x 103;A3 = 0).
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xIO' 3

Figure 6.16: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; K: = 1;X2 = 6 x 103;X3 = 0).
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xlO-3

Figure 6.17: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; X, = 1 ;A2 = 5 x 104;A3 = 0).
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*10-3

Figure 6.18: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; X, = 1 ;X2 = 0;X3 = 10-3).
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Figure 6.19: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; = 1;X2 = 0;X3 = 5 x 10*3).
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xlO-3

Figure 6.20: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; k, -  1;X2 = 0;X3 = 10'2).
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x IO "3

( a )
Time< s )

Figure 6.21: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; A, = 1;A2 = 0;A3 = 10'1).
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x10‘ 3

F|gure 6.22: Time-domain behaviour of errors and torques for the
non-adaptive Evolutionary Strategies design of a digital
PID controller with (pm = 0.02; A1 = 1 ;A2 = 0;A3 = 1).
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xIO- 3

Figure 6.23: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A, = 1; \ 2 = 0; A3 = 0).
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x lO- 3

Figure 6.24: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (X, = 1;X2 = 103;X3 = 0).



u
ti

u
2

 a
nd

 u
3 

(N
.a

)

Chapter 6 208

x I O ' 3

Figure 6.25: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with = 1;A2 = 2 x 103;A3 = 0).
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x10‘ 3

Figure 6.26: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of adigital PID
controller with (A, = 1 ;X2 = 3 x 103;A3 = 0).
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xIO-3

Figure 6.27: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A! = 1;A2 = 6 x 103;A3 = 0).



ul
>

u2
 a

nd
 u

3 
(N

.*
) 

pi
 

an
d 

p
2 

<»
>

Chapter 6 211

x 1 0 '3

Figure 6.28: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A., = 1;A2 = 5 x 104;A3 = 0).
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xIO-3

Figure 6.29: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A, = 1;A2 = 0;A3 = 10"3).



u
l»

u
2 

an
d 

u3
 (

N
.a

)

Chapter 6 213

h I C T 3

Figure 6.30: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with [X, = 1;A2 = 0;A3 = 5 x 10'3).



u!
»u

2 
an

d 
u3

 <
N

.»
)

Chapter 6 214

x t0” 3

Figure 6.31: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A! = 1 ;A2 = 0;A3 = 10‘2).
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Figure 6.32: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A, = 1;A2 = 0;A3 = 10'1).
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Figure 6.33: Time-domain behaviour of errors and torques for the
adaptive Evolutionary Strategies design of a digital PID
controller with (A, = 1;A2 = 0;A3 = 1).
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Chapter 7

EVALUATION OF EVOLUTIONARY DESIGNS OF DIGITAL 
CONTROLLERS FOR ROBOTIC MANIPULATORS

7.1 INTRODUCTION

In Chapters 4, 5 and 6, genetic algorithms, non-adaptive evolution strategies, 

and adaptive strategies were used to determine the optimal sets of parameter 

values for digital multivariable PID controllers for robotic manipulators. In this 

chapter, the performance of the evolutionary designed controllers is compared 

in the case of a typical three-degree-of-freedom robotic manipulator performing 

trajectory-tracking tasks with associated payload variations. This comparison 

considers both the quality of the results and the convenience associated with 

the use of these various evolutionary algorithms, as discussed by Porter and 

Allaoui (1998).

7.2 COMPARISON OF GENETIC ALGORITHMS AND EVOLUTION 
STRATEGIES IN CONTROLLERS DESIGNS

The design of digital PID controllers for robotic manipulator using evolutionary 

algorithms is an interesting test problem by which to asses the performance of 

all three evolutionary algorithms as used in Chapters 4 and 5. The analysis of 

the results of the different runs carried out in Chapters 4 and 5 is summarised in



Chapter 7 2 18

Table 7.1. It is relevant to mention the fact that, for the sake of objectivity of 

comparison, the runs of the all three evolutionary algorithms were conducted 

while retaining the same bit representation, population size, initial population, 

limits of the search space, and number of generations. Indeed, in all cases each 

quadruple {a,a,p,i5} of PID controller parameters was represented by a binary 

string containing 56 bits; a population of 30 binary strings was caused to evolve; 

and evolution occurred for 50 generations. The results presented in Table 7.1 

were obtained as an average over three runs for each individual case.

In this attempt to evaluate the performance of the designed PID controllers 

using all three evolutionary algorithms, it is necessary to point out that both 

genetic algorithms and non-adaptive (30 + 30)-evolution strategy required 

extensive experimentation to select respectively an appropriate crossover 

probability, pc, and mutation probability, pm, for genetic algorithms, and an 

appropriate mutation probability, pm, for the non-adaptive evolution strategy. 

Thus, the presence of different mutation probabilities in Tables 7.1 and 7.2 for 

the genetic algorithm, and for the non-adaptive (30 + 30)-evolution strategy, is a 

clear indication of the importance of this parameter and the sensitivity of both 

these evolutionary algorithms to its variation.

In Table 7.1, the numbers of generation taken by the various evolutionary 

algorithms to reach within 10% of its final value are shown in a regular font. In 

addition, the associated percentage value representing the difference from the 

bench-mark which corresponds to the best of all trajectory-tracking 

performances —obtained using the adaptive (30 + 30)-evolution strategy— are
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shown between brackets in Table 7.1. The quantitative study of the results 

depicted in Table 7.1 indicates the superiority of the trajectory-tracking 

performance of those digital PID controllers tuned using the adaptive (30 + 30)- 

evolution strategy over the other two alternative algorithms. Thus, for all three 

sampling periods T -  0.01s, T -  0.02s, and T -  0.04s, the superiority of the 

trajectory-tracking performance is confirmed for those designs obtained using 

adaptive (30 + 30)-evolution strategies. This superiority of the adaptive design 

is reflected in the time-domain plots as it can be seen from Figures 5.5.a, 5.5.b, 

and 5.5.c. However, this trajectory-tracking superiority is less evident compared 

to the best of the non-adaptive (30 + 30)-evolution strategy. However, the time- 

consuming trial-and-error process of choosing the mutation probability, pm, 

implies that the non-adaptive evolution strategy is not as convenient as its 

adaptive counterpart.

Similarly, the study of the best-of-generation values of the cost function, T, for 

all three evolutionary algorithms presented in Chapters 4 and 5 confirms the 

interpretation of Table 7.1 previously stated in Chapter 5. Indeed, it was clearly 

stated that the number of generations taken for the best cost function of a 

Particular evolutionary algorithm to attain 10% of its final optimal value is an 

indication of the rate of evolution of the evolutionary algorithm towards 

optimality. In addition, the difference between this final value and the 

benchmark optimal value of the cost function obtained using the evolution 

strategy is an indication of the quality of this evolution. The results of Table 7.1 

indicate that — in all cases except one— optimisation of the PID controller is 

oompleted by the adaptive evolution strategy in fewest generations. This
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adaptive evolution strategy is thus shown not only to be the best but also the 

most convenient algorithm to use, since it requires no a  p r io r i determination of 

crossover and mutation probabilities.

Number of generations (% difference from bench-mark)

Evolution
alqorithms

ii o Ö T= 0.02 7=0.04

Adaptive ES 13 (0%) 4 (0%) 6 (0%)

Non-adaptive ES
(pm = 0.001)

32 (122.5%) 29 (23.4%) NA (14.2%)

Non-adaptive ES 
(Pm = 0.02)

20 (1.6%) 8(1.1%) 7 (0.2%)

Non-adaptive ES 
(Pm = 0.9)

1 (18.6%) NA (21.7%) 22 (3.9%)

Genetic Algorithm 
(Pm = 0.008)

32 (13.9%) 2 (17.8%) 10(2.2%)

Genetic Algorithm 
(Pm = 0.3)

7 (25.6%) 10 (8.0%) 10(4.5%)

Genetic Algorithm 
(Pm = 0.98)

8 (28.7%) NA (15.0%) 6 (4.5%)

Table 7.1: Number of generations required for the algorithm to reach within 
10% of its final value and percentage difference from the bench­
mark adaptive optimal values.

In Table 7.2, the average running-time of each individual case is given, together 

with the confirmation, or not, of the necessity to proceed with the pre-selection 

°f a required crossover probability pc and/or mutation probability pm. Indeed, the 

Pre-selection of the crossover and/or mutation probabilities introduces a hidden
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time cost accumulated while proceeding with this trial-and-error selection 

process. However, the adaptive (30 + 30)-evolution strategy does not require 

the designer to indulge in such a time-consuming process, in view of the 

automated mutation mechanism incorporated into the evolutionary algorithm.

Running-Time ( Is crossover/mutation pre-tuning 
required? )

Evolution
algorithms

r= o .o i T= 0.02 T = 0.04

Adaptive ES 1.9 Hrs (No) 2.5 Hrs (No) 3.1 Hrs (No)

Non-adaptive ES
(pm = 0.001)

3.2 Hrs (Yes) 3.5 Hrs (Yes) 3.9 Hrs (Yes)

Non-adaptive ES 
(Pm = 0.02)

2.8 Hrs (Yes) 3.1 Hrs (Yes) 3.6 Hrs (Yes)

Non-adaptive ES 
(Pm = 0.9)

3.8 Hrs (Yes) 4.0 Hrs (Yes) 4.3 Hrs (Yes)

Genetic Algorithm 
(Pm = 0.008)

3.2 Hrs (Yes) 3.9 Hrs (Yes) 5.3 Hrs (Yes)

Genetic Algorithm 
(Pm = 0.3)

4.2 Hrs (Yes) 4.7 Hrs (Yes) 5.6 Hrs (Yes)

Genetic Algorithm 
(Pm = 0.98)

5.0 Hrs (Yes) 5.3 Hrs (Yes) 5.5 Hrs (Yes)

Table 7.2: Running-time for completion of the evolutionary algorithms and pre­
tuning of crossover and/or mutation probabilities.

It emerges from the combined analysis of Tables 7.1 and 7.2 that, by 

Eliminating chromosomal recombination in the form of crossover (present in 

9©netic algorithms) and by incorporating time-varying mutation probabilities as
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an integral part of the strategy (as opposed to the fixed mutation probability 

present in the non-adaptive evolution strategies), a simplified and convenient 

form of adaptive evolutionary algorithm can produce the best results in the most 

effective way. Thus, the worst performance is attributed to the genetically tuned 

controllers, followed by the non-adaptive evolution strategies as second best to 

the adaptive evolution strategies.

7.3 CONCLUSION

In this chapter, the performance of genetic algorithms, non-adaptive evolution 

strategies, and adaptive evolution strategies has been compared in the case of 

a typical robotic manipulator performing trajectory-tracking tasks. It has been 

shown, by comparing the performance of the various evolutionary algorithms 

used in Chapters 4 and 5 for the design optimal of digital trajectory-tracking P1D 

controllers, that the adaptive evolution strategy produces the best results and 

also that it is the most convenient algorithm to use.
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Chapter 8

UNCONSTRAINED DESIGN OF DIGITAL CONTROLLERS FOR 

ROBOTIC MANIPULATORS USING EVOLUTIONARY ALGORITHMS

8.1 INTRODUCTION

In Chapters 4, 5 and 6, genetic algorithms and evolution strategies were used to 

design robust digital trajectory-tracking controllers for robotic manipulators. 

Indeed, in all the designs presented in Chapters 4, 5 and 6, the PID controller 

design equations obtained from singular perturbation theory were incorporated 

into the evolutionary algorithms in order to obtain the optimal quadruple {a,cr,p,fy 

of controller design parameters. This clearly constrains the resulting design to lie 

in a sub-space of the entire space of design parameters.

It is accordingly proposed in this chapter to address the problem of designing 

unconstrained fast-sampling digital PID controllers. Indeed, removing the 

constraints imposed on the structure of the controller results in the incorporation of 

all the elements of the controller matrices into the evolutionary algorithms rather 

than just the quadruple {a,<j,p,fy of controller design parameters as is the case 

*n the constrained design. Hence, this unconstrained configuration introduces a 

degree of complexity characterised by the high dimensionality of its search space. 

This is considered to provide an appropriate test of the performance of all three 

Proposed evolutionary algorithms, namely, genetic algorithms, non-adaptive 

Solution strategies, and adaptive evolution strategies.



The present unconstrained controller design methodology is illustrated for the
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three-degree-of-freedom robotic manipulator previously considered in Chapters 

3, 4, 5 and 6, so that comparison can then be made with the evolutionarily 

tuned constrained designs presented in Chapters 4 and 5.

8.2 UNCONSTRAINED EVOLUTIONARY DESIGN PROCEDURE

The trajectory-tracking systems under consideration are controlled by digital 

PID controllers governed by control-law equation of the form

u(kT) = Kir(kT) + K 2z(kT) (8.1)

In equation (8.1), K, e  and K3 e  are the proportional and integral 

controller matrices, whilst the vectors r(kT) € and z(kT) e  are generated in 

accordance with the difference equations [Porter (1987)]

s { ( k T + J ) T }  = -ccs(kT) + e(kT) , (8.2)

2 (  2 \
r(kT) = -—(1 + a)Ds(kT) + ^7/ + y  7)J e(kT), (8.3)

z{(k  + 1)T} = z(kT) + Tr(kT) . (8.4)

Moreover, in equations (8.2), (8.3) and (8.4), a  <=(-1, +1], s(kT) e  dt, e(kT) = 

v(kT) -y(kT) e  is the error vector, v(kT) is the set-point command vector, and 

the derivative matrix D e  P?*1.



In Chapters 4, 5 and 6, it was shown that the design of constrained digital PID
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controllers is amenable to the evolutionary tuning of the quadruple {a.a.p.fy of 

controller parameters. This constrained configuration of the controller (see 

equations (4.11) and (4.12)) introduces constraints on the possible values that 

the controller matrices Ku K2, and D can take, thus restricting the search space 

for the evolutionary algorithms. However, adopting the unconstrained 

configuration of the digital PID controller permits the tuning of all individual 

controller parameters. This evidently requires the incorporation of the entire 

controller matrices Kh K2, and D, together with the controller parameter a, into 

the evolutionary algorithms.

In order to maintain objectivity in the comparison of the performance of the 

unconstrained evolutionary designed controllers with the performance of their 

constrained counterparts, the trajectory-tracking performance measure used in 

Chapters 4 and 5 is retained. This implies that minimisation of the performance 

measure

(8.5)

<s regarded as the ultimate design requirement.

8.3 ILLUSTRATIVE EXAMPLE

8.3.1 SYSTEM DESCRIPTION

The procedure for the evolutionary design of unconstrained digital PID

controllers can be conveniently illustrated by considering the three-degree-of-



freedom robotic manipulator for which digital PID controllers were previously
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designed (using a constrained structure as opposed to an unconstrained 

structure) in Chapters 4, 5, and 6.

The robotic manipulator in question is governed on 7 =  [ 0 , + oo]  by state and 

output equations of the respective forms [Petropoulakis (1986)]

M{0) 6+ c(0,6) + giß) = u , (8.6a)

and

y = f (0 )  (8.6b)

The numerical values of the inertial and kinematic parameters of the typical 

three-degree-of-freedom robotic manipulator under consideration are those 

given by Petropoulakis (1986) and presented in Chapter 3. The evolutionarily 

designed controllers are used while the end-effector of the robotic manipulator 

is caused to track the straight-line trajectories defined in Chapter 3.

The complexity of the design task associated with the unconstrained case 

results from the enlargement of the hyper-space of search to accommodate the 

twenty eight (28) different controller parameters to be tuned using, in turn, 

9enetic algorithms, non-adaptive evolution strategies, and adaptive evolution 

strategies. Hence, this increased dimensionality increases the difficulty of the 

design task compared with the constrained case, in which only the quadruple 

{a,o-,p,<5} of controller parameters was tuned. Indeed, the increased number of
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parameters of the digital PID controller arises from the unconstrained structure 

of the controller parameter set {Ki, K2, D, a}, where

r\ K u , A  3

II *14. k 15, *.6
_ *17, K X9

X .
if•ZY22 , A  3

A  = X . K 25, K 26
IfiV28 > k 29

and

A . A . A
A , A . A
A . A . A

(8.7)

(8.8)

(8.9)

It is clear that, during this design process, each element of each of the different 

controller matrices will be individually tuned so as to minimise the performance 

measure of equation (8.5).

In the same way as was used in Chapters 4, 5, and 6 in the case of evolutionary 

constrained design, it is now necessary to encode the set {£i, K2, D, a} of 

controller design parameters in accordance with a system of concatenated, 

multi parameter, mapped, fixed-point coding. Thus, each set {^ i, K2, D, a} of 

controller parameters is represented by a string of binary digits. Then, following
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any random choice of the initial generation of such strings, successive 

generations of strings are obtained using the genetic operations of selection 

and mutation in the case of (A, + ^-evolution strategies, and of selection, 

crossover and mutation in the case of genetic algorithms. These operations 

ensure that the successive generations of error-actuated digital PID controller 

thus produced by the genetic algorithms and (A + ^-evolution strategies tend to 

exhibit improving trajectory-tracking performance with respect to the 

performance measure of equation (8.5)

In the design studies, all three evolutionary techniques were used with a 10 bit 

representation for each of the twenty eight (28) controller parameters; and 

evolution occurred over 100 generations for the 30 individuals making up the 

population.

8.3.2 GENETIC ALGORITHM

In the genetic design procedure, it is evident that the time-consuming process of 

selecting an appropriate crossover probability, pc = 0.6, and an appropriate 

mutation probability, pm = 0.01, is unavoidable. In addition, care must be taken 

in selecting the values of the intervals within which each individual controller 

Parameter is allowed to vary. Indeed, the bigger the intervals, the bigger is the 

hyper-space of search and the greater is the tendency for the genetic 

alQorithms to encounter unfit solutions.
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It is clear from Table 8.1 which represents results of an average over three 

runs for the sampling periods T = 0.01s, T = 0.02s, and T = 0.04s that, in the 

unconstrained case, genetic algorithms were successful in improving the 

trajectory-tracking performance of the robotic manipulator. Thus, Figures 8.2(a), 

8.3(a) and 8.4(a) indicate a significant improvement in the trajectory-tracking 

performance for all three sampling periods T -  0.01s, T -  0.02s, and T = 0.04s. 

Indeed, the present tracking performance is the best obtained so far. The 

essential features of the designs for these sampling periods are summarised in 

Table 8.1, where the values of the performance measure, r , shown in bold type 

are those obtained after the first 50 generations. These unconstrained designs 

thus represent improvements in performance varying between 30.19% to 

60.68% in comparison with their constrained counterparts of Chapter 4. 

However, the time-domain behaviour of the torques depicted in Figures 8.2(b), 

8.3(b), and 8.4(b) reveals the existence of undesirable high-frequency content. 

This genetic design is therefore unlikely to be favoured by practical control 

designers despite the excellence of its tracking performance.

In addition, genetic algorithms failed to meet the time requirement since the 

average time required to complete the first 50 generations of the 100 

9enerations-long evolutionary process varied between 12 and 16 hours 

(compared to the 3 to 5 hours taken by the genetic algorithms to complete 50 

Qenerations in the constrained case of Chapter 4). This is considered to be too 

,Qng to be attractive for practical use. It is also relevant to mention that an 

increase in the value of the sampling period, T, was accompanied by an
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evolutionary process. Indeed, this increase in the duration of the evolutionary 

process can be attributed to the fact that, as the sampling period T is increased, 

the number of possible ‘bad’ designs increases within the search space. Hence, 

the evolutionary process becomes inclined to frequent rejections of undesirable 

‘bad’ designs, which in turn extends the time required to complete the 

evolutionary process.

Performance measure, r

Design structure ii o o T= 0.02 7=0.04

Unconstrained
design

5.78x1 O'4 
(5.78 x KT4)’

7.36 x 10'3 
(7.36 x 10'3)*

4.32 x 10‘2 
(4.32 x IO'2)*

Constrained design 10.47x1 O'4 10.53x1 O'3 6.2 x 10'2

Relative
improvement

60.68% 30.1% 30.67%

Table 8.1 Comparison of genetically designed controllers. 
(*): Values after 50 generations.

The best-of-generation and average-of-generation plots depicted in Figures 

8.11, 8.12, and 8.13 reveal a pattern of premature convergence despite the fact 

that the genetic algorithms were allowed to evolve for 100 generations. Indeed, 

the presence of fluctuations in the average-of-generation plots (see Figures 

8-11(b), 8.12(b) and 8.13(b)) clearly indicates the difficulties encountered by the 

9©netic algorithms in producing ‘good’ designs during the evolutionary process.
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8.3.3 NON-ADAPTIVE EVOLUTION STRATEGY

In the same way as in the unconstrained genetic design of PID trajectory­

tracking controllers, it is necessary to proceed by trial-and-error in order to 

select an appropriate value of the mutation probability, pm = 0.005, for 

the non-adaptive evolution strategy. The results of an average over three runs 

for the sampling periods T= 0.01s, T = 0.02s, and T=  0.04s are summarised in 

Table 8.2, where the values of r  shown in bold are those obtained after the first 

50 generations. These unconstrained designs obtained using non-adaptive (30 

+ 30)-evolution strategies represent improvements in the trajectory-tracking 

performance in comparison with the constrained evolutionary counterparts of 

Chapter 5. Indeed, Table 8.2 indicates for the three sampling periods T= 0.01s, 

T=  0.02s, and T -  0.04s improvements that range between 34% and 61.22%. 

In fact, the non-adaptive (30 + 30)-evolution strategy succeeds in meeting both 

the tracking and time-running requirements. However, it took on average 4 to 5 

hours to complete the first 50 generations of the 100 generations-long 

evolutionary process, which represents a 30% increase compared with the 

running time of its constrained counterpart.

The trajectory-tracking performance associated with the designs obtained using 

the non-adaptive (30 + 30)-evolution strategy, as depicted in Figures 8.5(a), 

8.6(a) and 8.7(a), clearly indicates a large reduction of the peak error in 

comparison to that exhibited by the constrained designs of Chapter 5. It is also 

clear in Figures 8.5(b), 8.6(b), and 8.7(a) that the undesirable high-frequency 

joint torques present in the previous genetic design have been successfully
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attenuated. Yet, those high-frequency components do not disappear completely 

because the performance measure, r ,  as formulated in equation (8.5) is 

concerned only with the minimisation of the trajectory-tracking performance 

regardless of the practical systems constraints.

However, it is clear from Figures 8.14, 8.15, and 8.16 that the non-adaptive (30 

+ 30)-evolution strategy does not suffer from any premature convergence; but 

rather the opposite, since it keeps improving well beyond the nominal 50 

generations-long evolutionary process.

Performance measure, r

Design structure 7=0.01 T= 0.02 7=0.04

Unconstrained
design

4.95x10‘4 
(5.08 x 10"4)*

6 .66x10‘3 
(6.95x1 O’3)*

3.16 x 10’2 
(3.32 x IO’2)*

Constrained design 13.10 x 10'4 10.53 x 10'3 6.10 x 10‘2

Relative
improvement

61.22% 34.00% 45.57%

Table 8.2 Comparison of non-adaptive evolutionarily designed controllers. 
(*): Values after 50 generations.

8*3.4 ADAPTIVE EVOLUTION STRATEGY

The adaptive (30 + 30)-evolution strategy, generates the results presented in



Table 8.3, where the values of the performance measure, r ,  shown in bold are
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those obtained after the first 50 generations. It is evident from Table 8.3 that in 

all three cases the adaptively generated unconstrained designs outperform their 

constrained counterparts. Indeed, the relative improvement in the trajectory­

tracking performance of the unconstrained designs over their constrained 

counterparts varies between 23.71% and 60.08%. This performance 

improvement of the unconstrained designs over their constrained counterparts 

is reflected in the time-domain behaviour of the errors and torques depicted in 

Figures 8.8, 8.9, and 8.10. However, the crucial feature of the adaptive (30 + 

30)-evolution strategy is the relative shortness of the time —about 4 hours— 

taken by the algorithm to complete the first 50 generations of the 100 

generations-long evolutionary process. Yet, this still represent a running-time 

increase of 70% when compared to its constrained counterpart.

Performance measure, r

Design structure r= o .o i T= 0.02 7=0.04

Unconstrained
design

4.93 x 10'4 
(5.06x10*)'

6.57x1 O'3 
(6.82x1 O'3)’

2.80 x 10'2 
(3.00x1 O'2)*

Constrained design 12.90 x 10'4 8.94 x 10'3 6.09x1 O'2

Relative
improvement

60.08% 23.71% 50.07%

Table 8.3 Comparison of adaptive evolutionarily designed controllers.
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The best-of-generation and average-of-generation plots depicted in Figures 

8.17, 8.18, and 8.19 clearly attest to the effectiveness of the (30 + 30) adaptive 

evolution strategy in solving the unconstrained design problem. In addition, the 

higher degree of automation present in the adaptive evolution strategy and the 

relatively shorter running-time for the completion of a given evolutionary 

process indicate that the adaptive evolution strategy is the most suitable 

candidate amongst the three evolutionary algorithms. This suitability and 

convenience of use of the adaptive evolutiion strategy is confirmed by the 

comparative study depicted in Table 8.4. Indeed, It is clear from Table 8.4 that 

in all three cases the performances of controllers obtained using adaptive ES 

are superior to their genetically and non-adaptively obtained counterpart.

Performance Measure (relative improvement)

Evolution
alaorithms

r= o .o i T = 0.02 7=0.04

Genetic Algorithm 5.78x1 O'4 
(0%)

7.36x1 O'3 
(0%)

4.32x1 O’2 
(0%)

Non-adaptive ES 4.95 x 1CT4 
(14.7%)

COÖt—X
 IO

S
é

cd 3.16 x10 '2 
(26.9%)

Adaptive ES 4.93x1 O'4 
(14.7%)

6.57 x 10'3 
(10.7%)

2.80x1 O’2 
(35.2%)

Table 8.4 Comparison of the performances of the controllers obtained.

K is clear from Tables 8.1, 8.2 and 8.3 that in all cases, the unconstrained

controller designs outperform their constrained  counterparts. However, it is
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important to remember that in all these cases the unconstrained designs 

required an additional running-time ranging between 70% and 400% of the 

running-time of their constrained counterparts. This is relevant to practising 

engineers, who usually try to achieve a balance between an acceptable design 

and a rapidly obtained design.

8.4 CONCLUSION

It has been shown in this chapter that genetic algorithms, non-adaptive 

evolution strategies, and adaptive evolution strategies can be conveniently used 

to solve the non-trivial problem of designing unconstrained digital PID 

controllers for robotic manipulators. This challenging design task has been 

illustrated by the design of unconstrained digital trajectory-tracking PID 

controllers for the three-degree-of-freedom robotic manipulator previously used 

in Chapters 3, 4, 5, 6, and 7 for a range of sampling frequencies. The 

evolutionary unconstrained design approach used in this chapter improved 

significantly the accuracy of the trajectory-tracking performance in this case. 

However, this increase in accuracy was accompanied by an increase in the 

running-time of all three evolutionary algorithms. However, adaptive evolution 

strategies provide by far the more effective approach amongst all three 

proposed evolutionary algorithms. Indeed, the effectiveness of adaptive 

Solution strategies is more evident in the present unconstrained case than in 

^ e  constrained case of Chapter 7.
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xicr3

Figure 8.2: Time-domain behaviour of errors and torques for the
genetically designed unconstrained controller
(Pm = 0.002,T = 0.01).
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X 1 O' 3

Figure 8.3: Time-domain behaviour of errors and torques for the
genetically designed unconstrained controller
(pm = 0.002J = 0.02).
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Figure 8.4: Time-domain behaviour of errors and torques for the
genetically designed unconstrained controller
(pm = 0.002.T = 0.04).
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xicr3

( b )
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Figure 8.5: Time-domain behaviour of errors and torques for the
non-adaptive evolutionarily designed unconstrained
controller (pm = 0.005,T = 0.01s).
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x 1 O ' 3

Figure 8.6: Time-domain behaviour of errors and torques for the
non-adaptive evolutionarily designed unconstrained
controller (pm = 0.005,T = 0.02s).
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Figure 8.7: Time-domain behaviour of errors and torques for the
non-adaptive evolutionarily designed unconstrained
controller (pm = 0.005.T = 0.04s).
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x1 0 “ 3

Figure 8.8: Time-domain behaviour of errors and torques for the
the adaptive evolutionarily designed unconstrained
controller (T = 0.01s).
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xi cr3

Figure 8.9: Time-domain behaviour of errors and torques for the
the adaptive evolutionarily designed unconstrained
controller (T = 0.02).
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Figure 8.10: Time-domain behaviour of errors and torques for the
the adaptive evolutionary designed unconstrained
controller (T = 0.04).
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Figure 8.14: Best-of-generation and average-of-generation for the
non-adaptive evolutionarily designed unconstrained
Controller (pm = 0.005.T = 0.01s).
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xI O-1

Figure 8.15: Best-of-generation and average-of-generation for the
non-adaptive evolutionarily designed unconstrained
controller (pm = 0.005,T = 0.02s).
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xIO"3

Figure 8.16: Best-of-generation and average-of-generation for the
non-adaptive evolutionarily designed unconstrained
Controller (pm = 0.005.T = 0.04s).
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elO-5

Figure 8.11: Best-of-generation and average-of-generation for
genetically designed unconstrained controller
(Pm = 0.002,T = 0.01).
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x 10 - ^

Figure 8.12: Best-of-generation and average-of-generation for
genetically designed unconstrained controller
(pm = 0.002,T = 0.02).
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x l O “3

Figure 8.13: Best-of-generation and average-of-generation for
genetically designed unconstrained controller
(pm = 0.002,T = 0.04).
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CHAPTER 9

PRACTICAL TESTS OF TWO-LINK DIRECT-DRIVE ROBOTIC

MANIPULATOR

9.1 INTRODUCTION

In Chapters 4, 5, 6, and 8, genetic algorithms, non-adaptive evolution strategies, 

and adaptive evolution strategies were used for both the constrained and 

unconstrained design of robust digital trajectory-tracking PID controllers for robotic 

manipulators. Such design was previously effected by the singular perturbation 

methods presented in Chapter 3 in the constrained case. It was shown in Chapters 

4, 5, 6, and 8 that genetic algorithms, non-adaptive evolution strategies, and 

adaptive evolution strategies can be used to provide an effective tuning procedure 

for such controllers in the non-asymptotic case for which the sampling period is 

non-zero.

The non-triviality of this design task arises from the complex nature of robotic 

manipulators while performing wide ranges of trajectory-tracking tasks. Indeed, 

this design difficulty occurs because robotic manipulators are highly non-linear 

multivariable plants with time-varying parameters. Furthermore, the design of 

robotic controllers for trajectory-tracking purposes becomes even more 

complicated when work-space co-ordinates rather than the joint-space co­

ordinates are used. This is because the relationship between these two systems of 

co-ordinates is given by complex trigonometric transformations.
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It is proposed in this chapter to test the performance of evolutionary designed 

digital trajectory-tracking PID controllers by conducting practical laboratory tests on 

a two-link direct-drive robotic manipulator. In these tests, a range of different 

controllers is used that are designed by genetic algorithms, non-adaptive evolution 

strategies, and adaptive evolution strategies

9.2 SYSTEM DESCRIPTION

The dynamical model of the two-link direct-drive robotic manipulator under 

investigation is derived and presented in Appendix C. Thus, the vector-matrix 

differential governing equation for such a two-link robotic manipulator has the form

M (0 )0  + v(0,0) + f  = r1 (9.1)

In this equation, M (0 )  e 9 / x2 2is the inertia matrix, v(0,0) e 9 /3 is  the vector of 

centrifugal, coriolis4, and gravitational torques,/ e 9 / 5is the vector of coulomb 

friction torques, r  e 9/ 6is the vector of actuator torques, 0 e 9i2 7is the vector of 

joint angles, 0 e9 i28is the vector of joint velocities, and 0 e 9 i2 9is the vector of joint 

accelerations. The specific form of equation (9.1) in the case of the particular two- 

link direct-drive robotic manipulator under investigation is given in Appendix C.

In the design of digital trajectory-tracking PID controllers for robotic manipulators, it 

is required that the end-effectors of such manipulators exhibit small tracking errors 

when following a desired trajectory. In order to achieve such a high accuracy, it is 

Proposed to use digital trajectory-tracking PID controllers (see Chapter 3) which
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are governed on the discrete-time set 7>= {0,T, 2T,...} by control-law equations 

of the form [Porter et al (1985)]

u(kT) = K,r(kT) + K 2z(kT) (9.2)

In equation (9.2), Te 9?  is the sampling period, Kl e  9i2x2 and K2 € 9fx2 are the 

proportional and integral controller matrices, whilst the vectors r(kT) e  9f  and 

z(kT) e  9 f  are generated in accordance with the difference equations [Porter 

(1987)]

s{(kT  + 1)T} = -as(kT ) + e(kT) , (9.3)

r(kT) j d  + a)Ds(kT) +
(

It\
jD ]e (k T ) , (9.4)

and

z{(k + l)T } = z(kT) + Tr(kT) . (9.5)

Moreover, in equations (9.3), (9.4) and (9.5), a e  (-1, +1], s(kT) <= 9f , e(kT) = 

v(kT) - y(kT) e  9? is the error vector, v(kT) is the set-point command vector, and 

the derivative matrix D e  9fx2 is such that

D  = S I 2 (S  e 91+ ) (9.6)
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where 8 is a positive derivative parameter so that the rank of the derivative 

matrix D = 2.

9.3 EVOLUTIONARILY DESIGNED CONTROLLERS

9.3.1 INTRODUCTION

In practice, it is advisable as indicated in Chapter 6, to use performance 

measures that are effective in preventing undesirable behaviour of the input 

torques as well as in producing high-accuracy tracking. These alternative 

performance indices can therefore embody practical constraints such as 

amplitude or rate limits on the control effort associated the robotic manipulator.

Indeed, in order to introduce the rate limits on the control torques, it is 

convenient to consider the performance index

A u ( t ) dt (9.7)

where x is the duration of the tracking task, Au{t) e is the change in the 

control vector over a sampling period, and ||.|| denotes the Euclidean norm.

■t is also possible to combine this performance index with the trajectory-tracking 

Performance index
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r,=i„' e ( < ) dt (9.8)

where t is the duration of the tracking task, e(t) e is the trajectory-tracking 

error vector in Cartesian space, and ||.|| denotes the Euclidean norm. Such a 

combination of these two indices results in the performance index

r  = ;tjo> (0 || *  + H f|M O ll d t ' (9-9)

where X and p are weighting parameters. In the manner described in Chapter 6, 

©volutionary algorithms can be used to design digital trajectory-tracking PID 

controllers for robotic manipulators for any choice of such performance 

measure. Indeed, this design problem is immediately amenable to the non- 

asymptotic approach presented in Chapter 6.

9.3.2 CONSTRAINED DESIGNS

In the constrained case, the evolutionary design process of Chapters 4, 5, and 

6 used the design equations derived by Porter and Abidin (1990) and 

presented in Chapter 3. Indeed, this methodology indicates that high-accuracy 

tracking behaviour can be achieved asymptotically if fast-sampling digital PID 

controllers are designed such that

K } = T H - ' ( T ) Z ( T h  +  2 D y l e W 2x2 (9.10)
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and

K,  =  p T t t - ' i T ) Z ( T I i + 2 D y '  e « “ 2 (9 -11)

In these design equations,

2  =  0 1 , ( 0  s * * j  ( 9 / ’ 2 >

is the positive diagonal tuning matrix, and p is the positive tuning parameter 

integral-to-proportional ratio. In addition, in equations (9.10) and (9.11),

H ( T )  = \  C e ^ ' B d t  (9-13)
0

is the step-response matrix of the nominal open-loop plant with state-space 

triple (A.B.S)  which is used for design purposes in obtaining the controller for 

the actual open-loop plant with state-space triple (A,B,Q governed by

equations (C.12) and (C.13).

In this constrained evolutionary design process, genetic algorithms, non- 

adaptive evolution strategies, and adaptive evolutionary strategies are in turn 

used to design digital trajectory-tracking PID controllers for the two-link direct- 

drive robotic manipulator under non-asymptotlc conditions. It is evident that, as 

shown in Chapters 4, 5 and 6, the solution of this problem provides an optimal 

quadruple, {a,c,p,5l, of the controller design parameters in equations (9.3), 

(9.4), (9.10), and (9.11).
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It is clear that the solution of this problem will provide an optimal quadruple 

{a,a,p,<5} of controller design parameters which is dependent upon the given 

manipulator, the given task, and the measure of trajectory-tracking performance 

used in the optimisation procedure. It is therefore evident from equation (9.9) 

that the nature of optimality will be determined by the choice of the parameters 

A and p.

In the present tests, the controller is designed so to cause the end-effector of 

the robotic manipulator to track the straight-line trajectories forming the triangle 

shown in Figure 9.3. The evolutionary design of the controller for this selected 

trajectory-tracking task can be readily effected so as to minimise the cost 

function defined in equation (9.9). The robotic manipulator is, for design 

purposes, considered to be in the neighbourhood of the median of the 

triangular trajectory. Hence, in the task-space the selected operating point 

assigns the end-effector the position (0.509,0.132)m which corresponds to the 

joint-space coordinates (-0 .1657,1.0891 )rad.

The four-dimensional evolutionary design problem can be readily solved by using 

the binary representation of the quadruple {a, cr,p,S} of controller design 

Parameters presented in Chapter 4. Indeed, the binary concatenated 

representation of the quadruple {a,a,p,S} of controller design parameters in this

case has the form
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\ct\o\p\8\ , (9-14 )

where each parameter is coded as a 15-bit sub-string. It is, therefore, evident that a 

60-bit string will represent the quadruple {a,a,p,S} of controller design 

parameters for the particular two-link robotic manipulator.

In applying genetic algorithm (GA), after a trial-and-error process results were 

obtained using a population N=10, a crossover probability pc-0.6, and a mutation 

probability pm=0.01, with evolution occurring over 50 generations. The results 

obtained by genetically minimising the performance measure, T, for X =0.1, 

while p was left to vary within the selected interval [1.5, 6.0], are shown in the 

second column of Table 9.1. The optimal controller gains and parameters 

obtained as p varies are presented in Table 9.2.

Performance
Measure

GA Non-adaptive
ES

Adaptive ES

Hp = 1.5) 0.2101 0.1897 0.1878

T(p = 3.0) 0.3984 0.3508 0.3423

T(p = 4.0) 0.6692 0.4421 0.4408

r(p  = 6.0) 1.2810 0.6678 0.5696

Table 9.1: Simulated performance measured for the evolutionary designed 
constrained trajectory-tracking PID controllers.
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(H=1.5)

constrained

1.405 0.0
a  =  0.0013; £> =

0.0 1.405 ; * .=
'16.571 0 .921 ' 

0..921 0.559

II '1 3 6 .9 7  7 .6 1 2 ' 

7 .612  4 .624

(n = 3.0) 

constrained
a  =  0.4894; D  = 2 .564  0.0 

0.0 2.564. ; * .=
'2 2 .4 0 7  1.245 

1.245 0 .756 i 
i

& II '3 0 5 .8 0  16.995 

16.995 10.323

(p = 4.0) 

constrained
« = 0 .4 1 6 ;  D =

'4 .3 8 0  0.0 

0.0 4 .3 8 0 j ;
'13 .895  0 .7 7 2 ' 

0 .772 0 .469
; k 2 = 4 9 .7 3 6  2 .7 6 4 ' 

2 .764  1.679-

(p = 6.0)

constrained
« = 0.614; D  =

2 .530  0.0 ' 
0.0 2 .5 3 0 J

110.44 6 .138 ' 

6.138 3 .7 2 8 j * 2 =
1197.1 6 6 .5 2 4 ' 

66 .524 40.411

Table 9.2: Genetically designed constrained digital trajectory-tracking PID 
controllers.

In order to explore alternatives to genetic algorithms, a non-adaptive (10 + 10)- 

©volution strategy (ES) was used while retaining the 60-bit representation of the 

controller parameters. In applying this non-adaptive evolution strategy, results were 

obtained using the mutation probability, pm = 0.03 (which was selected after a time- 

consuming trial-and-error process), and evolution occurred over 50 generations. In 

© similar way to the genetic design procedure, this non-adaptive (10 + 10 )- 

©volution strategy was used to minimise the performance measure, F, for X — 0.1 

while p was left to vary within the selected interval [1.5, 6.0], The attained 

optimal values of the performance measure are shown in the third column of 

Table 9.1. The corresponding optimal controllers gains and parameters 

obtained as p varies are presented in Table 9.3.
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( p = 1 . 5 )

constrained
a  =  0.072; D =

0.176 0.0 ' 

0.0 0 .1 7 6 ] * . =
209 .48  11.642 

11.642 7.071
; k 2 =

"2050.2 1 13 .92 ] 

113.92 6 9 .2 3 5 J

( p  =  3.0) 

constrained
«  =  0.251; D =

2 .578  0.0 

0.0 2 .578 : *> =
"6.743 0.375" 

0 .375 0 .228

‘7 4 .4 9 0  4.140" 

4 .140 2 .515

( p  =  4.0) 

constrained
a  = 0.041; D  =

"4.253 0.0 

0.0 4 .253
; k x =

"3.145 0.175" 

0.175 0 .234
k 2 =

"34.778 1.933" 

1.933 1.174

( p  =  6.0) 

constrained
a  =  0.020; D  =

"1.245 0.0 '  

0.0 1.245 * i  =
"24.450 1.359" 

1.359 0.825
; k 2 =

"147.31 8.187" 

8.187 4 .973

Table 9.3: Constrained trajectory-tracking PID controllers designed using non- 
adaptive ES.

Finally, an adaptive (10 +10)-evolution strategy (ES) was used while retaining 

the 60-bit representation of the controller parameters. In applying this adaptive 

evolution strategy, evolution again occurred over 50 generations. This adaptive 

(10 + 10)-evolution strategy was used to minimise again the performance 

measure, r, for X= 0.1 while p was left to vary within the selected interval [1.5, 

6.0], The attained optimal values of the performance measure are shown in the 

fourth column of Table 9.1. The corresponding optimal controllers gains and 

parameters obtained as p varies are presented in Table 9.4.

(P =  1 -5) 
constrained

a  = 0.003; D  =
0.140 0.0 

0.0 0.140_
; * , =

"416.10 23.125" 

23.125 14.046
; k 2 =

"3698.5 205.54 

205.54 124.81

"|

( p  =  3.0) 

constrained
a = 0.048; D  =

1.300 0.0 " 

0.0 1.300 * , =
"130.396 7 .247" 

7 .247  4 .402
; k 2 =

"1057.3 58.731 

58.731 35.747

( p  =  4.0) 

constrained
a = 0.452; D  =

"2.549 0.0 

0.0 2.549_ : * . =
"6.985 0.300" 

0 .300  0.236
k 2 =

6 7 .516  3.752" 

3.752 2 .279

( p  =  6 .0 )

constrained
a =  0.476; D =

"0.644 0.0 " 

0.0 0 .644
; * 1  =

13.217 0 .735 

073 5  0 .446 ; * 2  =
"99.876 5.551" 

5.551 3.371

Table 9.4: Constrained trajectory-tracking PID controllers designed using 
adaptive ES.
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9.3.3 UNCONSTRAINED DESIGNS

In the unconstrained case, the evolutionary design process of Chapter 8 was 

used to determine the individual controller parameters. This requires the 

incorporation of the controller matrices

together with the controller parameter, a, into the evolutionary algorithms. 

Thus, the four-dimensional constrained evolutionary design problem presented in 

section 9.3.1 is upgraded to become a thirteen-dimensional design problem. 

Indeed, the unconstrained design can be readily effected by representing the 

controller parameter, a, together with the individual elements of the controller 

matrices Ku K2, and £>, as a string of concatenated sub-strings of binary digits as 

presented in Chapter 9. Each such sub-string represents in binary coded form an 

individual controller design parameter. In this case, the concatenated sub-strings 

of binary digits are arranged so that the entire binary string has the form

(9.16)

(9.17)

and

(9.18)
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where each individual element is coded as a 10-bit sub-string. It is, therefore, 

evident that a 130-bit string will represent the controller matrices Ku K2, and D, 

together with the controller parameter, a, for the particular two-link direct-drive 

robotic manipulator.

•n a similar way to the constrained case of section 9.3.3, an evolutionary design 

procedure was deployed using in turn genetic algorithms, non-adaptive 

evolution strategies, and adaptive evolution strategies.

In applying a genetic algorithm (GA), results were again obtained using a 

population N=10, a crossover probability, pc = 0.6, and a mutation probability, 

Pm = 0.01, over 50 generations. The results of genetically minimising the 

performance measure, T, for X = 0.1, while p was left to vary within the selected 

interval [1.5, 6.0], are shown in the second column of Table 9.5. The optimal 

designed controllers gains and parameters obtained as p varies are presented 

in Table 9.6.

Performance
Measure

GA Non-adaptive
ES

Adaptive ES

T(p = 1-5) 0.2801 0.1806 0.1699

T(p = 3.0) 0.6844 0.3086 0.3123

Hu = 4.0) 0.8310 0.3982 0.4330

r(p = 6 .0 ) 0.8370 0.6325 0.5438

Table 9.5: Simulated performance measured for the evolutionary
unconstrained designs of trajectory-tracking PID controllers .
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0i =  1.5) 

unconstrained
a  = 0.569; D  =

'6 .0 8 7  0 .049 

0.015 3.993
; * , =

'18 .102 1.941 

_ 3.723 1.575j
k 2 =

299 .86  4 6 .9 7 3 ' 

6 .370  12.209

( p  =  3.0) 

unconstrained
a  = 0.325; D =

'8 .4 7 4  0.001 

0 .008 12.055
; * , =

'2 1 .6 2 4  11.656 

6.048 1.184
; k 2 =

'1 0 63 .2  11.037 

2 .053  16.651

( p  =  4.0) 

unconstrained
a  = 0.018; D  =

'9 .8 4 3  0 .1 3 6 ' 

0.021 2.421_ * , =
'16 .341 1 .8637 ' 

1.049 1.066 ^ 2  =
'1 0 4 0 .1  2 2 .0 7 2 ' 

2 7 .833  16.495

( p  =  6 .0 )

unconstrained
a  = 0.569; D =

'1 .136 0 .069’ 

0.041 0 .3 5 3 J
Kt =

23.738. 7 .895 

3.859 17.379 : * 2  =
'2 2 2 .7 6  12.307 

16.310 3.138

Table 9.6: Unconstrained trajectory-tracking PID controllers designed using GA.

In turn, a non-adaptive (10 + 10)-evolution strategy (ES) was used while retaining 

the 130-bit representation of the controller parameters. In applying this non- 

adaptive strategy, results were again obtained using a mutation probability, pm 

= 0.01 (which was again selected after a time-consuming trial and error 

process), over 50 generations. The results of evolutionary minimising the 

performance measure, r, using a non-adaptive evolution strategy, for X= 0.1, 

while (j. was left to vary within the selected interval [1.5, 6.0], are shown in the 

third column of Table 9.5. The optimal designed controllers gains and 

parameters obtained as p varies are presented in Table 9.7.

(p= 1.5) 

unconstrained
a  = 0.073; D =

'0 .4 5 1  0 .0 4 6 ' 

0 .049 0.549 ; *> =
'2 9 .3 7 4  0 .3 3 2 ' 

0 .468  8.577 *2 =
'1 6 4 .9 3  4 6 .9 7 3 ' 

28 .810 19.416

( p  =  3.0) 

unconstrained
a  = 0.343; D =

'0 .3 1 4  0.002 

0.025 0.314 ; * , =
'3 7 .8 2 8  1.727 ' 

1.088 1.849
k 2 =

'1 6 8 .7 9  11 .037 ' 

16.701 16.417

( p  =  4.0) 

unconstrained
a  = 0.004; D  =

0.334 0 .0 0 6 ' 

0 .040 0 .3 1 4 ]
K{ =

3 2 .368  1.727 ' 

1.708 14.665
k 2 =

'1 1 53 .37  29.396 

13.576 12.328

( p  =  6 .0 )

unconstrained
«  =  0.014; D =

'0 .921  0.027 

0.004 0.158 ; £ ,  =
'18 .278 . 4 .052  

3.452 9.633 ; * 2 =
'11 0 .9 6  5 .2 7 6 ' 

2.541 6.759

Table 9.7: Unconstrained trajectory-tracking PID controllers designed using non- 
adaptive ES.
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Finally, an adaptive (10 +1 (Revolution strategy (ES) was used while retaining 

the 130-bit representation of the controller gains matrices and parameters. In 

applying this adaptive evolution strategy, evolution again occurred over 50 

generations. This adaptive (10 + R evo lu tion  strategy was used to minimise 

again the performance measure, T, for X= 0.1 while p was left to vary within 

the selected interval [1.5, 6.0]. The attained optimal values of the performance 

measure are shown in the fourth column of Table 9.5. The corresponding 

optimal controllers gains and parameters obtained as p varies are presented in

Table 9.8

(H=1.5)

unconstrained
« = 0 .231; D =

' 0.666 0.006 ' 

0.004 1.997

' 29.022 0.177' 

1.243 1.614 J k 2 =
299.86 7 .8 1 4 ' 

9.084 19.065

(H = 3.0) 

unconstrained
a = 0 .742; D =

'0.999 0.024 ' 

0.010 0.079 * i  =
' 14.579 0 .9 3 3 ' 

0.158 13.037
; k 2 =

' 145.66 16.994 ' 

3.908 18.209

(H = 4.0) 

unconstrained
a = 0.204; D  =

‘ 0.725 0.012 

0.039 0.158

' 41.879 0.332 

5.002 19.374
; * 2 =

'346.13 40 .137' 

6.057 13.964

(M- = 6.0) 

unconstrained
a  = 0.079; D  =

' 5.147 0.244 

0.007 0.862
; * ,=

' 10.881 1.282 ' 

0.778 4.235
k 2 =

' 145.66 12.502 ' 

8303  11.316

Table 9.8: Unconstrained trajectory-tracking PID controllers designed using 
adaptive ES.

9.4 PRACTICAL PERFORMANCE OF CONTROLLERS

9.4.1 CONSTRAINED DESIGNS

The practical performance of the constrained designs obtained in 9.3.2 was 

assessed during practical tests of the two-link direct-drive robotic manipulator 

system shown in Figures 9.1 and 9.2, and described in Appendix C. In these tests,



Chapter 9 269

the desired end-effector trajectory was specified as shown in Figure 9.3. The 

design and implementation results were obtained for this trajectory using the digital 

PID controller with a sampling period of 1ms.

By implementing the constrained GA designs of Table 9.2, the values of the 

performance measures presented in the second column of Table 9.9 were 

obtained for the digital PID trajectory-tracking controller as p varies. The 

corresponding trajectory-tracking behaviour is depicted in Figure 9.4. In 

addition, Figure 9.5 shows the associated tracking errors. The developed torques 

for both joints, corresponding to the different values of the weighting parameter p, 

are shown in Figure 9.6.

Performance
Measure

GA Non-adaptive
ES

Adaptive ES

T(p = 1-5) 0.4352 0.4022 0.3121

T(p = 3.0) 0.5814 0.5543 0.4754

r (p  = 4.0) 0.9321 0.8878 0.5308

r (p  = 6 .0 ) 2.1120 1.0775 0.6196

Table 9.9: Actual performance measured for the evolutionarily designed 
constrained trajectory-tracking PID controllers .

Alternatively, by implementing the constrained non-adaptive ES designs of 

Table 9.3, the values of the performance measures presented in the third 

column of Table 9.9 were obtained for the digital PID trajectory-tracking 

controller as p varies. The corresponding trajectory-tracking behaviour is



Chapter 9 270

depicted in Figure 9.10. In addition, Figure 9.11 shows the associated tracking 

errors. The developed torques for both joints, corresponding to the different values 

of the weighting parameter p, are shown in Figure 9.12.

Finally, by implementing the constrained adaptive ES designs of Table 9.4, the 

values of the performance measures presented in the fourth column of Table 

9.9 were obtained as p varies. The corresponding trajectory-tracking behaviour 

is depicted in Figure 9.16. In addition, Figure 9.17 shows the associated tracking 

errors. The developed torques for both joints, corresponding to the different values 

of the weighting parameter p, are shown in Figure 9.18

It is evident from Table 9.9 that the controllers designed using the adaptive 

evolution strategy attain a better degree of optimality (as defined in equation (9.9)) 

than their genetic and non-adaptive counterparts. However, It is also clear that the 

corresponding trajectory-tracking errors shown in Figures 9.5, 9.11, and 9.17 

exhibit the smallest errors in the genetic case whilst the corresponding torques are 

much higher and often contain a high-frequency signal. Indeed, this disproportion 

between the tracking errors and torques is caused by the formulation of the 

performance measure and its associated sense of optimality as defined in equation

(9.9). Indeed, the weighting parameters, X and p, are selected in such a way that a 

tradeoff between the tracking errors and developed torques occurs. Thus, by 

varying the value of the weighting parameter, p, it is possible to introduce 

constraints on the developed torques so that smooth practical torques are
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produced and tracking errors are minimised. It is therefore clear that, by targeting 

smaller values of the performance measure, r, smoother torques are more likely to 

be produced.

9.4.2 UNCONSTRAINED DESIGNS

The practical performance of the unconstrained designs obtained in 9.3.3 was 

assessed in practical tests of the two-link direct-drive robotic manipulator system 

shown in Figures 9.1 and 9.2, and described in Appendix C. In these tests, the 

desired end-effector trajectory was specified as shown in Figure 9.3. The test 

results were obtained for this trajectory using the digital PID controller with a 

sampling period of 1ms.

By implementing the unconstrained GA designs of Table 9.6, the values of the 

performance measures presented in the second column of Table 9.10 were 

obtained for the digital PID trajectory-tracking controller as p varies. The 

corresponding trajectory-tracking behaviour is depicted in Figure 9.7. In 

addition, Figure 9.8 shows the associated tracking errors. The developed torques 

for both joints, corresponding to the different values of the weighting parameter p, 

are shown in Figure 9.9.
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Performance
Measure

GA Non-adaptive
ES

Adaptive ES

r(p  = 1.5) 0.4121 0.3576 0.3090

I---
--- ii w o 0.5537 0.5011 0.4511

r(p = 4.0) 0.8971 0.7822 0.5245

F(p = 6.0) 1.4378 0.9617 0.6023

Table 9.10: Actual performance measured for the evolutionary designed 
unconstrained trajectory-tracking PID controllers .

Alternatively, by implementing the unconstrained non-adaptive ES designs of 

Table 9.7, the values of the performance measures presented in the third 

column of Table 9.10 were obtained for the digital PID trajectory-tracking 

controller as p varies. The corresponding trajectory-tracking behaviour is 

depicted in Figure 9.13. In addition, Figure 9.14 shows the associated tracking 

errors. The developed torques for both joints, corresponding to the different values 

of the weighting parameter p, are shown in Figure 9.15.

Finally, by implementing the unconstrained adaptive ES designs of Table 9.8, 

the values of the performance measures presented in the fourth column of 

Table 9.10 were obtained as p varies. The corresponding trajectory-tracking 

behaviour is depicted in Figure 9.19. In addition, Figure 9.20 shows the 

associated tracking errors. The developed torques for both joints, corresponding to 

the different values of the weighting parameter p, are shown in Figure 9.21
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It is evident from Table 9.10 that the controllers designed using the adaptive 

evolution strategy again attain a better degree of optimality (in the sense defined in 

equation (9.9)) than their genetic algorithm and non-adaptive evolution strategy 

counterparts. However, It is also clear that the corresponding trajectory-tracking 

errors shown in Figures 9.8, 9.14, and 9.20 exhibit the smallest errors in the 

genetic case whilst the corresponding torques are much higher and again contain 

a high-frequency signal. However, the unconstrained adaptive designs succeeded 

to some extent in achieving the best trade-off between small tracking errors and 

smooth behaviour of the torques as shown in Figures 9.20 and 9.21. It is therefore 

clear that, by targeting smaller values of the performance measure, r, adaptive 

unconstrained designs not only produced smoother torques but also an acceptable 

accuracy.

9.5 EVALUATION OF EVOLUTIONARY DESIGNS

In this attempt to evaluate the performance of the digital trajectory-tracking PID 

controllers for the direct-drive two-link robotic manipulator controllers designed 

using all three proposed evolutionary algorithms, it is proposed to consider aspects 

such as the reliability and quality of the results, the convenience associated with 

the use of these various evolutionary algorithms, and the relative shortness of the 

running-time to design the controllers. It is evident, even before initiating any form 

of quantitative comparison of the different evolutionary algorithms, that the 

adaptive (10 + I 0)-evolution strategy is distinctive in not needing any pre-tuning 

phase as opposed to the genetic algorithm and the non-adaptive(10 + 10)-
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evolution strategy. Indeed, both the latter algorithms required much experiment in 

the selection of mutation probability, pm, and/or crossover probability ,pm. 

Moreover, the running-time of the genetic algorithm was in all cases greater than 

its evolution strategy counterpart in both adaptive and non-adaptive variants. It was 

also observed that within a particular algorithm, the unconstrained version of the 

design procedure had a longer running-time than its constrained counterpart. This 

extra time cost evidently relates to the higher dimensionality of the unconstrained 

version of the design procedure. The quantitative results presented in Table 9.3 

indicate that the genetic algorithm achieved a lower degree of optimality than the 

evolution strategies by producing optimal values of the performance measure 

larger than those associated with the evolution strategies (see Tables 9.6 and 9.9). 

Indeed, this lack of optimality translated into the generation of torques which 

exhibited behaviour considered to be undesirable for practical engineering 

applications as shown in Figures 9.6 and 9.9. It also emerges from Table 9.6 and 

9.7 that evolution strategies are more sensitive to changes in the performance 

measure (see equation 9.14) while varying the weighting parameter p within the 

interval [1.5, 6.0], It is therefore clear, from this evaluation of the performance of 

the controllers designed using all three evolutionary algorithms that the 

unconstrained design of digital trajectory-tracking PID controllers using adaptive 

evolution strategies offered the best results in the most effective way.

9.6 CONCLUSION

In this chapter, genetic algorithms, non-adaptive evolution strategies and adaptive
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evolution strategies have been used to design digital trajectory-tracking controllers 

for a direct-drive two-link robotic manipulator. The practical usefulness of such 

evolutionary design techniques was illustrated by the practical implementation of 

various PID controllers on a direct-drive two-link robotic manipulator. The 

evolutionary design procedure involved finding the optimal values of the 

appropriate controller gains in each case, such that a pre-defined cost function is 

minimised.

The practical tests results have clearly indicated that these evolutionary 

methodologies for designing different types of controllers, while considering the 

practical constraints and limitations present in real systems, are convenient and 

very effective. Indeed, it has been shown that the evolutionary design of controllers 

capable of satisfying practical constraints can be readily effected by formulating an 

appropriate performance measure that embodies such constraints.
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Figure 9.1: Direct-drive two-link robotic manipulator
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Figure 9.2:Control panel of the robotic manipulator
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Figure 9.3: Planar desired trajectory.
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Figure 9.4(a): Trajectory of controlled robot:
constrained design, GA (p = 1.5).

Figure 9.4(b): Trajectory o f controlled robot:
constrained design, GA (p = 3.0).
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Figure 9.4(c): Trajectory of controlled robot: 
constrained design, GA (p. = 4.0).

Figure 9.4(d): Trajectory of controlled robot:
constrained design, GA (n = 6.0).
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Figure 9.5(a): Time-domain behaviour of errors e1 and e2: 
constrained design, GA (p = 1.5).

X- ) 0 -3

Figure 9.5(b): Time-domain behaviour of errors e1 and e2:
constrained design, GA (p = 3.0).
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X 1 0-3

Figure 9.5(c): Time-domain behaviour of errors e1 and e2: 
constrained design, GA (p = 4.0).

Figure 9.5(d): Time-domain behaviour of errors e1 and e2:
constrained design, GA (p = 6.0).
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Figure 9.6(a): Time-domain behaviour o f torques u1 and u2: 
constrained design, GA (p = 1.5).
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Figure 9.6(b): Time-domain behaviour of torques u1 and u2:
constrained design, GA (p = 3.0).
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Figure 9.6(c): Time-domain behaviour of torques u1 and u2: 
constrained design, GA (p = 4.0).
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Figure 9.6(d): Time-domain behaviour of torques u1 and u2:
constrained design, GA (p = 6.0).
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Figure 9.7(a): Trajectory o f controlled robot:
unconstrained design, GA (n = 1.5).

Figure 9.7(b): Trajectory of controlled robot:
unconstrained design, GA (p = 3.0).
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Figure 9.7(c): Trajectory of controlled robot:
unconstrained design, GA (p. = 4.0).

Figure 9.7(d): Trajectory of controlled robot:
unconstrained design, GA (p = 6.0).
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Figure 9.8(a): Time-domain behaviour o f errors e1 and e2: 
unconstrained design, GA (p = 1.5).

Figure 9.8(b): Time-domain behaviour of errors e1 and e2:
unconstrained design, GA (p = 3.0).
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Figure 9.8(c): Time-domain behaviour of errors e1 and e2: 
unconstrained design, GA (p = 4.0).

Figure 9.8(d): Time-domain behaviour of errors e1 and e2:
unconstrained design, GA (p = 6.0).
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Figure 9.9(a): Time-domain behaviour of torques u1 and u2: 
unconstrained design, GA (p = 1.5).

Figure 9.9(b): Time-domain behaviour of torques u1 and u2:
unconstrained design, GA (p = 3.0).
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Figure 9.9(c): Time-domain behaviour o f torques u1 and u2: 
unconstrained design, GA (p = 4.0).
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Figure 9.9(d): Time-domain behaviour of torques u1 and u2:
unconstrained design, GA (p = 6.0).
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Figure 9.10(a): Trajectory o f controlled robot:
constrained design, non-adaptive ES (p = 1 .5).

Figure 9.10(b): Trajectory of controlled robot:
constrained design, non-adaptive ES (p = 3.0)
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Figure 9.10(c): Trajectory of controlled robot:
constrained design, non-adaptive ES (p = 4.0).

Figure 9.10(d): Trajectory of controlled robot:
constrained design, non-adaptive ES (p = 6.0).
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Figure 9.11(a): Time-domain behaviour of errors e1 and e2: 
constrained design, non-adaptive ES (p = 1 .5).

Figure 9.11(b): Time-domain behaviour of errors e1 and e2:
constrained design, non-adaptive ES (p = 3.0).
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Figure 9.11(c): Time-domain behaviour of errors e1 and e2: 
constrained design, non-adaptive ES (p = 4.0).

Figure 9.11(d): Time-domain behaviour of errors e1 and e2:
constrained design, non-adaptive ES (p = 6.0).
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Figure 9.12(a): Time-domain behaviour o f torques u1 and u2- 
constrained design, non-adaptive ES (p = 1.5).

Figure 9.12(b): Time-domain behaviour of torques u1 and u2:
constrained design, non-adaptive ES (p = 3.0).
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Figure 9.12(c): Time-domain behaviour o f torques u1 and u2: 
constrained design, non-adaptive ES (p = 4.0).

Figure 9.12(d): Time-domain behaviour of torques u1 and u2:
constrained design, non-adaptive ES (p = 6.0).
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Figure 9.13(a): Trajectory o f controlled robot:
unconstrained design, non-adaptive ES (p = 1.5).

Figure 9.13(b): Trajectory o f controlled robot:
unconstrained design, non-adaptive ES (p = 3.0).



Chapter 9 298

Figure 9.13(c): Trajectory of controlled robot:
unconstrained design, non-adaptive ES (p = 4.0).

unconstrained design, non-adaptive ES (p = 6.0).
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X 1 0-3

Figure 9.14(a): Time-domain behaviour o f errors e1 and e2:
unconstrained design, non-adaptive ES (p = 1 .5).

Figure 9.14(b): Time-domain behaviour of errors e1 and e2:
unconstrained design, non-adaptive (p = 3.0).
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Figure 9.14(c): Time-domain behaviour of errors e1 and e2:
unconstrained design, non-adaptive ES (p = 4.0).
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Figure 9.14(d): Time-domain behaviour of errors e1 and e2:
unconstrained design, non-adaptive ES (p = 6.0).
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Figure 9.15(a): Time-domain behaviour o f torques u1 and u2:
unconstrained design, non-adaptive ES (p = 1.5).

Figure 9.15(b): Time-domain behaviour of torques u1 and u2:
unconstrained design, non-adaptive ES (p = 3.0).
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Figure 9.15(c): Time-domain behaviour of torques u1 and u2:
unconstrained design, non-adaptive ES (p = 4.0).

Figure 9.15(d): Time-domain behaviour of torques u1 and u2:
unconstrained design, non-adaptive ES (p = 6.0).
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Figure 9.16(a): Trajectory o f controlled robot:
constrained design, adaptive ES (p. = 1.5).

Figure 9.16(b): Trajectory of controlled robot:
constrained design, adaptive ES (p = 3.0).
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Figure 9.17(a): Time-domain behaviour of errors e1 and e2: 
constrained design, adaptive ES (p = 1.5).

Figure 9.17(b): Time-domain behaviour of errors e1 and e2:
constrained design, adaptive ES (p = 3.0).
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Figure 9.17(c): Time-domain behaviour of errors e1 and e2: 
constrained design, adaptive ES (p = 4.0).

Figure 9.17(d): Time-domain behaviour of errors e1 and e2:
constrained design, adaptive ES (p = 6.0).
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Figure 9.18(a): Time-domain behaviour of torques u1 and u2: 
constrained design, adaptive ES (p = 1 .5).

Figure 9.18(b): Time-domain behaviour of torques u1 and u2:
constrained design, adaptive ES (p = 3.0).
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Figure 9.18(c): Time-domain behaviour of torques u1 and u2: 
constrained design, adaptive ES (p = 4.0).

Figure 9.18(d): Time-domain behaviour of torques u1 and u2:
constrained design, adaptive ES (p = 6.0).
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Figure 9.19(c): Trajectory of controlled robot:
unconstrained design, adaptive ES = 4.0).

unconstrained design, adaptive ES (p. = 6.0).
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Figure 9.20(a): Time-domain behaviour of errors e1 and e2: 
unconstrained design, adaptive ES (p = 1 .5).

Figure 9.20(b): Time-domain behaviour of errors e1 and e2:
unconstrained design, adaptive (p = 3.0).
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Figure 9.20(c): Time-domain behaviour of errors e1 and e2: 
unconstrained design, adaptive ES (p = 4.0).

Figure 9.20(d): Time-domain behaviour of errors e1 and e2:
unconstrained design, adaptive ES (p = 6.0).
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Figure 9.21(a): Time-domain behaviour of torques u1 and u2: 
unconstrained design, adaptive ES (p = 1.5).

Figure 9.21(b): Time-domain behaviour of torques u1 and u2:
unconstrained design, adaptive ES (p = 3.0).
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Figure 9.21(c): Time-domain behaviour of torques u1 and u2: 
unconstrained design, adaptive ES (p = 4.0).

Figure 9.21(d): Time-domain behaviour of torques u1 and u2:
unconstrained design, adaptive ES (p = 6.0).
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Chapter 10

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

10.1 CONCLUSIONS

In the modern technological era, increasingly stringent performance criteria are 

being used in the design of precision-pointing devices such as robotic 

manipulators. Thus, the design of high-accuracy digital trajectory-tracking 

controllers for robotic manipulators, which are highly non-linear with time- 

varying parameters, has posed a serious challenge. Furthermore, the high- 

accuracy performance demands of such controllers must be achieved even in 

extremely difficult conditions such as in the presence of unpredictable payload 

variations. These tough requirements can all be met to some extent by 

application of the previously developed fast-sampling digital PID controllers for 

robotic manipulators. Indeed, the use of such a design methodology 

circumvents the need for detailed mathematical models. Moreover, this 

methodology relies only on input/output data in the form of step-response 

matrices in the synthesis of its control laws. Indeed, for such controllers it is 

possible to prove a series of very reassuring robustness results using only the 

Markov parameters associated with locally linearised representations of robotic 

manipulators. However, these theoretical results for digital PID controllers are 

valid only asymptotically as sampling periods become vanishingly small. In 

practice, of course, the sampling periods of digital controllers remain non-zero,
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in which case no theoretical optimisation results are currently available.

316

This research has therefore attempted to provide some alternative optimisation 

procedure that will facilitate the non-asymptotlc design of digital PID controllers 

for robotic manipulators. Indeed, this design need has been addressed in detail 

in this thesis. In particular, the following evolutionary optimisation techniques 

have been used to design digital trajectory-tracking controllers for robotic

manipulators:

- genetic algorithms,

- non-adaptive evolution strategies,

- adaptive evolution strategies.

These various evolutionary algorithms have been used to optimise digital 

multivariable PID controllers for a range of finite sampling frequencies. In 

particular, such evolutionary algorithms have been used to determine the 

optimal sets of parameter values for digital multivariable PID controllers in both 

their constrained and unconstrained configurations. Indeed, this latter 

configuration of the controller is characterised by its high dimensionality 

associated with the fact that all the elements of the controller matrices are used

as design parameters.

It has been shown initially that genetic algorithms can be readily used to tune

digital multivariable PID controllers for robotic manipulators performing typical
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trajectory-tracking tasks. However, in the case of very complex robotic 

manipulators performing wide ranges of trajectory tracking tasks, there was a 

practical need to accelerate the evolutionary process involved in the genetic 

design methodology. This need prompts the search for evolutionary algorithms 

that are more powerful than genetic algorithms. In this thesis, the use of both 

non-adaptive and adaptive evolution strategies without recombination has 

therefore been investigated. Indeed, it has been shown that highly accurate 

tracking can be achieved using these evolutionary algorithms in the design of 

digital PID controllers for robotic manipulators. Furthermore, it has been shown 

that simple manipulation of the associated performance measure can introduce 

realistic practical constraints of the type present in typical applications of robotic 

manipulators.

The effectiveness of the evolutionary design methodologies in providing high- 

accuracy tracking performance, and in ensuring a high degree of robustness in 

the face of plant-parameter variations, has been demonstrated through a series 

of comprehensive simulation studies for a typical robotic manipulator. Indeed, it 

has been shown that the evolutionary design procedure can be used to 

optimise high-accuracy digital multivariable PID controllers for a typical direct- 

drive three-link robotic manipulator with varying plant parameters, unpredicted 

mass payload variations, and non-linear dynamics for a range of finite sampling 

frequencies. Furthermore, a special design and an associated implementation 

study have been presented in order to demonstrate the practical applicability of 

these evolutionary design techniques for a typical two-link direct-drive robotic
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manipulator. In addition, the performance of all three evolutionary algorithms 

has been compared in various case studies. Hence, it can be concluded that 

the proposed evolutionary design approach results in a powerful and effective 

yet relatively simple controller tuning technique capable of alleviating the 

problems currently encountered in the design of digital PID controllers for 

robotic manipulators under non-asymptotic conditions.

10.2 RECOMMENDATIONS FOR FURTHER WORK

All three evolutionary design techniques presented and used in this thesis are 

derived from the wider evolutionary computational methodology which also 

encompasses evolutionary programming together with genetic algorithms and 

evolution strategies. Therefore, it would be very instructive to consider the use 

of hybrid approaches involving a combination of neural networks and 

evolutionary algorithms or of fuzzy-logic and evolutionary algorithms. Similarly, 

a combination of traditional optimisation theory and evolutionary algorithms 

deserve to be investigated in the robotics case, as this was previously done for 

a non-robotic application by Dhingra and Lee (1995). In addition, only the off­

line approach was used in this thesis. Indeed, with the off-line approach there 

is nothing evolutionary about the control process itself, since this approach uses 

the evolutionary algorithm to design a controller, which is then used to control 

the system. It would be therefore instructive to adopt the on-line approach in 

which the evolutionary algorithm is an active part of the control process. Indeed,
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the adaptive characteristic of evolutionary algorithms qualifies them as suitable 

candidates to build on-line controllers for dynamic control systems.

These various techniques all belong to the family of intelligent controller design 

techniques. Indeed, these techniques are being introduced as alternatives to 

their established traditional counterparts because these latter sometimes 

perform poorly in modern complex systems. Such, modern complex systems 

are characterised by poorly defined models, high dimensionality of the design 

space, high noise levels, multiple performance criteria, and stringent 

performance requirements.

Finally, a better understanding of natural organic evolution should result in the 

improvement of all three evolutionary algorithms, which at this early stage are 

considered to be rather primitive in comparison with the evolutionary 

mechanisms present in such organic evolution.
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a p p e n d i x  a

IN T R O D U C T IO N  T O  E V O L U T IO N A R Y  C O M P U T A T IO N

T E C H N IQ U E S

A.1 GENETIC ALGORITHMS

Historically, the underlying principles of GAs were first developed by Holland 

0  975) and have been used in many areas for search and optimisation. One of the 

most useful and excellent references on GAs, together with applications, is the 

recent book by Goldberg (1989). The important themes of GAs which have been 

emphasized in [Krishnakumar and Goldberg (1992)] are their globality and 

robustness over a broad spectrum of problems. However, it has been mentioned 

in [Beasley et al (1993)] that GAs are not guaranteed to find the global optimum, 

but are nevertheless generally good at finding acceptably good solutions

acceptably quickly.

It is evident that GAs as an instance of evolution computation techniques are 

different from other conventional optimisation and search methods in the following

principal respects:

1) GAs work with a population of points not a single point. This reduces the 

chance of getting stuck on a false optimum.
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2) GAs work with a coding of the parameter set, rather than with the parameters 

themselves. The coding is often binary and, intuitively, it is better to have few 

possible options for many bits than have many options for few bits.

3) GAs require only values of the objective function values, rather than values of 

its derivative.This minimal requirement broadens the applications GAs.

4) GAs use probabilistic transition rules, not deterministic transition rules.

A.2 EVOLUTION STRATEGIES

As instance of evolution computation, Evolution Strategies (ES) were introduced 

by Renchenberg (1973) in the 60ies, and further developed by Schewfel (1975a). 

ES were applied first to experimental optimisation problemswith more or less 

continuously changeable parameters only. The first numerical application were 

performed by Hartmann (1974) and Hofler (1976), and a first attempt towards 

extending this strategy in order to solve discrete problem or even binary parameter 

optimisation problems was made by Schewfel (1975b). The first version of ES — 

in 1964—, later called the ( 1 + 1 )  ES, was born with discrete, biniomally 

distributed mutation centered at the ancestor's position, and just one descendant 

per generation.A first multimembered ES, (p + 1 ) ES was later proposed by 

Rechenberg (1973). Much more widespread became the (p + A) and (p, A) both 

formulated by Schewfel (1975).
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The most striking differences exit between GA and ES with respect to the mutation 

parameter strategy (See Chapter 5 for details), the selection procedure, and the 

relevance of recombination. Indeed, the mutation parameter strategy can be 

rendered adaptive, the recombination in GA contains an element which in ES is 

achieved by mutations only. In addition, only ES operate with a surplus of 

descendants, the (p +A) and (jj, A) versions with A> p childrens from p parents. 

This help in handling inequality constraints, the violation which lead to lethal 

descendants. With proportional selection as well as most other forms like (linear) 

ranking, all individuals produced during generation N within GA have a chance to 

have childrem themselves in the next generation N+1. ES, however, discard the 

A - p worst decendants. The remaining p individuals becom parants on the next 

generation and do have equal chances to mate and have children.

A.3 CODING AND DECODING

The process of binary coding is that by which each design variable is converted 

to a finite-length string of 1's or 0's. In the case of multiparameter optimization, all 

coded variables are concatenated and thus form a long string which is often 

referred to as a chromosome. Note that, by already knowing the length of each 

string, it is possible to extract each coded parameter and decode it to obtain its 

denary value. The first population is generated by the random allocation of 1 or 

0 to each bit. If the number of bits in each coded variable is L, it is then obvious 

that the primary decoded parameter value will be in the interval pe[0,2L-1] In
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order to recognize the fact that the parameter belongs to a specified 

interval, p ^ [p max,p m(n] , the primary decoded integer must be mapped linearly 

to this interval. Thus, for example, in the case of multiparameter coding, a 

concatenated string containing five parameters each with a length of L=20 bits can 

be written as follows:

00  1 ...0 1|0 1 0 . . .  0 1|1 1 0 . . .  0 0|1 0 0 . . .  1 110 0 0 . . .  1 0 |

L=20 L=20 L=20 L=20 L=20

Then, each parameter is decoded as

p.^accum M —̂ — —]+/*/  ̂ /-1,2,...,5 )1 i * 2^ __ j  mln
(A.1)

where "accum, " is the computed integer value associated with each coded 

parameter. In addition, pnUi, and pmax correspond to their equivalent binary coding 

as follows:

0 0 0 ... 0 0
P min

max

L=20

1 1 1 . . .  1 1

The fitness function has been defined in [Beasley et al (1993)] so that it returns 

a single numerical "fitness" or "figure of merit" which is supposed to be 

proportional to the "utility" or "ability" of the individual that a chromosome 

represents. In other words, a fitness is assigned to each individual in the 

population where large numbers mean good fitness. The positive fitness function
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can be nonlinear, non-differentiable, or discontinuous, because the algorithm 

needs only the fitness assigned to each string.

A.4 FITNESS FUNCTIONS

In many real problems, expressing a fitness function in terms of a cost function is 

not difficult yet it is perhaps the most crucial aspect of applying GAs [Deb (1991)]. 

Minimal integral square of error (ISE) or integral absolute of error (IAE) may be 

used as the cost function in control problems [Porter and Borairi (1992)] [Porter 

and Jones (1992)]. Some practical examples of the minimization of cost functions 

are presented in [Goldberg ('\989)],[Krishnakumar and Goldberg (1992)] and [Deb 

(1991)]. In many problems, it is necessary to minimize a cost function rather than 

to maximize it. However, the genetic selection procedure is based on 

maximization, so that the cost function must be mapped to fitness form. In this 

connection, one simple commonly used transformation is

Fitness=l/g(x) (A. 2)

There are other forms of mapping procedure, but this form has given the best 

results in the present research. There are also several possible cost functions 

which are selected according to the design requirements; but the one which has 

been used for this robotic application either on its own or as apart of a composite 

cost function which encompasses several design requirements is
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r  = £ > « ) !  d ,
(A.3)

is minimised, where x is the duration of the tracking task, eft) 1 is the trajectory­

tracking error vector in Cartesian space, and ® • H denotes the Euclidean norm.

A.4 EVOLUTIONARY OPERATORS

The mechanics of simple genetic algorithms are based upon the following three 

operators:

1) Selection,

2) Crossover,

3) Mutation.

The selection operator allows fit strings to be selected from the population and 

mated. In GAs, the selection is performed randomly based on fitness (i.e 

measure of profit or goodness) such that those with high values of the fitness will 

get more probability of living and producing new offspring by increasing the 

chance of being chosen by the selection operator. The probability of a string being 

selected is

F
P (select)---------

1 n

5 > ,

(A.4)
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where i is the string index, F, is the fitness, and n is the number of strings in the 

population. This strategy, in which good strings get most copies in the next 

generation, emphasizes the survival-of-the-fittest aspect of genetic algorithms. It 

is obvious that good individuals will probably be selected several times. The 

easiest way to implement this selection has been described in Goldberg (1989) 

and is called "roulette wheel" selection.

In the ES case, unlike that of genetic algorithms where the elitist approach 

affected only the best and worst of each generation, the greater degree of elitism 

has the potential to affect the entire generation. Indeed, in the case of ( ¡j + A ). 

evolution strategies, elitism consists in selecting the ¡j best individuals from the 

entire set of ¡j + A individuals (parents and offspring).

In EA the creation of new individuals is performed by the crossover operator. Two 

new offspring, representing new candidate solutions, are built by recombining the 

information from two parents. This crossover operator works on the parents with 

a certain probability rate, called the crossover rate Pc. The higher the crossover 

rate, the more quickly new structures are introduced into the population. The 

crossover operator takes two individuals and cuts their strings at some random 

position, so that each string will have two "head"and"tail"segments.
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P a r e n t s

Offspring

1 O O 1 O 1 

1 1 1 O  1 1

1 1 O 1 

O O 1 1

Crossover po in t

1 0  0 - 1 0 1 O O 1 1

1 1 1 0 1 1 1 1 0 1

Figure. A.1: Crossover Operation.

The tail segments are swapped and another two new strings are thus produced, 

as shown in Figure A.1. In the case of a multiparameter search where all 

parameters are concatenated to form a single string, a multicrossover strategy 

may be chosen. In this form, each parameter gets its own crossover with the same 

crossover probability.

Although most EA use mutation along with crossover, mutation is sometimes 

treated as if it were a background operator for assuring that population of a 

diverse pool of alleles (individuals) that can be exploited by crossover. For many 

optimisation problems, however an EA using mutation without crossover can be 

very effective [Mathias and Whitley (1994)]. Indeed, throughout this thesis ES 

have been used without a recombination (crossover) to simplify the computational 

implementation of the evolutionary algorithm.
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The third operator is mutation and simply changes a bit occasionally at a fixed rate 

in both GA and non-adaptive ES or according to an adaptive mechanism in the 

adaptive variant of ES (see Chapter 5 for details): it thus occasionally alters each 

bit from 1 to 0 or vice versa. This produces an amount of random search and 

assures that no point in the search space has a zero probability of being 

examined. Mutation increases the variability of populations and prevents the 

irreversible loss of certain patterns. The mutation operator will thus help to avoid 

the possibility of mistaking a local optimum for a global optimum. Therefore, it 

improves the global performance of EA.
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A P P E N D IX  B

D Y N A M IC A L  M O D E L  O F  T H R E E -L IN K  D IR E C T -D R IV E  R O B O T IC

M A N IP U L A T O R

The three-link direct-drive robotic manipulator which has been used in the 

simulation studies of Chapter 3, 4, 5, 6, and 8 is shown schematically in Figure. 

3.3. All positions of the masses and of the end-effector are measured with 

respect to a set of orthogonal axes (x, y, z), the origin of which is situated on 

the second joint of the manipulator arm.

The parameters indicated in this figure are as follows:

h  : inertia of link 1 

nt\ . mass of link 2 

I2 : inertia of link 2 

m2 : mass of link 3 

h  : inertia of link 3 

Mp: mass of payload

q ; angle of link 1 with respect to the horizontal x-axis in the xy plane 

^  : angle of link 2 with respect to the horizontal y-axis in the yz plane 

$  : angle of link 3 with respect to the vertical z-axis in the yz plane 

r\ : length of link 2
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r2 : length of link 3

a : distance of CG of link 2 from its axis of rotation

b : distance of CG of link 3 from its axis of rotation

Ti : torque applied at joint 1 

x2 : torque applied at joint 2 

t3 : torque applied at joint 3

The Cartesian triples specifying the positions of the masses mu m2 and Mp, 

respectively, are

mx{xly ,z )  = {asin¿>2 cos0,,asin02 sin0,,acos02} _ (B.1 )

sn^ -¿»an^)oos6},(r, a'né£ -¿an^jan^r, œs# -¿cos^j, (B.2)

and

Mp(x,y,z) = {(r, s'n^ - r2an^)cos^,(/; a'n^ - r2 a'n^an^,/-, cos^ -r2cos^}. (B.3)

The equations of motion for the manipulator can be derived by using the Euler- 

Lagrange equations in the form

d_âL âL_  
l ï t  d é  ~  d e  ~ T

(B.4)

where

0 = %
0i

(B.5)
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and

0 =

4
4
4

r  =

(B.6)

(B.7)

The kinetic energy of the manipulator in the absence of the payload can then, 
accordingly, be expressed in the form

T = + \ 12% +  | 73 4  +  V? +  Wj v f (B.8)

where

vf =(-«sin^sin^.6j +i700s^cos^4)2 + (a sin ft cos 6j.^ +i7sin6}cosft.ft)2 

+ (-£*sinft.ft2) (B.9)

and

vz2 = (r, s in f t  - ¿ s i n f t ) s i n f t . f t  +  ( /j c o s f t . f t  - ¿ c o s

+ {('isintf, -Asinft)cosftft + ('', cosft.ft -¿>cosft. 

+ (-/-, sin 6̂ . 6>2 + 6sinft.ft)2

ft. 4 )  cos ft j 2 

ft) sin ft j 2
(B.10)

It follows from equations (B.9) and (B.10) that 

v? = a2 sin2 ft.ft2 + a19] (B. 11)

and
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vf = (r, sin 62 - b  sin 03)2. % + r 2. (% + b2. 6% -  2rxb cos(<92 -  03). 020%. (B. 12)

Then, substituting from equations (B.11) and (B.12) into equation (B.7) 

indicates that

T = + 1-I2% + 1-I3$  + sin2 0,6f + a 2t y

. . . .  (B.13)
+ ~ mi{^r\ sin^  -¿>sin03)2.6f + r 2.(% + b 2.(% - 2 r xbcos(02 - 0 3).020^ .

Furthermore, the potential energy of the manipulator can be expressed as

V = n\gct cos 02+m2g(rl cos 02-b  cos £,) (B.14)

The Lagrangian therefore becomes

L=r-v=hef +i«,psirf%4 + )̂
+h!.e !-yficasfg-^ye/j^  (B.15) 

-rugnccsQ - n, ^  cos^ -¿oos^)

The partial derivatives needed for equation (B.5) are accordingly

01/
~ ^  = I A  + w,a2 sin2 92.6x +w 2(r, sin02 ~bs\n0z)2.ex , (B16)

~^- = I 202 +mxa2 .B2 + m2r 2.02 -  m2rxb cos(, 62 - 0 3).03 (B.17)
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dL
de,

-  I30, + mxb2.03 -  m2rxb cos(, 02 -  03). 02

dL
39,

—  = mxa2 sin 02 cos 02. Of + m2(rx sin 02~b sin 03)rx cos 02.02 
d02

+ rn2rxb sin($, -  44  -  (m\a + "hn )s sin 02

and

—  = -m2 (rx sin 91 -  b sin 03 )b cos 0V G{2 -  m2rxb sin(6>2 -  03). 02%
¿7Uy

+ m2gb sin 0i

Finally, substituting from equations (B.16), (B.17), (B.18) (B 19) 

(B.21) into equation (B.4) indicates that

r, = (/, + (/»,a2 + m,/;2}sin2 4  + m ,i2 sin2 4  -  2m,r: sin 4  sin 4 )4  

+ (2(m,aJ + nV ; ) sin 4  cos 4  -  2nVib sin 4  cos 4 )  4 4

+ 2m2b(b sin 0i - r x sin 02) cos 0y 44

r 2 =  ( I2 +  {mxa2 + mrx2j)02 -  m2rxb cos(02 -  6>). 4  

-  {im\al + mir\ )  sin 02 cos ^  -  m2rxb cos 02 sin 0} j. 42 

-m 2rxb s\r){02 - ^ ) .4 2 -  (mxa + m2rx )g sin 02

(B.18)

(B.19)

(B.20)

(B.21)

(B.20) and

(B.22)

(B.23)

and
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r3 =  ( / 3 +m2b2)03 -m ^b cos{02 +m2rxbs\n(02 -%).(%
+ m2b(rx sin^ -¿sin<g)cos^.6{2 + m2g£sin<g (B.24)

Equations (B.22), (B.23) and (B.24) can be conveniently expressed in the 

matrix form (Craig (1986), Bejczy (1974))

r  = M(0)0+ c(0,0) +g(0) ,(B.25)

where, c(0,0) is the coriolis and centrifugal torque vector and g(9 ) is the 

gravity torque vector. For simplicity, the coriolis, centrifugal, and gravity torques 

vectors are often combined as the vector n(0,0). Equation (B.25) can then be 

expressed in the form

t  =  M(0)0 +  n(0,0) ,(B.26)

where n{0,0) = c(0,0) + g(0) is the non-linear torque vector.

It is evident from equations (B.22), (B.23) and (B.24) that the inertia matrix has 

the form
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/ 1+{n\cp- + m/2) an2 ̂  +  mp2 an2 Q 
-Im/i sin^ sin^ 0 0 

I2 + (n\a2 + n̂ r2) -  mpr} oos(6̂  -  6?,) 

-mprx c o s - ^ )  /3 + /rçA*

.(B.27)

whilst the non-linear torque vector is

2 + try2) sin 02 cos 02 -  ImjP sin 03 eos

+ 2m2b{b sin 03-r, sin 62) eos 0y 0¡03

n(0,0) =

- ((«?,«2 + rr̂ r2) sin 02 eos 62 -  m2rp eos <9, sin 03J. ¿f 

-  w2r,¿ sin(02 -  03). 6¡ -  (mxa + )g sin B2 .(B.28)

mj>(rx sin 02-b  sin 03) eos 03. ¿J2 + m2rxb sin(<?2 -  $3 ). $¡ 
+ n^gb sin 03

L

The inclusion of the payload, Mp , indicates that equation (B.27) becomes
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/, +(m,dL +mtf +M/)arr^+(mlb2 +Mpff) 

an 2 f t  -  (2m/\ + 2M jf) sinft sinft

M[0)=
0

0

I2 +(mld L + m ^

+ H t)
~{mprx + M r f )

°°s(ft-ft) ,(B.29)

-{mpr, +Mttf)
I3+ m f i + M r f

whilst equation (B.28) becomes

n(0,0) =

|2(w,o2 + m rf + M />2>sin 02 C0S °2 ~ ( lm 2r>b + 1M pr\ >sin cos 0 i\  6A  

+ 2mJ>{b sin 6 , -  r, sin 82) + 2 M /2(sin 6 , -  sin ft)  cos ft. ft03

-  (M / f  + (W)«2 + W2,i2) Sin ^  C0S 92 -  K ' l 6 + Mpr\ )  C0S #2 Sin ^ ) -  ¿I2

-  (Wj/jA + A //,2) sin(02 -  %)■  9l  -  (M/ \  + ™\a + »Vi ) g  sin ft .(B.30)

V ( r ,  s in  02 - b  sin f t )  c o s  f t .  Of +  ( M / , 2 +  n^rfi) sin(6»2 -  f t ) .  Of 

+  A /p^2(s in  d2 -  s in  f t )  c o s  f t .  Of + ( M pgrx +  m2g b )  sin f t

The numerical values of the parameters in equation (B. 15) corresponding to 

the masses, lengths, and inertias of the links of the simulated model were as

follows:
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m, = 4.0kg, m2 = 3.0 kg, rx = 0.3 m, r2 = 0.3 m, a = 0.15 m, b = 0.2 m, /, = 0.05 kg. m2 
l 2 = 0.1 kg. m2, / 3 = 0.1 kg. m2.

These parametric values correspond to those of an experimental manipulator 

located in the Department of Mechanical Engineering, Faculty of Engineering 

Science, Osaka University, Japan, which was used in collaborative studies by 

Professor B. Porter and Professor S. Arimoto.
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A P P E N D IX  C

D Y N A M IC A L  M O D E L  O F  A  T W O -L IN K  D IR E C T -D R IV E  

R O B O T IC  M A N IP U L A T O R

The two-link direct-drive robotic manipulator which has been used in simulation 

and practical implementation studies is shown schematically in Fig. C.1, where the 

X-Y plane is horizontal.

Figure C.1: Schematic diagram of a two-link robotic manipulator.

The parameters indicated in this figure are as follows:

/ j  : rotor inertia of motor 1

M j : mass of motor 1

/ 2 : centroidal moment of inertia of link 1

M 2 : mass of link 1

I 3r : rotor inertia of motor 2

M 3 : mass of motor 2

M,
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I 3s : stator inertia of motor 2 

M 4 : mass of link 2

/4 : centroidal moment of inertia of link 2

Mp : mass of payload

Ip : moment of inertia of payload

qx : angle of link 1 with respect to the horizontal axis

q 2 : angle of link 2 with respect to the link 1

L j : length of link 1

L 2 : length of link 2

L 3 : distance of CG of link 1 from its axis of rotation 

L 4 : distance of CG of link 2 from its axis of rotation

Other quantities which are used in the derivation of manipulator dynamics are the 

following:

xc2 : vector position of centre of mass of link 1 

xc3 : vector position of centre of mass of motor 2 

xc4 : vector position of centre of mass of link 2 

xcp : vector position of centre of mass of the payload 

vc2 : vector velocity of centre of mass of link 1 

vc3 : vector velocity of centre of mass of motor 2 

vc4 : vector velocity of centre of mass of link 2 

vcp : vector velocity of centre of mass of payload 

i j  : torque applied by motor 1
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t2 : torque applied by motor 2 

/ j  : friction torque for axis 1 

f 2 : friction torque for axis 2

The equations of motion for the manipulator can be derived by using the Euler- 

Lagrange equations in the form

d_
dt

ÔT

dq
(¡=1,2) (C.1)

where q is a vector of generalized coordinates which completely describe the 

configuration of the manipulator and Q is a corresponding vector of generalized 

forces which are applied to the manipulator. In this case,

9 =
<?2

(C.2)

and

0 = T - /=
T1 " / ,

V / 2
(C.3)

Note that the Lagrangian of this particular planar robotic manipulator reduces to 

only the Kinetic energy, T  , since its motions are confined to a horizontal plane.

In order to derive the dynamical equations for this particular robotic manipulator, 

it is required that the value of T  be worked out. In this way, it is evident, from
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elementary dynamics, that the kinetic energy of a single link moving in a plane can 

be expressed in the form

7’ = i / ( o 2 + - M v  2
2 2

(C.4)

where 1 is the centroidal moment of inertia of the link about axis of 

rotation, co is the angular velocity, M  is the mass, and vc is the linear velocity 

of the centre of mass. Therefore, the total kinetic energy of the manipulator can 

readily be expressed as the sum of the kinetic energies of each individual part of 

the manipulator by using Eq. (C.4). In this way, such individual different parts of 

the total kinetic energy of the manipulator can be specified as follows!

(a) kinetic energy arising from the angular velocity of the rotor of motor 1,

(b) kinetic energy arising from the angular velocity of link 1,

(c) kinetic energy arising from the angular velocity of the stator of motor 2 

(installed on link 1),

(d) kinetic energy arising from the angular velocity of the rotor of motor 2,

(e) kinetic energy arising from the angular velocity of link 2,

(f) kinetic energy arising from the angular velocity of payload,

(g) kinetic energy arising from the linear velocity of the centre of mass of link 1,

(i) kinetic energy arising from the linear velocity of the centre of mass of motor 2,

(j) kinetic energy arising from the linear velocity of the centre of mass of link 2,

(k) kinetic energy arising from the linear velocity of the centre of mass of the 

payload.



Appendix C 342

Note that the pertinent angular velocity in parts (a), (b), and (c) is the same as the 

angular velocity of link 1, q{ , whilst the pertinent angular velocity in parts (d) 

(e), and (f) is the sum of angular velocities of link 1 and link 2, q{ + q2 

Therefore, the total kinetic energy of the manipulator can be readily expressed in 

the form

r = i [ ( / 1+/2+4 ) i , 2+(/3, * / 4+/f )(4 1+4,)2

+ M ,(ve/  vc2) Vc 3 )  +Mi (vc/  vcj) *M p(vcpT vcp) i  . (C.5)

The positions and velocities of the centres of masses are computed as follows-

M) Position and velocity of the centre of mass of link 1

x c2

L3cos(^1)

L3sin(^1)

' c2
d *c2
dt

- L ^ s i n ^ )

L 3^ cos( ^ )

m  Position and velocity of the centre of mass of motor 2

xc3

L j c o s (^ )  

L jS in i^ )

dxc3

Vc2 dt

- L j ^ s in ^ , )

L ^ c o s ^ )

(C.6)

(C.7)

(C.8)

dt
(C.9)
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(3) Position and velocity of the centre of mass of link 7

Xc4

Z ^ c o s ^ j)  +L4cos(<7j +q2) 

L { s in ( ^ )  +L4sin(^j +q2) (C.10)

dxc4
c4 dt

- L j ^ s i n ^ - L ^ j  + q2)s in (q1 + q2) 

L xqxcos(qx) +L4(q x +q2)cos(q1 +q2)

(4) Position and velocity of the centre of mass of the paylnari

xcp

L l cos(ql )+ L 2cos(ql +q2) 

L 1sin(q l )+ L 2sm(ql +q2)

(C.11)

(C.12)

v = ^ P -  
cp d t

' - L ^ l s\n(qx)~ L 2(q l +q2) s in (^  +q2) 

L xqxcos(qx) +L2(qx +q2)cos(qx +q2) (C.13)

It is now possible to substitute these expressions for v v v
c2 '  c3 ' c4 ’ an a  vc

into Eq. (C.5), and then to use several trigonometric substitutions. This yields

j  [ ( /,  + /2 + +MpL ?  +W2£32) ^ 2

+ U 3r + / 4 + I P + M 4L 4 + M p L 2 ) ( Q i  + tf2 ) 2

+ 2 (M 4L ,L 4 +MpL 1L 2)q l (q l +q2)cos(q2) -j

Then, for use in the Lagrange equation (C.1), it follows that
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^ 4 -  =
oq l

+ V u + h + I f + M t i + M ' L i m ^ )

+ (M 4L jL4 +MpL l L2)(2 q l + q2)cos(q2)

= P l 4 i +P 2^ 2 +P 3 ( 2 ^ l +<j 2 ^ OS( (h )

where

P i  = / l + / 2 + 4  + I 3 r + I 4 +Ip + ( M 3 + M A + M p ) L l + M 2L 3 + M + M p L % 

P i = 73r +I4 +Ip + M4L4 + MpL i  ’

P 2 = M 4L l L 4 + M p L l L 2 '

Similarly, it follows that

—  +M ,  +p3ql cos(q1)
dq2

It is thus evident that

—  (— )=PiQi+P2^2+P3(2^ i +^ cos^2) -P3(241+^)^s in(q , )  ,
dt d$x '

— (—  )=P ,qi +P2^2+P 3 ^COŜ 2 ) - P 3 ^ l ^ n( ^ )  • 
dt dq2

dql

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)
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and

= M \ + 4 2)*™(q2)
dq2 (C.23)

The vector matrix differential equation of motion for the robotic manipulator can 

now be derived when equations (C.20) through (C.23) are substituted into Eq 

(C.1). This procedure indicates that

M(q)q + v(q,q) = t - f (C.24)

where

M(q) =
p l +2p3cos(q2) 

p2 +p3cos(q2)

p2+p3cos(q2)

Pi (C.25)

is the state-dependent inertia matrix of the robotic manipulator and

v{q,q )
-4 2 {2 4 l +4Jp 3 sin{q2)

q*p3sm(q2) (C.26)

is the vector of coriolis terms.
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A P P E N D IX  D

D E S C R IP T IO N  O F  A  P R A C T IC A L  T E S T  R IG  T W O -L IN K  

D IR E C T -D R IV E  R O B O T IC  M A N IP U L A T O R

D.1 BASIC HARDWARE CONNECTIONS

A two-link direct-drive robotic manipulator has been used for the experimental 

testing of the different methods of motion control developed in this thesis As a 

direct-drive system, the manipulator operates in the absence of undesirable 

factors such as mechanical backlash and gear-train compliance. However since 

there are no gear trains between the actuators and the arms, non-linear dynamical 

effects and cross-coupling become significant in this type of robotic manipulator

This particular robot is a planar manipulator with two revolute joints (see Figure 

9.1). Each joint is directly connected to a high-torque brushless actuator which 

eliminates the need for gear reduction.

The hardware components of the robot are as follows:

(I) the robot (the NSK motors+Drives+Arms),

(II) the Texas Instruments Spectrum Signal Processing TMS320C30 Processor 

Board (see Figure 9.2),
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(III) the Integrated Motions Inc. DS2 Motion Control Interface Board,

(IV) the 486 Host Workstation.

The functional description of the manipulator control workstation is shown in 

Figure D 1. It can be seen that the host computer performs user interface 

functions, as well as those involving inverse kinematics and the reference 

(desired) generation of kinematic parameters for the control servo.

USER

Figuro D.1 Functional description of manipulator control workstation.

The Digital Signal Processor (DSP) based servo-controller executes the 

manipulator servo algorithm and performs all interface functions to the 

manipulators. A block diagram of the hardware architecture is shown in Figure

D.2.



Appendix D 348

Figure D.2: Hardware Architecture.

D.2 SPECTRUM TMS320C30 DSP BOARD

Under normal operation, the user's servo algorithm is executed on the Spectrum 

TMS320C30, which is a high-performance CMOS 32-bit DSP floating point device 

with a clock rate of 33 MHZ. The DSP is installed on the bus of the host computer 

and interfaced to the NSK motor drives through an Integrated Motions inc DS2 

Motion Control Board. The interface of the TMS320C30 DSP Processor Board 

with the DS2 is shown in Figure D.3.
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Figure D.3: The TMS320C30 Processor Board with DS2 Interface.

As shown in this figure, the DSP/DS2 combination provides the TMS320C30 DSP, 

2 D/A converters, 2 A/D converters, 2 shaft encoders with 153600 counts per 

actuator revolution, and 4 bits of parallel I/O.

D.3 CONTROLLER SOFTWARE ARCHITECTURE

The control workstation software provides the full functionality of the two-axis 

robot controller. Figure D.4 is a block diagram of the architecture of the controller 

software that has been divided into several functional modules such as 

interpolation, inverse kinematics, and servo controller, each of which performs a 

special task.
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E E E O B A O K  U O N A L *

Figure D.4: Controller Software Architecture.

Each of the software modules is actually a separate C-language program. Some 

of these have been modified (by the author) in order, firstly, to produce the desired 

velocity and acceleration parameters and, secondly, to communicate with DSP 

such that these parameters be available to the servo control algorithm in real-time. 

In Figure D.4, RPL (Robot Programming Language) is the program which specifies 

the desired path or desired end-points for each joint of the robot for a work-space 

or joint-space trajectory, respectively. The interpolator connects each set of the 

end-points of the joints (either in joint-space or in work-space) with a straight line 

and assigns a trapezoidal velocity to this line. In the case of work-space trajectory, 

the inverse kinematic transformation converts each point along the work-space 

path into a corresponding joint-space point, which is sent to the axis servo- 

controller as the set-point. Note that, if joint space moves are specified in the RPL 

rather than work-space moves, then the interpolator directly outputs angular set- 

points and the inverse kinematic module is not used.

The servo algorithm, which generates the appropriate voltage output to drive the
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manipulator, is written in the C-language and is compiled by the Texas Instrument 

320C30 C compiler. The compiled code is downloaded to the servo processor 

where it is executed in order to control the robot.

The run-time executive acts as coordinator of the data flow between software 

modules, performs scheduling and synchronizes the servo-control CPU with the 

host CPU, and handles real-time communication of data between the host CPU 

and the servo-controller.
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