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Abstract: 

 

The Markowitz-based portfolio selection turns to an NP-hard problem 

when considering cardinality constraints. In this case, existing exact solutions 

like quadratic programming may not be efficient to solve the problem. Many 

researchers, therefore, used heuristic and metaheuristic approaches in order 

to deal with the problem. This work presents Asexual Reproduction 

Optimization (ARO), a model free metaheuristic algorithm inspired by the 

asexual reproduction, in order to solve the portfolio optimization problem 

including cardinality constraint to ensure the investment in a given number 

of different assets and bounding constraint to limit the proportions of fund 

invested in each asset. This is the first time that this relatively new 

metaheuristic is in the field of portfolio optimization, and we show that ARO 

results in better quality solutions in comparison with some of the well-known 

metaheuristics stated in the literature. To validate our proposed algorithm, we 

measured the deviation of obtained results from the standard efficient 

frontier. We report our computational results on a set of publicly available 



benchmark test problems relating to five main market indices containing 31, 

85, 89, 98, and 225 assets. These results are used in order to test the efficiency 

of our proposed method in comparison to other existing metaheuristic 

solutions. The experimental results indicate that ARO outperforms Genetic 

Algorithm(GA), Tabu Search (TS), Simulated Annealing (SA), and Particle 

Swarm Optimization (PSO) in most of test problems. In terms of the obtained 

error, by using ARO, the average error of the aforementioned test problems 

is reduced by approximately 20 percent of the minimum average error 

calculated for the above-mentioned algorithms. 

 

 

Key Words: Portfolio optimization, Cardinality constraints, Markowitz 

mean-variance model, Asexual reproduction optimization, Efficient frontier. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction: 

 

Portfolio optimization, which is the problem of allocating the initial 

amount of capital among a given number of assets or securities, has attracted 

a lot of attention in the field of quantitative finance (Moral-Escudero, Ruiz-

Torrubiano, & Suarez, 2006). In order to help investors in optimally forming 

their portfolio of assets, Markowitz (1952, 1959) has proposed a quantitative 

framework. Markowitz mean-variance model of portfolio selection which 

caused the development of Modern Portfolio Theory (MPT), formulates the 

problem as a multi-objective optimization problem with two conflicting 

objectives: maximizing the expected return and minimizing the risk 



(measured by variance) of a portfolio. Considering these two competing 

criteria simultaneously, there is no single optimal portfolio, but a set of 

portfolios forming the efficient frontier (EF). In other words, efficient 

frontier, also called Pareto-optimal front, is the collection of portfolios which 

result in minimum risk for a given level of return or equivalently, maximum 

return for a given level of risk. 

The standard Markowitz model assumes a perfect market without any 

transaction costs and taxes, where short selling is forbidden, and assets are 

tradable in any non-negative fractions. This basic model belongs to the 

category of Quadratic Programming (QP) problems (Fernández & Gómez, 

2007); thus, the efficient frontier could be found using standard QP solvers 

which are easily available and can guarantee to find the optimal solution, and 

be modified to include linear constraints (Chang, Meade, Beasley, & 

Sharaiha, 2000). However, in the absence of these unrealistic assumptions, 

or presence of some non linear real-world constraints, QP is not necessarily 

feasible for finding efficient portfolios any more. 

Many researchers have tried to extend the Markowitz’s model 

(Markowitz, 1952) in order to capture more realistic market conditions by 

introducing some additional constraints. These include, cardinality constraint 

which limits the number of assets held in the portfolio, bounding (quantity or 

floor-ceiling) constraint, also known as buy-in thresholds, imposing lower 

and/or upper bounds on funds invested in each asset, pre-assignment 

constraint reflecting the investor’s preferences by requiring some specific 

assets to be held in the portfolio, round lot (minimum lots) constraint which 

forces the amount invested in each asset to be a multiple of minimum 

transaction lot, class constraint which limits the total weight assigned to a 

class (assets with common characteristics), as well as turnover and trading 

constraints that impose upper and lower bounds respectively on the variation 

of the assets weight from one period to another, which are particularly useful 

in multi period investments (Ponsich & Antonio, 2012; Lwin et al., 2014; 

Crama & Schyns, 2003; Tollo & Roli, 2008).  

According to Metaxiotis & Liagkouras (2012), cardinality and 

bounding constraints occupy the main focus of the researchers. In practice, 

many investors prefer to hold a certain number of assets in their portfolio so 

as to facilitate its management, decrease transaction costs, and assure a 

minimum degree of diversification. Moreover, they prefer to avoid holding 



very small and large proportion of assets in order to reduce administrative 

costs and risk, respectively (Anagnostopoulos & Mamanis, 2011; Lwin et al., 

2014).  

In this paper, we tackle the problem with regard to the extended 

Markowitz mean-variance model which includes cardinality and bounding 

constraints. In this case, we refer to the EF as cardinality constrained efficient 

frontier (CCEF). By introducing the cardinality constraint into the classic 

quadratic programming model, this problem turns to a mixed integer 

quadratic programming one which is NP-hard (Bienstock, 1996; Moral-

Escuderoet al., 2006; Shaw, Liu, & Kopman, 2008). In this case, exact 

optimization methods are not efficient for large problem sizes (Kalayci et al., 

2017). Many researchers, therefore, take advantage of heuristic and 

metaheuristic approaches in order to deal with the problem (Maringer, 2006; 

Tollo & Roli, 2008). Although these approaches do not guarantee to find the 

optimal solution, they are efficient for finding near-optimal solutions. 

Asexual Reproduction Optimization (ARO), proposed relatively 

recently in Farasat et al. (2010) and Mansouri et al. (2011), is an evolutionary 

individual based metaheuristic algorithm inspired by budding mechanism of 

asexual reproduction and has been used in very few studies (e.g. 

Khanteymoori et al., 2011;  Kazemi et al., 2012; Noormohammadi Asl et al., 

2014; Ahmadian & Khanteymoori, 2015; Yazdanparast et al., 2015). None 

of these studies deal with the portfolio selection problem (PSP). 

The ARO has advantages that make it completely different from other 

metaphors. First, it is an individual-based algorithm. Thus, unlike population-

based algorithms that require a large amount of computational resources to 

convert, ARO consumes much less. Hence, it converges faster. The second 

case is mathematical convergence, so it has good exploration and exploitation 

rates. Third, ARO does not require parameter settings, so you are unlikely to 

have trouble setting parameters that are a common meta-cognitive problem 

such as genetic algorithms (GA), annealing simulation (SA), taboo search 

(TS). And Particle Particle Optimization (PSO). In addition, the ARO does 

not use any selective mechanism such as a roulette wheel. Inappropriate 

selection of selection mechanisms may lead to problems such as premature 

convergence due to excessive selection pressure. Fourth providers in many 

benchmark issues have shown the computational power of this algorithm. 

Fifth, ARO is a free model algorithm that can be applied to various types of 



optimization. (Mansouri et al., 2011) Finally, the ARO in this paper presents 

better results than the algorithms used in other papers. 

For these reasons, we take advantage of ARO to tackle the 

Markowitz-based cardinality constrained portfolio selection problem. The 

main contribution of this study is to solve this problem more efficiently using 

a new approach. We apply a method which uses ARO to confront the 

portfolio selection problem. Our proposed method results in better quality 

solutions compare to some of the well-known metaheuristics which have 

been used in this field.  

Computational results are reported for five analyses of weekly price 

data with regard to the following indices for the time period between March, 

1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in 

Germany, FTSE 100 in the UK, S&P 100 in the USA and Nikkei 225 in 

Japan. 

The rest of this paper is organized as follows. A literature survey of 

exact, heuristic, and hybrid approaches to the problem is presented in Section 

2. Section 3 describes  the generic mean-variance portfolio selection problem, 

followed by the specific model in the presence of cardinality and bounding 

constraints. Section 4 introduces the proposed ARO algorithm along with its 

application to the problem under consideration. Computational experiments 

and results are discussed in Section 5. Conclusion and future work are 

presented in Section 6. 

 

2. Literature review 

 

According to Woodside-Oriakhi, Lucas, & Beasley (2011), 

researchers dealt with the cardinality constrained portfolio optimization using 

either exact or heuristic approaches. In this paper, we consider a third 

category to structure our literature survey: hybrid methods which combine an 

exact method with a heuristic one. 

 

2.1. Exact approaches 

As stated earlier, when considering the cardinality constraint into the 

model, exact methods may not be efficient to solve portfolio optimization 

problem for large problem samples. However, some researchers tried to deal 

with the problem using a relaxed version of cardinality constraint which 



imposes an upper bound on the number of assets present in the portfolio. This 

approach, in which Eq. (14) is an inequality rather than equality,  has a 

significantly less computational complexity (Woodside-Oriakhi et al., 2011). 

Moreover, the results show that researchers were able to handle this version 

of problem for limited problem sizes (Lwin et al., 2014).  

Table 1 summarizes the exact approaches used in the literature to 

solve the PSP.   

 

 

 

 

 

 

 

 

Table 1 

Exact approaches for portfolio selection problem. 

Authors Constraints Method Datasets risk 

measure 

Bienstock 

(1996) 

upper bound 

on the 

cardinality 

branch-and-

cut 
3897 assets variance 

Lee & 

Mitchell 

(1997) 

upper bound 

on the 

cardinality 

interior point 

nonlinear 

branch-and-

bound solver 

5 datasets 

involving up 

to 150 assets 

variance 

Young 

(1998) 

transaction 

costs 

minimax 

 

No 

computational 

results 

minimum 

return 

Li et al. 

(2006) 

upper bound 

on the 

cardinality, 

round lots 

convergent 

Lagrangian 

and contour-

domain cut 

30 assets from 

from the Hong 

Kong stock 

market 

Variance 



 

2.2. Heuristic approaches 

With regard to the above-mentioned approach, using other risk 

measures than variance, Mansini & Speranza (1999) considered PSP with 

minimum transaction lots and showed that in this case, the problem of finding 

a feasible solution is NP-complete no matter what the risk measure is. In their 

work, they used Mean Semi-absolute Deviation as a measure of risk and 

presented three heuristics based on solving the linear programming relaxation 

to tackle the problem. Kellerer, Mansini, & Speranza (2000) also considered 

the same risk measure in their paper. They added fixed transaction costs to 

the previous model and employed two of the three Mixed Integer Linear 

Programming based (MILP-based) heuristics which were used in the 

previous study. In a more recent work, Chang, Yang, & Chang (2009) 

considered different risk criteria other than variance; semi-variance, mean 

absolute deviation (MAD) and variance with skewness. They employed 

Genetic Algorithm (GA), and showed its efficiency for solving these 

problems in different risk measures. 

Heuristic attempts to solve the portfolio selection problem are 

summarized in Table 2. 

Shaw et 

al. (2008) 

upper bound 

on the 

cardinality 

Lagrangian 

relaxation 

8 datasets 

involving up 

to 500 assets 

Variance 

Vielma et 

al. (2008) 

upper bound 

on the 

cardinality 

LP based 

branch-and-

bound 

Problem sets 

involving up 

to 200 assets 

Variance 

Bertsimas 

& Shioda 

(2009) 

upper bound 

on the 

cardinality, 

bounding 

tailored 

branch-and-

bound 

Problem sets 

involving up 

to 500 assets 

variance 

Gulpinar 

et al. 

(2010) 

cardinality, 

bounding, 

round lots 

DC functions 

programming 
98 assets variance 



 

Table 2 

Heuristic approaches for portfolio selection problem. 

Authors Constraint

s 

Method Datasets risk 

measure 
Mansini & 

Speranza 

(1999) 

minimum 

transaction 

lots 

Basic, 

reduced cost, 

and iterated 

MILP-based 

heuristics 

2 datasets 

involving 

244 and 277 

assets 

Mean 

Semi-

absolute 

Deviation 

Kellerer et al. 

(2000) 

fixed 

transaction 

costs, 

round lots 

reduced cost 

and iterated 

MILP-based 

heuristics 

1 dataset 

involving 

244 assets 

Mean 

Semi-

absolute 

Deviation 

Chang et al. 

(2000) 

cardinality, 

bounding 

GA, SA, TS Hang Seng, 

DAX, FTSE, 

S&P100, 

Nikkei 

variance 

Jobst et al. 

(2001) 

cardinality, 

bounding, 

round lots 

integer 

restart, 

reoptimisatio

n 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Schaerf (2002) cardinality, 

bounding 

hill climbing, 

SA, TS 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Crama & 

Schyns (2003) 

Cardinality

, turnover, 

trading 

SA 1 dataset  

involving 

151 US 

stocks 

variance 



Derigs & 

Nickel (2003) 

Considerin

g any 

constraint 

is possible 

in this 

model 

a 

metaheuristic 

approach 

based on SA 

a case study 

containing 

202 stocks 

related to 

DAX30 & 

STOXX200 

variance 

Maringer & 

Kellerer 

(2003) 

upper 

bound on 

the 

cardinality 

a 

combination 

of SA and ES 

DAX30, 

FTSE100 

variance 

Ehrgott et al. 

(2004) 

cardinality, 

bounding 

customized 

local search, 

SA, TS, GA 

four data sets 

involving up 

to 1416 

assets 

volatility, 

S&P star 

ranking 

Fernández & 

Gómez (2007) 

cardinality, 

bounding 

HNN test problems 

provided by 

Chang et al. 

(2000) 

variance 

Chiam et al. 

(2008) 

cardinality, 

bounding 

an approach 

based on a 

multiobjectiv

e EA 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Chang et al. 

(2009) 

cardinality, 

bounding 

GA HANG 

SENG, 

FTSE, 

S&P100 

semi-

variance, 

MAD, 

variance 

with 

skewness 



Pai & Michel 

(2009) 

Cardinality

, bounding, 

class 

an ES-based 

solution and 

k-means 

clustering 

BSE 200, 

Nikkei 225 

 

variance 

Soleimani et 

al. (2009) 

cardinality, 

round lots, 

market 

(sector) 

capitalizati

on 

GA two 

randomly 

generated 

datasets with 

500 and 2000 

assets. 

variance 

Cura (2009) cardinality, 

bounding 

PSO test problems 

provided by 

Chang et al. 

(2000) 

variance 

Anagnostopou

los & 

Mamanis 

(2010) 

class, 

bounding 

 

NSGA-II, 

PESA, 

SPEA2 

two 

randomly 

generated 

data sets 

containing 

200 and 300 

assets 

variance 

Anagnostopou

los & 

Mamanis 

(2011) 

cardinality, 

bounding 

NPGA2, 

NSGA-II, 

PESA, 

SPEA2, e-

MOEA 

seven test 

problems 

involving up 

to 2196 

assets 

variance 

Woodside-

Oriakhi et al. 

(2011) 

cardinality, 

bounding 

GA, SA, TS seven test 

problems 

involving up 

to 1318 

assets 

variance 



Deng et al., 

2012) 

cardinality, 

bounding 

PSO 

 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Lwin & Qu 

(2013) 

cardinality, 

bounding 

PBILDE 

 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Lwin et al. 

(2014) 

cardinality, 

bounding, 

pre-

assignment

, round lots 

MODEwAw

L 

 

seven test 

problems 

involving up 

to 1318 

assets 

variance 

Ni et al. 

(2017) 

cardinality, 

bounding 

DRTCPSO-

AD, 

DRTCPSO-

D, 

DRTCPSO-

LIAD, 

DRTCPSO-

LID 

test problems 

provided by 

Chang et al. 

(2000) 

variance 

Kalayci et al. 

(2017) 

cardinality, 

bounding 

ABC 

 

Hang Seng, 

DAX, FTSE, 

S&P100, 

Nikkei , 

XU030, 

XU100 

variance 

Meghwani & 

Thakur (2017) 

cardinality, 

bounding, 

pre-

assignment

NSGA-II, 

MOEA/D, 

GWAS- FGA 

FF38,  FF48 VaR, 

CVaR 



, self-

financing 

Liagkouras, 

K., & 

Metaxiotis, K. 

(2018) 

Liquidity 

Upper and 

Lower 

limit of the 

cardinality 

constraint 

lower and 

upper 

bound 

constraints, 

transaction 

costs 

proposed  

new Multi-

period 

Fuzzy 

Portfolio 

Optimization 

Algorithm 

(MFPOA) 

92 assets 

from FTSE-

100 index in 

London 

possibilist

ic 

variance 

of the 

portfolio 

return at 

each 

period. 

Babazadeh, 

H., & 

Esfahanipour, 

A. (2019) 

Cardinality 

Constraint 

Budget 

Constraint 

at each 

period 

 

new design of 

NSGA-II 

20 selected 

assets from 

S&P100 

VaR 

Ling, A., Sun, 

J., & Wang, 

M. (2019) 

stochastic 

constraint 

Budget 

Constraint 

A 

computationa

lly tractable 

approximatio

n approach 

based on 

second-order 

cone 

optimization 

10Ind, 12Ind, 

iShare and 

DJIA, as in 

Rujeerapaibo

on et al. 

(2016) , with 

all data from 

the French 

data library, 

Yahoo 

finance and 

lower 

partial 

moment 

(LPM). 



 

2.3. Hybrid approaches 

More recently in the literature, researchers tried to tackle the 

portfolio optimization problem by implementing hybrid strategies that take 

advantage of both exact and heuristic approaches. Table 3 summarizes the 

Hybrid methods proposed in the literature. 

 

Table 3 

Hybrid approaches for portfolio selection problem. 

Research Constraints Method Datasets risk 

measure 

the Wind 

database 

Ahmadi-Javid, 

A., & Fallah-

Tafti, M. 

(2019) 

cardinality, 

bounding 

primal-dual 

interior-point 

algorithm 

EVaR- PD 

algorithm 

50 assets  

100 assets 

200 assets 

750 assets 

1000  assets 

entropic 

value-at-

risk 

(EVaR) 

Gupta, P., 

Mehlawat, M. 

K., Yadav, S., 

& Kumar, A. 

(2019) 

Budget 

Constraint, 

Cardinality 

No short 

selling 

constraint 

Contingent 

constraint 

 

polynomial 

goal 

programming 

approach 

a sample of 

twenty assets 

(n = 20) from 

National 

Stock 

Exchange 

(NSE), India 

Variance 

entropy 

Mohammadi, 

S., & Nazemi, 

A. (2020) 

Budget 

Constraint 

 

neural 

network 
10 securities 

VaR 



(Moral-

Escudero et 

al. (2006) 

cardinality, 

bounding 

combination 

of GA and 

QP 

test 

problems 

provided by 

Chang et al. 

(2000) 

variance 

Streichert & 

Tanaka-

yamawaki 

(2006) 

upper bound 

on the 

cardinality, 

maximum 

limits with 

one exception  

combination 

of a MOEA 

and a QP 

local search 

Hang Seng 

31, DAX 

100 

variance 

Branke et al. 

(2009) 

Cardinality, 

bounding, 5-

10-40 rule 

from German 

investment 

law  

envelope-

based MOEA 

Hang Seng 

31, S&P 

100, Nikkei 

225, and a 

benchmark 

with 500 

assets 

variance 

Ruiz-

torrubiano 

& Suárez 

(2010) 

upper bound 

on the 

cardinality, 

bounding 

Preprocessing 

(pruning), 

SA, GAs, 

EDAs  

 

test 

problems 

provided by 

Chang et al. 

(2000) 

variance 

Baykasoğlu 

et al. (2015) 

cardinality, 

bounding 

GRASP-

QUAD 

test 

problems 

provided by 

Chang et al. 

(2000) 

Variance 

Li, B., Zhu, 

Y., Sun, Y., 

Aw, G., & 

Teo, K. L. 

(2018) 

Bankruptcy 

Budget 

Constraint 

transaction 

costs 

Total wealth 

at each period 

 

GA combined 

with penalty 

function 

8 stocks 

Variance 

 



 

Zhang, J., & 

Li, Q. 

(2019) 

Liquidity 

risk-free asset 

constrained in 

each period 

lower and 

upper limits 

No short 

selling of 

assets 

Cardinality 

Hybrid DA-

GA 

(Dragonfly 

Algorithm-

Genetic 

Algorithm) 

10 risky 

assets 

semi-

entropy 

 

2.4. Comment 

According to the literature reviewed above, since the pioneering 

work of Harry Markowitz (Markowitz, 1952), the mean-variance model of 

portfolio optimization has been the main framework for choosing optimal 

portfolios. Some extensions have been proposed for this model and among 

them, MVCCPO including cardinality and bounding constraints has 

attracted the most of researchers’ attention. Using metaheuristic algorithms 

became the main trend for dealing with this model after the research 

conducted by Chang et al. (2000) and hybrid methods which take advantage 

of both heuristic and exact solutions, have been used more recently in the 

literature.  

The contribution of our paper is to complement the reviewed 

literature by proposing a new approach for portfolio selection based on the 

Markowitz mean-variance-model which results in better quality solutions in 

comparison with some of the well-known metaheuristics stated in the 

literature.  

 

3. Problem Formulation 

 

Let us start with the basic (unconstrained) Markowitz model. In its 

multiobjective form, it can be formulated as follows: 



 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

 

(1) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖𝜇𝑖

𝑁

𝑖=1

 

 

 

(2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖

𝑁

𝑖=1

= 1 

 

 

(3) 

                      0 ≤ 𝑤𝑖 ≤ 1,     𝑖 = 1, … , 𝑁 (4) 

 

Where N is the number of available assets, 𝜇𝑖 is the expected return of asset 

i, 𝜎𝑖𝑗 is the covariance between asset i and j, and 𝑤𝑖 is the decision variable 

representing the proportion of money invested in asset i. Eq. (1) minimizes 

the risk of the portfolio (measured by variance) while Eq. (2) maximizes the 

expected return of the portfolio. Eq. (3) defines the budget constraint which 

forces the investment of all the money in hand, i.e., asset weights must sum 

up to one. Finally, Eq. (4) states that all weights should be nonnegative. 

By solving the above model, a set of efficient portfolios can be 

found. These Pareto-optimal (non-dominated) solutions form the 

unconstrained efficient frontier (UEF), i.e., a continuous curve representing 

the best possible trade off between risk and return. 

This bi-objective model can be also represented as a single objective 

optimization problem; therefore, it could be solved by applying single 

objective solution techniques. The famous single objective representation of 

the basic Markowitz model is as follows: 

 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

 

(5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝜇𝑖

𝑁

𝑖=1

= 𝑅∗ 

 

 

(6) 

                      ∑ 𝑤𝑖

𝑁

𝑖=1

= 1 

 

 

(7) 

                      0 ≤ 𝑤𝑖 ≤ 1,     𝑖 = 1, … , 𝑁 (8) 

 

This model attempts to minimize risk by considering the expected return as 

a constraint. Hence, solving the above single objective problem for different 

levels of expected return results in tracing the unconstrained efficient 

frontier. 

According to Chang et al. (2000), designing a heuristic based on the 

above formulation is difficult in that it requires the expected return of the 

portfolio to be exactly 𝑅∗. 

In practice, for tracing the UEF, a popular approach is to introduce a 

weighting parameter  (0 ≤ 𝜆 ≤ 1); thus, the objective function could be 

represented in a Lagrangian relaxation form (Chang et al., 2000; 

Anagnostopoulos & Mamanis, 2011):  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

− (1 − 𝜆) ∑ 𝑤𝑖𝜇𝑖

𝑁

𝑖=1

 

 

 

(9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖

𝑁

𝑖=1

= 1 

 

 

(10) 



                      0 ≤ 𝑤𝑖 ≤ 1,     𝑖 = 1, … , 𝑁 (11) 

  

By solving this QP problem for various values of , the UEF can be traced 

from the portfolio with maximum return ( = 0) to the portfolio with 

minimum level of risk ( = 1). Chang et al. (2000) showed that when 

considering the unconstrained problem, by varying  in Eq. (9), we can 

obtain exactly the same efficient frontier as we would get by solving Eqs. 

(5) - (8) for varying values of R*. 

 In order to find the cardinality constrained efficient frontier (CCEF), 

many researchers extended the above-mentioned model by adding 

cardinality and bounding constraints (e.g. Chang et al., 2000; Fernández & 

Gómez, 2007; Cura, 2009; Woodside-Oriakhi, Lucas, & Beasley, 2011; 

Deng, Lin, & Lo, 2012; Baykasoğlu, Yunusoglu, & Burcin Özsoydan, 

2015): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

− (1 − 𝜆) ∑ 𝑤𝑖𝜇𝑖

𝑁

𝑖=1

 

 

 

(12) 

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖

𝑁

𝑖=1

= 1 

 

 

(13) 

 

∑ 𝑧𝑖

𝑁

𝑖=1

= 𝐾 

 

 

(14) 

 

𝜀𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝛿𝑖𝑧𝑖,     𝑖 = 1, … , 𝑁 

 

(15) 

 

𝑧𝑖 ∈ {0,1},     𝑖 = 1, … , 𝑁 

 

(16) 

Where 𝑧𝑖 is the decision variable indicating the existence of each asset in 

the portfolio, hence it is equal to 1, if asset 𝑖 is included in the portfolio and 

zero otherwise. Eq. (14) defines the cardinality constraint (portfolio consists 

of exactly 𝐾 assets) and Eq. (15) defines the bounding constraint which 



imposes lower and upper limits on the weight of each asset. In this work, 

we will consider the same MVCCPO model (Eqs. (12) – (16)).   

4. ARO for portfolio selection problem 

 

 In this section, we present our proposed algorithm for solving the 

cardinality constrained portfolio selection problem. First, we give a brief 

overview of the general ARO, then the particular implementation of this 

proposed algorithm that is customized for finding the CCEF will be 

presented. 

 

4.1. Asexual Reproduction Optimization 

ARO, which is an individual based evolutionary algorithm 

modelling the budding mechanism of asexual reproduction, was first 

described by Farasat et al. (2010) and Mansouri et al. (2011). In ARO, each 

individual produces a bud via a reproduction mechanism; afterward, the bud 

and its parent compete with respect to their fitness which is obtained from 

the objective function of the underlying optimization problem. Through 

competition for limited resources, the fitter one will survive, while the other 

will be discarded. This reproduction cycle is repeated until the stopping 

criteria are met. 

Consider the following optimization problem: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 ∈
𝑆 

(17) 

 

where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛); 𝑥𝑖 ∈ ℝ (𝑖 = 1, 2, … , 𝑁) are the decision 

variables, 𝑓(𝑋) is the objective function, and 𝑆 defines the search space. 

 The pseudo code of ARO is illustrated in Figure 1. 

 

 

FIGURE 1 ABOUT HERE 

 

 

4.2. The proposed ARO for finding the CCEF 

 

  Here, we introduce the customized version of ARO to deal with the 



cardinality constrained portfolio optimization problem. 

 

4.2.1. Notation 

 Table 4 introduces the notations used to describe the proposed 

version of ARO to solve the problem.  

 

Table 4 

Notations for the proposed ARO. 

Symbol Description 

N the whole number of available assets 

K the number of assets present in the portfolio 

𝑤𝑖 the proportion of capital invested in asset i  

𝜀𝑖 the lower bound on the proportion invested in asset i 

𝛿𝑖 the upper bound on the proportion invested in asset i 

𝑇𝑚𝑎𝑥 the number of running iterations for ARO  

𝑅[𝑥, 𝑦] a random integer number in [𝑥, 𝑦] 
𝑟[0, 1] a random real number in [𝑥, 𝑦] 
𝑅 the set of i whose proportions are fixed at 𝛿𝑖 

Q the set of K distinct assets in the current solution 

𝑔 the length of selected substring from parent’s chromosome 

𝑏 the number of buds reproduced from the current parent 

 

4.2.2. Solution representation and encoding 

In our solution representation, a vector of size 2K is used to 

represent a portfolio. This vector consists of two distinct parts, the first part 

indicates the asset indices present in the portfolio, and the second part 

determines the proportion of capital to be invested in each asset in the 

portfolio. So, the first part would be an integer vector of size K with its 

elements belonging to {1, 2, … , 𝑁}, and the second part consists of K real 

numbers from [0,1] (Fig. 2). 

 

 

FIGURE 2 ABOUT HERE 

 

 



Where 𝑥𝑖  is an integer variable that belongs to {1, 2, … , 𝑁} and it represents 

the index of the 𝑖 
𝑡ℎ asset in our portfolio. As mentioned before, we will have 

K distinct assets in our portfolio, so, (𝑖 = 1, 2, … , 𝐾). In  the second part of 

the solution representation, 𝑤𝑖 ∈ [0,1] denotes the value of investment in the 

asset 𝑥𝑖. For instance, if  K= 4, which means that we are constrained to have 

4 distinct assets in our portfolio, and the whole number of assets in the market 

is N=100, we should pick 4 distinct integers from {1, 2, … , 100} to represent 

the asset indices we are going to hold in the portfolio. Assume that we pick 

asset number 1, 7, 34, and 87, and put the equal weights for them in the 

portfolio. Our solution representation will be like this: 

 

 

FIGURE 3 ABOUT HERE 

 

 

It is important to note that each number in {1, 2, … , 𝑁} cannot appear 

more than once in the integer part of the chromosome.  

 

4.2.3. Constraints satisfaction 

To meet the bounding constraint and ensuring that the sum of the 

proportions invested in assets equals one (Eq. (15), and Eq. (13)), the 

following approach is applied based on Chang et al. (2000): 

Let Q be the set of K distinct assets in the current solution. The lower 

limits constraint can be satisfied if all weights in the candidate solution are 

adjusted by setting 𝑤𝑖
′ = 𝜀𝑖 + 𝑤𝑖(1 − ∑ 𝜀𝑖𝑖∈𝑄 )/ ∑ 𝑤𝑖𝑖∈𝑄 . Note here that 

∑ 𝑤𝑖
′

𝑖∈𝑄 = 1. So, the above formula satisfies both the lower proportion 

limits and sum to one. 

Let R be the set of i whose proportions are fixed at 𝛿𝑖. In order to 

satisfy upper limits constraint, an iterative algorithm can be applied as 

shown in Figure 4. 
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It is also noteworthy that there is no need for any mechanism to 

handle the cardinality constraint (Eq. (14)), since our solution representation 

presented in Section 4.2.2 requires each solution to contain exactly K 

distinct assets.  

 

4.2.4. Mutation 

In order for our proposed ARO to maximize diversity, we present 

two types of mutation. 

 

4.2.4.1. Mutation of shares  

In this type of mutation, a bud is reproduced by altering some genes 

from the integer part of its parent’s chromosome. In optimization terms, a 

new solution is generated by changing some asset indices present in the 

portfolio while weights remain unchanged. 

In order to reproduce the bud, a substring of length g is randomly 

selected from the integer part of the parent’s chromosome. Thereafter, the 

genes presented in this substring are replaced with g integers which are 

absent in the remaining string. 

To clarify more, suppose that we have 𝑁 = 10, 𝐾 = 5, and the 

integer part of the parent’s chromosome is shown in Figure 5. In order to 

select a substring, we randomly generate two distinct integers in [1, 𝐾], i.e., 

𝑟1 = [1, 𝐾] and 𝑟2 = 𝑅[𝑟1, 𝐾]. so, 𝑔 = 𝑟2 − 𝑟1 + 1. Assume that 𝑟1 = 2, 

𝑟2 = 3. Hence, {8, 5} should be eliminated from parent’s chromosome, and 

a string of length 2 composing of two distinct elements from 

{1, 3, 5, 6, 8, 9, 10} (e.g., 3, 8) will be substituted. (see Fig. 5). 
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4.2.4.2. Mutation of weights  

We use two kinds of variation here to expand the search space, 

stochastic and chaotic. The former is used when we are stuck in local 

optimum and helps us to exit from it. Buy using The latter, we try to visit 



maximum number of points near the solution. To select the kind of 

variation, we use the following function: 

 

𝑓(𝑖, 𝑏) = sin (max (1 − 𝜑ln(𝑖)/𝑏,0)∗
𝜋

2
)  (18) 

 

Where 𝑖 shows the number of iteration, 𝑏 is a variable representing the 

number of iterations we searched in local- i.e., the number of buds 

reproduced from the current parent- and 𝜑 is the golden number which is 

approximately equal to 1.618. the value of 𝑓(𝑖, 𝑏) is decreasing in 𝑖 and 

increasing in 𝑏. Eq. (18) tries to produce a probable measure to determine 

the extent of being stuck in local optimum. We examined the above-

mentioned function to produce this measure and found it sui for our 

purpose. 

 Then, base on the value of 𝑓(𝑖, 𝑏), we use the following procedure 

to select the variation: A random real number is generated in [0, 1], i.e., 

𝑟3 = 𝑟[0, 1]. if 𝑟3 is lower than 𝑓(𝑖, 𝑏), stochastic variation will be selected. 

Otherwise, we apply the chaotic variation. 

 In stochastic variation, we select a random substring of length g 

from the real part of the parent’s chromosome, then define p as follows: 

 

𝑝 = 1 ⁄ (1 + ln (𝑔 )) (19) 

 

For each gene from the selected substring, let 𝑟4, 𝑟5 = 𝑟[0, 1]. If 𝑟4 ≤ 𝑝 and 

𝑟5 ≤ 0.3, the value of the gene will be replaced with p multiplied by a 

random number in [0, 1]. If 𝑟4 ≤ 𝑝 and 𝑟5 > 0.3, the new value of the gene 

takes a random real number in [0, 1]. Otherwise, the value of the gene 

remains unchanged.  

In chaotic variation, we apply these steps for every gene in the real 

part of the parent’s chromosome: let 𝑟6 = 𝑟[0, 1]. If 𝑟6 ≤ 0.2, the value of 

the gene should be multiplied by 0.2 ∗ 𝑓(𝑖, 𝑏). If 𝑟6 belongs to [0.3, 0.7], 
then let 𝑟7 = 𝑟[0, 1], and the value of the gene will be multiplied by 𝑟7 +
0.2 ∗ 𝑓(𝑖, 𝑏). Otherwise, the value of the gene remains unchanged. 

 

4.2.5. Termination 



Our proposed ARO terminates after running for a predefined 

number of iterations, 𝑇𝑚𝑎𝑥. 

 

5. Computational results 

 

In this section, our proposed ARO is evaluated and compared to other 

well-known existing heuristics used for tackling the cardinality constrained 

portfolio optimization based on the standard test problems. The heuristics 

which are used for comparison are Genetic Algorithm(GA), Simulated 

Annealing (SA), Tabu Search (TS), and Particle Swarm Optimization (PSO). 

We use the results reported by Chang et al. (2000) for GA, SA, and TS while 

PSO results was those reported by Deng et al. (2012). We report the 

computational results for finding 50 different portfolios on the CCEF for each 

data set using the values 𝜀𝑖 = 0.01, 𝛿𝑖 = 1 (𝑖 = 1, 2, … , 𝑁), and 𝐾 = 10. We 

set the number of iterations which is the termination condition for ARO to 

20000. The proposed algorithm is implemented in MATLAB language. 

 

5.1. Datasets 

The performance of our proposed algorithm is evaluated on the 

benchmark data related to five well-known major market indices from the 

publicly available OR-Library (Beasley, 1990). These test problems were 

built based on weekly prices between March 1992 and September 1997 for 

the following market indices: Hang Seng 31 in Hong Kong, DAX 100 in 

Germany, FTSE 100 in UK, S&P 100 in USA, and Nikkei 225 in Japan. The 

number of assets, N, related to each dataset is 31, 85, 89, 98 and 225, 

respectively. These data files contain mean return of each stock, covariance 

between these stocks, and the unconstrained efficient frontier composing of 

2000 points (i.e., standard efficient frontier) , which are accessible at 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. They were first 

provided by Chang et al. (2000) and were used in many other studies since 

then (e.g. Baykasoğlu et al., 2015; Chiam et al., 2008; Cura, 2009; Deng et 

al., 2012; Fernández & Gómez, 2007; Lwin & Qu, 2013; Moral-Escudero et 

al., 2006; Ruiz-torrubiano & Suárez, 2010; Schaerf, 2002). 

 

5.2. Performance indicator 

To evaluate the performance of a heuristic, the quality of results could 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html


be measured in terms of the deviation of obtained results from the optimal 

solution (Woodside-Oriakhi et al., 2011). In the case of finding the cardinality 

constrained efficient frontier, because of unavailability of the optimal CCEF, 

the quality of results could be measured according to their deviation from 

UEF which can be found simply by QP. Thus, we used exactly the same 

approach previously proposed by Chang et al. (2000) which is the most 

commonly used approach in the literature. For instance, the following studies 

used the same approach: Woodside-Oriakhi et al. (2011), Deng et al. (2012), 

Lwin & Qu (2013), Baykasoğlu et al. (2015). 

Let (𝑠𝑝, 𝑅𝑝) be the standard deviation and return corresponding to a 

portfolio 𝑝 found by ARO heuristic. By using linear interpolation, we can 

find 𝑠𝑝
∗ which is the standard deviation associated with 𝑅𝑝 in standard 

efficient frontier. Hence, the standard deviation error of portfolio 𝑝 is 

defined as follows: 

 

Standard deviation error (𝑝) = 100|(𝑠𝑝 − 𝑠𝑝
∗)/𝑠𝑝

∗| (20) 

 

Similarly, let 𝑅𝑝
∗  be the return associated with 𝑠𝑝 using linear interpolation in 

standard efficient frontier. Then, the return error of portfolio 𝑝 would be: 

 

Return error (𝑝) = 100|(𝑅𝑝 − 𝑅𝑝
∗ )/𝑅𝑝

∗ | (21) 

 

Furthermore, the minimum between two above-mentioned errors for 

portfolio 𝑝 is defined as percentage error, and by averaging this for all 

obtained portfolios, we can define mean percentage error. 

 

Percentage error (𝑝) = min{100|(𝑠𝑝 − 𝑠𝑝
∗)/𝑠𝑝

∗|, 100|(𝑅𝑝 − 𝑅𝑝
∗ )/

𝑅𝑝
∗ |} 

(22) 

Mean percentage error = ∑ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑝)50
𝑝=1 /50. (23) 

 

In other words, after obtaining all portfolios based on the targeted portfolios, 

we measure the vertical and horizontal distances to the standard UEF for each 

portfolio and compute the minimum of these two numbers. Then, our 

performance indicator, mean percentage error, is the average of these derived 



minimums for all obtained portfolios. For more details about this approach, 

see Chang et al. (2000). 

 

5.3. Experiments 

As mentioned before, the standard efficient frontier is the set of 2000 

optimal portfolios on the UEF which is available from OR-Library (Beasley, 

1990) for each of the five tested data sets. Figure 6 shows the heuristic frontier 

which is formed by the 50 portfolios found by ARO as well as the standard 

efficient frontier for each data set. 

 

  

FIGURE 6 ABOUT HERE 

 

 

This figure clearly illustrates that our proposed algorithm performs 

really well when dealing with portfolios requiring lower levels of risk and 

expected return. However, when finding portfolios which have much higher 

risk and expected return, the distance between standard efficient frontier and 

ARO heuristic frontier increases. The reason is that when we want to 

constitute portfolios with higher expected return, we should choose fewer 

assets which have higher mean return; in the unconstrained problem it would 

be possible to choose even one asset with the highest level of mean return, 

but when dealing with the constrained problem, our algorithm is forced to 

select exactly 10 assets because of the cardinality constraint. Hence, the 

portfolios which are close to top right corner of CCEF, have much significant 

percentage error   

Table 5 compares our results with those obtained by Chang et al. 

(2000) and Deng et al. (2012) based on the mean percentage error, for each 

data set. The best mean percentage error among them for each problem is 

written in boldface. These results show that our proposed method 

outperforms other heuristics in four out of five test problems. Therefore, the 

superiority of it is clear from the experimental results. 

 

Table 5 

Comparison of proposed ARO with other heuristics for finding the CCEF. 

Index N GA SA TS PSO ARO 



chang et al. chang et al. chang et al. Deng et al. 

Hang Seng 31 1.0974 1.0957 1.1217 1.0953 1.4181 

DAX 100 85 2.5424 2.9297 3.3049 2.5417 1.3190 

FTSE 100 89 1.1076 1.4623 1.1217 1.06283 0.8151 

S&P 100 98 1.9328 3.0696 3.3092 1.6890 1.4468 

Nikkei 225 0.7961 0.6732 0.8975 0.6870 0.6179 

 

Average  

 

- 

 

1.4953 

 

1.8461 

 

2.0483 

 

1.4152 

 

1.1234 

 

6. Conclusion 

 

In this paper we considered the portfolio selection problem under 

cardinality constraint which requires a predetermined number of assets to be 

present in the portfolio as well as bounding constraint that impose upper and 

lower limits on the proportions of capital invested in each asset. These real 

world constraints turn the problem to an NP-hard one, consequently the 

classical methods may not be efficient to find the optimal solution for large 

problem sizes.  

In our work, a version of ARO is proposed to find the cardinality 

constrained efficient frontier. Our algorithm uses two types of mutation 

which modifies share indices and weights of them, separately. We also took 

advantage of both stochastic and chaotic variations for mutation of shares. 

We evaluated the performance of the proposed approach using standard data 

sets considered previously in the literature which are related to five major 

market indices containing up to 225 assets. We also compared the results with 

those related to some well-known heuristics proposed previously to tackle the 

problem. The comparison showed that our proposed ARO outperforms GA, 

SA and TS applied by Chang et al. (2000) to the problem, and PSO proposed 

by Deng et al. (2012) in most cases. Numerical results showed that by using 

ARO, the average error of the aforementioned test problems is reduced by 

approximately 20 percent of the minimum average error calculated for the 

above-mentioned algorithms (see Table 5). 

Future work using competitive co-evolutionary genetic algorithm to deal 

with the problem is currently underway.  
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