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ABSTRACT 

 

The present article addresses the steady incompressible convective flow of kinetic theory-based 

Eyring-Powell fluid conveying nano-sized particle from a vertical plate with convective boundary 

condition and distribution of nanoparticles fraction over its surface. Cattaneo-Christov model is imposed 

to scrutinize the heat transfer analysis. A revised Buongiorno nanoscale model is adopted, which 

considers zero nanoparticle flux at the wall surface and simulates physically more viable scenarios for 

nanoparticle distribution. The study has applications in designing heat exchangers, cooling metallic 

plates, surface coating dynamics etc. The reduced non-linear equations in  (𝜂, 𝜉) coordinate system 

transformed from (x, y) coordinate system is non-similar nature and are solved by using two efficient 

techniques: the Sparrow-Yu local non-similarity method and the Liao Homotopy Analysis Method 

(HAM). Excellent corroboration of the converged results for both methods is achieved with the existing 

results. In order to discuss the influence of thermophysical parameters, the HAM simulations have been 

presented graphically and tabulated to visualize the distribution of skin friction coefficient, rate of heat 

transfer (Nusselt number) and mass transfer rate (Sherwood number) for the boundary layer regime. It 

is observed that the Eyring-Powell fluid conveying nano-sized particle attains a higher velocity but lower 
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temperatures than Newtonian fluid conveying nano-sized particle. The presence of radiative heat flux 

remarkably increases the magnitudes of temperature. Skin friction factor exhibits an inverse relation with 

Deborah (viscoelastic) number and Cattaneo-Christov thermal relaxation parameter. Nusselt number 

increases whereas nanoparticle Sherwood number decreases with increment in Eyring-Powell parameter 

and mixed convection parameter. The current simulations furnish interesting insights into non-

Newtonian nano-coating dynamics of relevance in the polymer processing industry.  

 

Keywords:  Mixed convection; Eyring-Powell fluid conveying nano-sized particle; non-Fourier thermal 

relaxation; Revised Buongiorno nanofluid model; Convective boundary condition; Homotopy analysis 

method. 

 

1. INTRODUCTION 

 

Convective heat and mass transfer phenomena in non-Newtonians from a vertical surface emerge 

in many diverse technologies including composite processing, energy systems, nuclear reactor design, 

thermal ducts, polymer devolatilization and coating of aerospace and marine components etc. Owing to 

such applications, many researchers have contributed towards the study of thermal/thermosolutal flow 

in non-Newtonian fluids along vertical surfaces which have provided a robust compliment to 

experimental investigations. An extensive range of different rheological formulations have been adopted 

in such studies which often also feature external boundary layer flows. These include Rajagopal and Na 

[1] studied the convective flow of non-Newtonian fluid in between two parallelly aligned sheets whereas 

Huang et al. [2] discussed the natural convection from vertical plate due to the non-Newtonian fluid 

flow. In continuation of these studies, the mixed convective power-law rheological fluid flow along a 

porous vertical plate was numerically investigated using a finite difference method (FDM) by Gorla et 

al. [3]. Gupta et al. [4] implemented a finite element method (FEM) to examine the micropolar 

convection boundary layer flow from a vertical permeable surface. Rao et al. [5] investigated the 

hydrodynamic and thermal slip effects on viscoplastic thermal convective flow from a vertical surface 

with the Casson rheological model and a finite difference code. Bég et al. [6] took use of a network 

electrothermal solver (PSPICE) to imitate transient free convection of a Walters-B liquid from a vertical 

sheet in Darcy-Forchheimer permeable media. Bég and Makinde [7] employed MAPLE shooting 

quadrature and a Maxwell upper convected model to investigate the mass diffusion in porous media 

along vertical walls of a channel. Ray et al. [8] used the HAM to derive non-similar solutions for 

convective flow of Eyring-Powell fluid from a convectively heated vertical plate. Manghat et al. [9] 
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discussed the two‐phase Sakiadis flow of a nanoliquid with nonlinear Boussinesq approximation and 

Brownian motion past a vertical plate.  

The characteristics of heat transfer can be increased by raising the thermal conductivity of base fluid like 

engine oil, water and ethyl glycol etc. The thermal conductivity of solids is more than liquids so 

suspending nano-sized solid particles in the base fluid results in enhancing the thermal conductivity of 

the resultant colloidal suspension, which is termed a nanofluid.  Fluid conveying nano-sized particle 

have found significant applications in coating systems, thermal ducts, biomedical sciences, nuclear 

reactors, heat exchanger and cooling of electrical devices. Fundamentally two mathematical models have 

become popular for describing the transport phenomena in nanofluids and these are homogeneous and 

non-homogeneous nanofluid models. The homogeneous model, also known as the single-component 

model provides a correlation between thermophysical properties of base fluid (viscosity, density, thermal 

conductivity) and nanoparticle thermal conductivity. The homogeneous model ignores the nanoparticle’s 

slip mechanism. The two-component (non-homogeneous) model is considerably more complex. It 

features seven mechanical mechanisms considered by Buongiorno [10] i. e. gravity, inertia, fluid 

drainage, Magnus effect, thermophoresis, Brownian motion and diffusiophoresis. Out of these slip 

mechanisms, thermophoresis and Brownian motion [11] are emphasized in the Buongiorno non-

homogeneous two-component model. The Buongiorno model for nanofluid transport was modified and 

the revised model more accurately accounts for the impact of nanoparticle distribution [12-13] i. e. 

correctly considers zero nanoparticle flux at the wall surface and achieves more practical results.  Many 

researchers have implemented the modified Buongiorno model for different problems in nanofluid 

transport. Malvandi and Ganji [14] discussed the influence of Brownian motion and thermophoresis on 

the flow of Al2O3/water nanofluid inside a circular microchannel using revised Buongiorno model. In a 

recent meta-analysis on the transport phenomenon of various nanofluids, it was concluded that increasing 

haphazard motion of tiny/nano-sized particles is capable to cause an increase in the internal pressure on 

the tinyparticles [15]. Another meta-analysis by Wakif et a. [16] on the effects of thermophoresis shows 

that different responses to the force of a temperature gradient are sufficient enough to enhance the 

temperature distribution due to an increase in thermophoresis. Ray et al. [17] used modified Buongiorno 

model to investigate the flow of Power-law fluid past multiple geometries. Vasu et al. [18] implemented 

a FREEFEM++technique to compute the two-dimensional magneto-hemodynamic nanoparticle-doped 

blood flow through stenosed coronary artery with the modified Buongiorno model.  

In a variety of industrial systems, the conventional Fourier heat conduction model [19] is 

inadequate. This conventional model displays infinitesimal heat disturbance which generate at a very 

high speed since it contradicts the principle of casualty with a parabolic nature, whereas thermal 



4 

 

relaxation produces a hyperbolic behaviour [20]. Cattaneo’s model however does not preserve the 

property of invariance. Christov [21] later therefore altered the Cattaneo model by restoring the 

derivative term with an Oldroyd formulation which overcomes the problem of invariance. The Cattaneo-

Christov model is a robust revised version of the classical Fourier-law. It has been formulated such that 

the principle of casualty can be avoid and to preserve invariance. The Oldroyd derivative is used in 

Cattaneo-Christov heat flux model which contains thermal relaxation time and results in thermal 

relaxation parameter in the reduced equation. Thus the non-Fourier thermal relation parameter denotes 

the thermal relaxation parameter corresponding to Cattaneo-Christov heat flux model. Reddy et al. [22] 

scrutinized the impact of cross diffusion and thermal relaxation on external boundary layer flows for 

different geometries with Cattaneo-Christov flux. Shahid et al. [22] deployed a Taylor successive 

approximation method to compute the non-Fourier convection flow of an electroconductive rheological 

Maxwell fluid from a stretching permeable sheet with radiative heat flux effects. Sarkar and Kundu [23] 

computed the Cattaneo-Christov flux effects on the flow of viscoelastic nanofluid with 

heterogeneous/homogeneous reactions. Vasu et al. [24] emphasized the significance of the convective 

boundary condition on thermally stratified viscous flow with thermal dispersion numerically by 

considering thermodynamic optimization with Bejan’s method. Akbar et al. [25] implemented a Runge-

Kutta method to compute the MHD nanofluid Sakiadis flow with a non-Fourier model and revised 

Buongiorno nanoscale model. They showed that temperature is boosted with higher Brownian motion 

parameter. Vasu et al. [26] applied Cattaneo-Christov model in order to analyse convective Jeffrey 

viscoelastic nanofluid flow (considering relaxation and retardation effects in the rheology) along a 

vertical sheet. Mehmood et al. [27] investigated the reactive hydromagnetic non-orthogonal stagnation 

flow of an Oldroyd-B polymeric coating on a horizontal substrate with a non-Fourier model for nuclear 

reactor wall thermal protection. They observed that wall heat transfer rate and wall species transfer rate 

are reduced with non-Fourier effect increased with greater effect of heterogeneous reactions whereas 

they are suppressed with greater effect of homogeneous reactions. Vasu and Ray [28] deployed both 

local non-similarity and homotopy analysis methods to compute the transport phenomena in nanofluid 

flow from a vertical surface with the Cattaneo–Christov and Buongiorno nanoscale models.  

As noted earlier, there is presently no generic constitutive equation that can robustly simulate all 

the diverse characteristics of non-Newtonian fluids. Different phenomena e. g. thixotropy, stress 

relaxation, stress retardation, secondary stresses, memory etc, require different rheological models, many 

of which are lucidly reviewed in the excellent treatises of Irgens [29] and Chhabra and Richardson [30]. 

These non-Newtonian models feature varying degrees of non-linearity and different derivative types. 

The extensive variety of coatings deployed in industry requires different rheological models to capture 
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their shear stress strain behaviour correctly. Interesting models which have been utilized in recent years 

in this regard include the Walters-B short memory elastico-viscous model [31], Spriggs four‐constant 

viscoelastic mode for polymer melts (which combines results from molecular theory with continuum 

mechanics), Dubey et al. [33] (Sisko viscoelastic model), Ali et al. [34] (Giesekus memory fluid) 

Manzoor et al. [35] (Johnson-Segalman model), Gaffar et al. [36] (tangent hyperbolic model), Kumar et 

al. [37] (Williamson viscoelastic model), Norouzi et al. [38] (FENE P visco-elastic model), Umavathi 

and Bég [39] (Stokes’ couple stress polar model) Bég et al. [40] (Reynolds exponential viscosity model). 

In the present study, motivated by developing more sophisticated models for industrial coatings, an 

alternative non-Newtonian model is utilized.  The Eyring-Powell fluid model [41] is a unique non-

Newtonian model since it is formulated with the kinetic theory which includes collision of molecules 

within the fluids. Many technological coatings approximate well to this model. The Eyring-Powell model 

has therefore been implemented in a number of recent studies. In a study on the dynamics of three-

dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer experiencing 

quartic autocatalytic kind of chemical reaction, it was discovered that increasing thermal stratification 

indeed cause a decline in the temperature distribution but causes the same temperature gradient 

associated with not only heat transfer rate but also with thermophoresis to be enhanced significantly near 

the wall [42]. According to Abegunrin et al. [43], on the surface of upper horizontal surface of a 

paraboloid of revolution, rapid increase in the temperature distribution due to an increase in the 

magnitude of one of the Eyring-Powell fluid parameters is guaranteed. Further studies employing the 

Eyring-Powell fluid model in coating dynamics include Kumaran et al. [44] who used Keller’s box finite 

difference method to simulate variable thermophysical effects on natural axisymmetric hydromagnetic 

Powell-Eyring nanofluid flow from permeable cylinder. Gaffar et al. [45] investigated the Eyring Powell 

electromagnetic polymer coating flow from wedge configuration using Keller box and smoothed particle 

hydrodynamic (SPH) techniques. 

To the author’s knowledge, no attempt has been done to investigate the non-Fourier convective 

coating flow on a vertical surface under strong radiative flux with the kinetic theory based Eyring Powell 

fluid conveying nano-sized particle flow with a revised Buongiorno nanofluid model. The transformed 

two-dimensional equations are solved by local non-similarity method and Liao homotopy simulation 

method (HAM). The novelty of this work is therefore to extend the current literature to consider 

Cattaneo-Christov heat flux, radiative heat flux, modified nanoparticle wall boundary conditions and the 

Eyring-Powell rheological formulation. Section 2 concerns with the mathematical modeling of the flow 

problem. Sections 3 and 4 describe the numerical solution procedures with validation to published 
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studies. Section 5 presents extensive visualization of the LNM/HAM computations with detailed 

physical interpretation.  

 

2.MATHEMATICAL MODEL FOR NON-NEWTONIAN NANOFLUID COATING FLOW 

A two-dimensional mixed convection coating flow of Eyring-Powell fluid conveying nano-sized 

particle over a vertical surface (substrate) is considered. The vertical wall is prescribed with convective 

boundary conditions and nano-particle flux at the surface of the plate. The physical configuration is 

shown in Fig. 1. Velocity gradient in the Eyring-Powell fluid conveying nano-sized particle coating flow 

is very low and hence viscous dissipation is neglected. Also, it is supposed that the nanoparticles do not 

affect the boundary layer flow problem. Here, the vertical substrate (plate) is parallel to the x -axis and 

the y -axis is perpendicular to the plate. Velocity component u is orientated along the x direction and v 

is along the y -axis direction, respectively. C∞ and T∞ designate the nanoparticle ambient concentration 

and ambient temperature. 

 

 
Fig.1. Diagram of coating flow of a vertical substrate 

 

Rosseland’s approximation [46] is utilized for radiative heat transfer, such that qr = −
4

3

σ∗ 

k∗ 
(

∂T4

∂y
) =

−
16

3

σ∗T3

k∗ 
(

∂T

∂y
), where σ ∗  is the Stefan Boltzmann constant and k ∗  is the mean absorption coefficient. 

The non-Newtonian fluids (Carreau fluid, power law fluid and Eyring-Powell fluid) have nonlinear 

relations between shear stress and shear rate. The non-Newtonian Powell-Eyring constitutive equation 

Nanofluid 

rheological coating 

radiative flux, qr 
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is a complex equation containing three parameters that are generally evaluated by fitting experimental 

flow data in rheometry [41, 45]: 

11 1
sinh

*
ij

u u

c x x
 



−   
= + 

  
         (1) 

Here  is viscosity of the fluid,  ∗, c are constant non-Newtonian fluid material properties. Further first 

term in RHS of eq. (1) (stress tensor) can be supposed as 

3

1 1 1 1 1 1
sinh , 1

6

u u u u

c x c x c x c x

−       
 −    

      
      (2) 

By deploying the Boussinesq approximation and above assumptions, the governing equations are given 

by: 

 

Mass conservation:            

                                             

               0
u v

x y

 
+ =

 
                              (3) 

Momentum equation 

     

22 2

2 3 2

1 1
'( )

* 2 *

u v u u u
u v g T T

x y c y c y y
 

   


      
+ = + − + −  

       
       (4)

 
 

Energy (heat) equation 

          

2

*. T r
p B

D qT T T T T
c u v q D

x y T y y y y
 



          
+ = − + + −    

          

    (5) 

 

Nanoparticle concentration equation 
2 2

2 2

T
B

DC C T C
u v D

x y T y y

   
+ = +

   
                   (6) 

 

Here the following notation applies:   is dynamic viscosity,  is density of the fluid, c and * are the 

Eyring-Powell parameters, g is the acceleration due to gravity, * is the non-Fourier parameter, 





=  

denotes kinematic viscosity,    stand for thermal diffusivity, cp is heat capacity, qr is the radiative flux, 

DB and DT represent the Brownian diffusion coefficient and thermophoretic diffusion coefficient of the 

species in the revised Buongiorno nanoscale model. The Buongiorno model is used to simulate nanoscale 

effects of the Eyring-Powell fluid conveying nano-sized particle. It is a non-homogeneous two 

component model (Base fluid + nanoparticles). Thus, a general nanoparticle species is considered since 
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this model is independent of shape and type of nanoparticle. It considers and focuses on the effect of 

thermophoresis and Brownian motion of nanoparticles. Further, T  and C  are temperature of the fluid 

and nanoparticle species concentration. In the Catteneo-Christov model, conductive heat flux q  

satisfies: 

. ( . ) .
q

q k T V q V q q V
t


 

+  = − +  +  −   
        (7) 

Here, k designates thermal conductivity and   represents thermal relaxation. The Fourier model can be 

deduced from the Cattaneo-Christov model (7) by considering 0 = . Now, using q
 from Eqns. (5) and 

eq. (7), the energy equation becomes:  

  

2 2 2 2
2 2

2 2 2

2

2

T
B

T T T U T V T U T V T T T T
u v u u v v u uv v

x y x x x y y x y y x yy x y

D T C T
D

T y y y

 




               
+ = − + + + + + + 
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         (8)

 

The respective boundary conditions are: 

At 0y = ,  0, ( ), ( )w

T
v u U x k h T T

y


= = − = −


, 0T

B

DC T
D

y T y

 
+ =

 
        (9) 

  As y →  , u = 0, T = T∞, C = C∞             (10) 

Introducing non-similar transformations: 

1/2 1/2

2
Re ( , ), Re ,

Re

x

x

Gry
f

x
     = = =         (11) 

Here  is a dimensionless stream function, ,  are streamwise and transverse coordinates, 

3

2x

g Tx
Gr






=  and Rex

Ux


=  are local (thermal) Grashof number and local Reynolds number, 

respectively. The parameter   also represents the local mixed convection. For forced convection, 

parameter   approaches zero near the leading edge and for natural convection,   is much larger. Here 

the following forms of wall stretching surface velocity, surface temperature and surface nanoparticle 

volume fraction are considered: 

U(x) = U0x , (x) = T0x2 , ΔC(x) = C0x2      (12) 

After introducing these dimensionless variables in the governing equations (3)-(6), the emerging non-

similar transformed equations take the following form:  

( ) ( ) ( )
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1
f f

f ff f f f f f   
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             (13) 
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The transformed boundary conditions become: 

  

(0, ) 1f  =  , (0, ) 0f  = (0, ) ( (0, ) 1)     = − , (0, ) (0, ) 0Nb Nt    + =    (16)  

 

( , ) 0f   = , ( , ) 0   = , ( , ) 0   =  as   →        (17) 

 

Here primes represent derivatives with respect to η, ε and δ denote non-Newtonian rheological material 

fluid parameters, Pr is the Prandtl number, function f (, ) is dimensionless velocity, function  (, ) 

is temperature, function  (, ) is nanoparticle species,  is thermal Biot number (convective wall 

parameter),  is the thermal relaxation parameter, Nb is Brownian motion parameter, Sc is Schmidt 

number, Nt is thermophoresis parameter, R is radiative parameter. The dimensionless numbers are 

defined as follows:  

1

c


 
= , Pr
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1/2
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k
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2 4

Re
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*

16
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3

T T

p

D T D C T
Nt Nb R

T k c

  

  




 
= = = ,  =

τ∗

ρcp
      (18) 

Having determined the dimensionless variables (𝑓, 𝜃 𝑎𝑛𝑑 𝜙), by numerical solution of the two-

parameter nonlinear problem derived by Eqns. (13)-(17), which is elaborated in due course, we can then 

evaluate engineering design quantities. These are local skin friction coefficient cf (lead to find wall shear 

stress), local Nusselt number Nu ( helps to find heat transfer rate) and Sherwood number Sh  

(nanoparticle species (mass) transfer rate) which are defined respectively with the following expressions: 

( )
2

2 ( )

( )

w
f

x
c

U x





= ,

 

( )wq x x
Nu

k T
=


  and 

( )wm x x
Sh

k C
=


     

 (19) 
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Here the following definitions apply:  

 

τw = [μ
∂u

∂y
−

1

6β∗c3 (
∂u

∂y
)

3

+
1

β∗c

∂u
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,

0

w

y

T
q k
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, 

0

w

y

C
m k
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=
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      (20) 

Furthermore, introducing the transformations from Eqn. (18), dimensionless skin friction, Nusselt 

number and Sherwood number take the form:  

( )
3

1/2
2 (0, )

Re 2( 1) (0, )
3

f

f
c f

  
 


= + −        (21) 

 

Re−1/2 N u = −θ′(0, ξ)       (22) 

 

 Re−1/2 S h = −ϕ′(0, ξ)      (23) 

3. NUMERICAL SOLUTIONS  

3.1- SPARROW-YU LOCAL NON-SIMILARITY METHOD (LNM) SOLUTION 

 

Flow problems do not necessarily possess similarity solutions. Frequently complex 

thermophysical phenomena such as mixed convection from vertical surfaces with convective boundary 

conditions generate generally non-similar parabolic boundary value problems. To deal with such non-

similar problems, Sparrow and Yu [47] introduced the robust local non-similarity method which is also 

further explained in Minkowycz et al. [48].  In this method, the terms containing  − derivatives are first 

neglected to obtain a local similarity solution; next to obtain local non-similarity solutions, the  −

derivatives are considered as another dependent function. Massoudi [49] used local non-similarity 

method to compute non-Newtonian fluid flow over the surface of wedge. Bég et al. [50] investigated 

inclined solar collector thin film boundary layer flows with local non-similarity method. Bég et al. [51] 

computed the hydromagnetic convection from a stretching plate in porous media using local non-

similarity method. Mushtaq et al. [52] implemented local non-similarity method with second level of 

truncation to study mixed convection flow with effect of radiation, benchmarking solutions with a 

Shanks series-extended perturbation method and non-similarity method. Roy and Hossain [53] computed 

the convective flow from vertical plate with variable surface temperature using local non-similarity 

method. Chamkha et al. [54] examined the nanofluid flow over a sphere suspended in a porous medium 

using local non-similarity method.   
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Local Similarity method:  

 

Local similarity method admits solutions and transforms the governing equation into system of 

coupled and nonlinear ordinary differential equation provided the non-similarity term is very small and 

may be negated. To apply local similarity method to Eqns. (13)-(17), the terms on right hand side which 

contain (.)
.






 are removed under the assumption that these  −  derivatives terms are very small which is 

valid for 1  . Hence, the system of equations becomes:  

( ) ( ) ( )
2 2

1 0f f ff f f      + − + − + =           (24) 

2 2 21
(1 ) 2 4 3 2 0

Pr
R f f f f ff ff Nb Nt                     + − + − + − − + + = 

     (25) 

1
2 0

Nt
f f

Sc Nb
      + − + =         (26) 

The associated boundary conditions: 

(0, ) 1f  =  , (0, ) 0f  = (0, ) ( (0, ) 1)     = − , (0, ) (0, ) 0Nb Nt    + =   (27)  

( , ) 0f   = , ( , ) 0   = , ( , ) 0   =   as   →      (28) 

 

Eqns. (24)-(28) can be viewed as a coupled non-linear ordinary differential boundary value problem by 

taking   as a parameter for a given Pr, Sc, Nt, Nb and ε. 

 

Local Non-Similarity Method: 

 

The solutions gained by neglecting the terms containing  -derivative of f, θ and ϕ are of undesirable 

precision. To improve the accuracy, these derivatives must be considered in the equations. The local 

non-similarity method (LNM) includes the streamwise derivative by considering these derivatives as 

another dependent function and auxiliary equations for these new functions. We consider the terms f






 , 







  

and 






 as dependent functions, so introducing the following functions: 
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f
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= = =

  
      (29) 

 

The governing Eqns. (13)-(17) are as follows: 
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( , ) 0f   = , ( , ) 0  = ,              (34) 

Additional equations for functions, P, Q, R and the associated conditions at the boundaries can be formed 

by considering the derivatives of equations (30) - (34) with respect to :  
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( , ) 0P   = , ( , ) 0Q  = , ( , ) 0R  =         (39) 

The terms P






, Q






, R






 and their higher order derivatives with regard to   are assumed to be very small 

and hence are omitted. The system of coupled equations is now considered to give more accurate results 

as compared to the local similarity system of equations in which streamwise derivative are neglected. 

The local non-similarity method comparison with HAM is given in Table 1 and found outstanding 

accordance is obtained. Confidence in both methods is therefore justifiably high. 

3.2 SOLUTION BY HAM 

 

To further validate the LNM Solutions, an alternative technique has been deployed to solve the 

transformed equations defined by Eqns. (13)-(17). The homotopy analysis method (HAM), a 

significantly accurate and robust method initiated by Liao [54], is selected here to solve the nonlinear 

( , ) 0  =
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system of equations. HAM is a widely used method which overcomes the restrictions of traditional 

perturbation methods. HAM has been widely implemented to solve many boundary value problems in 

modern nonlinear fluid dynamics and nanofluid mechanics including Casson magnetic bio-convectional 

nanofluid flow over unsteady stretching surface [56], peristaltic biomechanical pumping [57], non-

Newtonian  oscillatory flow [58], electrically-conducting mixed convection nanofluid flow from vertical 

cylinder under static radial magnetic field [59], reactive viscoelastic magneto-convection from an 

exponential stretching surface [60], transient nanofluid flow from a rotating sphere, hydromagnetic 

micropolar convection in a thermal duct with entropy generation [62], thermal polymeric micropolar 

Falkner-Skan coating flows with viscous heating [63] and most recently unsteady hydromagnetic 

pumping of ionized gas in revolving MHD generator [64]. HAM has consistently demonstrated excellent 

flexibility, accuracy and convergence in all these areas. The HAM solution for the non-similar Eqns. 

(13) - (15) with boundary conditions (16) and (17) can be obtained using HAM by selecting favourable 

initial approximations, auxiliary parameters ( 1h , 2h  and 3h ), linear operators ( 1( )fL , 2 ( )L  and 
3( )L

), non-linear operators ( 1( , , )f  N ,
2( , , )f  N

 
and 

3( , , )f  N ) and zeroth order deformation 

equations. The chosen initial guesses are: 

               0 1f e −= −           (40 a) 

       0
1

e 




−=
+

             (40 b) 

0
1

Nt
e

Nb






−= −
+

             (40 c) 

The linear operators are taken as 

 
1( )f f f = −L         (41 a) 

             2( )  = −L            (41 b) 

 3( )  = −L             (41 c) 

satisfying properties 

31 1 2( ) 0A A e A e −+ + =L         (42 a) 

52 4( ) 0A e A e −+ =L          (42 b) 

73 6( ) 0A e A e −+ =L          (42 c) 

Here, 'iA s  (1 7i 
 
) are constants. Suppose 0 1p   is Liao embedding parameter. 1 2 3,h h and h  are 

control parameters., then zeroth-order deformation equations can be formed as: 

10 11(1 ) [ ( , ; ) ( , )]p f p f ph   − − =L N           (43 a) 
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20 22(1 ) [ ( , ; ) ( , )]p p ph     − − =L N           (43 b) 

30 33(1 ) [ ( , ; ) ( , )]p p ph     − − =L N           (43 c) 

Where 1( , , )f  N ,
2( , , )f  N

 
and 

3( , , )f  N  are the nonlinear operators formed from non-linear 

Eqns. (13)-(15). The associated conditions:   

   0
( , ; ) 1f p


 

→
 = ,

0
( , ; ) 0f p


 

→
=  and ( , ; ) 0f p


 

→
 =         (44 a) 

   0 0
( , ; ) ( (0, ; ) 1)p p

 
     

→ →
 = − , ( , ; ) 0p


  

→
=           (44 b)   

0 0
( , ; ) ( , ; ) 0Nb p Nt p

 
     

→ →
 + = , ( , ; ) 0p  =          (44 c) 

Now constructing the mth order deformation equations by considering auxiliary functions  

1 2 3, ,( ) ( ) ( ) 1,     = = =H H H  

11 1 11[ ( , ) ( ))] ,(,m

f

m m mRf f h      − −− =L H      (45 a) 

12 2 2[ ( , ) ( , ))] ,(mm m h R        −− =L H      (45 b) 

13 1 33[ ( , ) ( ), )] ( ,m mm m h R         − −− =L H      (45 c) 

 

Where 1m =  if 1m   and 0m =  if 1m  . Also, ,( )f

mR   , ( ),mR     and ( ),mR     are residual 

functions. Validation of present results with the earlier solutions of Mushtaq et al. [52] for both HAM 

and LNM are documented in Table 1.  

 

Table 1. Comparing current output with Mushtaq et al. [52] of 50th order of approximations of (0,0)−  for  

γ = 1, Pr 0.7= , ε = 1, δ = 0.2, ξ = 0, 1 2 1.h h= = −  

 (0,0)−   

Pr  Mushtaq et al. [52] HAM Results  LNM Results 

1 1.3349 1.33333 1.33345  

5 3.2927 3.31651 3.31669 

10 4.7742 4.78967 4.78976 

 

3.2-1 CONVERGENCE OF HAM 

 

The mth order deformation equations corresponding to Eq. (13) - (17) is formulated using the 

above initial approximation f0, θ0 and ϕ0,  linear ℒ1(f), ℒ2(θ) and ℒ3(θ) operators, nonlinear operators 

𝒩1, 𝒩2 
 
and 𝒩3 and appropriate values for the auxiliary parameters 

1 2 3,h h and h  are −0.2 < h1 < 0.8, 

−0.2 < ℎ2 < 1.25 and −0.2 < ℎ3 < 1.25. This range of auxiliary parameters is obtained using 

symbolic software MATHEMATICA and the variation between 𝑓′′(0, ξ) , θ′(0, ξ) and ϕ′(0, ξ) vs. 

1 2 3, ,h h h= is shown in Fig. 2. Finally, solutions (49 a) – (49 c) are obtained. Fig. 3 explores how 

residual error is varying with the order of approximation. It can be seen that the residual error is reduced 
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to less than 910−  at the 20th order of the approximation. Thus, increasing approximation improves the 

accuracy of the series solution. The following set of parameters are used for the present computations: 

𝛾 = 0.8, Nt = Nb = 0.1, Sc = 1, δ∗ = 2, ε = 0.1, Pr = 1, R = 0.5 ξ = 0.5, β = 0.1,
 

1 2 3 0.7h h h= = = −  

 

 
Fig.2. h-curve 

 

 
Fig 3. Residual error vs order of approximation (m) 

 

Table 2 shows the convergence of homotopy series solutions. The convergence test has been 

conducted up to the 20th order of approximation (m = 20) and sufficient convergence is attained after 

the 12th order of approximation. Thus, 12m =  is considered throughout the computation process of 

this study, in all subsequent figures.  
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Table 2. Convergence of HAM for various orders of approximation for ε = 0.1, δ∗ = 1, ξ = 0.5, Pr = 1, β =

0.1, γ = 0.8, Nt = Nb = 0.1, Sc = 1
 1 2 3 0.7h h h= = −  

 

m (order) (0,0)f −  (0,0)−  (0,0)  

2 0.6605 0.48652 0.486517 

5 0.66762 0.48663 0.486628 

8 0.66737 0.48658 0.486576 

10 0.66725 0.48656 0.48656 

12 0.66726 0.48656 0.48656 

15 0.66726 0.48656 0.48656 

20 0.66726 0.48656 0.48656 
 

4. HAM GRAPHICAL RESULTS AND ANALYSIS 

 

HAM computations are visualized in Figs 3-12 for the influence of rheological parameters 

(Eyring-Powell parameters), thermophysical parameters (Prandtl number, radiation, thermal relaxation 

parameter) and Buongiorno modified nanoscale parameters on velocity, nanoparticle volume fraction 

and temperature. Further solutions for the local skin friction, −𝑓′′(ξ, 0), Nusselt number, θ′(ξ, 0) and 

nanoparticle species Sherwood number, ϕ′(ξ, 0) are also tabulated for all parameters. 

Fig. 3(a)- Fig. 3(c) elaborate the impact of mixed convection parameter on the velocity (Fig. 

3(a)), temperature (Fig. 3(b)) and nanoparticle concentration (Fig. 3(c)). The thermal buoyancy force is 

clearly accentuated with increment in  ( local Grashof number Grx =
gβΔTx3

υ2   and 2Re

x

x

Gr
 =  ). This 

mobilizes more intense free convection currents which accelerates the boundary layer flow. The 

enhancement in momentum diffusion rate exceeds the thermal and nanoparticle species diffusion rates; 

exacerbating the molecular motion of the fluid particles leads to less interaction and less collision 

between nanoparticles and fluid particles and thus the temperature and nanoparticle concentration 

decreases. Momentum boundary layer thickness is therefore decreased whereas nanoparticle species and 

thermal boundary layer thicknesses are raised. The coating dynamics is therefore significantly impacted 

by stronger thermal buoyancy effect. Thus, it can be analysed that the velocity increases while 

temperature and nanoparticle volume fraction suppressed as  rises. Also Fig. 3(a)-Fig. 3(c) shows the 

relative response of non-Newtonian Powell-Eyring fluid conveying nano-sized particles and Newtonian 

fluid conveying nano-sized particle. Velocity of pseudoplastic Powell-Eyring fluid clearly exceeds that 

of the Newtonian fluid which confirms that shear thinning behavior of Powell-Eyring fluid encourages 

flow acceleration in the regime of boundary layer. Further, the nanoparticle concentration and 

temperature for Powell-Eyring fluid conveying nano-sized particle is smaller as compared to Newtonian 
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fluid conveying nano-sized particle, indicating that pseudoplasticity is an effective control mechanism 

for heat regulation and nanoparticle diffusion in the coating. Of course, the dynamics is confined to 

laminar flow which is desirable in coating processes since enhanced regulation of the deposition on the 

substrate is possible only with laminar growth of the boundary layer from the leading edge. The 

implication is that with more realistic rheological models, a more precise prediction of characteristic of 

heat, momentum and nanoparticle diffusion is achieved. The conventional Newtonian model deployed 

in many previous studies e. g. Benkreira et al. [65], Coyle [66], Pearson [67], Thompson [68] and Gaskell 

et al. [69] is clearly unrealistic for real polymer flows. These studies ignore the modification in flow 

behaviour due to actual rheological properties of industrial polymers. The present computations, in 

consistency with other recent studies e. g. Kumaran et al. [45] indicate that Newtonian fluids under-

predict flow velocities which in turn leads to incorrect estimation in associated transport characteristics 

(thermal and nanoparticles). 

 
Fig.3 (a) Impact of   on velocity for Newtonian and Powell-Eyring Fluid 

 
Fig.3 (b) Influence of  on temperature for Newtonian and Powell-Eyring Fluid 
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Fig.3 (c) Effect of  on nanoparticle concentration for Powell-Eyring and Newtonian fluid 

 

 
Fig.4 (a) Impact of ε  on velocity  

 
Fig.4 (b) Effect of ε on temperature regime 
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Fig.4 (c) ε influencing nanoparticle concentration  

 

 
Fig.5 (a) Prandtl number (Pr ) influencing temperature for Cattaneo-Christov flux (CCF) and Fourier’s 

model 
 

 
Fig.5 (b) Influence of  Pr on nanoparticle volume fraction for CCF model and Fourier’s model 
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Fig.6 (a) Radiation R  effecting temperature profile for Fourier’s and CCF model  

 
Fig.6 (b) Effect of radiation R on temperature profile for Powell-Eyring and Newtonian fluid 

 
Fig.7 (a) Influence of thermal Biot number (  ) on temperature for Cattaneo-Christov model and 

Fourier’s model  
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Fig.7 (b) Impact of  on temperature for CCF model and Fourier’s model  

 
Fig.8 (a) Effect of  on temperature for Powell-Eyring and Newtonian fluid  

 
Fig.8 (b) Impact of  on nanoparticle concentration profile for Powell-Eyring fluid and Newtonian 

fluid  
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Fig.9 (a) Influence of thermal relaxation β on temperature field for radiation  R  

 

 
Fig.9 (b) Influence of βon nanoparticle volume fraction for radiation  R  

            
Fig.10 Impact of ε on skin friction coefficient against mixed convection parameter 
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Fig.11 Impact of  Pr on Re−1/2 N u against   

 

Fig.12 (a) Impact of Nt  on Re−1/2 Sh against   

 

Fig.12 (b) Impact of Nb  on local Re−1/2 Sh against   
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Fig. 4(a) – Fig. 4(c) describes the impact of Eyring-Powell rheological parameter (ε) on velocity, 

nanoparticle fraction and temperature for various values of mixed convection parameter( ). For both 

forced ( =0) and progressively stronger natural convection (increment in  ), velocity of the fluid 

increases while temperature and nanoparticle volume concentration decrease. ε = 0 corresponds to 

Newtonian fluid conveying nano-sized particle which clearly under-predicts velocity magnitudes. 

Stronger pseudoplastic rheology of the fluid conveying nano-sized particle clearly reduces momentum 

boundary layer thickness. Greater values of 1

c


 
=  imply a depletion in coating fluid viscosity which 

reduces the viscous resistance resulting in flow acceleration. The momentum boundary layer thickness 

for Eyring-Powell fluid is consistently lower than Newtonian fluid. On contrary, the nanoparticle 

concentration and thermal boundary layer thicknesses are suppressed with elevation in Eyring-Powell 

fluid parameter. Fig. 4(a) –Fig. 4(c) and Fig. 3(a) - Fig. 3(c) also shows the ascendancy of mixed 

convection parameter and a similar response is observed.  

Fig. 5(a) and Fig. 5(b) illustrate the influence of Prandtl number  (Pr = 2, 7,10) on temperature 

and nanoparticle volume fraction for both the Cattaneo-Christov flux (CCF) model and Fourier’s model 

for heat flux. A rise in Prandtl number suppresses the temperature and nanoparticle concentration since 

greater Prandtl number is correlated with smaller thermal diffusivity. Temperature of fluid conveying 

nano-sized particle coating decreases. Higher Prandtl numbers are characteristic of polymeric coatings 

which feature insulation properties. It is also evident that Fourier’s model (parabolic) computes higher 

temperatures as compared with the Cattaneo-Christov model (hyperbolic). Therefore, conventional 

thermal polymer coating models ignoring the finite thermal wave speed in real materials over-predict 

the temperatures. Thermal relaxation parameter can be considered in order to control the heat transfer in 

the coating along the vertical plate. Thus, the cooling and heating of coating boundary layer can be 

performed by increasing and decreasing Pr respectively. Similarly, this parameter can also be helpful in 

reducing the distribution of nanoparticle on the surface of the plate.  

Fig. 6(a) and Fig. 6(b) explain the impact of thermal radiation R  on temperature and nanoparticle 

volume fraction profiles corresponding to Fourier and non-Fourier Cattaneo-Christov model, 

respectively. R∗ =
16σ∗T∞

3

3k∗αρcp
 features in the thermal diffusion term in the heat conservation (i.e., 

1

𝑃𝑟
(1 +

𝑅)𝜃′′). The optical and radiative properties of fluid conveying nano-sized particle differ from the thermal 

properties to either the nanoparticles or the base fluid. Appearance of radiative heat flux dynamize the 

nanoliquid boundary layer and remarkably increases the magnitudes of temperature because this 

parameter build ups the thermal diffusion term based on both the flux models (Cattaneo-Christov and 

Fourier’s conduction model). Bég et al. [70] have elaborated that the radiative absorption and thermal 
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conductivity elevates with temperature in aqueous nanofluid and demotes in non-aqueous nanofluid. 

Therefor thermal radiation is anticipated as crucial in the coating deposition with nano-polymer. 

Rosseland model [71] is very realistic approach in multi-physics dynamics and is considerately accurate 

for large optical thickness affiliated with nanofluids. The present output is in full agreement with 

Viskanta [72] and Hakeen [73] when the radiative effect is neglected (R→ 0) in processing of materials 

with high temperature. Thus, the output under-predicts definite temperatures in the coating material. The 

Rosseland model of diffusion flux is easy which works nicely for dense media (nanofluids) and 

effectively investigate the impact of radiative heat transfer in the system of coating materials processing. 

This dispenses a nice stage for extension of present model to P1 differential flux model and surface to 

surface (STS) radiative flux model [74]. It is further apparent that increasing radiative parameter R, 

produces an enhancement in nanoparticle concentration. This is also associated with the prescribed 

convective boundary condition and concentration of nanoparticle on the boundary (wall). Furthermore, 

it is evident that Powell- Eyring fluid attain significantly lower temperature when compared with 

Newtonian fluid i. e. substantial cooling of the coating is achieved with rheological properties and this 

is beneficial to practical operations. 

Fig. 7(a) and Fig. 7(b) illustrate the impact of thermal Biot number (  ) on temperature and 

nanoparticle concentration profiles again for Fourier and Cattaneo-Christov flux models. The non-

Fourier model produces lower nanoparticle concentrations and temperatures than classical Fourier 

model. Thermal and species boundary layer thickness thickness are therefore decreased for the non-

Fourier model. For both Powell-Eyring fluid and Newtonian, the temperature is increased with rise in 


 
and thus is increasing function of Biot number. For both the flux models, there is also a significant 

increment in temperature with larger value of  at the boundary surface. Also, in the absence of Biot 

number effect, the temperature reduces which stipulates that the temperature is under-predicated which 

can be commentative in polymeric coatings [75]. 

Fig. 8(a) and Fig. 8(b) explores the influence of Biot number   on the thermal and nanoparticle 

concentrations for Newtonian and Powell-Eyring fluid. Regimes with less Biot numbers (  ≪1) are 

thermally simple and greater value of  Biot numbers (  ≫1) represents complex regimes due to 

uniformity and non-uniformity of temperature fields respectively. Higher value of   results in a boost 

in temperature and nanoparticle concentration. Further, temperature and nanoparticle concentration due 

to the flow of Newtonian fluid is more as compared to that of Eyring-Powell fluid. For both Powell-

Eyring and Newtonian fluid, thermal and concentration boundary layer are enhanced with rise in Biot 

number, indicating that the convective wall condition is independent of nanoliquid rheology. Thus, with 
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increasing impact of the convective condition at boundary, the magnitudes of temperature and 

nanoparticle concentrations are elevated. 

Fig. 9(a) and Fig. 9(b) explore the impact of thermal relaxation parameter on tempearature and 

nanoparticle concentration in presence or absence of themal radiation (i. e. R=0, indicates the absence 

of radiation). It is spotted here that temperature without considering radiation is remarkably less than 

with radiative flux present. A similar pattern is observed for nanoparticle volume fraction i. e. 

nanoparticle diffusion is enhanced with energization of the coating regime via stronger radiative heat 

transfer. However, with increasing thermal relaxation parameter leads to depletion in nanoparticle 

concentration and temperature. Non-Fourier hyperbolic heat conduction produces a cooling in the 

coating and inhibits nanoparticle migration in the boundary layer. Fourier parabolic heat conduction 

produces much higher temperatures and nanoparticle concentrations. 

Fig. 10 – Fig. 12 visualize the impact of parameters of Eyring-Powell fluid (ε), Prandtl number 

(Pr), thermophoresis (Nt) and Brownian motion (Nb) on skin coefficient friction, Nusselt and Sherwood 

number versus  . Skin friction coefficient reduces with increment in Eyring-Powell fluid (ε) against 

mixed convection parameter. Nusselt number (corresponds Rate of heat transfer) is however enhanced 

with   and a rise in Prandtl number. Sherwood number i. e. wall rate of mass transfer against parameter

  is suppressed with enlarging values of thermophoresis parameter (nanoparticle concentrations in the 

bulk fluid are increased) and enhanced more with rise in value of Brownian motion parameter 

(nanoparticle concentrations in the bulk fluid are reduced). It is quite observed that enhancing the 

Brownian motion parameter results in reduction in the nanoparticle volume fraction (percentage of nano 

– sized particle in the base fluid). Brownian motion parameter Nb appears in a coupled and species- 

thermal diffusion part in the Buongiorno model (eqn. (14)). The species diffusion term is diminished 

when the coupled diffusion term possesses larger value. But the known restriction in Buongiorno model 

is that the actual types of nano-sized particles (CNTs, metallic oxides, etc.) cannot be simulated because 

it does not make room for the properties of nanoparticles. This limitation can be attainable by Tiwari-

Das model (as explained by Bég et al. [71]) with further limitation that this model eliminates the 

concentration equation and does not emphasize a mechanism for nanoparticle diffusion. This dilemma 

is currently under disquisition. Nt replicates the effects of thermophoretic body force. Rise in 

thermophoretic force enhances the motion of nanoparticles away from the wall and increase the 

concentration of nanoparticles in the boundary layer regime which results in decrease in rate of mass 

transfer (Sherwood Number).  
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Table 3. Effect of various parameters on the (0, )f − , '(0, )   and '(0, )   

 

δ∗ ε ξ Pr β R  γ Nt Nb (0, )f −  '(0, )   '(0, )   

0         0.66387 0.48666 0.486658 

0.5         0.68233 0.48619 0.486187 

1         0.70703 0.48559 0.48559 

2         0.80083 0.48396 0.48396 

 0        0.91607 0.47461 0.474607 

 0.5        0.76292 0.48201 0.482011 

 1        0.66726 0.48656 0.486564 

 2        0.57161 0.49175 0.491752 

 1 0       0.71137 0.48472 0.484721 

  1       0.62496 0.48842 0.488423 

  2       0.544 0.49664 0.496638 

  0.5 1      0.66726 0.48656 0.486564 

   2      0.68553 0.55723 0.557229 

   5      0.69843 0.63155 0.63155 

   1 0     0.66173 0.46812 0.468116 

    0.2     0.6718 0.50226 0.50226 

    0.5     0.6807 0.53896 0.538957 

    0.1 0    0.67904 0.52926 0.529259 

     0.5    0.66726 0.48656 0.486564 

     1    0.65677 0.45427 0.454271 

     0.5 0.1   0.70283 0.0925 0.092505 

      0.5   0.67888 0.35627 0.356268 

      1   0.66127 0.55421 0.554209 

      0.8 0.1  0.66726 0.48656 0.486564 

       0.3  0.66701 0.48583 1.457496 

       0.5  0.66676 0.4851 2.425492 

        0.1 0.66726 0.48656 0.486564 

        0.3 0.66726 0.48656 0.162188 

        0.5 0.66725 0.48656 0.097313 
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Finally values for wall gradient functions, (0, )f − , '(0, )   and '(0, )   for all thermophysical 

parameters, are displayed in Table 3. The condition required for distribution of nanoparticle volume 

fraction at the wall of the vertical sheet which is enabled via the revised Buongiorno model is 

appropriately satisfied (i. e. Nbϕ′(0, ξ) + Ntθ′(0, ξ) = 0). The skin coefficient friction can be easily 

derived as we have obtained the value of (0, )f  . Further, it is observed that (0, )f −  varies linearly 

grows with δ∗, Pr  and β whereas it shrinks with enhancing ε, ξ, R and γ. Additionally, the Nusselt 

number is enhanced by Biot number, Prandtl number and reduces as the radiation parameter increases 

since the fluid conveying nano-sized particle coating is heated with stronger radiative flux and there is a 

suppression in heat transfer away from the bulk fluid to the wall (plate). Additionally, an increment in 

Brownian motion manifests in a reduction in rate of nanoparticle mass transfer (Sherwood number) 

whereas elevation in thermophoresis parameter produces the opposite effect i.e. an increase in Sherwood 

number.   

5.CONCLUSIONS 

 

The current study scrutinizes steady incompressible convective boundary layer flow of kinetic 

theory-based Eyring-Powell fluid conveying nano-sized particle from a vertical plane surface 

considering thermal radiation effects. The vertical plate is prescribed a convective boundary condition 

and a modified distribution of nanoparticles fraction over the surface. The Cattaneo-Christov non-

Fourier model is adopted which incorporates thermal relaxation effects for finite wave hyperbolic heat 

waves. The local non-similarity method and the Liao Homotopy Analysis Method (HAM) are deployed 

to evaluate the transformed dimensionless two-parameter boundary layer equations with associated wall 

and free stream conditions. Excellent collaboration of the converged results for both methods are 

achieved with the existing results. Validation of special cases of the general model is also included with 

published literature. The variation of heat transfer due to Cattaneo-Christov and Fourier’s model is 

investigated and analysed. The main outcomes of the study are: 

• Flow of Eyring-Powell fluid conveying nano-sized particle achieves higher velocities than the 

Newtonian fluid which is attributable to the pseudoplasticity i. e. shear thinning behaviour.  

• Thermal relaxation in the non-Fourier model (hyperbolic) enables the heat transfer process to occur 

with greater time as compared to the heat transfer by classical Fourier’s law (parabolic). 

• By raising thermal buoyancy effect, molecular motion of the fluid particles is exacerbated whereas 

less interaction and less collision between nanoparticles and fluid particles are caused.  Thermal and 
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nanoparticle boundary layer thicknesses are reduced while momentum boundary layer thickness is 

reduced (flow acceleration) with enhancement in mixed convection parameter. 

• Skin coefficient friction exhibits a linear increase with Prandtl number and thermal relaxation 

(Catteano-Christov) parameter δ∗, Pr and β  whereas it is decreasing function of ε,ξ, R and γ. Also, 

the Nusselt number is enhanced with elevation in Biot number, Prandtl number and decreases as the 

value of radiation parameter increases.  

• Enhancing Brownian motion induces a reduction in mass transfer rates of nanoparticles i. e. 

Sherwood number while an increment in thermophoresis parameter results in an increment in 

Sherwood number. 

 

 

The current study has considered steady state fluid conveying nano-sized particle coating flow and has 

ignored chemical reactions e.g. homogenous and heterogenous chemical reactions, which are also 

important in nanocoating manufacturing processes. Future investigations may address time-dependent 

effects, chemical reactions and furthermore explore alternative non-Newtonian models e.g. micropolar 

viscoelastic rheological formulations [76], which are also of interest in modelling different 

characteristics of smart coating transport phenomena. The outputs of these studies will be imminently 

communicated.  

 

 

Nomenclature  

iA   Arbitrary Constants ( 1,2,...,7i = ) 

pc   Heat capacity  

f
C   Skin friction 

B
D   Brownian diffusion coefficient of the species 

T
D   Thermophoretic diffusion coefficient of the species 

f     Non-dimensional velocity  

( , )f    Dimensionless velocity function 

0 ( , )f    ,  Initial guess of ( , )F    

* ( , )mf    Solution of mth order deformation equation for ( , )f    

x
Gr  Local Grashof number 

iH  Auxiliary functions in HAM ( 1,2,3i = ) 

ih  Control parameter for ,F    and ( 1,2,3i = ) 

k  Thermal conductivity of the fluid  

*k   Mean absorption coefficient 

iL   Auxiliary linear operator ( 1,2,3i = ) 
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wm   Rate of mass transfer 

Nb    Brownian motion parameter 

Nt    thermophoresis parameter 

Nu    Local Nusselt number 

iN   Auxiliary non-linear operator ( 1,2,3i = ) 

( , )P    Auxiliary function of ( , )f   in terms of derivative of ( , )f   w.r.t.   
p    Embedding parameter 

Pr     Prandtl number 

rq    Radiative flux 

( , )Q    Auxiliary function of ( , )   in terms of derivative of ( , )   w.r.t.   
*wq   Rate of heat transfer 

( , )R    Auxiliary function of ( , )   in terms of derivative of ( , )   w.r.t.   

Rex   Local Reynolds number 

R   Radiation parameter 

Sc   Schmidt number 

Sh   Sherwood number 

T   Fluid temperature 

T   Ambient fluid (free stream) 

u     Translational velocity along the x -direction 

v   Translational velocity along the y-direction 
,x y  Coordinate axes  

 

Greek Symbols 
   Thermal diffusivity 

   Thermal relaxation parameter 

   Biot number 

,   Non-Newtonian fluid parameters  

    Density 

    Dimensionless stream function 

( , )    Dimensionless temperature function  

0 ( , )    Initial guess of ( , )    

* ( , )m    Solution of mth order deformation equation for ( , )    

( , )    Dimensionless concentration function  

0 ( , )    Initial guess of ( , )    

* ( , )m    Solution of mth order deformation equation for ( , )    

  Pseudo-similarity coordinate in the y-direction 

   dynamic viscosity 

x  Local dimensional wall shear stress 

*  Stefan Boltzmann constant 

,   Streamwise and transverse coordinates 
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Subscripts 
w    Wall conditions 

    Ambient condition 

 

Superscripts 

'   Prime denotes the derivative with respect to η 
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