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ABSTRACT: 

As a model for electroconductive nanomaterials processing, the present article examines incompressible mixed 

convection nanofluid flow with convective heat transport from a stretching sheet under the impact of Joule heating 

and radiative heat flux. The transformed nonlinear boundary value problem is solved with a robust Chebyshev 

collocation technique. Validation is conducted with earlier published results. Nanoparticle concentrations are 

suppressed with increasing chemical reaction parameter and the effect is strongest for copper-water nanofluid and 

weakest for TiO2 water nanofluid. Increasing Biot number boosts the temperatures for copper and Al2O3 but 

reduces it for TiO2 nanoparticles. Increasing heat generation boosts temperatures strongly for Al2O3 and TiO2 

nanoparticles but weakly for copper nanoparticles. Greater thermophoresis parameter strongly boosts 

temperatures but suppresses nanoparticle concentrations. 
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1. INTRODUCTION  

In recent years a growing trend has emerged in field-responsive “smart” polymeric materials which exhibit 

multiple levels of intelligence and can be tuned to respond to different stimuli in the field. These complex multi-

functional materials are known as electro/magneto-active polymers (E/MAPs) [1] and are polymer-based 

composites which adapt their behaviour to either electrical or magnetic fields with large deformation or tunable 

mechanical properties. They generally comprise a soft polymer matrix with a filler of magnetic particles. Many 

interesting studies of such materials have been reported including [2] on co-block polymer arrangement and 

magnetic anisotropy. Other examples of these types of materials include electromagnetic shape memory polymers 

(for soft robotic and medical coating applications in which the matrix softens via magnetic inductive heating) [3], 

integrated multifunctional shape memory electro-polymers [4-7], ferroelectric polymers [8], electromagnetic 

smart hydrogels [9] and electro-active programmable polymers [10]. The strongly rheological nature of these 

materials requires advanced constitutive non-Newtonian models for their accurate simulations [11]. 

Viscoelasticity is a key characteristic of such smart materials and many models are available for simulating this 

type of behaviour which features both viscous and elastic effects. These include the Oldroyd-B model, PPT model, 

FENE P model etc. [12] which allow a robust framework for capturing different polymeric features such as stress 

relaxation, retardation, stretching, molecular re-orientation etc. Other models for rheological simulation include 

the Ostwald-De Waele model (shear thinning/thickening) [13], Eringen micromorphic family of model (which 

allow particle angular momentum i. e. spin to be captured) [14] and Walters-B short memory fluid model [15]. 

The multi-physical nature of smart electromagnetic polymers also invokes complex magnetohydrodynamic 

(MHD) effects. These require models that analyze the interaction of applied magnetic fields (or electrical fields 

in electrohydrodynamic) with viscous flows. MHD [16] arises in many important coating applications where smart 

functional materials can offer significant advantages e. g. corrosion control in lead-lithium interfacial flows in 

nuclear reactors [17], deposition rate regulation in Chromium nitride coatings [18], nonintrusive control of liquid 

metal flows in commercial steel and aluminium casting and refining operations [19, 20]. Magneto-viscoelastic 

coating flow models have in particular emerged as a key area of recent activity in smart electromagnetic 

rheological materials analysis.  Many interesting theoretical and computational studies of coating flows have been 

reported in this regard featuring a wide spectrum of non-Newtonian models. Although magnetohydrodynamic 

body forces is usually of a linear nature, when magnetic induction is neglected, the nonlinear nature of non-

Newtonian terms and convective transport necessitates the use of numerical methods to accommodate magnetic 

functional polymer flows. Khan et al. [21] used the Sisko viscoelastic model and Liao homotopy analysis method 

(HAM) to study magnetic rheological polymer flow from a radially stretching sheet over a solid undeformable 

substrate. Gaffar et al.  [22] used Keller’s finite difference box method to simulate the steady state two-

dimensional boundary layer Falkner-Skan coating flow of Eyring-Powell two-parameter rheological functional 

polymer from a non-isothermal two-dimensional geometry with convective wall heating. Other non-Newtonian 

hydromagnetic coating smart material flow simulations (either external or internal) have featured the tangent 

hyperbolic model [23], single and two-phase (dusty) Jeffrey’s viscoelastic models [24-26], third order Reiner 

Rivlin differential model [27], Johnson-Segalman non-affine model [28], Carreau ferromagnetic model [29], 

viscoelastic micropolar model [30], micromorphic models [31-32]. An alternative model is the upper-convected 

Maxwell (UCM) viscoelastic fluid which quite accurately describes fluid relaxation time characteristics and also 

accommodates the shear-dependent viscosity. It is particularly suitable for quantifying fluid elasticity in 



3 
 

incompressible boundary layer polymeric flows. Renardy [33] provided a matched asymptotic analysis of UCM 

viscoelastic flow in a re-entrant corner, deriving comprehensive similarity solutions and with numerical 

integration demonstrated that the matched solution satisfies the equations of motion in both the core and wall 

region. More recently Zhang et al. [34] presented homotopy solutions for transient magneto-convective boundary 

layer flow of Maxwell fluids with wall slip, suction and heat generation/absorption effects. Bhatti et al. [35] used 

a successive Taylor series linearization technique and MATLAB quadrature to compute the effects of radiative 

flux and non-Fourier thermal relaxation on hydromagnetic Maxwell polymer coating flow on a stretching 

horizontal substrate. Further studies of magnetized Maxwell polymer flows include Hayat et al. [36] (on Homann 

plane stagnation flow), Motsa et al. [37] (on wall suction effects in Sakiadis flow) and Mukhopadhyay [38] (on 

time-dependent Maxwell stretching wall flow in Darcian porous media with radiative flux).  

A significant development in 21st century engineering has been the emergence of nanomaterials. Engineers are 

increasingly designing systems at the nanoscale and important progress has been made in nanotube-embedded 

gels, nano-lubricants, electro-conductive nano-polymers etc. An important sub-group of liquid nanomaterials is 

nanofluids. Introduced in the 1990s by Choi 1995 [39], these complex fluids were developed primarily to achieve 

substantial improvements in thermal enhancement. They are synthesized by doping conventional working fluids 

e. g. water, polymers, ethylene glycol etc., with either metallic or carbon-based nanoparticles with average particle 

sizes below 100 nm. The resulting colloidal suspension achieves superior thermal conductivity, heat capacity and 

viscosity properties compared with macroscopic fluids. Applications of nanofluids include marine lubricants, 

smart functional polymer coatings, jet engine and automotive cooling systems, biomedical pharmacodynamics 

(where targeted drug delivery can be achieved via precision engineered nanoparticles introduced into the blood 

stream), direct absorber solar collectors and geotechnical remediation. Computational nanofluid mechanics has 

also received significant attention in the past decade. A particularly popular formulation has been the Buongiorno  

[40] two-component nanofluid model which emphasizes Brownian dynamics and thermophoretic body force, the 

latter driving nanoparticles under a thermal gradient. However, while this model allows for the inclusion of a 

species diffusion equation for nanoparticles, it does not permit the analysis of actual nanomaterials e. g. copper, 

zinc, diamond etc. The Tiwari-Das nanoscale model is appropriate for this. When both models are combined (as 

in the current study), both nanoparticle material and concentration distributions can be studied. The presence of 

nanoparticles in base fluids has been widely demonstrated to achieve thermal conductivity enhancement. 

However, it also influences the rheology of nanofluid suspensions. Experimental confirmation of viscoelastic non-

Newtonian behavior has been documented by Gonçalves et al. [41]. Hojjat et al. [42] identified pseudoplastic 

(shear thinning) behavior in γ-Al2O3, TiO2 and CuO nanoparticles dispersed in a 0.5 wt.%. aqueous solution of 

carboxymethyl cellulose (CMC) base fluid. Further investigations have shown strong rheological properties in for 

example, graphite/oil nanofluids [43] and copper oxide/lubricant nanofluids [44] (with shear-thinning and 

aggregation observed under a wide range of conditions). In parallel with these laboratory studies, a number of 

mathematical and numerical simulations of non-Newtonian nanofluid polymer coating flows have been reported. 

Many numerical schemes have been implemented in these studies to solve the complex differential equation 

systems featured in nanoscale magnetic polymer coating transport phenomena. For example, Kumar et al. [45] 

used the Stokes polar couple stress model and Tiwari–Das nanoscale model with MATLAB quadrature to compute 

the transient dissipative magnetic copper–water and aluminium oxide–water nanopolymer boundary layer flow 

from a stretching sheet. Elgazery [46] derived Chebyshev pseudospectral (CPS) method numerical solutions for 
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Casson viscoplastic non-Newtonian magnetohydrodynamic nanofluid flow with gold and alumina nanoparticles 

through a non-Darcian porous medium. Mehmood et al. [47] deployed the Reynolds exponential viscosity model 

and Buongiorno nanoscale model to study the non-orthogonal stagnation flow of a nanopolymer coating with 

thermal jump and radiative flux conditions. Other rheological nanofluid simulation studies include Rana et al. [48] 

(variational finite element analysis of second order Reiner-Rivlin dissipative nano-polymer extrusion), Rao et al. 

[49] (magnetized Casson viscoplastic nanofluid coating heat transfer), Ali et al. [50] (Cross rheological nano-

doped thermosolutal blood flow), Nagendra et al. [51] (magnetized Williamson viscoelastic axisymmetric coating 

flow of a conical body), Khan et al. [52] ( Oldroyd-B viscoelastic nanofluid stretching flow and heat transfer). 

Maxwell viscoelastic nanofluid magnetohydrodynamic flow was considered by Ramesh et al. [53] using the 

Tiwari-Das volume fraction model. Mustafa et al. [54] have investigated Maxwell viscoelastic flow from an 

exponentially stretching sheet with nonlinear convection. Hayat et al. [55] have investigated Burgers’ fluid in 

stagnation point flow with Newtonian heating. 

In the above studies Joule heating i. e. Ohmic dissipation effects were neglected. These can exert a significant 

influence on velocity and temperature fields in magnetic nano-polymer flows. In particular they can modify the 

dissipation of mechanical energy via heating in real flows. Several studies have described Joule dissipation in 

addition to conventional viscous heating (common in polymeric thermal processing). Shamshuddin et al. [56] 

used a variational parameter method to compute the collective Ohmic and viscous heating effects in thermo-solutal 

squeezing magnetized flow in a Riga electromagnetic plate sensor system for a Newtonian fluid, also considering 

thermal relaxation. Hayat and Qasim [57] studied the collective influence of thermal radiation and thermophoretic 

body force on Maxwell viscoelastic hydromagnetic flow using a homotopy analysis method.  Prasad et al. [58] 

deployed the Keller box finite difference method to investigate Ohmic and viscous heating effects on 

hydromagnetic coating flow on a cylinder in Darcy-Forchheimer permeable media. They observed a strong 

elevation in temperatures at all locations along the cylinder and also a significant thickening of thermal boundary 

layers. Hayat et al. [59] generated series solution for MHD flow of Burgers’ fluid with joule heating. Further 

Hayat and his co-workers [60] collective radiative and Ohmic heating effects in Eyring-Powell fluid employing 

series solution. 

In the present study, as a simulation of smart electromagnetic functional nano-polymer manufacturing flow, a new 

mathematical model for incompressible mixed convection flow with convective heat transport from a stretching 

sheet under the impact of Joule heating and radiative heat flux is described. The current flow model is formulated 

to consider several different water-based nanofluids with reactive metallic/oxide nanoparticles (Copper, Alumina 

and Titanium oxide). Uneven heat source/sink, viscous dissipation, thermophoresis, Brownian motion and first 

order (homogenous and destructive) chemical reaction effects are incorporated in the model. Effectively therefore 

the Tiwari-Das nanoparticle volume fraction and Buongiorno nanoscale models are combined to furnish a better 

framework for modelling multiple nanoscale effects. The upper convected Maxwell model is deployed to analyze 

rheological (viscoelastic) nanofluid behaviour. This non-Newtonian model is valid at both low and high 

Weissenberg numbers and in particular permits a robust treatment of the viscoelastic boundary layer formed in a 

thin region closer to the wall in which the relaxation terms are recovered. Furthermore, at high Weissenberg flows 

it is noteworthy that there is a longer relaxation time which enables the velocity of fluid (nano-polymer) to vanish 

at the wall and particles away from the wall can move long distances within one relaxation time so that particles 
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closer to the wall travel only a short distance.  Rosseland’s diffusion flux model is deployed for radiative transfer. 

The governing non-linear partial differential equations are rendered into a dimensionless system of coupled 

ordinary differential equations, with appropriate similarity transformations. The well-posed nonlinear boundary 

value problem is solved with a robust Chebyshev collocation technique [61-62]. Graphical results for velocity, 

temperature and nanoparticle concentration distributions are presented for the different metallic-aqueous 

nanofluid cases. Validation is conducted with earlier published results, showing an excellent correlation. Detailed 

physical interpretation is included. The current model is therefore novel and features multiple effects in 

rheological nanofluid coating dynamics which have not been considered simultaneously in the existing literature. 

2. MAGNETIC NANOPOLYMER COATING MODEL  

Inspired by simulating the functional magnetic nano-polymer coating boundary layer flow on a plane stretching 

substrate (sheet), we consider 2-D, incompressible and steady laminar mixed convection thermo-solutal flow with 

Joule heating (Ohmic dissipation) in a reactive Maxwell viscoelastic nanofluid containing different nanoparticles. 

The magnetic field is static and imposed transversely to the plane of the sheet (substrate). Electrical polarization 

voltage is neglected on the sheet. The nanoparticles are magnetic and undergo a homogenous, destructive first 

order chemical reaction. An ( , )x y Cartesian coordinate system is adopted (Figure 1). The x − axis is directed 

along the stretching sheet and the y − axis is perpendicular to it. With a stretching velocity which is assumed to be

( )wu u x ax= = . Here 0a  . The convective surface and ambient temperature of the fluid are 
fT and T

respectively. The sheet surface and ambient nanoparticle concentration is 
wC and C

, and the laminar boundary 

layer flow occupies the domain 0y  . Motion is mobilized in the sheet in the x − direction while holding the 

origin fixed (extrusion slit point). The properties of the nanofluid (viscoelastic smart polymer) are assumed to be 

constant.   

 

Figure 1: Maxwell magnetic viscoelastic nanofluid polymer stretching flow geometry 

 

The corresponding governing conservation equations, under the above assumptions describing the two-

dimensional Maxwell nanofluid boundary layer flow are obtained by amalgamating the previous models of Afify 

and Elgazery [63] and Sulochana et al. [64] as follows: 
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The boundary conditions at the substrate (sheet) wall and in the free stream are:  
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In Eqn. (2),  is the Maxwell viscoelastic parameter and the Newtonian case is retrieved when  → 0. The uneven 

heat source/sink and radiative net heat flux are modelled with the following equations:  
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Employing (6) in equation (3) yields the following form of the energy conservation Eqn. (3): 
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In addition to the above, again following Aghamajidi et al. [65], Anwar Beg et al. [66], the thermo physical 

properties of different base fluid and metallic/oxide nanoparticles based on the Tiwari-Das nanoscale formulation 

are as given in Table 1 below.  
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Table 1: Thermophysical properties of nanoparticles and base fluid 

Thermo-physical 

properties 

Base fluid Nanoparticles 

2 0H   Cu  
2 30Al  

20Ti  

3
( )Kgm

−
 997.1 8933 3970 4250 

1 1
( )pc JKg K

− −
 4179 385 765 686.2 

1 1
( )k Wm K

− −
 0.613 400 40 8.954 

7 2
10 ( / )m s   1.47 1163.1 131.7 30.7 

5 1
10 ( )K

− −
  21 1.67 0.85 0.9 

1
( )Sm

−
 0.05 5.96x107 3.5x107 0.26x107 

  0.0 0.05 0.15 0.2 

 
Eqns. (1-5) are formidable to solve even with numerical methods. It is pertinent therefore to simplify them with 

the help of similarity transformations and dimensionless quantities: 
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Making use of Eqns. (6-8), then the non-dimensional boundary layer Eqns. (1), (2), (7), (4) emerge as follows 

wherein the mass conservation (continuity) Eqn. (1) is trivially verified: 
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Nano-particle species boundary layer Eqn. 
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Here: 
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The dimensionless parameters arising in Eqns. (10)-(13) i. e. , , , , Pr, , , ,N M R Ec Nb Nt Le  and Kr . All the 

notations used aforesaid are inserted in Appendix. 

The dimensionless flow parameters arising in Eqns. (10)-(14) have the following mathematical definitions: 
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The shear stress, rate of heat transfer and rate of nanoparticle mass transfer at the sheet surface (wall) are defined 

as, respectively:  
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The corresponding dimensionless skin friction, Nusselt number and Sherwood number are given by:  

( )
( )

( )

2

0 0

5

Re (1 ) (0),

(0),
Re

(0)
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w
f x f

f y

w x
x

f f x

w x
x

B f x

C C f
U

x q Nu
Nu M R

k T T

x J Sh
Sh

D C C












=






=  = − + 





= −  = − + 
− 


=  = −
−


                                                                  (17) 

Here Re /x w fxU = represents the local Reynolds number (based on stream wise coordinate, x, along the 

sheet). 

 

3. CHEBYSHEV COLLOCATION NUMERICAL SOLUTION  

The transformed dimensionless boundary layer equations (10)-(13) have been solved by applying the Chebyshev 

collocation method as described in [57 and 61]. Once the velocity, temperature and nanoparticle concentration 

variables i. e. ( ), ( )f    and ( )  are evaluated, then skin friction, Nusselt number and Sherwood numbers may 

be readily computed, based on Eqn. (17). 

a. Application of the solution technique 

A basis solution is assumed for the unknown functions ( ), ( )f     and ( )  as a sum for the Chebyshev trial 

function in the form: 
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                                                                                                                                   (18)                 

In Eqn. (18) ,i ia b  and
ic are the unknown constants which are to be obtained. The term

2
1Hi

J


−

 
 
 

is the 

Chebyshev shift trial function ranging from [-1, 1] to [0, J] where J denotes the far stream of the boundary layer. 

The trial functions are imposed on the boundary conditions (13) and the associated definitions are: 

0
0

2
1 0,

N

i

a Hi i
J





=
=

− =
  

  
  

                                                                                                                               (19) 

0
0

2
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



 =
=

− − =
  

  
  

                                                                                                                    (20) 
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     
     

                                                                             (21) 
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                                                                                                                            (22) 
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Also, using the trial functions, the transformed boundary layer Eqns. (10)-(12) feature the residual equations 

( ) ( ), , , , , ,f i i i i iR a b R a b c  and ( ), , ,i i iR a b c  . The residual equations are minimized to as close to zero as 

possible, using the collocation technique as given below: 

( )
1,

0,

r
r

otherwise

 
  

=
− =





                                                                                                                                       (26) 

( ) ( )0 0, 1, 2, 3, ......., 1
J

f r f rR d R for r N    − = = = −                                                                    (27) 

( ) ( )0 0, 1, 2,3, ......., 1
J

r rR d R for r N     − = = = −                                                                      (28) 

( ) ( )0 0, 1, 2,3, ......., 1
J

r rR d R for r N     − = = = −                                                                    (29) 
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Here ( )1 cos( / )
2

r

J
r N = − represents the Gauss-Lobatto re-mapped point. The obtained boundary 

polynomials and the collocated residual equations yield a system of algebraic equations of order 3N+3 which are 

solved to determine the unknown coefficients ,i ia b  and
ic . This algebraic system of equations is solved by 

Newton’s method to produce the unknown constants. To ensure that the computational solutions match 

asymptotically with the far boundary field, the value of J is chosen for the consistence and convergence of the 

solutions. The numerics are executed in Maple symbolic software which provides the complete solutions to the 

problem. 

 

b. Validation and computational results 

To benchmark the validity of the Chebyshev collocation method solutions, local Nusselt and Sherwood numbers 

with different thermophoresis parameter values, Nt  are compared with previously published results (Afify and 

Elgazery [63] and Sulochana et al. [64]) and documented in Table 2. Very close correlation is achieved and 

therefore there is high confidence in the Chebyshev collocation method.  

 

Table 2: Computed results validation for the quantities 𝑁𝑢𝑥 and 𝑆ℎ𝑥 

Nt  Sulochana et al. [64] Afify and Elgazery [63] Present Chebyshev 

collocation method results 

xNu  
xSh  

xNu  
xSh  

xNu  
xSh  

0.1 0.0929123 2.2774434 0.09291 2.27744 0.0928722 2.2773736 

0.2 0.0727051 2.2490521 0.07271 2.24905 0.0727699 2.2489993 

0.3 0.0925112 2.2228202 0.09251 2.22282 0.0924881 2.2224791 

0.4 0.0923202 2.199121 0.09232 2.19921 0.0923021 2.1990789 

0.5 0.0921010 2.1783112 0.09210 2.17831 0.0920675 2.1783664 

 

4.GRAPHICAL RESULTS AND DISCUSSION 

Extensive numerical MAPLE computations have been performed and all results are visualized in Figs. 2-18 

(velocity distribution ( )f  , temperature distribution ( )  and concentration distribution ( )  for water -based 

2 3, OCu Al and 
2TiO  Maxwell nanofluids) and Tables 3-5 (local skin friction, Nusselt number and Sherwood 

number). These results are obtained for variation in dimensionless mixed convection parameter  ( ) , elastic 

parameter ( )
 , magnetic field intensity parameter ( )M , radiation-conduction parameter ( )R , Prandtl number 

(Pr) ,Eckert number ( )Ec ,space dependent heat source/sink ( )A
 , time dependent heat source/sink ( )B

 , 

Thermophoresis parameter ( )Nt  , Brownian motion parameter ( )Nb , Lewis number ( )Le , chemical reaction 

parameter ( )Kr and Biot number ( )Bi . The fixed values of the parameter during solution are 

0.5, 0.3, 1, 0.5, 0.01, 0.1, 0.1, 0.5, 0.5, 0.01,Pr 1/ 0.71,N M R Ec A B Nb Nt  
= = = = = = = = = = =  

2, 0.3Le Bi= =  respectively. All data is carefully selected from appropriate sources to reflect realistic rheological 

magnetic nanopolymer flow behavior- see [67]-[69]. 
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Fig. 2.  Profile of ( )f   for different values of   ( 0  opposing flow and 0  assisting flow) (a) for Cu  

(b) for  2 3Al O  (c) for 
2TiO     
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Fig. 3.  Profile of 𝑓′(𝜂) for different values of 


 (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 4.  Profile of 𝑓′(𝜂) for different values of M  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 5.  Profile of ( )   for different values of M  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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 Fig. 6.  Profile of ( )   for different values of M  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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(a)                                                                           (b)  

 Fig. 7.  Profile of ( )   for different values of R  (a) for 2 3Al O  (b) for 
2TiO  

 

 

Fig. 8.  Profile of ( )   for different values of Pr  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 9.  Profile of ( )   for different values of Pr (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 10.  Profile of ( )   for different values of Ec (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 11.  Profile of ( )   for different values of A


(a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 12.  Profile of ( )   for different values of B


(a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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(a)                                                                            (b) 

Fig. 13.  Profile of ( )   for different values of Nt  (a) for 2 3Al O  (b) for 
2TiO  

 

 

 
(a)                                                                            (b)  

Fig. 14.  Profile of ( )   for different values of Nt  (a) for 2 3Al O  (b) for 
2TiO  
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Fig. 15.  Profile of ( )   for different values of Nb  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 16.  Profile of ( )   for different values of Le  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig 17.  Profile of ( )   for different values of Kr  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Fig. 18.  Profile of ( )   for different values of Bi  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO     
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Table 3: Computed values for various physical quantities of 2 3OAl -nanofluid 

M  Nt  Pr  R  
fC  xNu  xSh  

1.0 0.5 0.3 0.5 -1.1597725754 0.0439446098 1.0773743636 

1.5    -1.3918919728 0.0462649128 1.0439915233 

2.5    -1.7392846786 0.0446961475 1.0082289767 

 0.1   -1.1597603673 0.0448332937 1.0048211902 

 1.0   -1.1597899082 0.0428256484 1.1702493672 

  5.0  -1.0501733037 -0.0108071721 1.4556823916 

  7.0  -1.0501503692 -0.0173619518 1.7143448193 

   1.0 -1.1597864524 0.0446940200 1.0764925158 

   3.0 -1.1598392926 0.0475490441 1.0731311577 

 

 

Table 4: Numerical results for different physical quantities of Cu-nanofluid 

Kr  Le  Nt  M  
fC  xNu  xSh  

0.1    -1.3305420317 0.1550528736 0.8455525898 

0.5    -1.3306425026 0.1550529768 1.1507249311 

 1.0   -1.3307594112 0.1550530980 1.4212928606 

 2.0   -1.3309105978 0.1550532005 2.0774096233 

  0.010  -1.3306698259 0.1550530084 1.2221022617 

  0.015  -1.3306412289 0.15505297823 1.1365593038 

   3.5 -2.1734691678 0.15481300663 0.88808253795 

   5.0 -2.5372839458 0.15463275886 0.86397872835 

0.25 0.5 0.5 1.0 -1.1597725754 0.0439446098 1.0773743636 

 

 

Table 5: Computed results for diverse physical quantities of 𝑇𝑖𝑂2-nanofluid 

   A


 B


 Ec  Bi  
fC  xNu  xSh  

3.0 3.0 0.3 0.3 -1.1597725754 0.0439446098 1.0773743636 

1.0    -1.1957957045 -0.0746292359 1.3221899459 

5.0    -1.1945897207 -0.2756298182 1.6366279295 

 1.0   -1.1963287504 0.0095078885 1.1950850944 

 2.0   -1.1959384234 -0.0543582532 1.2934654983 

  0.1  -1.1955336919 -0.1162146306 1.3846346051 

  0.5  -1.1948713956 -0.2310633775 1.5694484888 

   0.2 -1.1947985881 -0.1663703286 1.5285136266 

   0.5 -1.1955508937 -0.1801900603 1.4328266872 

 

 

Figs. 2(a)-(c) illustrate the velocity distributions for different mixed convection parameter,
2

/ Rex xGr =  with 

0  (assisting flow) the flow is weakly accelerated for Cu nanoparticles whereas the converse behavior is 

induced for 0  (opposing flow). The opposite response is generated in 2 3Al O  and 
2TiO  i. e. opposing flow 

(negative mixed convection parameter) produces acceleration whereas assisting flow (positive mixed convection 

parameter) induces deceleration. 

Figs. 3(a)-(c) depict the response in velocity distributions to modified Weissenberg viscoelastic parameter

 

=  . This parameter modifies many shear terms in the momentum Eqn. (10) i.e. 

2

2 3 (( 2 ), )M M M ff f f f f f f    
− −   + − − . The viscous drag experienced is enhanced with Weissenberg 

number. This leads to a consistent deceleration in the nanopolymer boundary layer flow for all three nanoparticles 

and the different metallic nanofluids are equally affected. Momentum diffusion is therefore inhibited by increasing 
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viscoelasticity of the nanofluid and there is a corresponding increase in momentum (hydrodynamic) boundary 

layer thickness.  

Figs. 4(a)-(c) display the evolution in velocity distributions with increment in magnetic body force parameter, ,M

2

0 /f fM B a = and features in the linear Lorentzian magnetohydrodynamic term,
3 ( )M M f f f 

 − − in 

Eqn. (10). This body force inhibits the flow and acts transverse to the applied magnetic field i.e. along the sheet 

extrusion direction. Increasing M values amplify the magnetic drag which decelerates the boundary layer flow 

and opposes momentum diffusion as observed all three nanoparticle cases. When 0M = the Lorentz force 

vanishes and the electrically non-conducting polymer case is retrieved and maximum velocity magnitudes and a 

thin momentum boundary layer is produced. However, as M exceeds unity, the momentum boundary layer is 

progressively thickened due to flow retardation. In magnetic nanomaterials processing therefore significant flow 

control may be produced with strategic selection of magnetic field strength which enables engineers to modify 

the internal constitution of nano-polymers. Asymptotically, smooth profiles are computed in the free stream 

indicating that a sufficiently large infinity boundary condition has been prescribed in the numerical simulations. 

Figs. 5(a)-(c) display the temperature profiles for different values of magnetic body force parameter, M . The 

supplementary work expended by the nano-polymer in dragging against the action of the transverse magnetic field 

is dissipated as thermal energy i. e. heat. This increases temperatures for all three metallic nanoparticles, although 

copper nanofluid temperatures are only weakly enhanced whereas there is a progressively stronger temperature 

boost in 2 3Al O  and 
2TiO  water nanofluids. Thermal boundary layers are therefore much thicker for 

2TiO   

compared with 2 3Al O  nanofluids and a much thinner thermal boundary layer arises for copper water nanofluid.  

Figs. 6(a)-(c) display the nanoparticle concentration plots for different values of magnetic body force parameter, 

M. With increasing M values i. e. stronger magnetic body force, there is a clear accentuation in copper and 2 3Al O

concentration magnitudes at all locations transverse to the sheet; however, a marked decrease is induced for the 

case of 
2TiO  nanoparticles. Nanoparticle concentration (species) boundary layer thickness is therefore enhanced 

for copper and alumina nanoparticles whereas it is reduced for titania-water nanofluid. Again very smooth 

distributions are computed in the free stream verifying that a sufficiently large infinity boundary condition has 

been prescribed in the MAPLE Chebyshev collocation computations. 

Figs. 7(a)-(c) visualize the evolution in temperatures with radiative parameter, ( ) 3

1 116 / 3 fR k k T = . The 

radiative flux term,
5( )M R + in the energy (thermal) boundary layer Eqn. (12) augments the thermal conduction 

effect. When 1R  thermal conduction dominates and vice versa for 1R  . For 1R = both modes contribute 

equally. Greater radiative flux (lower R values) energize the nanopolymer regime which boosts temperatures. 

This increases thermal boundary layer thickness. Furthermore, considerably higher temperatures are achieved 

with 2 3Al O compared with 
2TiO  nanoparticles. Although the Rosseland model is relatively simple compared with 

other radiative heat transfer approaches, it does capture the correct influence of radiation on the thermal 

characteristics. 

Figs. 8(a)-(c) visualize the response in temperatures with Prandtl number, Pr . Prandtl number is inversely 

proportional to effective thermal conductivity of the magnetic nanofluid. Pr 5= corresponds to dense gases and 

Pr 7= approximates aqueous (water-based) polymeric fluids. Pr 15= is associated with low density molecular 
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polymeric solutions. As Pr is increased, thermal conductivity of the nanofluid is decreased. The heat transported 

by molecular conduction is therefore suppressed whereas convective transport is enhanced. This boosts 

temperatures for copper and alumina cases (Figs. 8a, b) and increases thermal boundary layer thickness. Cooling 

of the stretching sheet regime is therefore achieved with lower Prandtl number whereas heating is observed with 

higher Prandtl numbers. There is anomalous behavior for the 
2TiO  nanoparticle case however (Fig 8c) further 

from the wall (sheet) where a depression in temperatures is induced with increasing Prandtl number. 

Figs. 9(a)-(c) illustrate the distributions in nanoparticle concentrations with Prandtl number, Pr .Thermal diffusion 

rate is decreased with increasing Prandtl number. Similarly, the species diffusion rate is also adversely affected, 

via coupling with the energy and concentration boundary layer equations. This results in a strong depletion in 

nanoparticle concentration magnitudes. A very sharp descent arises relatively close to the wall and all three 

metallic nanoparticles exhibit a similar response with thinner species boundary layers.  

Figs. 10(a)-(c) illustrate the distributions in temperature with Eckert number, Ec .  2

0 / ( ) ( )f fEc U c T T= −p

and, expresses the relative contribution of kinetic energy in the nanopolymer flow to the boundary layer enthalpy 

difference. It features in both viscous (mechanical) heating i. e. 2

1 PrM Ec f+   and Ohmic (Joule) magnetic 

dissipation i. e. 2

3 4PrM Ec M f M+  + . Even relatively small values of Ec exert a significant influence on 

thermal field. While a notable enhancement is induced in copper-water nanofluid temperatures, however, there is 

a much stronger accentuation in the 2 3Al O  (c) for 
2TiO  water nanofluid temperatures i. e. thermal boundary layer 

thickness is much greater than for copper. Clearly dissipation effects correspond to substantial heat generation in 

the regime and this manifests in temperature elevations at all values of transverse coordinate, . 

Figs. 11(a)-(c) present the temperature profiles for various thermal space parameters, A . This parameter features 

in Eqn. (6) in the uneven heat source/sink term and appears in the dimensionless energy eqn. (11) as A f +  . 

Clearly elevation in this term will boost temperature which explains the trends in the figures. However, a more 

profound elevation in temperatures is associated with 2 3Al O  and 
2TiO  nanoparticles, relative to copper 

nanoparticles. A much thinner thermal boundary layer is therefore associated with copper than the other two 

nanoparticles.  

Figs. 12(a)-(c) present the temperature profiles for various heat source/sink parameters, B
. This parameter also 

features in Eqn. (6) in the uneven heat source/sink term and appears in the dimensionless energy eqn. (11) in the 

linear term, B + . Physically heat generation ( 0B  ) i. e. a thermal source, may be associated with a thermal 

hot spot in the sheet which is used in materials processing. A thermal sink is also used for cooling control ( 0)B  . 

A very weak increase in temperature is generated for copper ( Cu ) nanoparticles with greater heat source and the 

response is linear. Maximum temperature is computed at the sheet surface in accordance with the boundary 

conditions imposed and temperatures vanish in the free stream. A much stronger enhancement in temperature is 

produced in 2 3Al O  and 
2TiO  cases and with increasing heat source parameter, B

, the profile topologies become 

increasingly parabolic. A significant temperature overshoot is only computed for the highest value of B
close to 

the wall. Thermal boundary layer thickness is therefore strongly accentuated for 2 3Al O  and 
2TiO  cases, but 

weakly increased for Cu . 
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Figures 13 (a)-(b) display the temperature values, ( )   for different values of Nt  (a) for 2 3Al O  (b) for
2TiO . 

Since no tangible modification for copper nanoparticles has been computed the plot is omitted. The 

thermophoresis parameter, Nt , arises in both the energy conservation (11) and nano-particle species conservation 

(12) boundary layer equations, specifically in the second-degree temperature gradient term,  2

4 PrM Nt  + and 

the second order temperature term, ( / )Nt Nb + in which it is also coupled with the Brownian motion parameter, 

Nb . It is therefore expected to influence both thermal and nanoparticle species diffusion

( ) /T f fNt D T T T v  = − and is clearly a function of temperature difference across the boundary layer.  Larger 

values of thermophoresis parameter, Nt , correspond to elevated migration of hot nanoparticles in the direction 

of a decreasing temperature gradient which encourages nano-particle diffusion in the boundary layer. 

Thermophoretic forces exerted on the nanoparticles are in the opposite direction to the actual temperature gradient. 

This results in a weak elevation in temperatures in 2 3Al O  but a much more dramatic elevation for
2TiO . Inevitably 

this response is intimately associated with the thermal and viscosity characteristics of both metallic nanofluids. A 

strong thickening of the thermal boundary layer is therefore instigated in the magnetic nanopolymer coating for 

2TiO  whereas a much weaker one is produced in the 2 3Al O  case. No temperature overshoot is witnessed in the 

2TiO  case but a marked trend is computed for the  2 3Al O  case and the overshoot is amplified with increment in

Nt . 

Figures 14 visualize the evolution in nanoparticle concentration, ( )   for different values of Nt  (a) for 2 3Al O  

(b) for
2TiO . Again, we have neglected the copper case since significant changes were not computed in 

temperature over a wide spectrum of thermophoresis parameter values. A substantial decrease in nanoparticle 

concentration magnitudes is produced for 2 3Al O  and an even more prominent reduction in
2TiO . The nanoparticle 

species diffusion is evidently inhibited with greater Nt  values which results in a thinner nano-particle 

concentration boundary layer thickness. Therefore, thermophoresis induces the opposite response in the nano-

particle concentration to the temperature distribution.  

Figure 15 depicts the response in nanoparticle concentration ( )   for different values of Nb (a) for Cu  (b) for 

2 3Al O (c) for
2TiO . ( ) /B f fNb D C C v = − as defined earlier. It is influenced by the concentration difference in 

nanoparticles from the wall to the free stream among other effects. It features in the energy conservation eqn. (11) 

in the term,  4 PrM Nb + and also in the nano-particle concentration eqn. (12) in the term, ( / )Nt Nb + .  

In both cases it is coupled with the temperature function, . With increasing Nb , there is a weak increase in Cu 

nano-particle concentration with a maximum computed near the wall. However, with greater Nb values the nano-

particle concentration is much more profoundly boosted for 2 3Al O and 
2TiO  cases, again at all values of transverse 

coordinate. In the Buongiorno model the parameter Nb is inversely proportional to the size of nanoparticles (which 

are assumed spherical and homogenously distributed in the base fluid). With greater Nb values smaller 

nanoparticles are present and this intensifies the thermal conduction heat transfer from the particles to the 

surrounding fluid. This achieves the thermal enhancement which characterizes nanofluids and simultaneously for 

this regime, it boosts the molecular diffusion of nanoparticles and encourages migration through the base fluid 
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and intensifies ballistic collisions. Physically increased concentrations of nanoparticles (higher volume fractions) 

may therefore be produced in nano-coating design. There is an increase in nano-particle concentration boundary 

layer thickness with larger values of the Brownian motion parameter. Asymptotically smooth distributions are 

computed in the free stream again testifying to the prescription of an adequately large infinity boundary condition 

in the MAPLE code. 

Figure 16 present the ( )  profiles for different values of Le (a) for Cu  (b) for 2 3Al O  (c) for 
2TiO  nanoparticles, 

respectively.  Lewis number, /f BLe D= . It arises only in the nanoparticle concentration boundary layer Eqn. 

(12), in the first-degree term, Pr ( )Le f+ . Lewis number embodies the relative rate of heat diffusion to the 

nano-particle diffusion rate. It also expresses the relative thickness of the thermal and nano-particle concentration 

boundary layers. For 1Le = , both boundary layers are of the same thickness and the diffusion rates are equal. For 

1Le  (of relevance in coating systems), the thermal diffusion rate exceeds the nano-particle diffusion rate and 

thermal boundary layer thickness is greater than nano-particle boundary layer thickness. There is therefore a 

significant reduction in nano-particle concentrations with greater Lewis numbers. In this case, the copper and 

2TiO  show a much greater disparity in profiles than the 2 3Al O  nanoparticle case. However, for all nanoparticles 

the effect of Lewis number modification is clearly substantial. This behavior is sustained throughout the boundary 

layer regime transverse to the surface of the stretching sheet (coating). Nano-particle concentration boundary layer 

thickness is therefore markedly depleted with greater Lewis number. Lewis number overall observed to be a 

critical parameter determining the nano-particle distribution in the regime and manipulation of this parameter will 

inevitably be highly impactful in determining nano-coating homogeneity and constitution during manufacturing 

processes.  

Figure 17 depict the distributions of ( )   for different values of Kr  (a) for Cu  (b) for  2 3Al O  (c) for 
2TiO   with 

transverse coordinate. Nanoparticle concentrations are suppressed with increasing chemical reaction parameter, 

Kr, and the effect is strongest for copper-water nanofluid and weakest for 
2TiO  water nanofluid. Clearly as more 

nanoparticles chemically react in a destructive homogenous reaction the original species is depleted. This reduces 

the concentration magnitudes, and also decreases nanoparticle concentration boundary layer thicknesses. A more 

significant decrement is computed for Cu and 2 3Al O compared with 
2TiO  nano-particles. 

Figure 18 visualizes the nanoparticle concentration profiles, ( )   for different values of Bi  (a) for Cu  (b) for  

2 3Al O  (c) for
2TiO . Increasing Biot number boosts the temperatures for copper and 2 3Al O but reduces it for TiO2 

nanoparticles, and a linear response is computed for copper with a nonlinear profile for the other two nanoparticles. 

For small Bi values, thermally thin scenarios are relevant i. e. generally there are uniform temperature fields inside 

the body (nanopolymer sheet). Biot numbers much larger than 1 indicate thermally thick situations in which non-

uniformity of temperature fields occurs. Nanoparticle species (concentration) boundary layer thickness is 

enhanced for copper and Al2O3 whereas it is suppressed for TiO2 nanoparticles.  

Table 3 show that with enhancing , , PrM Nt and R the trends are as follows: with increasing magnetic 

parameter, M , skin friction, 
f xC is increased whereas the Nusselt number 

xNu and Sherwood number 
xSh are 

reduced. With increasing Nt , skin friction is not changed but Nusselt number is reduced and Sherwood number 

elevated. With greater Prandtl number, skin friction is not affected but Nusselt and Sherwood numbers are 
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respectively decreased and increased in magnitude. With greater radiative parameter there is a weak increase in 

skin friction and Nusselt number but a slight reduction in Sherwood number. Table 4 shows that with increasing 

Kr  skin friction is slightly increased as is Nusselt number; however, Sherwood number is strongly elevated. A 

similar response is observed with increasing Le values. The effects of M and Nt  are as in Table 3. Finally, Table 

5 shows the effects of ,,A B Ec  and Bi  on skin friction,
f xC , Nusselt number 

xNu and Sherwood number 
xSh

. Increasing A
 slightly increases the skin friction and Nusselt number magnitudes whereas it more strongly boosts 

the Sherwood number. Higher B
 (heat generation) parameter decreases skin friction, increases Nusselt number 

and also reduces Sherwood number. Greater Ec  values decrease skin friction but increase Nusselt number and 

Sherwood number magnitudes. Finally increment in Biot number leads to an increase in skin friction and Nusselt 

number but reduces the Sherwood number. 

 

5.CONCLUSIONS  

 

Chebyshev collocation numerical solutions have been derived for incompressible mixed convection flow from a 

stretching sheet under the impact of Joule heating (Ohmic dissipation) and radiative heat flux. A combination of 

the Tiwari-Das and Buongiorno nanoscale models has been deployed. Three different water-based nanofluids with 

reactive metallic/oxide nanoparticles (Copper, Alumina and Titanium oxide) have been examined, of relevance 

to smart functional magnetic nano-polymers. Uneven heat source/sink, viscous dissipation, thermophoresis, 

Brownian motion and first order (homogenous and destructive) chemical reaction effects have been incorporated 

in the model. The upper convected Maxwell model has been utilized to analyze rheological (viscoelastic) 

nanofluid behavior and Rosseland’s diffusion flux model for radiative heat transfer. Graphical results for velocity, 

temperature and nanoparticle concentration distributions have been presented for the different metallic-aqueous 

nanofluid cases. Validation has conducted with earlier published results, and excellent correlation achieved. Skin 

friction, local Nusselt number and local Sherwood number distributions have also been computed. The present 

simulations have shown that: 

➢ Nanoparticle concentrations are reduced with increasing chemical reaction parameter and the effect is 

strongest for copper-water nanofluid and weakest for 
2TiO  water nanofluid.  

➢ Increasing Biot number boosts the temperatures for copper and 
2 3Al O  but reduces it for 

2TiO  nanoparticles, 

and a linear response is computed for copper with a nonlinear profile for the other two nanoparticles. 

➢ Stronger magnetic field and Joule (Ohmic) dissipation decelerates the flow i. e. increases momentum boundary 

layer thickness and enhances temperatures (notably for 
2TiO  nanoparticles). 

➢ Increasing Eckert number elevates temperatures, most prominently for the
2 3Al O  and 

2TiO  nanoparticles. 

➢ Increasing heat generation boosts temperatures strongly for
2 3Al O and

2TiO nanoparticles but weakly for 

copper nanoparticles. 

➢ An elevation in thermophoresis parameter strongly boosts the temperatures but suppresses nanoparticle 

concentration magnitudes. 

➢ Higher Brownian dynamic parameter (corresponding to smaller spherical metallic nanoparticles) significantly 

elevates nanoparticle concentrations. 
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➢ Higher Weissenberg number (i. e. stronger viscoelastic effect) manifests in retardation in the boundary layer 

flow and an increase in momentum boundary layer thickness. 

 

The current study has also demonstrated that the Chebyshev collocation numerical method is a powerful 

computational approach for solving nonlinear rheological multi-physical nanofluid coating flow problems. 

However, in the current work only Lorentzian magnetic body force has been addressed. Magnetic induction effects 

[70] which arise at higher magnetic Reynolds numbers feature a distortion in the magnetic field in the material. 

This is an important aspect in electro-inductive heating in polymer nano-coatings and may be studied in the future 

and may also consider simultaneous action of electrical fields and magnetic fields [71]. Finally, surface tension 

effects [72] may also be investigated which also contribute to momentum transfer characteristics in thermo-

capillary phenomena in smart magneto-hydrodynamics. 
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APPENDIX 

Notations 

Nomenclature 

a  Stretching rate [1/s]    Bi  Biot number  

2 3OAl  Alumina nanoparticle     A


 Thermal space parameter 

B


 internal heat source (sink)     
0B  Magnetic field strength 

C  species concentration [kg/m2]   
wC  Sheet surface concentration 

C  ambient nanoparticle concentration   fC  Dimensionless drag force 

Cu  Copper nanoparticle    pC  Specific heat [J/Kg K] 

BD  Brownian coefficient [m2/s]   TD  Thermophoresis coefficient [m2/s] 

Ec  Eckert number     h  Step size 

fh  Coefficient of heat transfer   
wJ  Mass transport rate 

1k  Mean absorption coefficient   Kr  Chemical reaction parameter 

nfk  Maxwell-Garnetts thermal conductivity [Wm-1K-1] Le  Lewis number 

M  Magnetic parameter    N  Concentration buoyancy 

Nb  Brownian motion parameter   Nt  Thermophoresis parameter  

xNu  Local Nusselt number    Pr  Prandtl number 

rq  Radiative heat flux [W/m2]   
wq  heat transport rate 

R  Thermal radiation parameter   Rex
 Local Reynolds number 

T   Fluid temperature [K]    
2OTi  Titanium oxide nanoparticle 

fT   Convective temperature [K]   wT  Temperature at the wall [K] 

T  Ambient temperature [K]    ,u v  Velocity components [m/s] 

wu  Plate velocity [m/s]     x   Distance along the surface [m] 
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y  Distance normal to surface [m] 

 

Greek symbols 

  Heat capacity ratio (nanoparticle to base fluid) w  shear stress 

T  Volumetric thermal expansion    C   volumetric solutal expansion 

f  Base fluid density [kg/m3]    
n f  density of nanoparticles [kg/m3] 

( )p nf
c   Heat capacity     

n f  Brinkmann effective viscosity [kg m-1s-1] 

1  Stefan-Boltzmann constant   n f  electrical conductivity [
1 1
m

− −
 ] 

  Stream function [m2/s]      similarity variable 

  Mixed convection parameter     optimal step size 

  Maxwell viscoelastic parameter     dimensionless temperature 

  Dimensionless concentration     solid volume fraction 

 

 

Subscripts 

w   quantities at wall        quantities far away from surface 

f   Base fluid     nf  Nanofluid 

 


