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Abstract
In recent years, rapid advances in speech technology have been
made possible by machine learning challenges such as CHiME,
REVERB, Blizzard, and Hurricane. In the Clarity project, the
machine learning approach is applied to the problem of hearing
aid processing of speech-in-noise, where current technology in
enhancing the speech signal for the hearing aid wearer is often
ineffective. The scenario is a (simulated) cuboid-shaped living
room in which there is a single listener, a single target speaker
and a single interferer, which is either a competing talker or do-
mestic noise. All sources are static, the target is always within
±30◦ azimuth of the listener and at the same elevation, and
the interferer is an omnidirectional point source at the same
elevation. The target speech comes from an open source 40-
speaker British English speech database collected for this pur-
pose. This paper provides a baseline description of the round
one Clarity challenges for both enhancement (CEC1) and pre-
diction (CPC1). To the authors’ knowledge, these are the first
machine learning challenges to consider the problem of hearing
aid speech signal processing.
Index Terms: speech-in-noise, speech intelligibility, hearing
aid, hearing loss, machine learning

1. Introduction
By 2035, there will be 15 million people with hearing loss in
the UK at an annual economic cost of 30 billion pounds [1, 2].
People with hearing loss are more susceptible to interference
from background noise than unimpaired listeners. Yet speech
in noise remains a major problem for hearing aid technology.
Current hearing aids are often ineffective when the signal-to-
noise ratio (SNR) is relatively low. Hearing aid wearers often
complain that speech intelligibility is poor, and this is a common
reason for lack of use [3]. Traditional devices tend to amplify
the noise in addition to the target speech.

Over the last few decades, there have been major advances
in machine learning applied to speech technology. For exam-
ple, in automatic speech recognition (ASR), performance is un-
recognisable when compared with what was possible ten years
ago. In the CHiME, REVERB, Blizzard, and Hurricane chal-
lenges, researchers have made rapid progress by building on
open source baseline software that is improved in each round
[4, 5, 6, 7]. Advances can also be attributed to the availabil-
ity of speech corpora recorded in various environments. Re-
cent developments in machine learning applied to noise reduc-
tion and speech enhancement indicate that this is a promising
approach for hearing aid speech signal processing. However

machine learning challenges typically assume healthy hearing,
and access to hearing-impaired listeners for rigorous algorithm
evaluation is limited.

In the first round of the Clarity project challenges, we ad-
dress the problem of speech-in-noise in everyday home environ-
ments. This paper is intended to be a reference for this round,
in which the scenario is a simulated cuboid-shaped living room
in which there is a single listener, a single target speaker and
a single interferer, which is either a single competing talker or
domestic noise. All sources are static. The target speech mate-
rials were collected specifically for the round. The software and
datasets are publicly available [8]. This first round features

• A large target speech database of English sentences pro-
duced by 40 British English speakers;

• Simulated living rooms with a single static target speech
source, interferer and listener, built using room im-
pulse responses generated by the Real-time framework
for the Auralization of interactive Virtual ENviron-
ments (RAVEN, [9]) and head-related impulse responses
(HRIRs) recorded for a number of humans and manikins
[10];

• Baseline hearing aid software built on the open Master
Hearing Aid (openMHA, [11]);

• Baseline hearing loss software based on the model devel-
oped by the Auditory Perception Group at the University
of Cambridge (see, e.g., [12]);

• Baseline speech intelligibility software based on the
Modified Binaural Short-Time Objective Intelligibility
model or MBSTOI [13].

In the following, we introduce the round one scene genera-
tion and datasets in Section 2 and the baseline system in Section
3. We discuss the first Enhancement and Prediction challenges
and the challenge instructions in Sections 4 and 5, respectively.
We conclude in Section 6. More details can be found on the
challenge website 1.

2. Scene generation and datasets
The software is implemented in Python. It allows entrants to
compare the performance of their system with the baseline sys-
tem, and comprises a scene generation module, a hearing aid
module, a hearing loss module and a speech intelligibility mod-
ule.

1http://claritychallenge.org
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Table 1: Round one Enhancement challenge (CEC1) timeline,
where eval refers to the evaluation dataset.

Stage Date

CEC1 initial release 15− 03− 2021
CEC1 eval release 01− 06− 2021

CEC1 submission deadline 15− 06− 2021
Results announced/Interspeech 17− 09− 2021

The scene generation software was used to create 10,000
unique scenes. The sound at the listener or receiver is generated
first by convolving the source signals with the Binaural Room
Impulse Responses (BRIRs), which are created in RAVEN and
draw on HRIRs from the OlHead-HRTF database [10]. Target
and interferer are mixed to obtain a specific speech-weighted
better ear SNR at the reference microphone (front). The SNRs
for the speech interferer range from 0 to 12 dB, while the SNRs
for the noise interferer range from -6 to 6 dB. These ranges were
chosen on the basis of pilot testing with 13 unaided hearing-
impaired listeners. The reverberated speech and noise signals
are then summed. The interferer always precedes the onset of
the target by 2 s and follows the offset by 1 s.

2.1. Scenario, room geometry and materials

In the scenes, the listener is either sitting (with a height, H, of
1.2 m) or standing (H = 1.6 m), with the sound sources at the
same elevation. These heights correspond to the centre of the
listener’s head and the target speaker’s mouth. The target is
always placed at a distance of ≥ 1 m and within ±30◦ azimuth
inclusive (with a step of 7.5◦) of the front of the listener and at
an elevation of 0◦. The target is always facing the listener. The
interferer can be located in any position except within 1 m of
the walls or the listener and is omnidirectional. Both target and
interferer are point sources. The room is cuboid in shape.

The dimensions and reverberation times of the room were
based on published statistics on British living rooms [14]. The
reverberation time was low to moderate at 0.2 to 0.4 s on av-
erage between 125 Hz and 1 kHz. Rooms feature variations in
surface absorption to represent doors, windows, curtains, rugs
and furniture, combined with scattering coefficient of 0.1. The
room dimensions, boundary materials, and the locations of the
listener, target and interferer are randomised. The rooms have a
length, L, set using a uniform probability distribution pseudo-
random number generator with 3≤ L(m) ≤8 and a height set
using a Gaussian distribution with a mean of 2.7 m and standard
deviation of 0.8 m. The area is set using a Gaussian distribution
with mean 17.7 m2 and standard deviation of 5.5 m2.

One of the walls of the room is randomly selected for the
location of the door. The door can be at any position with the
constraint that it is at least 0.2 m from any corner of the room. A
window is placed on one of the other three walls. The window
can be at any position on the wall but is at H = 1.9 m and at 0.4
m from any corner. The curtains are simulated to the side of the
window. For larger rooms, a second window and curtains are
simulated following a similar method. A sofa is simulated at a
random position as a layer on the wall and the floor. A rug is
simulated at a random location on the floor.

The listener is positioned within the room using a uniform
probability distribution for the x and y coordinates. There are
constraints to ensure that the receiver is not within 1 m of
the wall. The listener is positioned so as to be roughly fac-

ing the target talker (i.e., within ±30◦ azimuth inclusive where
angle = 7.5n where n is an integer and |n| ≤ 4). The target
talker has a speech directivity pattern, while the interferer is a
single point source radiating speech or non-speech noise om-
nidirectionally. Both target and interferer are randomly placed
within the room with a uniform distribution except not within 1
m of the walls or receiver, and are at the same elevation as the
receiver.

2.2. Head-related impulse responses

HRIRs were drawn from the OlHead-HRTF database [10].
Measurements made close to the ear drum (ED) and via a
behind-the-ear (BTE) hearing aid form factor were used. The
BTE model was equipped with three miniature microphones
(front, middle and rear) with a distance between microphones
of approximately 7.6 mm: front-mid 0.0076 m and mid-rear
0.0073 m. In the horizontal plane there is a uniform resolution
of 7.5◦.

2.3. Target speech database

The target speech materials were collected specifically for the
first round: 10,000 unique sentences recorded by 40 British En-
glish speakers. These sentences were selected from the British
National Corpus (XML edition, 2007, [15]) of (mainly) written
text materials, including novels, pamphlets, etc., but excluding
poetry. These sentences contain 7-10 words, all with a word
frequency of at least one in the Kucera and Francis (1967) [16]
database, and hand checked for acceptable grammar and vocab-
ulary by the authors. The sentences were recorded in home stu-
dios (due to COVID-19) by forty voice actors from a radio pro-
duction company, reading 250 sentences each. Semi-automated
segmentation was performed using Google Speech-to-Text API
with Python and unix shell scripts [17]. Segmented recordings
were equalised in active speech level [18]. The database is pub-
licly available [8].

2.4. Interferer databases

The types of interferers included in the databases were informed
by a patient discussion group hosted by the University of Not-
tingham in March 2020. In half of the scenes, a speech inter-
ferer is used, while in the other half, the interferer is one of
several types of domestic noise sources.

The speech interferer data, which come from the Open-
source Multi-speaker Corpora of the English Accents in the
British Isles [19], includes speakers with a range of UK and
Ireland English accents. For each speaker, utterances are con-
catenated with a short period of silence in between (300 ms in
addition to any silence at the beginning and ends of original
recordings). The noise interferer data is a collection of sam-
ples, mainly from Freesound [20], under Creative Commons li-
cences.

2.5. Listener characterisation databases

For the training (train) and development (dev) datasets, listen-
ers are characterised only by bilateral pure-tone audiograms at
the following frequencies: [250, 500, 1000, 2000, 3000, 4000,
6000, 8000] Hz. These audiograms were obtained for peo-
ple who are not members of the listener panel; hence there is
listener independence between the evaluation (eval) and non-
eval datasets. As the baseline hearing loss module may not
produce sensible results for hearing losses greater than 80 dB
Hearing Level (HL), only listeners who had a hearing loss no
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greater than 80 dB HL in more than two bands were included
(N = 83). Any losses greater than 80 dB HL were limited
to 80 dB HL. Hearing loss severity, defined according to the
Cambridge hearing loss model as the average loss in dB HL
between 2 and 8 kHz inclusive, was mild for four listeners (de-
fined as 15 > HL(dB) > 35), moderate for 26 (defined as 35
> HL(dB) > 56), and severe for 53 (HL > 56 dB).

For the initial, MBSTOI evaluation, additional audiograms
were obtained from the same source, and the same rules were
applied. For the listening test evaluation, the audiograms are
those obtained for the members of the listener panel, which
comprises 50 bilateral hearing aid users with symmetric or
asymmetric hearing loss. They have an averaged sensorineural
hearing loss between 25 and about 60 dB in the better ear. Ex-
clusion criteria included the following: use of any hearing inter-
vention other than acoustic hearing aids, use of a programmable
ventriculo-peritoneal (PVP) shunt, diagnosis of Meniere’s dis-
ease or hyperacusis, and diagnosis of severe tinnitus. Ethical
approval was obtained from Nottingham Audiology Services
and the National Health Service UK for collection and use of
these data (IRAS Project ID: 276060).

2.6. Challenge datasets

Scenes were pseudo-randomly allocated to one of three
datasets. The train and dev datasets are 6000 and 2500 scenes
in size, respectively. Therefore, the models are trained on 6000
target speech utterances, where half of the scenes include a
speech interferer, and half, a non-speech interferer. The eval
dataset is 1500 scenes in size. Target speakers are allocated to
datasets such that there is an equal representation of female and
male talkers. Train and dev datasets included extensive meta-
data including the ID of the target and interferer, the azimuths
of both sources relative to the listener, the positions of the lis-
tener and sources, and the offset used to identify the start of the
segment of interferer used in the scene. The metadata also in-
cluded the assignment of scenes to listeners, where for the train
and dev sets, each scene is processed for three listeners. Both
train and dev datasets were provided when the challenges were
launched to be used during system development. Additionally,
scene generation code was provided to generate the datasets,
and to augment them if desired (however any submission can
only be based on the predefined datasets).

The eval dataset was held back for evaluation of the de-
veloped systems and was provided shortly before the challenge
submission deadline. For the enhancement challenge, partici-
pants were required to run their systems on the mixed hearing
aid input signals and submit the system outputs to the organisers
for evaluation.

3. Baseline system
The baseline system - hearing aid, hearing loss and speech intel-
ligibility modules - is provided for optional use by competition
entrants.

3.1. Baseline hearing aid module

The intention was to simulate a basic hearing aid without var-
ious aspects of signal processing that are common in high-end
hearing aids, but tend to be implemented in proprietary forms so
cannot be replicated exactly. Most modern devices include both
multiband dynamic compression and some sort of directional
microphone processing. These devices are typically monaural,
with no bilateral wireless link.

The baseline fitting algorithm, the Camfit compressive al-
gorithm [21], is used to calculate compression ratios per fre-
quency band where bands have centre frequencies as follows:
[177, 297, 500, 841, 1414, 2378, 4000, 6727] Hz. A one-to-
one input-output ratio is used below the compression thresholds
in each band. The compression thresholds are determined ac-
cording to the levels in each frequency band of speech with a
standard long-term average spectrum and an overall level of 45
dB SPL, i.e., speech that is just audible for a normal hearing
listener, where speech produced with a normal vocal effort has
an overall level of 60 LA,eq at 1 m [22, 23].

The baseline hearing aid involves a configuration of the
openMHA system for a simple Behind The Ear (BTE) model
with front and rear microphones with distances of 0.0149 m
between them (determined by the HRIRs). This configuration
of openMHA includes multiband dynamic compression via the
dc plugin and directional processing - non-adaptive differential
processing - via the adm plugin with no additional noise reduc-
tion or bilateral link. The aim of the compression component
is to compensate for the listener’s hearing loss (raised auditory
thresholds) and to fit the output level into the listener’s dynamic
range. The aim of the directional processing is to improve the
signal-to-noise ratio and, in particular, to attenuate sources in
the rear hemisphere of the listener (in this case, using a hyper-
cardioid polar pattern). The plugin combines the signal from
two omnidirectional microphones on each hearing aid: in this
case the front and rear microphones [24]. In the first round, the
baseline does not simulate the direct path.

3.2. Baseline hearing loss module

The baseline hearing loss module is a Python translation of the
MATLAB model developed by Moore, Stone and other mem-
bers of the Auditory Perception Group at the University of Cam-
bridge (see, e.g., [12]). It uses a gammatone filterbank model of
the auditory system and simulates four main aspects of hearing
loss: decreased audibility (the raising of auditory thresholds),
reduced dynamic range (loudness recruitment), and the loss of
temporal and frequency resolution (frequency selectivity). For
people with a hearing impairment, the auditory thresholds are
increased while the loudness discomfort threshold remains at
the same level; hence the dynamic range is reduced. The loss of
frequency selectivity reduces the ability to discriminate between
sounds at different frequencies, and is due to loss of cochlea hair
cell sensitivity. Signals are attenuated in each frequency band
according to the listener’s audiogram to simulate the raising of
auditory thresholds. The loudness recruitment filterbank com-
prises 28 filters with two times broadening. Frequency smear-
ing is performed according to the severity of the hearing loss as
defined in section 2.5. The higher the degree of smearing, the
higher the level of noise between signal components.

3.3. Baseline speech intelligibility module

The baseline speech intelligibility module is MBSTOI [13],
which is a binaural speech intelligibility metric based on the
Short-Time Objective Intelligibility metric (STOI) [25], and is
translated from MATLAB into Python. Both MBSTOI and
STOI are invasive metrics that require both the clean speech
reference and the processed or degraded signal. STOI-based
approaches are suitable for non-linear processing, such as clip-
ping, and do not require access to the noise separately. To date,
most of the published literature applying MBSTOI to the hear-
ing aid context concerns beamforming approaches to noise re-
duction. The findings indicate that binaural versions of STOI
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perform well in evaluating the effects of these processes on
intelligibility with or without additive noise and reverberation
(e.g., [26]).

MBSTOI downsamples the input signals to 10 kHz, and
analyses the signals with a short-time Discrete Fourier Trans-
form (386 ms), with parameter values as in the case of STOI.
The DFT coefficients from the left ear and the right ear are
combined using an Equalisation-Cancellation (EC) stage. This
stage models the binaural advantage obtained by having two
ears in situations where there is spatial separation between tar-
get and interferer. Independent noise sources, referred to as jit-
ter, are added to the grid search over interaural time and level
differences to align any interferer or distortion components to
limit performance to be consistent with human performance.
The combined DFT coefficients are used to compute power
envelopes in one-third octave bands. These envelopes are ar-
ranged in vectors or regions of N = 30 samples. Intermediate
correlation coefficients are then calculated per band and time
frame (over the N sample region). In the better ear stage, inter-
mediate correlation coefficients are calculated similarly, but per
ear. For each band and frame/region, the maximal intermediate
correlation coefficients are chosen from the EC and better ear
stage outputs. The final MBSTOI measure, d, is obtained by
averaging the intermediate correlation coefficients across time
and frequency. See [13] for more detail.

4. Enhancement challenge
In the enhancement challenge (CEC1), the task is to replace the
baseline hearing aid algorithm with an algorithm that improves
the speech intelligibility of the mixture signals for the listen-
ers relative to baseline. To ensure that the number of entries
to be evaluated by the listener panel is not too large, an initial
ranking on the basis of MBSTOI scores over the eval dataset
will be performed to identify the most promising candidates.
Ultimately, entries will be ranked according to measured intel-
ligibility scores from the listener panel over the eval dataset.

4.1. Challenge rules

A set of challenge “rules” were provided to participants. The
rules were designed to keep systems close to the application
scenario, to avoid unintended overfitting, and to make systems
directly comparable. Algorithms were required to be causal;
the output at time t must not use any information from input
samples more than 5 ms into the future (i.e., any information
from input samples > t + 5 ms). Entrants were required to
submit their processed signals in addition to a technical doc-
ument describing the system/model and any external data and
pre-existing tools, software and models used. All parameters
were to be tuned using only the provided train and dev datasets,
and systems were to be run (ideally only once) on the eval
dataset using parameter settings identified on the basis of dev
dataset results. The rules are intended to allow some freedom
to build systems that would be implementable in a hearing aid
with the necessary computing power, even if these systems are
not currently feasible.

4.2. Baseline system results

Baseline system performance as MBSTOI d by SNR (dB) for
the dev set is shown in Figure 1, where the interconnected points
indicate the means and the points with low opacity indicate the
variability in the data according to, for example, speech ma-
terial, listener hearing loss, distances between the listener and

Figure 1: MBSTOI by SNR (dB) per interferer type.

the target and interferer, room volume, and separation angle.
The mean and median d are 0.41. For the most part, there is a
positive monotonic relationship between MBSTOI and SNR, as
anticipated. For the two interferer types, there is a weak to mod-
erate positive correlation between MBSTOI and SNR (speech:
τ = 0.35, p < 0.001; noise: τ = 0.49, p < 0.001) and a weak
negative correlation between MBSTOI and target-listener dis-
tance (τ = -0.13, p < 0.001). That is, as the SNR becomes
more favourable, or the distance between the target speaker and
listener reduces, MBSTOI increases, as would be anticipated.

5. Prediction challenge
In the prediction challenge (CPC1), the task is to replace the
hearing loss and/or speech intelligibility models in the pipeline.
The listening tests for CEC1 will provide the data for CPC1;
i.e., the outcomes of CEC1 will facilitate the improvement of
prediction models. The proposed CPC1 launch date is October
2021. The baseline models are those described in sections 3.2
and 3.3. The models submitted may be a single speech intelligi-
bility model that can account for the behaviour of both healthy
hearing and hearing-impaired listeners, or two separate models
for hearing loss and speech intelligibility. Ranking of entries
will be determined by prediction accuracy over the eval dataset.

6. Conclusions
The first round of the Clarity challenges aims to produce im-
proved hearing aid algorithms for speech signal processing. The
scenario is a (simulated) cuboid-shaped living room in which
there is a single listener and two static sources: a single target
speaker, and a single interferer, where the interferer is a compet-
ing talker or domestic noise. The first enhancement challenge,
CEC1, involves developing hearing aid models that improve
on the baseline, while the first prediction challenge, CPC1, in-
volves improving on the baseline speech intelligibility predic-
tion model(s). The submitted CEC1 systems and results will be
presented at the Clarity-2021 workshop in September, 2021.
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