
1 

 

Journal of Thermal Analysis and Calorimetry 
An International Forum for Thermal Studies 

 

https://www.springer.com/journal/10973  

IMPACT FACTOR = 4.626 

 

Accepted November 10th 2021  

 

COMPUTATION OF VON KARMAN THERMO-SOLUTAL SWIRLING FLOW OF 

A NANOFLUID OVER A ROTATING DISK TO A NON-DARCIAN POROUS 

MEDIUM WITH HYDRODYNAMIC/THERMAL SLIP 

J.C. Umavathi 

Professor, Department of Mathematics, Gulbarga University Gulbarga -585106, Karnataka, 

India. Email: drumavathi@rediffmail.com 

O. Anwar Bég 

Professor, Department of Aeronautical/Mechanical Engineering, School of Science, Engineering 

and Environment (SEE), University of Salford, Newton Building, Manchester, M5 4WT, UK. 

Email: O.A.Beg@salford.ac.uk 

 

ABSTRACT:  

Motivated by recent trends in spin coating operations in chemical engineering which are 

exploiting nanomaterials, the present article investigates theoretically and numerically the steady 

mass and heat transfer in Von Karman swirling slip flow of a nanofluid from a rotating disk 

touching to a homogenous non-Darcy porous medium. The porous medium is simulated with a 

Darcy-Forchheimer-Brinkman model. To track the thermophoresis and Brownian movement of 

the nanoparticles the Buongiorno nanoscale model is used. Von Karman similarity variables are 

deployed to transform the partial differential conservation equations into a system of highly 

coupled, nonlinear, dimensionless ordinary differential equations (ODE's). These similarity 

boundary layer equations i. e. continuity, momentum, energy and nanoparticle concentration 

(volume fraction) are solved with bvp4c shooting quadrature in MATLAB. Validation with 

earlier studies is included. Further verification with an Adams-Moulton predictor-corrector 

method is conducted. The influence of velocity (momentum) slip coefficient, thermal slip, 

Darcian bulk drag parameter (inverse permeability), Forchheimer inertial parameter, 

Browninan motion parameterm Schmidt number, thermophoresis parameter and Prandtl number 

on radial, tangential (azimuthal) and axial velocity components, temperature and nanoparticle 

concentration are visualized graphically. The distributions for skin friction component and 

Nusselt number are also computed. Radial, axial and tangential velocities are reduced with 

increasing Forchheimer inertial drag and hydrodynamic wall slip whereas they are elevated with 

increasing permeability (decreasing inverse Darcy parameter). Thermal and nanoparticle 

concentration boundary layers are also markedly modified with an increment in Forchheimer 
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inertial parameter, Schmidt number, Prandtl number, thermophoresis and Brownian motion 

parameters.  

 

KEYWORDS: Rotating disk, Porous medium, Inertial drag, Nanofluid, Buongiorno model, 

MATLAB; Adams-Moulton predictor-corrector method; Von Karman swirling flow; Spin coating 

dynamics.  

NOMENCLATURE 

Roman  

C   Local nanoparticle concentration (moles/m3) 

fC   Skin friction coefficient (-) 

C   Ambient nanoparticle concentration (moles/m3) 

BD   Brownian diffusion coefficient (-) 

TD   Thermophoretic diffusion coefficient (-) 

Nb   Brownian motion parameter (-) 

Nt   Thermophoresis parameter (-) 

( ) ( ),f g     Dimensionless velocity components (-) 

I   Inertial (Forchheimer) porous medium drag parameter (-) 

k   Thermal conductivity (W/mK) 

  Hydrodynamic slip coefficient (-) 

  Thermal slip (jump) coefficient (-) 

rNu   Local Nusselt number (-) 

p   Nanofluid pressure (Pa) 

Pr   Prandtl number (-) 

Re   Rotational Reynolds number (-) 

( ), ,r z  Cylindrical coordinate system (m) 

Sc   Schmidt number (-) 

T   Local nanofluid temperature (K) 

wT   Constant disk temperature (K) 

T   Ambient fluid temperature (K) 
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( ), ,u v w  Velocity components along ( ), ,r z  directions 

Greek Symbols 

  Ratio of effective heat capacity of the nanoparticle material to base fluid 

  Inverse permeability parameter (-) 

  Similarity variable (-) 

f  Thermal diffusivity of base fluid (m2/s) 

f   Kinematic viscosity (m2/s) 

  Permeability of porous medium (m2) 

  Dimensionless velocity (hydrodynamic) slip coefficient (-) 

   Dimensionless thermal slip coefficient (-) 

   Angular velocity of rotating disk (rad/s) 

f   Fluid density (kg/m3) 

,r     Radial and tangential wall stresses (N/m2) 

   Dimensionless temperature (-) 

   Dimensionless nanoparticle concentration (-) 

Superscripts  

'   Differentiation w r t   

 

1. INTRODUCTION 

Viscous flows from a rotating disk emerge in many intriguing applications in industry including 

spin coating deposition, food processing, chemical mixing, turbomachinery, heat exchangers, 

computer disk drive cooling, lubrication and membrane oxygenators. Von Karman [1] initiated 

the analysis of rotating disk flows in 1921 by considering three-dimensional viscous flow over an 

infinite rotating disk having a constant angular velocity, in which he introduced the famous Von 

Karman similarity transformations. Later, Wagner [2] extended the Von Karman problem for an 

infinite rotating disk with steady motion of incompressible viscous fluid to consider convective 

heat transfer. Further analysis on thermal aspects of Von Karman swirl flow was conducted by 

Cobb and Saunders [3]. Millsaps and Pohlhausen [4] considered Von Karman swirling flow with 

heat transfer and viscous dissipation. Kobayashi et al. [5] extended the laminar simulations 
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reported earlier to consider transitional and turbulent flow with the generation of spiral vortex 

patterns, elucidating the interplay between both the centrifugal and Coriolis forces in swirling 

disk flow. Awad [6] presented asymptotic solutions for thermal convection in swirling disk flow 

at very low and very high Prandtl numbers, computing Nusselt numbers for these extreme 

scenarios. Mass (species) diffusion and rheological effects were explored by Grief and Paterson 

[7] and later Mishra and Singh [8] for rotating disk flow. He et al. [9] measured the effect of disk 

rotating speed in Von Karman thermosolutal flow.  Rashaida et al. [10] evaluated theoretically 

the rate of mass transfer using Bingham fluid over a rotating disk. More recently, motivated by 

emerging technologies in chemical, civil, biomedical and aerospace engineering, researchers 

have further extended the laminar Von Karman swirl problem to consider many complex multi-

physics aspects including magnetohydrodynamics e.g. Turkyilmazoglu [11], radiative heat 

transfer and wall transpiration e.g. Bég et al. [12], electrokinetic ionic fluids e. g. Shuaib et al. 

[13] thermodynamic optimization and disk stretching e.g. Bég et al. [14] variable disk thickness 

with pseudoplastic/dilatant fluid behaviour e.g. Xun et al. [15] non-Fourier thermal conduction 

effects in dual disk systems e.g. Mishra et al. [16] and proton-effective rotating disc 

photocatalytic reactor swirl flow for environmental systems with chemical kinetics e.g. Zhang et 

al. [17].  

The thermal properties of working liquids are of critical importance for optimizing engineering 

performance. To achieve enhancement in for example thermal conductivity of liquids, many 

researchers have explored a variety of possible mechanisms. Nanotechnology in particular has 

produced exceptional progress in this regard via the robust development of ultrafine-performance 

heat transfer liquids which have been termed nanofluids. Nanofluids are combinations of solid 

nanometer sized metallic or non-metallic (carbon-based) particles which are less than 100nm in 

size. For heat transfer processes, popular metallic nano-sized particles include alumina, copper, 

gold, silver, zinc, iron, molybdenum, titanium and relevant base liquids are water, oil, ethylene 

glycol, etc. Many studies of micro/nanofluid transport phenomena have been communicated in 

recent years. The Influence of variable viscosity, thermal conductivity, velocity and thermal slip 

effects on a steady two-dimensional magnetohydrodynamic micropolar fluid over a stretching 

sheet was numerically by analyzed by Rahman et al. [18].  They came to the conclusion that 

astronger transverse magnetic field decelerates the flow and elevates the temperature. Also 
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increasing viscosity parameter and hydrodynamic slip accelerates the flow further from the plate 

surface.  Khan et al. [19] addressed the steady three-dimensional flow of an Oldroyd-B nanofluid 

over a bidirectional stretching surface with heat generation/absorption effects, noting that  

increasing values of the Brownian motion parameter  and thermophoresis parameter  leads to an 

increase in the temperature field and thermal boundary layer thickness while the opposite 

behavior is observed for concentration field and concentration boundary layer thickness.  The 

heat and mass transfer characteristics of three-dimensional steady flow of Burgers nanofluid over 

a bidirectional stretching surface was studied by Khan et al. [20].  They observed that for 

enlarging values of the Brownian motion parameter lead to an attenuation in the nanoparticle 

concentration field as well as the concentration boundary layer thickness. Likewise, it was also 

noticed that the concentration magnitudes are suppressed with Deborah number in comparison to 

Brownian motion parameter. Masood et al. [21] analysed the magnetohydrodynamic boundary 

layer flow of power-law nanofluid over a non-linear stretching sheet, showing that velocity 

decreases with increasing stretching parameter. Khan et al. [22] analyzed the two-dimensional 

boundary layer flow of Burgers’ nanofluid over a stretching surface, showing that Deborah 

number (viscoelastic parameter) has opposite effects on temperature and mass fraction function 

Generalized Burgers nanofluid flow from a stretching sheet in the presence of heterogeneous-

homogeneous chemical reactions was addressed by Khan et al. [23]. Unsteady three-dimensional 

flow of Eyring-Powell nanofluid under convective and nanoparticles mass flux conditions was 

made by Khan et al. [24].  Metallic-based nanofluids have often been examined in these studies. 

They often are biocompatible and therefore of considerable interest in green industrial and 

biomedical systems including wound treatment, cancer therapy, nano-pharmacodynamics (drug 

delivery), nano-enhanced rotating membrane bioreactors (Beg et al. [25]) etc. Nanofluids were 

introduced by American energy engineer, Stephen Choi [26] originally to develop coolants for 

automotive applications without incurring agglomeration and sedimentation effects experienced 

with larger (micron-sized) particles.  Eastman et al. [27] demonstrated that nanoparticles can 

enhance thermal conductivity by 40% by doping with 1% nanoparticles (copper) in oil or 

ethylene glycol. Subsequently a considerable effort has been made by numerous researchers to 

investigate increasingly diverse applications of nanofluids owing to their superior properties i.e. 

large thermal conductivity, long-term stability and minimal obstructive effects in flow passages. 
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These studies have largely been theoretical and computational in nature and provide an important 

compliment to experimental investigations. Of particular relevance to swirling flow applications, 

are rotating nanofluid models. These incorporate Coriolis body force effects in addition to 

species diffusion (nanoparticle mass transfer) and other physical effects (heat transfer, time-

dependence, viscous dissipation, thermal stratification, chemical reactions etc). Interesting 

computational studies of rotating nanofluid dynamics include Rana et al. [28] who investigated 

Richardson and Taylor number effects on transient rotating hydromagnetic nanofluid stretching 

sheet flow in polymer processing. Thumma et al. [29] used a variational finite element technique 

to compute thermo-solutal magneto-convection from a spinning vertical surface with viscous 

heating effects. Yadav et al. [30] simulated the hydromagnetic stability of rotating nanofluids 

using linear stability theory and a Galerkin finite element technique for several scenarios.  

Rotating disk swirling flows of nanofluids have also received some attention. Bachok et al. [31] 

employed Kelelr’s implicit box method to numerically analyze the relative performance of two 

different nanofluid effective thermal conductivity models (Maxwell–Garnett model and Patel 

model) for laminar flow over a permeable rotating disk with wall suction and injection effects. 

Mahanthesh et al. [32] computed numerically the swirling flow of Ti6Al4V or AA7072 -water 

nanofluids over a rotating disk with heat flux and heat source conditions, considering also shape 

effects for different nanoparticles (laminates, tubes, spheres, tetrahedrons and hexahedrons). 

Makinde et al. [33] simulated the impact of radiative flux on swirling magnetohydrodynamic 

aluminum/titanium-water nanofluid flow from a rotating disk.   They also considered Ohmic and 

viscous heating noting that titanium alloy nanoparticles achieve superior thermal performance 

compared with aluminium alloy nanoparticles. Sheikholeslami et al. [34] computed the steady 

nanofluid deposition on an inclined rotating disk with a fourth order Runge–Kutta method, 

noting that Nusselt number is elevated with normalized thickness, Schmidt number, Brownian 

parameter and thermophoretic parameter and furthermore that Schmidt number, Brownian 

parameter and thermophoretic parameter are directly proportional to latent heat whereas 

normalized thickness exhibits an inverse relationship. Further studies of swirling flows of 

nanofluids include Hayat et al. [35] (on homogeneous-heterogeneous reactions in Iron oxide 

magnetite-water nanofluids), Yin et al. [36] (radial linear stretching disk nanofluid flow) and 

Mushtaq et al. [37] (rotating exponentially stretching sheet nanofluid transport).  
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Many other studies of nanofluid convection flows have been reported using the Buongiorno 

model. Khan et al. [38] explored the impact of nonlinear thermal radiation and variable thermal 

conductivity on Cross rheological nanofluid flow. It was observed that the thermophoresis and 

Brownian motion mechanisms significantly affected heat transport. Khan et al. [39] focused on 

the characteristics of heat sink-source and melting in time-dependent Falkner–Skan flow of 

Cross nanofluid. They noted that velocity of the Cross nanoliquid is boosted with larger melting 

and velocity ratio parameters and increment in Schmidt number produced a boost in 

concentrations. The hydromagnetic flow of Sisko nanofluid along an unsteady curved surface 

with non-uniform heat source/sink was addressed by Khan et al. [40], who showed that greater 

magnetic parameter accelerates the flow and increment in thermophoresis parameter elevates the 

nanoparticle concentration. Khan et al. [41] scrutinized the reactive magnetized Cross nanofluid 

flow external to a cylindrical surface. Their results revealed that temperature is elevated with 

larger thermophoretic parameter whereas nanoparticle concentration is depleted with greater 

activation energy parameter. Further studies include Khan et al. [42] who examined the effects of 

Brownian motion and thermophoresis on time-dependent magnetic non-Newtonian (Sisko) 

nanofluid flow from a curved stretching surface. They observed that nanoparticle concentration 

is intensified with greater thermophoresis parameter and velocity is enhanced by augmenting the 

values of curvature parameter. Khan et al. [43] also developed a nonlinear mathematical model 

for Williamson rheological nanofluid fluid along a convectively heated moving surface. They 

showed that the temperature is elevated with larger Brownian movement and thermophoretic 

parameters. Variable characteristics of viscosity and thermal conductivity in peristaltic flow of 

magneto-Carreau nanoliquid with heat transfer irreversibility was studied by Khan et al. [44].  

Khan et al. [45] also analyzed the peristaltic pumping of aqueous nanofluids containing 

SWCNTs and MWCNT’s with entropy optimization in a non-uniform channel. 

In many practical engineering operations, porous media may be deployed to exploit their 

excellent flow control and filtration properties. The most popular methodology for simulating 

porous media hydrodynamic effects is the classical Darcy model [46] which established 

experimentally the phenomenological relation through the pressure drop across a saturated 

porous medium and the flow rate and features permeability (hydraulic conductivity) of the 

porous medium. It also assumes isotropic and homogenous properties. Porous media have 
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therefore been explored extensively in mathematical models of industrial processes and notable 

examples in this regard are Prasad and Kulacki [47], Vasseur et al. [48]. More recently a diverse 

spectrum of thermal boundary conditions, thermophysical effects and numerical techniques have 

been described by Umavathi et al.  [49, 50, 51, 52] for vertical duct porous media transport 

problems. These studies have utilized the Darcian model which provides an accurate simulation 

for low velocity transport. For higher velocity flows or those featuring vorticity diffusion at the 

boundaries, which may be encountered in for example high-speed coating processes or medical 

devices, the Darcy model is inadequate and needs to be modified to simulate inertial porous 

medium effects, viscous effects etc. Two notable modifications of Darcy’s law which have been 

developed to examine nonlinear fluid dynamic effects are the Brinkman [53] and Forchheimer 

[54] extensions, which account for the viscous stresses with the bounding walls and the non-

linear (second order inertial) drag effect over the solid matrix, respectively. The Darcy-

Forchheimer drag model for example can simulate flows quite accurately up to Reynolds 

numbers of about 100, after which chaotic and subsequently disturbed flow regimes arise. A 

more general approach is the Brinkman-extended Darcy-Forchhemer model which is a more 

robust non-Darcy model, and which neatly fits into the framework of the Navier-Stokes viscous 

flow model. This approach has received considerable attention in recent years in chemical and 

mechanical engineering. Interesting studies in this regard include Umavathi and Bég [55] (on 

thermosolutal reactive convective non-Darcy flow in a vertical channel with boundary conditions 

of the third kind), Rawat et al. [56] (on unsteady electroconductive microstructural convective 

flow under buoyancy forces with heat generation), Subba Rao et al. [57] (on thermosolutal 

nanofluid coating flow of a cylindrical pipe in non-Darcy porous media), Bég et al. [58] (on 

geothermal radiative-convective flow from a curved body in non-Darcy saturated permeable 

media) and Bég et al. [59] (on buoyancy-driven two-phase blood flow pumping in a 

hemodynamic purification device). Bég et al. [60] generalized the Darcy model to anisotropic 

permeability and Forchheimer drag effects for spin coating of a cone with mass diffusion in 

porous media using Adomian decomposition, generalized differential quadrature and shooting 

quadrature. Rotating disk flow to non-Newtonian saturated non-Darcy porous media was 

investigated by Bég et al. [61] who deployed MATLAB quadrature and finite element methods 

to compute radial, tangential and axial velocity distributions in pseudoplastic/dilatant 
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biopolymeric coating flows with the Brinkman-Darcy-Forcheimmer model. They noted the 

significant damping effect on all velocity components associated with stronger Forchheimer 

inertial parameter. 

The above studies generally assumed the classical no-slip wall condition. However, in 

nanomaterial coating and other complex deposition operations, wall slip effects are known to 

exist.  Alternatively, a Knudsen number may be deployed which relates the mean free path of 

molecules to a characteristic length. A critical parameter for stable coating synthesis is the also 

the disk rotation speed. Optimized coatings can be produced by balancing the correct parameters 

to achieve more homogenous film distribution over a rotating disk. Smart nanofluid coatings are 

increasingly being deployed for corrosion protection in aerospace engineering and ultra-thin 

membranes for sensor applications. Computational studies of slip dynamics in rheological and 

nanofluids have also received some interest in recent years and have considered both external 

coating and internal flows. Presentative studies in coating systems include Prasad et al. [62] (on 

Casson viscoplastic axisymmetric thermal/momentum slip flow), Mukhopadhyay et al. [63] (on 

plate boundary layer mixed convection flow under transverse magnetic field with lateral mass 

influx), Uddin et al. [64] (on contracting/extending Sakiadis magneto-nanofluid biopolymer slip 

coating flow with Biot number effects). Bég et al. [65] used a collocation algorithm to compute 

the bioconvection nanofluid slip flow in a porous microchannel with wall deformability, 

considering hydrodynamic, thermal, nanoparticle and also gyrotactic micro-organism slip 

factors. Shukla et al. [66] derived homotopy solutions for Bejan entropy generation effects on 

hydromagnetic free and forced convective slip coating flow and heat transfer along an upright 

pipe. Further studies include Prakash et al. [67] on electro-osmotic bioinspired pumping of 

hybrid (multiple nanoparticles) nanofluids with internal wall slip in a microchannel and 

Shamshuddin et al. [68] on radiative magnetic polymer coating flow along an exponentially 

stretching sheet with power-law slip velocity and Hall current effects. Several studies have also 

considered rotating disk slip dynamics.  Bég et al. [69] used an electrothermal numerical solver, 

PSPICE, to simulate the radiative magnetic heat transfer in Von Karman swirling slip flow with 

variable thermal conductivity and wall suction/blowing.  Hayat et al. [70] used MATLAB bvp4c 

quadrature to analyze the swirling magneto-convective heat and mass transfer of a nanofluid 

from a spinning disk with velocity slip, Brownian motion and thermophoresis effects. Very 
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recently Recently Bég et al. [71] investigated numerically the Von Karman swirling 

bioconvective nanofluid transport from a rotating disk in a porous medium with Stefan blowing 

and anisotropic slip effects. The results obtained showed that the radial velocity increases 

whereas temperature, nanoparticle concentration and microorganism density number decrease 

with greater Darcy number and radial slip parameter. Micro-organism density number was 

however increased with the greater microorganism slip. Bég et al. [72] studied magneto-thermo-

bioconvection of oxytactic microorganisms in nanofluid flow along a needle. Stefan blowing was 

applied. With elevation in Lorentzian drag force, the friction factor was reduced while the local 

Nusselt number, local Sherwood number, and the local motile microorganism density wall 

gradient were all enhanced. 

Scrutiny of the existing scientific literature has revealed that, thus so far, the Von Karman 

swirling slip flow of a nanofluid to a non-Darcy porous medium has not been addressed, despite 

important applications in spin coating control operations. The present article therefore analyzes 

incompressible, steady-state rotating disk nanofluid flow, heat and mass transfer to an isotropic 

permeable medium with the Darcy-Forchheimer-Brinkman model. The simultaneous inclusion of 

both thermal slip (jump), hydrodynamic slip, Forchheimer inertial (quadratic) drag and 

Brinkman vorticity diffusion effects in Von Karman swirling nanofluid flow constitutes the 

novelty of the present work. The Buongiorno [73] two-component nanoscale model is 

implemented which features Brownian dynamics and thermophoretic body force effects. Using 

boundary-layer theory and appropriate transformations, robust similarity ordinary differential 

equations are derived which are then solved subject to physically viable boundary conditions 

with efficient numerical quadrature available in the bvp4c built-in function in MATLAB 

symbolic software. Verification of the MATLAB computations is achieved with an Adams-

Moulton predictor-corrector algorithm. The impact of velocity (momentum) slip coefficient, 

thermal slip on all the flow controlling parameters are visualized graphically. Extensive physical 

interpretation of the numerical computations is provided. The current study constitutes a novel 

contribution to the technical literature and has to the knowledge of the authors not been 

communicated in the literature. 
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2. VON KARMAN SWIRLING NANOFLUID SLIP NON-DARCY MODEL 

The steady state, incompressible slip flow, mass and energy transfer using the nanofluid induced 

by the rotation of an infinite perfectly flat disk is considered, as illustrated in Fig. 1. Rotation 

occurs due to the angular velocity   along the positive direction of  . Edge effects are 

neglected.  The radial direction is along r , the vertical axis is along z  direction,   is along the 

tangential direction, to represent the cylindrical coordinate system ( ), ,r z . The infinite rough 

disk occupies the plane 0z =  and viscous incompressible nanofluid occupies the region 0z   

and slip conditions are adopted on the boundary.  Further the boundary laeyer thickness is 

assumed to be  is assumed to greater than the roughness at the disk. wT  indicates the wall 

temperature and T  indicates the ambient temperature such that
wT T . 0t   indicates that the 

fluid is at rest also at constant temperature and concentration (stationary disk). The disk is then 

instantaneously imparted an impulsive acceleration at 0t = and constant velocity. Due to this, the 

swirling boundary layer flow is transient during a very small interval, before reaching the well-

known steady state. Via Buongiorno’s model [73] thermophoresis and Brownian motion effects 

are invoked to introduce the mass deposition variation on the disk surface. Here the nanofluid is 

a two-component mixture comprising both a base fluid (e. g. water) and metallic nanoparticles 

with dilute mixture properties, negligible viscous dissipation or chemical reaction and 

additionally the nanoparticles and base fluid are in a sustained local thermal equilibrium. 

Thermophoresis and Brownian motion cannot be analyzed with other empirical nanoscale 

models e.g. Tiwari-Das, Maxwell-Garnetts etc. These are also essentially single-phase models 

since they neglect the inclusion of a species diffusion conservation equation, which is included in 

the Buongiorno model adopted here. Combining the models of Buongiorno [73] for nanoscale 

effects, Hayat et al. [70] for rotating disk slip flow and Umavathi and Bég [55] for non-Darcy 

convection flow, the governing conservation equations for the present problem become: 

0
u u w

r r r

 
+ + =

 
                                                                                                                         (2.1) 

2 2 2
2

2 2 2

1 f f f

f f

Cu v u P u u u u
u w u u

r r z r r z r r r r

 
 

 

        
− + = − + + + − − −   

        
                         (2.2) 
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2 2
2

2 2 2

1 f f f

f f

Cuv v v v v v v
u w v v

r r z r r r z r r

 
 

 

      
+ + = + + − − −         

                                      (2.3) 

2 2

2 2

1
f f

w w P w w w
u w

r z z r z r r
 

       
+ = − + + +          

                                                                  (2.4) 

2 22 2

2 2

1 T
f B

m

DT T T T T T T C T C T
u w D

r z z r r r T r z r r z z
 

                  
+ = + + + + + +                              

 

                (2.5)                                        

2 2 2 2

2 2 2 2

1 1T
B

DC C T T T C C C
u w D

r z T r r r z r r r z

          
+ = + + + + +   

          
                                  (2.6) 

 

 

 

In the above equations, u denotes the velocity along radial direction, v  is the velocity along 

tangential direction, and w  represents the velocity along the vertical axis of the cylinder.  The 

pressure is noted as p , nanoparticle concentration is taken as C ,  T  denotes the temperature, 

the viscosity is taken as f  , the density is f ,   is the porosity, the thermal diffusivity is 

    

r  

w  

u  

v  

z  
,T C 

 

Fig.1 Physical configuration of the problem and coordinate systems 

Nanoscale particles Isotropic porous medium 

saturated with nanofluid 
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represented by 
f , the ratio of heat capacity of the nanoparticle to the heat capacity of the 

carrying fluid is dented by  ,  TD  and BD  are respectively the Brownian and thermophoretic 

diffusion terms f represents the nanofluid thermal diffusivity. The conditions on the boundary 

considered are 

1 1 2, , 0, , T
w B h

Du v T C T
u L v L r w T T L D C

z z z z T z

    
= = +  = = + + =

    
      at   0z =  

0, ,u T T C C = → →                                                                                      at   z→   (2.7) 

where 1L  is the coefficient of wall slip and the coefficient of jump temperature is taken as 2L . 

The following similarity transformations are invoked in Eqns. (2.1) to (2.6): 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
, , 2 , ,

, ,

f

f

f w

u r f v r g w f z

P P P T T T T C C C

    


         


=  =  =−  =

= −  = + − = +

                                    (2.8) 

The dimensionless form of radial, tangential, temperature and nanoparticle concentration 

respectively are , ,f g  and   where each one is a function of    (dimensionless axial 

coordinate). Equation (4) is integrated to evaluate the pressure.  Equation (2.1) is already 

satisfied by transformations (8) while Eqns. (2.2) to (2.6) and (2.7) assume the fallowing form:  

( ) ( )
2 221 1

0
2 2 2 2

I
f ff f f f f


    + − + − − =                                                             (2.9) 

( )
2

0g f g g f f I f    + − − − =                                                                                         (2.10) 

( )
2

0
Pr

Nb Nt f


   


   + + + =                                                                                          (2.11) 

0
Nt

Sc f
Nb

    + + =                                                                                                             (2.12) 

The emerging boundary conditions assume the form: 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0, , 1 , 1 ,

0

f f f g g

Nt

Nb

          

   

   = = = + = +

 + =
   at   0 =              (2.13)  

( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0f g P   =  =  =  =  =                           at    =             (2.14) 
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In this prime indicates derivative with respect to  , the inertial drag parameter is I ,  is the 

Darcian (inverse permeability) number,  the thermophoresis and Brownian parameters are  Nt  

and Nb ,   Sc     denotes the Schmidt number, Re       represents  the rotational Reynolds number,  

The slip velocity and slip temperature are denoted as   and  ,   the Prandtl parameter is Pr  and 

are defined as follows. 

  

( ) ( )

( )

( ) ( )

( )

2

1 2

2 2

B w h T w hf f

f

p p

mf

f f

B f f f

f

C D C C C D TC r
I , , Re , ,

Sc , Pr , Y

T
Nb ,N

L , L
D

t
C C T

 

   

 


  

   


  

= = =

= = = =

− −
= =

 (2.15) 

 

Important physical parameters are skin friction coefficient frC  and reduced Nusselt number 
rNu  

for coating dynamics and these are defined as below: 

( ) ( )

2 2 ''
0

2
,

r

fr r

wf

r q
C Nu

k T Tr

 

 

+
= =

−
          (2.16) 

Here  r  is radial stress,   is tangential stress and ''q represents the heat flux from the disk, 

(based on the Fourier law) which take the following definitions: 

  

0 0

0

,r f f

z z

z

u w v w

z r z r

T
q k

z

   
= =

=

      
= + = +   

      

 
 = −  

 

                                                                     (2.17) 

For the present problem, the emerging expressions for skin friction coefficient and Local Nusselt 

number in terms of the variables defined in Eqn. (2.6) become: 

( ) ( )( ) ( )
2 2

2

1 2
0 0 , 0

2
fr r

f

f

C g f Nu r

r







  = + = −

 
  
 

                                    (2.18) 
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Of course, a separate expression for nanoparticle mass transfer rate may be derived i. e. for 

Sherwood number, However, for brevity, here we restrict attention to the primitive variable i. e. 

nanoparticle concentration, ().  

 

3. NUMERICAL SOLUTION WITH MATLAB BVP4C SOLVER  

The three-stage Lobatto IIIA formula is adopted in BVP$C solver in MATLAB.  The error 

control and the size of the mesh are dependent on the residue of the continuous solution.  The 

continuous solution is obtained from the collocation polynomial which uses the fourth order 

accuracy in the interval [a, b].  The procedure followed is that the nonlinear differential 

equations are rewritten in the form of first-order differential equations introducing the new 

variables.  The error tolerance is to the order of eight decimal places.  After the compilation of 

the code, the solution is placed in the buffer called sol. y and the buffer sol. x contains the 

information of the mesh selection.  Uddin et al. [74] is used to verify and confirm that the 

residual is less than the tolerance or not.  The value of 
MIDY  and the gradient at the ends of the 

subinterval is computed by Bvp5c. Russell and Christansen [75] used the following stepping 

formula to calculate 
MIDY . 

1 1 2 3 4

17 40 15 5 40 15 5 1

192 192 192 192
MIDY Y K K K K

 + +
= + + + − 

 
                                      (3.1) 

Here Y1 is the initial guess and K1, K2, K3, K4 are the approximations with a stepping distance of 

. Excellent stable solutions are generated for radial, azimuthal and axial velocity, temperature 

and nanoparticle concentration in Figs. 2-18. Further details of the MATLAB bvp4c shooting 

algorithm are reviewed with many applications in multi-physical fluid dynamics by Bég [76], 

and Sarkar and Sahoo [77]. 

 

4. VALIDATION WITH ADAMS–MOULTON 2-STEP PRED-CORR SCHEME  

Since the present model is novel, there are no solutions against which to benchmark the BVP4C 

finite difference results. To validate the computations, therefore, an alternate numerical method 

is deployed, namely the Adams Moulton predictor-corrector method, which is described in Pal 

[78]. This verification approach also has the significant advantage that the full model developed 

in the current work can be validated i. e. with non-Darcy and nanofluid effects, rather than a very 
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restricted model from the literature which does not features all the multi-physics. The Adams 

Moulton method is an implicit multistep method. A popular version is the rapidly convergent, 

stable 2-step Adams Moulton method for a linear initial value problem. Applying this algorithm 

to the present boundary value problem, we define the gradients of the dimensionless f, g,  and   

as follows using a general function, v:  

( ) ( )0 0

df
, f , f f

d
  


= =                                                                                (4.1)                                                                              

( ) ( )0 0

dg
, , g g

d
   


= =                                                                                 (4.2) 

( ) ( )0 0

d
, ,

d


     


= =                                                                                  (4.3) 

( ) ( )0 0

d
, ,

d


     


= =                                                                                  (4.4) 

Here 0 0 0 0f , g , ,   are initial guesses. The predictors are then specified and thereafter the 

correctors to produce an accurate solution based on the initial calculation. The Adams-Moulton 

two-step predictor relations for the four variables, with a stepping distance of , take the form:  

( ) ( )( )1 1 13
2

k k k k k kf f , f , f


   + − −= + −                                                        (4.5) 

( ) ( )( )1 1 13
2

k k k k k kg g ,g , g


   + − −= + −                                                       (4.6) 

( ) ( )( )1 1 13
2

k k k k k k, ,


       + − −= + −                                                         (4.7) 

( ) ( )( )1 1 13
2

k k k k k k, ,


       + − −= + −                                                         (4.8) 

 

The corresponding two-step corrector formulae are given by: 

( ) ( )( )1 1 1
2

k k k k k kf f , f , f


   + + += + −          (4.9) 

( ) ( )( )1 1 1
2

k k k k k kg g ,g , g


   + + += + −        (4.10) 

( ) ( )( )1 1 1
2

k k k k k k, ,


       + + += + −        (4.11) 



17 

 

( ) ( )( )1 1 1
2

k k k k k k, ,


       + + += + −        (4.12) 

The trapezoidal rule is also used to refer the AM2 (Adams-Moulton of second order accuracy) 

which is an implicit scheme. For a non-linear boundary value problem, non-linear algebraic 

equations are solved at each step iteratively. To verify the MATLAB bvp4c solutions, the results 

in Tables 1-2 are compared with the Adams Moulton predictor corrector method (AMPC). A 

tolerance of 10-8 is also set in the AMPC code running on a 4 quad processor Acer laptop. 

Computations converge in seconds.  

 

 

TABLE 1a and 1b Comparison BVPC and AMPC  for various   , I ,  , Pr  for  

0.2, 4, 0.5, 10, 0.25Nt I Nb Sc = = = = = = , Pr = 7 (aqueous nanofluid). 

TABLE 1a. 

  I    ( )0f   

BVP4C 

( )0f   

AMPC 

( )0f   

BVP4C 

( )0f   

AMPC 

( )0g  

BVP4C 

( )0g  

AMPC 

0.0 4.0 0.25 0.2085192 0.2085192 0.0521298 0.0521297 -0.4445535 -0.4445531 

2.0 4.0 0.25 0.13347139 0.13347143 0.03336785 0.03336783 -0.4890830 -0.4890831 

4.0 4.0 0.25 0.1037314 0.1037314 0.0259328 0.0259328 -0.5120709 -0.5120708 

6.0 4.0 0.25 0.0867979 0.0867979 0.0216994 0.0216994 -0.5268938 -0.5268938 

4.0 0.0 0.25 0.1056118 0.1056118 0.0264029 0.0264029 -0.5103965 -0.5103965 

4.0 2.0 0.25 0.1046495 0.1046495 0.0261623 0.0261623 -0.5112519 -0.5112519 

4.0 4.0 0.25 0.1037314 0.1037314 0.0259328 0.0259327 -0.5120709 -0.5120709 

4.0 6.0 0.25 0.1028536 0.1028536 0.0257134 0.0257133 -0.5128567 -0.5128567 

4.0 4.0 0 0.1877161 0.1877161 0.0000000 0.0000000 -0.5496780 -0.5496780 

4.0 4.0 0.2 0.1155049 0.1155049 0.0231009 0.0231001 -0.5229057 -0.5229057 

4.0 4.0 0.4 0.0772842 0.0772842 0.0309137 0.0309137 -0.4778066 -0.4778066 

4.0 4.0 0.6 0.0551019 0.0551018 0.0330611 0.0330612 -0.4341933 -0.4341933 

 

TABLE 1b. 
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  I    Pr  Nt  ( )0   

BVP4C 

( )0  

AMPC 

0.0 4.0 0.25 7 0.2 -0.51861923 -0.51861930 

2.0 4.0 0.25 7 0.2 -0.37580753 -0.37580755 

4.0 4.0 0.25 7 0.2 -0.29661539 -0.29661544 

6.0 4.0 0.25 7 0.2 -0.24690272 -0.24690268 

4.0 0.0 0.25 7 0.2 -0.30122598 -0.30122596 

4.0 2.0 0.25 7 0.2 -0.29886922 -0.29886924 

4.0 4.0 0.25 7 0.2 -0.29661539 -0.29661535 

4.0 6.0 0.25 7 0.2 -0.29445602 -0.29445605 

4.0 4.0 0 7 0.2 -0.31506696 -0.31506689 

4.0 4.0 0.2 7 0.2 -0.30018501 -0.30018499 

4.0 4.0 0.4 7 0.2 -0.28626302 -0.286262897 

4.0 4.0 0.6 7 0.2 -0.27327074 -0.27327071 

4.0 4.0 0.25 10 0.2 -0.35684831 -0.35684838 

4.0 4.0 0.25 8 0.2 -0.31818077 -0.31818071 

4.0 4.0 0.25 6 0.2 -0.27326416 -0.27326414 

4.0 4.0 0.25 5 0.2 -0.24791602 -0.24791606 

4.0 4.0 0.25 7 0.1 -0.32588972 -0.32588973 

4.0 4.0 0.25 7 0.3 -0.26817915 -0.26817912 

4.0 4.0 0.25 7 0.5 -0.21648707 -0.21648704 

4.0 4.0 0.25 7 0.7 -0.17461625 -0.17461621 

 

 

Excellent correlation is achieved for each Table testifying to the accuracy of the BVP4C 

MATLAB solver technique which is adopted for all graphical visualizations in the next section. 

In Table 1a, 1b we tabulated the values of unknown function ( ) ( )0 , 0f f   and ( )0g  for 

different parameters.  Increasing the values of inverse permeability and inertial parameter, 

radial, axial and tangential shear stress coefficients are decreased since decreasing permeability 
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(higher ) and greater Forchheimer drag ( )I  decelerate the flow on the disk surface. The radial 

stress, represented by ( )0f   decreases, ( )0f  increases and also ( )0g  increases with 

increasing velocity slip coefficient, . In Table 1b, it is observed that elevation in   (i. e 

reduction in permeability), i I , , Pr  and Nt , decrease the reduced Nusselt number. It is 

noteworthy that smaller permeability intensifies the quantity of solid fibers in the porous medium 

which enhances temperatures in the boundary layer- this leads to a depletion in heat transferred 

to the disk surface i. e. lower Nusselt numbers. 

 

5. RESULTS AND DISCUSSION 

The impact of the key thermophysical and hydrodynamic parameters  ,  , I ,  , Nb , 

Nt , Sc and Pr  on the radial, tangential, axial velocity, temperature and nanoparticle 

concentration field distributions as computed with BVP4C MATLAB quadrature are visualized 

in Figures 2-18. The values chosen are 

0 25 4 0 0 2 0 5 1 0 4 0 0 25A . , . , Nt . , Nb . , Sc . , I . , . = = = = = − =  except the varying parameter 

in all the pictures. 

Figure 2 shows the variation in radial velocity for different values of velocity 

(momentum) slip parameter . Owing to the presence of wall slip effects, the radial velocity 

exists at the disk although there is no stretching along the radial direction.  As   is magnified, 

velocity declines and the paramount velocity moves towards the disk surface. The effect of 

velocity slips parameter   on the tangential velocity is shown in Fig 3; significant depletion is 

computed when slip parameter  is increased.  Therefore, both radial and tangential (azimuthal) 

deceleration is induced in the boundary layer flow along the disk. This indicates that in the 

absence of slip effects, over-prediction in velocity components is produced which furnishes 

unrealistic information for designers.  
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FIGURE 2   Chart of radial velcoity for distinct 
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FIGURE 3   Chart of tangential velcoity for distinct .
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FIGURE 4   Chart of radial velocity for distinct .
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FIGURE 6   Chart of tagentail velocity for distinct .

  = 0, 2.0, 4.0, 6.0, 8.0
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FIGURE 8   Chart of radial velocity for distinct I.

I  = 0, 2.0, 4.0, 6.0, 8.0
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FIGURE 9   Chart of tagentail velocity for distinct I.
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FIGURE 10   Chart of temperature for disntict . 
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FIGURE 11   Chart of temperature for different distinct I.
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FIGURE 12   Chart of temperature for distinct Nt.
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FIGURE 13   Chart of temperature for distinct .
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FIGURE 14   Chart of concentration for distinct .
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FIGURE 15   Chart of concentration for distinct I.
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FIGURE 16   Chart of concentration for distinct Nt.
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FIGURE 17   Chart of concentration for distinct Sc.
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FIGURE 18   Chart of concentration for distinct .



(

)

  = 1.0 2.0, 3.0, 5.0, 10.0

 

In Fig. 4-6, impacts of inverse permeability parameter   on the radial velocity, axial 

velocity and tangential velocity profiles are shown. The influence of inverse permeability 

parameter  is similar but more pronounced than that of velocity slip parameter  i. e. they are   

qualitatively similar. A consistent decrement in both radial and axial velocity is induced (Figs. 4, 

5) at all values of transverse coordinate. The enhancement in inverse Darcy parameter implies a 

reduction in medium permeability. This produces larger bulk drag resistance to the flow. 

However, while initially the tangential velocity Fig. 6) is initially stifled, again with higher 

Darcian impedance forces associated with higher values; however further from the disk the 

reverse behavior is induced. The rotating disk system acts similar to a fan configuration drawing 

fluid axially inward from the surrounding medium towards the disk surface. Since no 

transpiration occurs at the disk surface i. e. it is solid, therefore the incoming nanofluid is turned 

and discharges in the radial direction along the disk. This results in a re-distribution in 

momentum which produces radial flow acceleration further from the disk surface and counteracts 

the bulk porous medium drag.  

In Figs 7-9, the variation in inertial parameter I  on the axial velocity, radial velocity and 

tangential velocity are depicted. As increasing the values of inertial parameter I axial velocity 
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decreases and this trend is amplified further from the rotating disk surface as shown in Fig 7.   

For large values of I , the radial velocity condenses and also the ultimate velocity will bend near 

the rotating wall.  However, there are less pronounced modifications in the tangential velocity as 

compared with the axial and radial velocity as shown in Fig 9.  While the Darcian parameter,   

appears in the linear drag force term and simulates the linear drag effect of the bulk porous 

media fiber resistance at low Reynolds number on the nanofluid, the Forchheimer parameter is 

quadratic and exerts a more substantial retarding effect. Of course, in the limit when  → (and 

of course when Forchheimer quadratic drag parameter, 0I → ) the solid fibers vanish and the 

regime is purely nanofluid. Although the Forchheimer second order drag term which appears in 

the momentum boundary layer Eqn. increases with inertial effect i.e. greater Reynolds number, it 

is not associated with acceleration of the flow. The overwhelming influence of I  is to decelerate 

the swirling flow in the porous regime. This is characteristic of Forchheimer effects.  

It is also pertinent to note that the range of I values considered does not stimulate vortex 

formation associated with higher Reynolds numbers (greater than 250). However, the boundary 

layers around the pores become more pronounced and an “inertial core” appears with higher 

Forchheimer number. The developing of these “core” flows external to the boundary layers 

accounts for the non-linear relationship between pressure drop and flow rate. Strong regulation 

of the coating velocity field therefore is achievable by pressure generated inertial effects in the 

porous medium.  

The variation in the temperature filed with the increase in inverse permeability parameter 

  is visualized in Fig. 10. In contrast with the velocity field, the heat magnitudes are increased 

by  boosting    since the smaller permeability’s imply greater concentration of solid matrix 

fibers. This encourages thermal conduction which manifests in heating of the nanofluid and 

elevation in temperatures.  Increment in Prandtl number also elevates temperatures.  

Figure 11 display the characteristic of  I  on the energy distribution. Increasing the 

values of inertial parameter I strongly elevate temperatures. Again, this is due to the deceleration 

in the flow associated with stronger Forchheimer drag. The decrease in momentum diffusion rate 

allows better convective heat transfer in the medium and energizes the flow. Temperatures are 

therefore enhanced consistently at all values of transverse coordinate.  
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The issue of  Nt   (defines the ratio of thermophoretic diffusion to the momentum 

diffusion) on the energy field is presented in Fig. 12.  The nanoparticles immigrate from hot zone 

to the cold zone when exposed to the temperature gradient. The temperature magnitudes are 

boosted and there is a corresponding increase in thermal boundary layer thickness as the values 

of Nt  are augumented. Figure 13 depicts the effect of thermal slip parameter   on thermal 

boundary layer. The heat transfer is receded from the disk to the neighboring fluid layers by 

expanding   . Since the thermal penetration distance is increased with thermal jump, and this 

leads to a reduction in temperature magnitudes. Thermal boundary layer thickness is therefore 

also depleted with greater thermal jump (slip) effect. 

Figure 14 shows the response in nanoparticle concentration to variation in inverse 

permeability parameter  .  The impact of   makes the nanoparticle concentration to attain 

negative values which physically infer that the ambient concentration C  is larger than the wall 

concentration. The nanoparticle concentration increases, and the location of the absolute 

maximum is displaced at a distance from the boundary as the inverse permeability parameter   

is increased. Figure 15 illustrates the influence of Forchheimer inertial parameter I on the 

nanoparticle concentration field. As increasing the values of inertial parameter I the 

concentration magnitudes also increase. Species diffusion of nanoparticles is therefore 

encouraged with flow deceleration and results in greater nanoparticle boundary layer thickness.  

For incremental values of Nt  results in the expansion of the nanoparticle concentration 

as figured in Fig. 16.  Further the utmost values of the contours are tending far away form the 

disk surface.  This figure also inform that the nanoparticle concentration field is declined for 

enlarging the Brownian motion parameter Nb . Higher values of Nb imply smaller nanoparticle 

dimensions in the Buongiorno model. Nanoparticle species boundary layer thickness is decreased 

with greater Brownian motion effect. Figure 17 visualizes the profiles of nanoparticle 

concentration for various values of Sc ( Sc  is the inverse of BD ). The concentration boundary 

layer thickness is dwindled by raising the Schmidt number. Whereas near the disk surface a 

slight enhancement in nanoparticle concentration is induced, the dominant effect for the majority 

of the boundary layer regime is the decrease in nanoparticle concentration magnitudes with 

greater Schmidt number. Figure 18. presents the distribution in nanoparticle concentration for 

various values of thermal slip parameter  . As the thermal jump effect is intensified i. e.   



31 

 

enlarges, nanoparticle concentration field shrinks substantially and the contours attaining the 

optimum values tend to depart away from the wall. Nanoparticle boundary layer thickness is 

therefore also reduced with stronger thermal slip effect. The implication is that when 

mathematical models neglect thermal slip, an over-estimate is produced in computations. This is 

avoided by inclusion of a correct thermal slip feature in the disk surface boundary conditions as 

reported here.  

 

6. CONCLUSIONS 

A theoretical and computational study of the steady heat and mass transfer in Von Karman 

swirling slip flow of a nanofluid from a rotating disk adjacent to a homogenous non-Darcy 

porous medium has been presented. The porous medium is simulated with a Darcy-Forchheimer-

Brinkman model. Thermophoresis and Brownian dynamics of the nanoparticles have been 

simulated with the Buongiorno nanoscale model. Von Karman similarity variables are deployed 

to transform the partial differential conservation equations into a system of highly coupled, 

nonlinear, dimensionless ordinary differential equations (ODE's). These similarity boundary 

layer equations i. e. continuity, momentum, energy and nanoparticle concentration (volume 

fraction) are solved with bvp4c shooting quadrature in MATLAB. Validation with earlier studies 

is included. Further verification with an Adams-Moulton predictor-corrector method is 

conducted. The influence of velocity (momentum) slip coefficient, thermal slip, Darcian bulk 

drag parameter (inverse permeability), Forchheimer inertial parameter, thermophoresis and  

Brownian motion parameters, Schmidt number, Prandtl number, on radial, tangential 

(azimuthal) and axial velocity components, temperature and nanoparticle concentration are 

visualized graphically. The distributions for skin friction components, Nusselt number 

(dimensionless heat transfer rate at the disk surface) are also computed. The present 

computations have shown that: 

1)Radial, axial and tangential velocities are reduced with increasing Forchheimer inertial drag 

and hydrodynamic wall slip whereas they are elevated with increasing permeability (decreasing 

inverse Darcy parameter).  



32 

 

2) Thermal and nanoparticle concentration boundary layers are also markedly modified with 

increasing Forchheimer inertial parameter, Prandtl number, Schmidt number, Brownian motion 

parameter and thermophoresis parameter. 

3) Nanoparticle boundary layer thickness is therefore also reduced with stronger thermal slip 

effect. 

4) Species diffusion of nanoparticles is therefore encouraged with flow deceleration and results 

in greater nanoparticle boundary layer thickness.  

5) With increasing inverse permeability parameter (i. e. smaller permeabilities and greater 

concentration of solid matrix fibers), thermal conduction is boosted and this results in elevation 

in nanofluid temperatures.   

6) An increment in Forchheimer inertial parameter also strongly elevate temperatures and this is 

attributable to the strong flow deceleration with stronger Forchheimer drag. The decrease in 

momentum diffusion rate allows better convective heat transfer in the medium and energizes the 

flow leading to greater thermal boundary layer thickness.  

7) Although radial velocity and axial velocity are suppressed quite strongly with increasing 

inertial inertial parameter, there is a less pronounced modifications in the tangential velocity. 

 

The present study has revealed some interesting characteristics of Von Karman swirling 

flow in nanofluid-saturated porous media adjacent to a rotating disk of relevance to nanomaterial 

spin coating. However, the analysis has been confined to steady state flow and has neglected 

surface tension and chemical reaction effects (Jensen et al. [79]).  In practical spin coating 

operations, the viscosity of the nanofluid and surface tension results in evaluating the thickness 

of the film. The baking at high temperatures and spinning process causes the removal of the 

solvent. These non-Newtonian nanofluid aspects (Guha and Sengupta [80]) may be investigated 

in future studies for which MATLAB BVP4C quadrature is also a promising numerical 

approach. 
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