
Fungal microbiomes are determined by host phylogeny and exhibit widespread 1 

associations with the bacterial microbiome 2 
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 31 

ABSTRACT 32 

Interactions between hosts and their resident microbial communities are a fundamental component of 33 

fitness for both agents. Though recent research has highlighted the importance of interactions 34 

between animals and their bacterial communities, comparative evidence for fungi is lacking, 35 

especially in natural populations. Using data from 49 species, we present novel evidence of strong 36 

covariation between fungal and bacterial communities across the host phylogeny, indicative of 37 

recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate 38 

that fungi form critical components of putative microbial interaction networks, where the strength and 39 

frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall 40 

richness of bacterial and fungal communities, but the effect of diet on richness was only evident in 41 

mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may 42 

play a key role in host fitness and suggest an urgent need to study multiple agents of the animal 43 

microbiome to accurately determine the strength and ecological significance of host-microbe 44 

interactions. 45 

 46 

SIGNIFICANCE STATEMENT 47 
 48 
Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost 49 

all research to date in wild animals has focused exclusively on the bacterial microbiota, to the 50 

exclusion of other microbial groups. Although likely to be critical components of the host microbiome, 51 

we have limited knowledge of the drivers of fungal composition across host species. Here we show 52 

that fungal community composition is determined by host species identity and phylogeny, and that 53 

fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal 54 

species. This highlights the importance of microbial interactions as mediators of microbiome-health 55 

relationships in the wild.    56 
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INTRODUCTION 57 

Multicellular organisms support diverse microbial communities critical for physiological functioning, 58 

immunity, development, evolution and behaviour (1–3). Variability in host-associated microbiome 59 

composition may explain asymmetries among hosts in key traits including susceptibility to disease (4, 60 

5), fecundity (6), and resilience to environmental change (7). Although the microbiota is a complex 61 

assemblage of bacteria, fungi, archaea, viruses and protozoa, the overwhelming majority of research 62 

has focused solely on the bacterial component (8, 9). Although relatively well documented in soils and 63 

plants (10–13), relatively few studies have examined the dynamics of non-bacterial components of the 64 

microbiome in animal hosts (but see (14–16)), especially in non-model or wild systems. As such, our 65 

current understanding of host-microbe interactions is skewed by a bacteria-centric view of the 66 

microbiome. Although not well understood, there is growing evidence that the fungal microbiota, 67 

termed the ‘mycobiome’, may drive diverse functions such as fat, carbon and nitrogen metabolism 68 

(17, 18), degradation of cellulose and other carbohydrates (19), pathogen resistance (20), initiation of 69 

immune pathways and regulation of inflammatory responses (9, 21), and even host dispersal (22).  70 

Host phylogeny has repeatedly been shown to be an important predictor of bacterial 71 

microbiome structure in multiple vertebrate clades, a phenomenon known as ‘phylosymbiosis’ (23–72 

27). This phenomenon often reflects phylogenetic patterns in life history traits, such as diet, 73 

physiology or spatial distribution (23–27). However, evidence of phylosymbiosis, and its drivers, in 74 

other microbial kingdoms or domains is lacking. Addressing this major gap in our knowledge is crucial 75 

as we likely underestimate the strength and importance of coevolution between animal hosts and their 76 

resident communities, particularly in the context of cross-kingdom interactions within the microbiome 77 

(28). 78 

Here we used ITS and 16S rRNA gene amplicon sequencing to characterise fungal and 79 

bacterial communities of primarily gut and faecal samples from 49 host species across eight classes, 80 

including both vertebrates and invertebrates (Table S1). We predicted that both fungal and bacterial 81 

microbiomes demonstrated strong signals of phylosymbiosis across the broad host taxonomic range 82 

tested. Specifically, we predicted that patterns of phylosymbiosis within microbial kingdoms will also 83 

drive significant positive covariance in patterns of microbial community structure between microbial 84 

kingdoms within individual hosts, suggestive of evolutionary constraints that favour co-selection of 85 
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specific bacterial and fungal communities in tandem. We also used network analysis to identify key 86 

bacteria-fungi interactions whilst quantifying variation in the frequency and strength of bacteria-fungi 87 

interaction networks across host taxonomic groups. Finally, we tested the prediction that cross-88 

kingdom phylosymbiosis may be partially driven by similarity in host dietary niche across the 32 bird 89 

and mammal species sampled.  90 

 91 
RESULTS 92 

Fungal and Bacterial Microbiome Diversity Varies with Host Phylogeny  93 

Our data revealed consistent patterns in fungal and bacterial alpha diversity across host taxonomic 94 

groups. Bacterial community alpha-diversity was generally greater than, or similar to, fungal 95 

community alpha-diversity at the host species level (Fig. 1A), although two species exhibited greater 96 

fungal diversity than bacterial (great tit, tsetse fly; Fig. 1A). Comparisons between microbial richness 97 

values within individuals (i.e., relative richness) using a binomial GLMM supported these patterns, 98 

indicating that bacterial richness was higher on average than fungal in 80% of individuals [95% 99 

credible interval (CI) 0.55 - 0.95]. When conditioning on Class, samples from both Mammalia and 100 

Insecta were more likely to have higher bacterial diversity than fungal diversity (credible intervals not 101 

crossing zero on the link scale). Mammalia were more likely to have higher bacterial relative to fungal 102 

diversity than Aves in our study organisms (mean difference in probability 22.9% [1.6 - 45.7%]). 103 

Variation among species in this model explained 19.5% [7.3 - 31.2%] of the variation in relative 104 

microbial richness. Using a bivariate model with both fungal and bacterial diversity as response 105 

variables to examine patterns of absolute microbial richness across host taxonomy, only Mammalia 106 

exhibited bacterial diversity that was consistently higher than fungal diversity when controlling for 107 

variation among species (mean difference in index 5.16; [3.33 - 6.96]). There was no evidence of 108 

positive covariance between fungal and bacterial richness values at the species level (mean 109 

correlation 0.3, 95% credible intervals -0.55 - 0.86), suggesting that high diversity of one microbial 110 

group does not necessarily reflect high diversity of the other. The bivariate model also revealed that 111 

species identity explained 33.9% [22.2 – 44.2%] of variation in bacterial diversity, and 22.4% [9.8 – 112 

35.5%] of variation in fungal diversity.  113 

Phylogenetic analyses supported these general patterns (Fig. S2). For fungi, we detected 114 

phylogenetic signal in patterns of both Inverse Simpson index (Cmean = 0.22, p = 0.021) and number of 115 
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observed amplicon sequence variants (ASVs) (Cmean = 0.26, p = 0.016). For bacteria, phylogenetic 116 

signal was evident for number of ASVs (Cmean = 0.28, p = 0.016) but not inverse Simpson index (Cmean 117 

= 0.114, p = 0.100).  118 

 119 
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FIGURE 1 121 

Host phylogeny and diet as predictors of host bacterial and fungal alpha diversity. (A) Boxplots and 122 

raw data (points) of inverse Simpson indices for bacterial (green) and fungal (orange) communities 123 

across a range of host species. (B) Raw data (points) and model predictions (shaded area and lines) 124 

of models examining the relationship between host diet and microbiome alpha diversity. In mammals, 125 

an increase the in the amount of plant material in the diet (more negative PC1 values) drives 126 

increases in richness. There was no corresponding relationship between diet and richness for fungi in 127 

mammals, nor for bacteria and fungi in birds. Shaded areas represent 95% credible intervals.  128 

 129 

Limited Evidence of Covariation Between Host Diet and Fungal Microbiome 130 

Alpha Diversity: Models exploring the influence of diet on microbial richness yielded mixed 131 

results. In mammals, only a relationship between bacterial richness and diet was evident (interaction 132 

between microbe (fungi vs bacteria) and the primary axis of a PCA of dietary variation; Fig 1B). This 133 

indicates that bacterial alpha diversity increases in tandem with the proportion of plant matter in the 134 

diet. However, this relationship was absent in birds (Fig. 1B). Similarly, there was no relationship 135 

between fungal richness and diet for birds or mammals (credible intervals for slopes all include zero).  136 

Beta Diversity: Patterns of variation in microbial community structure broadly followed those 137 

for alpha diversity above. While for mammals there was a significant correlation between host-138 

associated bacterial community composition and diet (r = 0.334, p = 0.002), and a near-significant 139 

relationship between fungal community composition and diet (r = 0.142, p = 0.067), for birds there 140 

was no significant relationship between dietary data and bacterial community composition (r = 0.087, 141 

p = 0.211) or fungal community composition (r = 0.026, p = 0.386). Further, taxonomic differences in 142 

microbiome composition based on differences in crude dietary patterns were not clear for either 143 

bacteria or fungi when the microbiome composition was visualised at the family level (Figs. S3, S4). 144 

That said, Alphaproteobacteria and Eurotiomycete fungi were notably absent from species that 145 

primarily ate vegetation (i.e. grasses etc) and Neocallimastigomycete fungi were the predominant 146 

fungal class associated with two out of four of these host species (Figs. S3, S4). 147 

 148 
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Strong Evidence of Correlated Phylosymbiosis in Both Microbial Groups 149 

Our data revealed consistent variation in fungal and bacterial community structure across the host 150 

phylogeny (Fig. 2A). PERMANOVA analyses on centred-log ratio (CLR) transformed ASV 151 

abundances revealed significant phylogenetic effects of host class, order and species, as well as 152 

effects of sample storage and library preparation protocol for both microbial groups (Table 2; Figs. S5 153 

& S6). For both bacteria and fungi, host species identity explained more variation than host class or 154 

order, and this pattern remained when re-running the models without sample preparation protocol 155 

effects, though this inflated the estimate of R2 for all taxonomic groupings (Table 2).  156 

Consistent with our predictions, the similarity between the microbial communities of a given 157 

pair of host species was proportional to the phylogenetic distance between them (e.g. ASV level: 158 

fungal cor. = 0.26; p = 0.001; bacterial cor. = 0.37; p = 0.001; Fig. 2B). Correlations for both bacterial 159 

and fungal communities became stronger when aggregating microbial taxonomy to broader 160 

taxonomic levels (Fig. 2B). Notably, the bacterial correlation was stronger than the fungal equivalent 161 

at most taxonomic levels (Fig. 2B), indicating stronger patterns of phylosymbiosis for bacteria.  162 

 We also detected a strong, significant correlation between fungal and bacterial community 163 

structure of individual samples at the level of ASVs using Procrustes rotation (cor. = 0.29, p < 0.001; 164 

Fig. 2C). Collapsing ASV taxonomy to genus, family, and order resulted in even stronger correlations 165 

(cor. = 0.44, 0.48 & 0.43, respectively; all p < 0.001; Fig. 2C). These data indicate a coupling between 166 

the structures of fungal and bacterial communities, whereby shifts in structure of one community 167 

across the phylogeny also reflect consistent shifts in the other microbial group.  168 
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 169 

FIGURE 2 170 

(A) Phylogenetic tree of host species, with branches coloured by class and node points coloured by 171 

order. Barplots show proportional composition of fungal and bacterial phyla for each host species, 172 
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aligned to tree tips. (B) Correlation between microbial and host genetic distances (generated from the 173 

phylogenetic tree in A) for both bacteria (green) and fungi (orange) across all host species. Microbial 174 

taxonomy was either raw ASVs or grouped into higher taxonomic levels. Aggregation to higher 175 

taxonomy tended to result in higher correlations for both microbial groups, and the correlation was 176 

always stronger in bacteria. (C) Correlation between fungal and bacterial community structure derived 177 

from Procrustes rotation on PCA ordinations of each microbial group. Microbial communities were 178 

aggregated at various taxonomic groupings (order, family, genus), or as raw Amplicon Sequence 179 

Variant (ASV) taxonomy. For both B and C, distributions of correlation values were generated using 180 

resampling of 90% of available samples for that microbial group to generate 95% intervals (shaded 181 

areas on graphs). Empty bars in panel 2A mean samples were not available for a particular species 182 

and so would not have been included in the calculations in panel B or C.  183 

 184 

TABLE 2 185 

PERMANOVA results for (a) fungi and (b) bacteria of factors explaining variation in microbial 186 

community structure. Terms were added in the order shown in the table to marginalise effects of 187 

sample storage and preparation protocols before calculating % variance explained for taxonomic 188 

groupings. Species ID was the dominant source of variation in the data for both taxonomic groups, but 189 

there were also strong effects of sample storage and wet lab protocol, particularly for bacteria.  190 

(a) FUNGI Taxonomic Effects Only  

Predictor df R2 p value df R2 p value 

Sample Type 7 0.05 0.001    

Tissue Storage 5 0.04 0.001    

Extraction Kit 7 0.07 0.001    

Class 2 0.02 0.001 6 0.05 0.001 

Order 6 0.05 0.001 13 0.12 0.001 

Species 18 0.09 0.001 26 0.14 0.001 

Residuals 303 0.68   303 0.68   

       

(b) BACTERIA Taxonomic Effects Only  

Predictor df R2 p value df R2 p value 

Sample Type 6 0.06 0.001    

Tissue Storage 6 0.16 0.001    

Extraction Kit 7 0.12 0.001    
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Class 2 0.02 0.001 6 0.09 0.001 

Order 6 0.09 0.001 12 0.21 0.001 

Species 18 0.12 0.001 27 0.27 0.001 

Residuals 273 0.42   273 0.42   

 191 

Strength of Interactions Between Bacteria and Fungi May Vary Across Host Taxonomy 192 

Analysis of correlations among fungal and bacterial abundances revealed differences in network 193 

structure at both the host class (Fig. 3A) and host species level (Figs. S7; S8). In particular, fungi of 194 

the phylum Ascomycota appeared frequently in the putative interaction networks of birds, mammals 195 

and amphibians (Fig. 3A). There was also systematic variation in network structure among taxonomic 196 

groups. Using the class-level network data in Fig. 3A, we estimated that Mammalia exhibited the 197 

fewest components, fewest communities, and lowest modularity (Table 2), indicating lower overall 198 

network subdivision relative to other animal classes. Mean betweenness of fungal nodes also varied 199 

by host class; randomisations revealed that mean fungal betweenness was significantly lower than 200 

expected by chance in Aves (2-tailed p = 0.044, Fig. 3B) but not Mammalia (2-tailed p=0.6, Fig 3B).  201 

Models of species-level network data (Fig. S7, S8) revealed the frequency of positive co-occurrence 202 

between pairs of microbes also varied by class; Mammalia exhibited the highest proportion of positive 203 

edges (Fig. 3C), being significantly greater than those of birds (mean diff. 0.042 [0.017-0.067]) and 204 

amphibians (mean diff. 0.05 [0.002-0.112]). Notably, insects had a markedly lower proportion of 205 

positive edges compared to all other taxa (Fig. 3C). Class explained 93.2% [92.9-93.4%] of variation 206 

in edge sign. 207 

 208 

 209 

TABLE 2: Network statistics from class-specific microbial networks in Figure 3 in the main 210 

manuscript. ‘Modularity’ and ‘Groups’ statistics are derived from the cluster_fast_greedy function 211 

applied to igraph network objects. ‘Components’ data were extracted directly from the networks. 212 

Modularity was positively correlated with both number of groups (cor = 0.76) and number of 213 

components (cor = 0.86). 214 

Class Modularity Groups Components 
Mammalia 0.658 7 1 
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 215 

 216 

 217 

 218 

 219 

 220 

FIGURE 3 221 

(A) Putative microbial interaction networks between bacterial (circles) and fungal (squares) taxa, 222 

coloured by microbial phylum. Networks were constructed using the R package SpiecEasi on CLR-223 

transformed abundance values to detect non-random co-occurrence between groups of microbes. (B) 224 

Permutational testing revealed that mean fungal betweenness was significantly lower than expected 225 

by chance in Aves, but not Mammalia, indicating heterogeneity in network structure.  (C) Analysis of 226 

network structural traits from species-specific networks comprising 39 species from five Classes. 227 

There were significant differences in the proportion of positive edges (correlations between paired 228 

microbial abundance values) among classes. Vertical dashed line indicates equal proportion of 229 

positive and negative edges. 230 

Aves 0.719 23 14 
Insecta 0.781 10 6 

Actinopterygii 0.806 16 11 
Amphibia 0.923 35 35 
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 231 

DISCUSSION 232 

Our study represents the most wide-ranging evaluation of animal mycobiome composition, and its 233 

covariation with the bacterial microbiome, undertaken to date. Our data provide novel evidence for 234 

mycobiome phylosymbiosis in wild animals, indicative of close evolutionary coupling between hosts 235 

and their resident fungal communities. Consistent with previous studies, we also find evidence of 236 

phylosymbiosis in the bacterial microbiome (29), but crucially, we demonstrate strong and consistent 237 

covariation between fungal and bacterial communities across host phylogeny, especially at higher 238 

microbial taxonomic levels. These patterns are supported by complementary network analysis 239 

illustrating frequent correlative links between fungal and bacterial taxa, whereby certain pairs of 240 

microbes from different kingdoms are much more likely to co-occur in the microbiome than expected 241 

by chance. Taken together, these data provide novel evidence of host recruitment for specific fungal 242 

and bacterial communities, which in turn may reflect host selection for interactions between bacteria 243 

and fungi critical for host physiology and health. 244 

We found marked variation among host species in microbial community richness and 245 

composition for both bacteria and fungi. Though our data suggest many species support a diverse 246 

assemblage of host-associated fungi, we show that bacterial diversity tends to be higher on average 247 

relative to fungal diversity, and that there is no signal of positive covariance between fungal and 248 

bacterial richness within species, suggesting more ASV-rich bacterial microbiomes are not 249 

consistently associated with more ASV-rich mycobiomes. These patterns could arise because of 250 

competition for niche space within the gut, where high bacterial diversity may reflect stronger 251 

competition that prevents proliferation of fungal diversity. Understanding patterns of niche competition 252 

within and among microbial groups requires that we are able to define those niches by measuring 253 

microbial gene function, and quantifying degree of overlap or redundancy in functional genomic 254 

profiles across bacteria and fungi.  255 

We detected strong phylosymbiosis for both fungi and bacteria across a broad host 256 

phylogeny encompassing both vertebrate and invertebrate classes. This pattern was significantly 257 

stronger in bacteria than for fungi. In both microbial kingdoms, the signal of phylosymbiosis 258 

strengthened when aggregating microbial assignments to broader taxonomic levels, a phenomenon 259 
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that has previously been shown for bacterial communities (30). That this pattern also occurs in fungi 260 

suggests either that host recruitment is weaker at finer-scale taxonomies, or our ability to detect that 261 

signal is weaker at the relatively noisy taxonomic scale of ASVs. Stronger signals of phylosymbiosis 262 

at family and order-level taxonomies may reflect the deep evolutionary relationships between hosts 263 

and their bacterial and fungal communities, as well as the propensity for microbial communities to 264 

allow closely related microbes to establish whilst repelling less related organisms (31). That is, higher-265 

order microbial taxonomy may better approximate functional guilds within the microbiome, such as the 266 

ability to degrade cellulose (25, 30), which are otherwise obscured by taxonomic patterns of ASVs. 267 

Resolving this requires the integration of functional genomic data from the fungal and bacterial 268 

microbiota into the phylogeny. 269 

In addition to microbe-specific patterns of phylosymbiosis, a key novel finding of our work is 270 

discovery of strong covariation between fungal and bacterial community composition across the host 271 

phylogeny. These patterns are consistent with host recruitment for particular suites of fungal and 272 

bacterial taxa, which may represent bacteria-fungi metabolic interactions beneficial to the host. 273 

Bacterial-fungal interactions have previously been demonstrated for a handful of animal species (8, 9, 274 

17, 32, 33), but here we show these are widespread across multiple animal classes. Both bacteria 275 

and fungi have considerable enzymatic properties that facilitate the liberation of nutrients for use by 276 

other microbes, thus facilitating cross-kingdom colonisation (34–36) and promoting metabolic inter-277 

dependencies (37–39). We also identified numerous associations between bacteria and fungi for 278 

many of our host species. The frequency and predicted direction of these relationships varied 279 

considerably among host classes, with the mammalian network exhibiting i) a lower modularity, 280 

indicating weaker clustering into fewer discrete units (both distinct components and interlinked 281 

communities); and ii) a higher frequency of positive correlations between microbes compared to most 282 

other classes, in particular birds and insects. Comparisons of networks are challenging when they 283 

differ in size (i.e., number of nodes) and structure, and differences between classes in traits like 284 

modularity will also be affected by species replication within each class. However, proportional traits 285 

like interaction structure (proportion of positive interactions) are unlikely to be driven solely by sample 286 

size, suggesting marked biological variation in strength of fungi-bacteria interactions across the host 287 

phylogeny. These putative interaction networks provide novel candidates for further investigation in 288 
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controlled systems, where microbiome composition and therefore the interactions among microbes 289 

can be manipulated to test the influence of such interactions on host physiology. 290 

The drivers of phylosymbiosis remain unclear, even for bacterial communities; is a 291 

phylogenetic signal indicative of host-microbiome coevolution, or simply a product of “ecological 292 

filtering” of the microbiome in the host organism either via extrinsic (e.g. diet, habitat) or intrinsic 293 

sources (e.g. gut pH, immune system function) (26, 29, 40)? Our results indicate host diet may play a 294 

role in determining bacterial composition in mammals, but not fungal composition in either mammals 295 

or birds. These results are broadly consistent with previous work, where the influence of diet on 296 

bacterial microbiome was most evident in mammals (25). However, Li et al. (16) showed that the 297 

composition and diversity of both fungal and bacterial communities of faecal samples differed 298 

between phytophagous and insectivorous bats, and Heisel et al. (17) demonstrated changes in fungal 299 

community composition in mice fed a high fat diet. Our study was not designed to test for the effects 300 

of ecological variation in diet on fungal microbiome within a species, nor can we discount the 301 

possibility that at finer taxonomic scales within classes, signals of the effect of among species 302 

variation in diet on mycobiome may become stronger (e.g. (16)). It is also worth noting that the signals 303 

produced from faecal and true gut samples may differ; evidence suggests faecal samples may 304 

indicate diet is the predominant driver of “gut” microbiome composition when gastrointestinal samples 305 

indicate host species is the predominant determinant (41). Moreover, faecal samples may only 306 

represent a small proportion of the gastrointestinal microbiome (41–43). Our data also show that 307 

sample type has a significant effect on both fungal and bacterial community composition (as well as 308 

DNA extraction method and storage method; see (44–47) for other examples of this). As such, a more 309 

thorough analysis of true gut communities is required to determine the extent to which mycobiome 310 

phylosymbiosis and dietary signals occur across wild animals, and what other ecological and host-311 

associated factors influence mycobiome composition and function. We hypothesise that evolutionary 312 

processes play a large role in shaping host-associated microbiomes, with selection for microbiome 313 

function rather than taxonomic groupings per se. 314 

Within animals, the roles of host-associated fungal communities are not well understood, yet 315 

our data highlight that fungi are important components of microbiome structure that are often 316 

overlooked. Our knowledge of the range of functions provided by the host mycobiome, and how these 317 

alter or complement those provided by the bacterial microbiome, remains limited. We hypothesise that 318 
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host-associated fungi and bacteria produce mutually beneficial metabolites that facilitate the 319 

colonisation, reproduction and function of cross-kingdom metabolic networks (28). Though we provide 320 

evidence for consistent variation among host class in fungal community structure, and the role of fungi 321 

within putative interaction networks, for many researchers the questions of key interest will focus on 322 

what governs variation at the level of the individual. Clear gaps in our knowledge remain regarding the 323 

relative contributions of host genomic (48–50) and environmental variation to host mycobiome 324 

structure, function and stability. We argue that there is an urgent need to incorporate quantitative 325 

estimates of microbial function into microbiome studies, which are crucial for understanding the forces 326 

of selection shaping host-microbe interactions at both the individual and species level.  327 

 328 

 329 

MATERIALS AND METHODS 330 

Sample collection 331 

DNA was extracted from tissue or faecal samples of 49 host species using a variety of DNA extraction 332 

methods (Table S1) and normalised to ~10 ng/ul. Samples were largely collated from previous studies 333 

and/or those available from numerous researchers and as such, DNA extraction and storage 334 

techniques were not standardised across species. We sequenced a median of 10 samples per 335 

species (range of 5 to 12; Table S1). 336 

 337 

ITS1F-2 and 16S rRNA amplicon sequencing 338 

Full details are provided in Supplementary Materials. Briefly, we amplified the ITS1F-2 rRNA gene to 339 

identify fungal communities using single index reverse primers and a modified protocol of Smith & 340 

Peay (51) and Nguyen et al. (52), as detailed in Griffiths et al. (13). To identify bacterial communities, 341 

we amplified DNA for the 16S rRNA V4 region using dual indexed forward and reverse primers 342 

according to Kozich et al. (53) and Griffiths et al. (49).  The two libraries were sequenced separately 343 

using paired-end reads (2 x 250bp) with v2 chemistry on an Illumina MiSeq.   344 

 We conducted amplicon sequence data processing in DADA2 v1.5 (54) in RStudio v1.2.1335 345 

for R (55, 56) for both ITS rRNA and 16S rRNA amplicon data. After data processing, we obtained a 346 
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median of 1425 reads per sample (range of 153 to 424,527) from the ITS data, and a median of 3273 347 

reads (range of 153 to 425,179) for the 16S rRNA data. 348 

To compare alpha-diversity between species and microbial kingdoms, we rarefied libraries to 349 

500 reads per sample, yielding 292 samples from 46 species and 307 samples from 47 species for 350 

fungal and bacterial kingdoms respectively. Alpha-diversity measures remained relatively stable within 351 

a host species whether data were rarefied to 500, 1000, or 2500 reads (Figs. 1, S1, S2; see 352 

Supplementary Material for more details). 353 

 354 

Host phylogeny 355 

As many of our host species lack genomic resources from which to construct a genome-based 356 

phylogeny, we built a dated phylogeny of host species using TimeTree (57). The phylogenetic tree 357 

contained 42 species, of which 36 were directly represented in the TimeTree database. A further six 358 

species had no direct match in TimeTree and so we used a congener as a substitute (Amietia, 359 

Glossina, Portunus, Ircinia, Amblyomma, Cinachyrella). We calculated patristic distance among 360 

species based on shared branch length in the phylogeny using the ‘cophenetic’ function in the ape 361 

package (58) in R. We visualised and annotated the phylogeny using the R package ggtree (59). To 362 

create a phylogeny for all samples, we grafted sample-level tips onto the species phylogeny with 363 

negligible branch lengths following Youngblut et al. (25).  364 

 365 

Fungal and bacterial community analysis 366 

A fully reproducible workflow of all analyses is provided in supplementary material as an R 367 

Markdown document. We used the R package brms (60, 61) to fit (generalized) linear mixed effects 368 

models [(G)LMMs] to test for differences in alpha diversity and calculated r2 of models using the 369 

‘bayes_R2’ function. We assessed the importance of terms based on whether 95% credible intervals 370 

of the parameter estimates of interest crossed zero. We used ggplot (62), cowplot (63) and tidybayes 371 

(64) for raw data and plotting of posterior model estimates.  372 

To support these analyses, we also used the R packages phylobase (65) and phylosignal 373 

(66) to estimate the phylogenetic signal in patterns of alpha diversity for both bacteria and fungi, using 374 
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both Inverse Simpson Index and number of observed ASVs as outcome variables. We calculated 375 

Abouheif’s Cmean for each diversity-microbe combination and corrected p values for multiple testing 376 

using Benjamini-Hochberg correction. 377 

 To identify taxonomic differences in microbiome and mycobiome composition between host 378 

species, we used centred-log-ratio (CLR) transformation in the microbiome (67) package to normalise 379 

microbial abundance data, which obviates the need to lose data through rarefying (68). To quantify 380 

differences in beta-diversity among kingdoms and species whilst simultaneously accounting for 381 

sample storage and library preparation differences among samples, we conducted a PERMANOVA 382 

analysis on among-sample Euclidean distances of CLR-transformed abundances using the adonis 383 

function in vegan (69) with 999 permutations. For both kingdoms, we specified effects in the following 384 

order: sample type, tissue storage, extraction kit, class, order, species. This marginalises the effects 385 

of sample metadata variables first, before partitioning the remaining variance into that accounted for 386 

by host phylogeny. The results were similar when amplicon data were converted to relative 387 

abundance or rarefied to 500 reads (data not presented).  388 

 To test the hypothesis that inter-individual differences in microbial community composition 389 

were preserved between microbial kingdoms, we performed Procrustes rotation of the two PCA 390 

ordinations for bacterial and fungal abundance matrices, respectively (n = 277 paired samples from 391 

46 species). We also repeated this analysis with ASVs agglomerated into progressively higher 392 

taxonomic rankings from genus to order (see (30)). To provide a formal test of differences in strength 393 

of covariation at different taxonomic levels, we conducted a bootstrap resampling analysis where for 394 

each kingdom at each iteration, we randomly sampled 90% of the data and recalculated the 395 

correlation metric. We repeated this process 999 times to build a distribution of correlation values at 396 

each taxonomic grouping. To examine the hypothesis that inter-individual distance in microbial 397 

community composition varies in concert with interspecific phylogenetic distance, we performed a 398 

Procrustes rotation on the paired matrix of microbial distance (Euclidean distance of CLR-transformed 399 

abundances) and patristic distance from the phylogenetic tree.  400 

To identify potential co-occurrence relationships between fungal and bacterial communities, 401 

we conducted two analyses; 1) We used the R package SpiecEasi (70) to identify correlations 402 

between unrarefied, CLR-transformed ASVs abundances at the host class level (with insects 403 
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grouped), and 2) we used co-occurrence analysis at the species level, by rarefying the bacterial and 404 

fungal data sets to 500 reads each, and agglomerated taxonomy family level, resulting in 117 405 

bacterial groups and 110 fungal groups. We then merged the phyloseq objects for bacterial and 406 

fungal communities for each sample, with sufficient data retained to conduct the co-occurrence 407 

analysis for 40 host species. Using these cross-kingdom data, we calculated the co-occurrence 408 

between each pair of microbial genera by constructing a Spearman’s correlation coefficient matrix in 409 

the bioDist package (71, 72). We visualised those with rho > 0.50 (strong positive interactions) and 410 

rho < -0.50 (strong negative interactions) for each host species separately using network plots 411 

produced in igraph (73). We calculated modularity of the class-level microbial networks comprising 412 

both positive and negative interactions using the modularity function after greedy clustering 413 

implemented in the igraph package. We used binomial GLM to test the hypothesis that the proportion 414 

of positive edges (correlations) varies by host class, and permutation approaches on betweenness 415 

values of fungal nodes to test the hypothesis that fungi form critical components of microbial 416 

networks. 417 

To determine the effect of diet on bacterial and fungal community composition, we used only 418 

samples from the bird and mammal species and agglomerated the data for each host species using 419 

the merge_samples function in phyloseq (74). This gave us a representative microbiome for each 420 

host species, which we rarefied to the lowest number of reads for each combination of kingdom and 421 

host taxon (2,916 – 9,160 reads; bacterial read counts were low for lesser horseshoe bats and so this 422 

species was removed from this analysis) and extracted Euclidean distance matrices for each. We 423 

then correlated these with dietary data obtained from the EltonTraits database (75) using Mantel tests 424 

with Kendall rank correlations in the vegan package (69). We agglomerated the microbial data to 425 

class level and visualised the bacterial and fungal community compositions for mammals alongside 426 

pie charts displaying EltonTrait dietary data for each species. We also used a primary axis of the 427 

ordination of EltonTrait data to derive a ‘dietary variation axis’ used as a predictor for alpha diversity of 428 

Birds and Mammals.   429 

 430 
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