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Abstract

There has been a considerable increase in derailment investigations, in particular

at railway turnouts (RTs), as the majority of derailments lead to lengthy dis-

ruptions to the appropriate rail operation and catastrophic consequences, being

potentially severely hazardous to human safety and health, as well as rail equip-

ment. This paper investigates the impact of climates with different features

across the US on the derailments to light up a scientific way for understanding

importance of climatic impact. To achieve this, ocial derailment reports over

the last five years are examined in detail. By means of geographic segmenta-

tion associated with spatial analysis, different exposure levels of various regions

have been identified and implemented into a Bayesian hierarchical model us-

ing samples by the M-H algorithm. As a result, the paper reaches interesting

scientific findings of climate behaviour on turnout-related component failures

resulting in derailments. The findings show extreme climate patterns impact

considerably the component failures of rail turnouts. Therefore, it is indicated

that turnout-related failure estimates on a large-scale region with extreme cold

and hot zones could be investigated when the suggested methodology of this

paper is considered.
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Nomenclature

As scientific texts use different notations for constant values, random vari-

ables, dependencies with respect to distributions, Table 1 provides the conven-

tion applied in this research paper.

Table 1: The list of symbols and notations used in the methodology of this paper.

Notation Description

y The number of observed derailment

j Climate region

e Exposure

!yj The number of expected derailment for region j

with exposure ej in a future sample.

ρj The volume of rail traffic in jth region

φj The number of turnout in jth region

λ The unknown hyper-parameter vector

θ Random sample by using the “Metropolis within Gibbs”

g (λ | yj , ej) The posterior density of λ

α1 A parameter of gamma density at the first level

µ A parameter of gamma density at the first level

α2 A parameter of an inverse gamma density at the second level

a The shape parameter of the inverse gamma function

b The scale parameter of the inverse gamma function

κ A proportionality constant

1. Introduction5

Train derailments result in not only operational shutdown and financial losses

but also fatalities and injuries affecting passengers, the workforce and members

of the public. Turnout-related derailments are revealed to account for nearly

one-third of all major derailment cases in the US, and received a great deal of
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attention by UK line operators as a problem to be remedied as almost half of10

all UK maintenance costs are made to ensure a smooth rail operation [1].

Mechanical failure of various turnout components has been observed to be

one of the common primary or contributory factors to train derailments[2, 3, 4].

Interest in the investigation of such failures in railway engineering has recently

been gained over the last five years. A real train flow model that excludes15

turnout related failures is produced to show railway vulnerability under both

single and multiple component failures[5]. A nonlinear 3D finite element (FE)

model is developed, considering the nonlinearities of materials, in order to eval-

uate the interaction and behaviour of turnout components [6].

Safety-based maintenance has been discussed to optimise geometry restora-20

tion of railway turnout systems [7]. It is pointed out that there is a striking re-

lation between weather patterns and the number of turnout component failures,

leading to derailments [8]. A Bayesian network-based failure prediction, which

does not give rise to any derailment prediction, is modelled to evaluate the ef-

fect of weather on component failures at railway turnouts (RTs) [9]. The study25

is not applicable to large-scale investigations as climate pattern often varies.

Moreover, the methodology of this study does not respond to the consequences

of the failures. This study suggests the industry and ocial rail agencies as to

how regions can be segmented according to climate patterns, and failures, caus-

ing derailments, can be predicted throughout entire rail network within a given30

time. Multi-level modelling with fixed variables and random coefficients was

introduced [10]. Exchangeability of hyperparameters on multi-level hierarchical

Bayesian analysis was introduced and improved [11, 12]. Accident-related safety

estimations on road sections by the Empirical Bayes method, using Rukhin‘s ap-

proaches were analysed [13]. The Gibbs sampler, combined with a Metropolis-35

Hastings (GSMH) algorithm, was introduced [14]. GSMH has often been used

to test the reliability and prediction of various engineering systems. In 2016, a

Bayesian network model that considers light signals, speed limit along with vari-

ous rail infrastructures, was developed to determine safety of a travelling rolling

stock in particular rail networks [15]. On the other hand, the railway accident40
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analysis has been underlined that the preciseness of accident investigation and

feedback mechanisms between actors contribute is vital to form a positive safety

culture [16]. A bayesian method is also used to evaluate several existing predic-

tive methods dependent on the type of the decision-making problems regarding

train accidents [17]. Various environmental effects on intersection-related train45

accidents were analysed through a hierarchical Bayesian model.[18].

In this study, different exposure levels gathered throughout the process of

GIS (geographical information system), has been integrated into a multi-level

Bayesian model, and then all possible factors, inuencing the number of derail-

ments in each given region, has been levelled out through the exchangeability50

model. The significant differences between this study and its predecessors are

firstly that a large-scale investigation, including the entire US rail network, has

been performed. Secondly, the rail component failures whose consequences re-

sult in a turnout infrastructure-related derailment, are considered. Thirdly, as

a unique outcome, the study has developed a hypothesis underlying that any55

safety-risk analysis dealing with derailments caused by component failures on

a large scale could be satisfying providing that regional segmentation on the

basis of climate patterns is conducted. Thus, the study comes up with a novel

methodological contribution by putting forward a bayesian based hierarchical

model for probabilistic accident assessment at railway engineering.60

2. Description of Failures and Risk

Risk is identified in British Standards No. 4778, 1979 as the combined

effect of the magnitude of the event, and the probability of the occurrence of

an undesirable event. Consequently, risk (R) might be attributed to a measure

of a combined effect of the severity (S), and probability (P) of the hazard,65

which is the subject of this study. The relationship of both, therefore, might

mathematically present as follows:

R = S × P
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Table 2: Reported failures of Frogs, Switches and Track Appliances at RTs.

n FRA Code Description of failures

1 T301 Derail, defective

2 T302 Expansion joint failed or malfunctioned

3 T303 Guard rail loose/broken or dislocated

4 T304 Railroad crossing frog, worn or broken

5 T307 Spring/power switch mechanism malfunction

6 T308 Stock rail worn, broken or disconnected

7 T309 Switch (hand operated) stand mechanism broken, loose, or worn

8 T310 Switch connecting or operating rod is broken or defective

9 T311 Switch damaged or out of adjustment

10 T312 Switch lug./crank broken

11 T313 Switch out of adjustment because of insufficient rail anchoring

12 T314 Switch point worn or broken

13 T315 Switch rod worn, bent, broken, or disconnected

14 T316 Turnout frog (rigid) worn, or broken

15 T317 Turnout frog (self-guarded), worn or broken

16 T318 Turnout frog (spring) worn or broken

17 T319 Switch point gapped (between switch point and stock rail)

18 T399 Other frog, switch and track appliance defect

The occurrence of derailment at RTs might lead to one of, or a combination

of the following consequences: financial loss, loss of time, damage to functioning

railway components, personal injury and even loss of life. This study is limited70

to the probability (P) of the hazard, as derailments associated with compo-

nent failures on rail turnouts have similar consequences, namely casualty and

financial, and the main focus of the study reveals an exact relationship between

derailments and climate. The database of the study utilised from the FRA1

accident reports is shortened through the following ocial accident codes, shown75

in Table 2. The FRA codes are selected considering as to whether to associate

1The Federal Railroad Administration, which is the US ocial rail agency.
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with rail turnouts. In other words, the failure description in this study is only

related to various component failures of rail turnout. The FRA discretises RT-

related component failures in 18 types of accident, each of which responds to

different failures at RTs, as seen in Table 2.80

This study utilises from accident reports published by the FRA when any

accident exceeds the monetary threshold, results in any causality or both. Re-

portable damage consists of labour costs and all other costs to replace or repair

dam- aged tracks, track structures, on-track equipment, trackbeds or signals.

The cost of clearing a wreck, the environmental clean-up costs, or damaged85

lading etc. are excluded in the calculation of total damages presented in FRA

accident re- ports. In addition to reportable damages, the casualties are recorded

to chart the magnitude and nature of the injury and death across the USA. The

reports also present concrete information on the location of an accident and the

environ- mental temperature when a derailment takes place.90

Temperature and precipitation have been proven to im- pact considerably

on RT component failures [19, 9]. In order to determine the gathering of values

of both, the locations of accidents are used. NOAA2 provides temperature and

precipitation values by way of daily summary observations. The gathered data

by NOAA has been checked through the suggested map (Figure 1). It is seen95

that both values comply with each other. Therefore, it is decided to use the

map as a climate zone map. The numbers 1 to 7 in the figure rep- resent from

the hottest to coldest temperature-based climate regions, while A, B and C are

used to describe various humidity levels of the climate.

3. Data selection100

The United States of America consists of 50 states, and the FRA collects

derailment-related data from various local railway operators who run a service in

2The official US climate authority providing a source of timely and authoritative scientific

data and information about climate.
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these states. Each state has different variables including precipitation, temper-

ature and trac density, and an intersectional variable, track class. This research

disregards two states, namely Hawaii and Alaska, due to the non-existence of105

railway lines in Hawaii and extreme cold weather patterns, albeit a low vol-

ume of trac, in Alaska, which would give rise to divergence from the expected

estimate values.

As part of the FRA‘s jurisdiction, all track is categorized into six classes,

which indicates the quality of track, and are segregated by maximum speed110

limits.

This research will concentrate on derailment estimates on entire networks

state by state. It is assumed that the condition of the turnouts, and their

maintenance quality, is homogenously distributed through the states. On the

other hand, exposure to derailments in the states is said to be relevant both115

to the length of the railway network and the density of trac (rail ton-miles per

track mile per year3). Therefore, the selected data can be confirmed to offer

information on how much turnouts on the entire network are exposed.

3.1. Region selection

As aforementioned in Sections 1 and 2, it is well-known that weather pat-120

terns have a considerable impact on derailment cases on RTs. As a result of

this, climate regions composed by some or entire coverage of the states are se-

lected considering the annual amount of precipitation and the yearly average

temperature.

As the climate is inuenced by a number of factors including proximity to125

the ocean, altitude attitude, latitude, topography etc., the variability in climate

pattern of the US is plenty. Therefore, climate classification can be performed

to provide significant insight into the potential vulnerability of RT components

to various weather patterns into the analysis. Regionalisation of the United

3The product of annual total weight (including the weight of locomotives and loaded/un-

loaded wagons) and the distance moved by a rolling stock.
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States is accomplished using hierarchical cluster analysis on precipitation and130

temperature data, which appears to yield a set of candidate clustering levels

Figure 1: Seven US climate regions

On the other hand, recent research allows the identification of the appro-

priate climate designation for the US counties, describing the climate zone des-

ignations used by the US Department of Energy Building America Program

[20].135

Figure 1 shows the regional designation based on average temperatures

(TBCZs)4, and precipitation (PBCZs)5. The map is separated from left to

right to point out the degree of precipitation (A to C), while climate zones (1

to 7) are assigned to express, zone by zone, the degree of the monthly average

temperature. To be more precise, climate zone 4, lightened up with yellow on140

the map, might be addressed to areas where moderate temperature along with

either a marine, dry or moisture regime is present.

To illustrate different climate patterns in the US, seven states are decided

4Temperature based climate zones.
5Precipitation based climate zones.
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upon. These states, and their various climate-related patterns are shown in

Table 3. The states altogether are assumed to almost correspond to the average145

regime of the US climate, considering the size of each of the seven climate zones

and the three moisture regimes in the US. Zone 1 is not included as being

covered as it is a negligible, small area.

Therefore, it is clearly seen that the research needs to deal with analysing

derailments zone by zone rather than state by state, due to the fact that the150

states might be composed of different climate zones.

Table 3: Reported failures of Frogs, Switches and Track Appliances at RTs.

The Name of State Climate Moisture Average Annual Average Annual

Zones Regime Temperature Precipitation

Illinois (IL) 5&6 A 10.8◦C 991 mm

Kansas (KA) 4&5 A 13.0◦C 992 mm

Nebraska (NE) 5 A 10.4◦C 768 mm

North Dakota (ND) 6&7 A 6.0◦C 453 mm

Oregon (OR) 4&5 B&C 11.7◦C 1006 mm

Texas (TX) 2, 3&4 A& B 17.7◦C 623 mm

Utah (UT) 5&6 B 12.7◦C 472 mm

4. Anatomy of Turnout Use in the US Rail Network

Even though there is still vigorous ongoing research interest regarding rail

turnout-related investigation to ensure a proper rail operation, this kind of study

seems to lag considerably behind the other kinds of transportation study. This155

might be considered to stem fundamentally from a lack of previous research and

comprehensive data acquisition. The study also aims to offer plenty of data for

prospective researchers in the section.

4.1. Analytics

It is observed that the US passenger and freight users of rail services do not160

scatter as humongous as the study could assume. On the other hand, the number
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of turnouts and the volume of rail trac could not also be assumed in accordance

with the size of the climate regions. Therefore, ArcGIS, a tool based on the

geographic information system (GIS) for working with layers offering various

geographic information, is used. The layers can be expressed to be reliable as165

they form a comprehensive database of the nation’s railway system and are

provided by official authorities6

Figure 2: 2 Stacked layers for spatial analysis on ArcGIS

As a foundational concept of spatial analysis, layers that contain different

kinds of data are used to find out regional exposures to train derailments at RTs.

The bottom layer in Figure 2 includes information as to each county within170

the geographic coordinate systems of the chosen states. The middle layer (the

climate zones) provides regional borderlines of each climate pattern, while the

6https://www.arcgis.com/home/item.html?id=088a858aa479444fae9d3bade2d457e5.
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upmost layer (the US rail network7) trac and the number of rail turnouts where

each county is located on the US map. ArcGIS was only used to determine

turnouts and derailment locations within the regions. It was first identified175

that the turnout counts and available traffic on each identified turnouts (around

80,000). Then, we started to determine all turnouts within the segmented region

to able to extract proper data.

The number of derailments appears to be determined by some metric of rail

trac, such as car-miles, train-miles or million gross tons (MGT) [21, 22, 23].180

Therefore, it is underlined herein that the research expresses trac density in

MGT.

4.2. Identification of Rail-Turnout Characteristics by the States and the Climate

Regions

In order to find out a mathematical explanation as to whether climate has an185

impact on turnout component failures causing derailments, chosen regions and

state-based numeric values forming exposures8, are illustrated in this section.

The calculation of exposure, by using these numeric values, is shown in Section

6.

It has been stressed that the research is based not on exposure by states, but190

on exposure by climate to first find out the impact of climate on derailments9

and then true derailment estimates considering this impact. Therefore, the

distribution of the indicators by climate zones and regions, see 3.3, is shown

in Figure 3. It is identified that there are just under 80,000 turnouts in use

through the US rail network.195

On the other hand, Figure 3 represents the first investigation in literature,

which shows turnout counts and total track density over turnouts. Thus, the

7https://www.arcgis.com/home/item.html?id=96ec03e4fc8546bd8a864e39a2c3fc41
8being in a situation which has some contributory risk of involvement in turnout-related

rail derailments. An exposure composes of turnout counts (ρ) and rail trac (φ).
9The research is limited to turnout component failures causing derailments. The investi-

gation of climate impact on other kind of failures is left for the future studies.
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Figure 3: The number of usable turnouts and the volume of trac over them across US rail

network

distribution of these two exposure indicators is illustrated state by state through-

out the US. It is now quite apparent that Texas might be expected to be where

the largest number of derailments are seen as the state has the largest number200

of turnouts and track density. Texas is followed by Illinois, California, Ohio and

Kansas, respectively.

As a result of real observations, Figure 4 illustrates the proportions of

turnout counts and rail traffic throughout the climate regions. The yearly aver-

age volume of trac over these turnouts is observed to be around 700,000 MGT.205
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Figure 4: Proportions of turnout counts (ρ) and proportions of rail traffic (φ) across the 7

regions and 3 zones: (a) Turnout counts (ρ) (b) Rail Traffic (φ)

5. Model Establishment

As discussed in previous sections, it is necessary to conduct an analysis on

failure rates and severity to reveal the risk of derailment at RTs. Therefore,

a structure, capable of estimating the rates of the derailment accidents within

the zones of a particular climate region, is modelled mainly for the derailment210

cases. Estimates for the probability of derailments within each zone need to be

dealt with separately through the same approaches embedded in mathematical

formulae, albeit different statistical inputs as the varied statistical realisation

of the same sample space is constructed and many different independent ran-

dom outcomes present. Therefore, modelling consists of nine precipitation and215

temperature elements, each of which handles its unique count data (yj).
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5.1. Hierarchical Modelling Through Unique Exposure Levels

This study is established on a Bayesian-hierarchical model to identify en-

vironmental factors on derailment cases, particularly at RTs. The model gives

the simultaneous mathematical estimation of the true failure rates from each cli-220

mate region and each US state. As all regions often comprise of different states,

causing unique volumes of rail trac, a two-stage Bayesian hierarchical model10 ,

a mixture of gamma distributions with different hyper-parameters and parame-

ters, is used to obtain more accurate estimates. The choice of gamma function

for methedology allows predicting how many derailment events take place in225

the given period of time. Additionally, it has two different parameterization

sets (scale and shape), both of which can be used for the rate of events and the

number of derailments.

The proposed model also illustrates exchangeability of prior knowledge by

which the true component failure rates of RTs are assigned on a multi-layer230

Bayesian structure. The posterior distribution of the hyperparameters is com-

posed of a simulation from nine unique gamma distributions corresponding to

the regions.

The study relies on derailment counts over a specific period of time. Thus,

data distribution, which is statistically a function illustrating all the possible235

values of such given derailment data, can be obtained as follows:

y ∼ f(y | θ) (1)

where y denotes derailment counts. The observations of derailment cases across

the US are given distributions conditional on a parameter, which is θ in Eq.1.

On the other hand, the parameter is, in turn, assumed to be of distributions con-

ditional on other parameters, called hyperparameters, as shown in the following240

10It is calculated through the LearnBayes Pack in Software R.
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Eq. 2:

θ ∼ g1(θ | λ) (2)

where λ is generic unknown hypermeters and relates the number of derailment.

On the other hand, Eq. 2 might be pronounced, as the prior vector θ follows

the dependent function g1. Hierarchical establishment, therefore, could be con-

ducted by virtue of the distribution of λ.245

λ ∼ g2(λ) (3)

As indicated before, λ changes through nine regions since derailment rates

within each region is different.

5.2. Hierarchical Prior Choices

Even though six temperature and three precipitation-based climate zones

(TBCZs & PBCZs) were pronounced for segmentation of climate characteristics250

prevailing in the US, the pink-coloured region, see Figures 1 and 2, will not be

included due to several reasons underlined through Section 4. Therefore, it is

considered that nine climate regions could give the response of the most reliable

quantitative to the search objectives. Although such limitation will not impact

overall aim of the study, the investigation of these extremely hot regions is left255

for future studies.

Let J be the generic symbol representing the chosen regions, and each J thus

denotes a particular climate region. In order to show the hierarchical Bayesian

model of derailment causing component failures for railway turnouts, a directed

acyclic graph (DAG)11 is illustrated in Figure 5.260

As seen, each climate region has unique random variable and derailment

observations, and are symbolised as J1 to 6, which are represented in an orange

colour and address differences in temperature, while the last three, coloured as

11A directed acyclic graph (DAG) is a graph that is directed and without cycles connecting

the other edges.
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purple in the figure, deal with precipitation across the US. Climate zones 2 to

7 in Figure 1 are named as 1 to 6 to ensure the elimination of ambiguity in the265

research.

All regions have been processed through three successive model layers. The

data model, which is the first layer, presents a number of derailments within

the climate regions. The process model corresponds to known parameters of the

distribution, which is discussed in 5.3. The last model, the parameter model, re-270

gards a probabilistic distribution on hyperparameters of the known parameters.

The arrows in the Figure 5 illustrates the direction of calculation.
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Figure 5: DAG of hierarchical modelling for temperature and precipitation-focused climate

zones

5.3. Structural Definition of the Model

The identification of the impact of environmental factors, see Sec. 3.3, on

derailment counts is one of the main concerns. Thus, the problem of learning275

about the rate of derailments is modelled region by region.

Let yj refer to the number of derailment variables in future in one of the

given nine regions j ’and j = 1, . . . , J, J = 9. That is, the counts of events within
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a set unit of time are observed. In such situations, a probability model for the

distribution of counts of derailments at RTs is considered to be a Poisson dis-280

tribution with mean π. Due to the nature of Poisson distribution, a parameter

with a high value yields a high frequency of occurrence. However, it has been

observed that a large number of U.S states with extreme weather conditions

behave in a different way, see Figure 7. As a result, the methodology was estab-

lished on a hierarchical model rather than only Poison distributions. However,285

the parameter exposure is still used as below;

πj = ej · λj (4)

where ej is the exposure (per given period of time); see section 4.2 for intro-

ductory information. The mathematical formula of the exposure is shown in

Eq.5.

ej = ρj · ϕj (5)

where ρj and ϕj denote the total volume of rail traffic which passes every turnout290

and the number of rail turnouts within the jth region of the assigned climates,

respectively. This research only uses a Poisson distribution based probability

model with mean π to compare the suggested hierarchical model. The results

of Pois(πj) are shown in Figures 8 and 9.

λj =

9!

j=1

s=48!

s=1

yjs (6)

where yjs represents the number of derailment within the j-th region of the as-295

signed climate and the s-th contiguous states with S = 1, . . . , s, s = 48. There-

fore, the distribution of possible unobserved derailments is conditional on the

observed derailments and is given by

f ( "yj | ej , y) =
#

fP (yj | πj) g (λj | y) dλ (7)

where g (λj | y) and fP (yj | πj) denote posterior density and Poisson sampling

density, respectively. Eq. 7 is used to check if the consistency of the observed300
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derailments within state ’s’ in one of the given climate regions ’j’, with s = 1, . . .

., s, S = 48, and j = 1, . . . , j, J = 9 is present.

The target, therefore, is set to the estimate of the derailment rate at RTs per

unit exposure (e). As expected, the total number of derailments throughout the

regions is quite low. As a natural result, maximum likelihood estimate (MLE)305

cannot satisfy the estimate of λ̃ under any circumstances, as the denominator,

yi,j , of MLE, λ̃i,j = yi,j/e, the equation will be pronounced with low discrete

values, which gives rise to a poor estimate.

It, thus, is desired to benefit from Bayesian estimates having prior belief

about the sizes of the derailment rates for the regions, which leads to opting for310

a gamma function with (yj , ej) density.

g (λ | yj , ej) =
1

eαj Γ (yj)
λyj−1 exp (−ejλ) (8)

On the other hand, Eq.7 is also modelled through a noninformative Bayesian

prior, which is p(λ) ∝ λ−1. This is thought to give rise to a broadening dis-

cussion along with the intended model. The posterior density of λ might be

obtained12315

g1 (λ | yj , ej) ∼
6!

j=1

$
λyj−1 exp (−ejλ)

%
(9)

Using Eq. 9, Eq.2 and Eq.3 might be modelled through the following equa-

tion (g1 (λ |∝1, µ)):

= 1
α1Γ(∝1)

&
∝1

µ

'α1

exp (−α1λ/µ) ,

λ ∈ [0,+∞)
(10)

where g1 (λ |∝1, µ) represents a gamma function used to generate samples of λ

at the first level of the hierarchical structure. α and µ (parameters) are assumed

12The equation 9 is designed for TBCZs as the index of the summation starts at 1 and goes

to 6. The last value of the index is replaced with 3 for PBCZs. The same replacement is

performed for Eq. 13 too.
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to be a priori independent and follow inverse-gamma function [12, 24, 25]:320

α1 ∼ JG (∝2)

µ ∼ JG(a, b)
(11)

As each region has unique posterior distribution considering independent

values of π j, the PDF is given by:

πj ∼ g (yj + α, ei + α/π) (12)

The marginal posterior density of the log hyper-parameters (log(α), log(µ) )

is as the following equation:

κ
z

Γ6(∝)(∝ +z)2µ

6!

j=1

(

)
∝∝ µ−αΓ

&
α+

*48
i=1 yij

'

(α/µ+ πj)
(α+

!48
i=1 yij)

+

, (13)

where κ is the constant of proportionality, z denotes the median of α.325

5.4. Metropolis-Hastings (H-M) Algorithm

It is suggested that the posterior distribution function is sampled using the

H-M algorithm [26]. This algorithm is expressed to bring out the Gibbs sampler,

which is a Markov chain Monte Carlo (MCMC) algorithm, as a special case[25].

The algorithm is used to approximate the output of Eq. 4 in Sec. 5.1,330

acquiring a sequence of random walk proposals from the Metropolis-Hastings

algorithm itself.

The reason for the choice of Metropolis-Hastings for this research over Gibbs

sampling is firstly that it is highly unlikely or practical to obtain the conditional

distributions for each of the random variables in the suggested model, even335

within an environment with the full posterior joint density function (FPJDF)

[27]. Secondly, it is also unlikely that the posterior conditionals for each variable

have a known form. As a result, samples from these conditionals cannot be

drawn in an uncomplicated way [28].
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6. Results340

6.1. Fundamental Data Analysis Findings of Suggested

To deliver usable and useful information, a further aim is followed by this

research, aside from estimating the significant characteristics of regional impacts

on derailments, such as absolute numbers in various categories of the suggested

framework. The distribution of categorised data and initial results of the sug-345

gested workow are preferred to be firstly discussed. The fundamental statistical

data obtained through the framework suggested in Figure 6 may, therefore, be

presented.

Responses of the selected states to Eq. 5 are illustrated in Figure 6-a. Many

states, such as Texas (green) and California (yellow), might be underlined to350

overpower the distribution of e total, whereas the others seem to be impacted by

a low number of turnouts, a low number of rail trac, or a combination of both,

due to the mathematical nature of the Eq.5. It is worth noting that the 3D bar

chart is not directly used to respond to the research question. Instead, region

and state based exposures are illustrated. Figure 6-b illustrates the distribution355

of e through six regions from Region 2 (red) to Region 7 (purple), see 3.3 for a

colour match.

It may be identified that total exposure in Region 2 might be pronounced

to be higher than the other five regions in a deterministic way. Therefore, more

derailment in Region 2 could be expected. Additionally, Regions 4 and 5, which360

are coloured yellow and green respectively, can be asserted to have more turnout

related derailments than Regions 6 and 7 have together.

21



Figure 6: Exposure distribution by the States (a) and Regions (b)

Nevertheless, Figure 713 illustrates explicit inconsistency with this claim

considering the derailment-based behaviour of states in Region 2. For instance,

Florida, shown as FL in Figure 7, induces considerable unexpected risk (see365

Sec. 2) at turnout-related derailments, although Figure 6-b shows a low rate

of exposure14. Therefore, this phenomenon might be elucidated to require a

better mathematical algorithm, which includes a polled database not by states,

but climate, as well as more detailed consideration, such as hierarchical estab-

lishment.370

13To deliver the main point, and enhance visual quality, the figure is plotted excluding a few

states with extreme exposure, i.e. Texas, since they have relatively quite high values of yj/πj ,

which results in rounding up many values on a small area at a logarithmic scale. Therefore, it

could be said that Poisson distribution alone will not match observations as some states with

less exposure experience relatively more accidents or vice versa.
14It is worth noting that 1st region is almost composed of FL.
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Figure 7: Derailment rates against log exposure for majority of the states

However, it is still intended to find a more robust understanding in a stochas-

tic way, as the output of the deterministic model is fully determined by the

overall parameter values, i.e. yj/πj , which responds to a limited scenario. That

is, the output of the stochastic model possessing some inherent randomness is

needed to solve the degree of the impact of climate conditions on derailments in375

particular turnout systems, which are specifically chosen for this research due

to the fact that they are of many engineering systems.

Figure 815 shows the approximation of a posterior predictive distribution

(PPD) with an equal derailment parameter through regions, i.e. λ2 = λj , {j =

15The abscissa and ordinate of the Figure 8 represent the number of derailment (y) and

generated sample counts, respectively. The same abscissa and ordinate are also used in the

Figure 9.
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(3, 7), j ∈ N}. In other words, the results of Eq. 8 and Eq. 9 are presented region380

by region in the Figure. The PPDs might be useful to identify to what degree

the estimates are appropriate, as the numbers of turnout-related derailment

observations in all regions are also illustrated as red dotted vertical lines on the

same plots.

Figure 8: Histograms of TBCZs by 50,000 draws simulated from the posterior predictive

distribution of Region 2 (a), Region 3 (b), Region 4 (c), Region 5 (d), Region 6 (e) and

Region 7 (f)

Figure 9: Histograms of PBCZs by 50,000 draws simulated from the posterior predictive

distribution of Region A (a), Region B (b) and Region C (c)
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6.2. Results of the Stochastic Model: Response of the Climates385

Moderate climate regions, namely 3 to 6, seem to almost respond to the

related assumptions and the function. For instance, the observation of Region 4

is placed near the middle of the predictive distributions. However, the majority

of the other observations are in the tail portion of the distribution. Furthermore,

the estimate for Region 2 is proved to fail rather evidently, which reveals that390

there is no absolute agreement of these observations with the fitted model.

Therefore, regarding the histogram associated with the second region, it might

be pronounced that the distribution of the samples needs to be focused on a

higher range of observations (x axis) than simulated through the Eq. 7, based

on an agreed value of λ. In section 3, the US has been said to be also separated395

through three regions, considering the characteristics of precipitation that the

regions have. The results of these three regions are illustrated in Figure 9.

Figure 10: Behaviours of the exchangeable prior on (λ1(i),λ2(j)) against inverse gamma (alpha

= 10, beta = 10)16

Similar to the harsh climate conditions in Figure 9, the estimate-distribution

of the latter does not show the reality. On the other hand, although the number

of derailments within Climate A is almost seven times higher than the other400
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two zones, the observed number is placed on the left tail. Similar to Region 2

and Region 7 in Figure 8, it might, therefore, be concluded that the derailment

counts of the three regions cannot be estimated properly and needs to be a

hierarchical structure.

It is proposed by Eq. 9 that the most approximated rate parameter π of405

derailments through the regions could be derived from g (λ |∝1, µ) . In order to

achieve this , a random sample of 50,000 is generated, which results in under-

standing the behaviour of the relationship between shape (∝1) and the mean

(µ) parameters of the gamma function. As this study is designed on a priori

hierarchical structure (see 5.2), both the generated sample and therelationship410

of parameters can only be reached in the event that the behaviours of hyper-

parameters, namely; (∝2), a and b, which are nested at the second layer of the

hierarchy, are revealed. In this circumstance, as ∝2 is the only available hyper-

meter in the function, assigning random values on ∝2 rather than the other two

hyperparameters, has been considered to require less workload.415

On the other hand, (µ), one of the two parameters at the first prior stage, is

assumed to follow an inverse gamma function with hyperparameters; namely, a

and b equal to 10 [29]. Thus, π1 and π2 can be fixed at a certain value, which

leads to understanding behaviours of their exchangeable prior while ∝1 changes.

Figure 10. illustrates such behaviour when the unknown hyperparameter of an420

assigned inverse gamma function, ∝1) , is at 4, 20, 100 and 500.

In addition to these discussions, it might be stressed that each line of the

distributions show an increment in the concentration of ∝. Therefore, the more

∝2 values are assigned, the more λ1 approximates to λ2, and vice versa, which

makes λ2 equal to infinity. There seems to be a centre around (0.95, 0.95)17.425

17There are two conditional samplings as seen in Figure 12. Acceptance rates of log and

log µ are observed to be around 0.93 and 0.50, respectively. This highly likely arises from

small σ2 of the proposal distributions. Iterations at the beginning of the MCMC run were

not thrown away, as the limited number of samples (around 10) has been identified to be out

of the sample average.
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Prior density of the form is suggested [12] to be g (∝2) = z/(∝2 +z)
2
, providing

that ∝2 must be bigger than 018. In this case, Z is assigned as 0.9819. In addition

to these discussions, it might be stressed that each line of the distributions

show an increment in the concentration of ∝. Therefore, the more ∝2 values

are assigned, the more λ1 approximates to λ2, and vice versa, which makes ∝2430

equal to infinity.

These parameters and hyperparameters are also assigned with a sample of

50,000 randomly simulated from the joint posterior. Log(µ) and log(∝) are

illustrated in accordance with the level of the posterior density in Figure 11.

Figure 11: Behaviours of log(µ) and log(∝) against US Climate Patterns

The samples of log(µ) and log(∝) are obtained through Eq.12 with a value435

of z, which has previously been found to be 0.98. To find out the centre of

the lines, a plot with a long range of log(µ) and log(∝) is performed, and then

18This is not because g(∝) but because of the behaviour of λ1 and λ2 , as those would be

undefined.
19The centre of alpha contours in Figure 10 presents z value.
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the plot between log(µ)[3, 5] and log(∝)[21, 8] is selected to show the core of

distribution. The Figure 11 also illustrates the modal values through curving-

alike red contour lines, each of which represents an interval of the logarithmic440

scale.

For instance, the 2 nd , 4 th and 6 th lines from the core of distribution

represent 0.1%, 1% and 10% of the modal value, respectively to assign a sample

into the distribution, the function GIBBS20, which is available in the LearnBayes

package in R , is used. The function enables researchers to define an arbitrary445

real-valued posterior density into a Metropolis-Hastings merged with a Gibbs

algorithm. Assignment of “start”, one of the arguments under the GIBBS, might

be seen as the starting value of the parameter vector in Figure 12. As noticed

at first glance, the practice called burn-in is not used in this research since the

nearby-real starting point is found to be earlier, which makes the technique450

an unnecessary part of this execution.Log(µ)[ 5] and log(∝)[22] is selected as

starting points, which are shown as the first pair on the left side of the Figure

12. As clearly seen, the range of log(µ) and log(∝) values starts to fluctuate

in a way that ranges roughly from 1.5 to -1.5 for log(∝) and from -15.5 to -

17.5 for log(µ). In other words, the trace of the parameter vector seems to be455

well-distributed throughout the 50,000 different iterations of the chain.

The coordinates of generated samples, composing the parameter vector and

assigned by the MH algorithm, throughout log(µ) and log(∝) are plotted out in

Figure 13-a. The dog-tooth pattern indicates that the chain converged almost

immediately, considering the distribution of log values of parameters in Figure460

12. Figure 13-b shows the density of these samples, which indicates that most

samples are generated within the same value range, randomly near where log(∝)

equals 1. There might seem to be some samples dispersed out of the dog-tooth.

This is because of the nature of the MH algorithm. A set.seed function21n R is

20Usage: Gibbs (logpost,start,m,scale,...). Logpost, start, m, scale are assigned as

Eq.12, start = c (2, -22), 50,000, c (1.00, 0.25), respectively. For further details see;

https://www.rdocumentation.org/packages/LearnBayes/versions/2.15/topics/gibbs.
21The seed of R’s random number generator, which is used to create random objects that
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assigned as 737327( the letter of the name of the first author on dial pad). It465

has been observed that different set.seed values do not give a different sample

population, which presents a sample size of 50,000 is enough for such a study. In

other words, the undesired samples, however, might be deduced to not impact

on results as the longer tail of its density function, see Figure 13-b, places it at

a relatively low level due to the large size of the generated sample.470

Figure 12: A representative trace of log(∝) and log(µ) iterations of 50,000 cycles through M-H

algorithm

can be reproduced.
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Figure 13: A scatterplot of simulated values based upon the samples in the chain (a) and its

density function (b) by Metropolis -Hasting integrated in Gibbs Sampling

The main point of this scientific investigation by real cases is to provide

the required response to the question as to whether characteristics of a climate

regime manipulate annual derailment counts at railway turnouts. It has been

attempted to level out all covariates, such as π, e, λ throughout the chosen

regions. After some assumptions, see Sec.4, this theoretically brings out the475

ultimate outcome of the entire endeavour, shown in Figure 14.

Essentially, Figure 14 illustrates the density functions of nine chosen climate

regions as the derivative of the Eq. 6 throughout a continuous distribution of

50,000 samples per each region. The areas that are covered under these curves,

produced by the density functions and the x- axis, are equal to 1. On the other480

hand, the Y axis points out not absolute counts, but relative frequencies of the

curves.
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Figure 14: Regional posterior density functions of derailment at railway turnouts in a year

for TBCZs (a) and PBCZs (b)

In the Figure 14-a, three distributions, associated with Regions 3 to 6, are

observed to behave in quite similar manner to each other. Considering that the

first region is left out of the research for several reasons, Regions 3, 4 and 5 have,485

in fact, more moderate climatic conditions through the year than the others. As

a result, this common behaviour could be expected. As for Region 6, covering

the large northern US, it is observed that this climate tends to approach Region

7 by diverging the three moderate regions. Even as the climatic characteristic of

Region 6 is already known (see 3.3), it is now revealed that a light impact of these490

characteristics on derailment counts, Y6, presents. However, this hypothesis

could be open to discussion, considering that this study has not dealt with the

distribution of operational error. For instance, maintenance, as an operational

error, has recently been found to have been involved in 20% of all turnout-

related derailments in the UK[30]. The majority of operational errors on rail495

turnouts in the US is still an unknown phenomenon [31, 32]. This research

can be extended by working on operational error. The authors believe that the

distribution of such errors might be considered to disperse quite uniformly across

the US rail network at the rate of relative areas that are covered by regions. It
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should not be forgotten that these assumptions might result in outcomes that500

are not able to deduce an absolute meaning. Therefore, nothing can be said

directly about Region 6. Instead, the general characteristics of a cold region are

likely to impact the derailment counts in the region, considering that the region

6 starts to resemble the region 7 in Figure 14-a.

On the other hand, the regions in which extreme weather conditions prevail,505

namely, Region 2 (red line) and Region 7 (pink line), show explicitly different

patterns from the others. The first striking feature is that both regions take

a place on the right side in a discrete way. As a certain result of this, it can

now be pronounced that the extreme weather conditions22 impact on component

failures for railway turnouts, causing derailment, even though it does not present510

verbally on ocial reports 23.

The kernel density function (KDF) of Region 7, covering cold regions, is seen

to be placed in a long range of Y7 values. This behaviour of the density function

stands for a lack of preciseness in the estimate, as the density function reacts

intrinsically to fulfil a real Y7 value, due to insucient knowledge, compared515

to the others. The study investigates 596 derailments across the US over the

five years from 2010 to 2015. It is observed that a range of roughly 70 to 90

derailments is distributed throughout five climate regions, while Region 7 has a

population of under 50 derailments. Therefore, the KDF function of the coldest

region seems to be dispersed. However, the median value of the KDF is seen to520

take a place in-between the values of moderate regions and Region 2.

The sample distribution of Region 2 is seen to have the most distinguishing

22The phrase is, in general, used to express weather events that are significantly different

from the usual or average weather pattern taking place over a period of time. The research

refers to seasonal adverse conditions of the US‘s average weather pattern.
23Ocial accident reports, in fact, mention environmental reasons, covering codes beginning

with “M”, such as M102, Extreme environmental condition - TORNADO. This paper has not

attempted to discuss such deterministic explicit reasons, but investigation of climate impacts

on component failures for rail turnouts on a stochastic methodology has so far been a milestone

for rail researchers to understand the real climate impact beyond observable facts.
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features. As an abundance of data provided by the region is enough, a distribu-

tion with a higher mode and median than Region 7 is observed. Moreover, the

KDF is the highest median of all. In light of these findings, it is mathematically525

possible to claim that the more extreme environmental conditions a region has,

the more component-related failures railway turnouts of this region possess.

Figure 15: Posterior (solid lines) and Prior (dot-dashed lines) Density Functions for TBCZs

The KDF of precipitation-based climate zones, on the other hand, is shown

in Figure 14-b. Similar to the results of the KDF of TBCZs, the more derailment

observations, a better estimate can be conducted. Fourteen cases are observed530

to have occurred across Zone C, which is shown with blue colour. Although

the peak of KDF is around 3 x 106, it is almost impossible to make a comment
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on the precipitation regime of Zone C. This is highly likely to be due to a low

number of derailment cases and low exposure compared to those of the other

two regions. The green-coloured distribution, Zone B, which is moist, visualises535

the distribution of derailment yj probability over a million of (e), which is lower

than Zone A, where a dry climate prevails.

6.3. Robustness of the Model for Component Failures at RTs

It is assumed that the derailment rates were sampled from the gamma func-

tion, see Eq-9, with two parameters (µ and ∝). While a non-informative prior540

proportional to 1/µ was assigned to µ, z0/(∝ +z0) was assigned to ∝. Z24 is

assessed as 0.98 for this research. Figure 13 shows prior and posterior results

by the chosen value of z (0.98) and the testing value of (98).

These prior (red lines) and posterior (blue lines) functions are shown in

Figure 15. The y-axis of the figure illustrates the density of samples while545

the x-axis of the figure gives an idea on log(∝). Dotted lines denote posterior

functions, while blue lines are obtained through an increased z value. It is seen

that the assumption ‘z‘ does not impact largely upon the prior and posterior

functions, even though the z value is increased by 100 times. In other words,

the z value does not seem to be largely effective, which shows the robustness of550

the model.

As seen in Figure 8, Yi values of climate zones 2 and 7, which are relatively

extreme hot and cold respectively, have been shown to reveal how effective is

one layer of the derailment estimate. Moreover, the estimates (bar chart) have

been observed to not satisfy, considering a real number of derailments in a given555

time (red dot line) in this Figure 8. As a result of hierarchical modelling and

the preciseness of exchangeability of πj , ultimate estimates are expected to be

better than found previously.

24 Z value is assumed considering the centre of contour lines shown in Figure 10. The model

is conducted in a way that further parameters such as Z impact negligibly the result. To test

the robustness of the model, Z value is changed largely. It has been understanding that the

proposed model immunes considerably the changes at Z values.
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In contrast, the estimates for climate zone 2 and 7 (of TBCZs), illustrated

in Figure 16-a & Figure 16-b, respectively, yields better estimate. Taking into560

account that the distribution of the derailment estimate for zone 7 on one-layer

structure in Figure 8 did not meet the real count (shown as red dotted line), the

distribution in the hierarchical structure seems to be placed in a desired way.

On the other hand, the worst estimate has been seen on the second zone.

The estimate of the hierarchical model for PBCZs is illustrated in Figure 17.565

In order to visualise whether or not the distribution of samples by the suggested

hierarchical model better estimates, Figure 17 might be compared to Figure 9.

One layer modelling has given the histogram as placed on the far-left side of

yA ( the number of real observed cases). However, "yA is seen to be placed

properly at the middle of the distribution in the Figure 16. As for Region B,570

79 derailment cases, yB is observed over the observed period. The distribution

through MLE is revealed to miss yB in Figure 9. The suggested hierarchical

model for turnout-related derailment estimates is more precise, placing yB at

around the middle of "yB .
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Figure 16: Histograms of TBCZs by the posterior predictive distributions of Region 2 (a),

Region 3 (b), Region 4 (c), Region 5 (d), Region 6 (e) and Region 7 (f) from the hierarchical

model

Figure 17: Histograms of PBCZs by the posterior predictive distributions of Region A (a),

Region B (b) and Region C (c) from the hierarchical model
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7. Discussion575

Train safety and risk analysis are dependent on the accurate estimation of

the derailment rate as well as understanding its contributory factors. This

research is aimed at better identifying both, for turnout components-related

derailments, dealing with a large amount of ocial data. In order to do this,

a hypothesis regarding environmental factors, i.e. precipitation and temper-580

ature, and their impact on derailment rates regarding turnout components is

asserted. Therefore, the entire US, except Alaska and Hawaii, is divided into

seven different temperature-based regions (climate zones 1 to 7) and three dif-

ferent precipitation-based regions (climate zones A to B).

Unique exposures of the zones are exclusively researched and identified,585

which are defined as rail trac density (MGT) and the number of turnouts across

the zones. A hierarchical Bayesian model is used to argue the hypothesis, as

a single layer Bayesian model is suspected to not respond properly due to the

environmental factors, which also gives an opportunity to test them against

each other. This is accredited to reveal the preciseness of the research. It is590

observed that 596 derailments, which are due to various turnout component

failures, have occurred across the US over the last five years. To be able to

interpret the derailments, the unique exposures of the climate zones, which are

affected by rail trac over each turnout, along with the number of rail turnouts,

are found out, individually dealing with the nine climate zones. The results are595

firstly exhibited through Poisson distribution, which is, in general, preferred by

the rail industry[33], and then a hierarchical Bayesian model is used. There-

fore, the results of the two different statistical approaches are compared with

the number of reported derailments (real counts) within the climate zones to

determine the best fitting estimate, and how both techniques are close to the600

reality.

It is identified that a hierarchical model yields better results, in particular

within a scarce data environment, i.e. low derailment rate or low exposure.

The estimate distributions of Zone B and C of PBCZs, relatively within such
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an environment as compared to Zone A, are not considered to be a proper605

estimation without a hierarchical model, as the real observations do not place on

the predictive distributions. In contrast, the distributions are updated through

the hierarchical model and revealed that the numbers of observed derailments

are placed within the updated distributions.

That is, the number of observed derailments for extreme climate zones is610

indicated to have an agreement of these derailment cases with the fitted hierar-

chical Bayesian model. On the other hand, the posterior predictive distributions

(PPD) of PBCZs and TBCZs examine the appropriateness of Albert‘s exchange-

able hierarchical Bayesian model with unique exposures in order to identify true

derailment rates for each assigned climate region. As a concrete result, the be-615

haviour of this phenomenon is found to vary across the region. More specifically,

the regions of extreme weather conditions almost yield similar rates Yj . For in-

stance, PPDs, belonging to climate zones 3 to 5 of TBCZs, are observed to

place nearby each other on the axis, which shows "y values in million exposure

units. In contrast, the other TBCZs, which have been called extreme climate620

regions in this study, are likely to be elaborated as regions posing much risk

at turnout-related derailments. It is observed that these regions possess derail-

ments up to a few times higher compared to regions where moderate climate

regimes prevail. As regional exposures, utilised from the total volume of trac

and the number of turnouts within the regions, are assigned to the same unit,625

it could be assumed that there are other contributory factors, including a dif-

ferent maintenance regime, track quality and different approaches in reporting

derailment accidents.

However, all derailments are chosen in accordance with the same track class

reported by the FRA, which has ocial jurisdiction over track quality with a630

responsibility gained by the Railroad Safety Act of 1970. Thus, in the cho-

sen turnout-related accidents it might be said that the quality and design of

turnouts are similar across the US. Even if this statement can be debatable, the

distribution of turnout characteristics would be made homogeneously, consider-

ing that the US rail network has a large number of turnouts in operation. As635
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for track inspection, the FRA as well as the railroads themselves are required

to perform this. Although some carriers possess in-house rail detection vehicles,

the majority of the Class 1 systems have their own engineering trains, used to

routinely monitor a wide range of factors critical to safe operation, creating a

profile of various components, alignment and gauge. The frequency of turnout640

inspection falls to two different categories, namely ”main track” or ”other than

main track”. It is observed that turnout derailments scarcely occur on the main

track. Therefore, the turnouts associated with such derailments, with which

this research deals, must have been inspected at similar intervals.

Therefore, the characteristics of separated regions seem to be the main driver645

for strikingly different derailment rates. The study shows there is an important

relationship between climate zones and derailment rates. As suspected, some

weather conditions, including extreme cold and hot, as well as a moist cli-

mate, are observed to impact largely on the rates. Turnout component related-

derailment estimates of the 2nd and 7th climate regions of TBCZs are identified650

to appear two to three-fold compared to those of the other regions, respectively.

Moreover, sample distributions of regions, except for 2nd and 7th climate re-

gions, are determined to correspond similarly to the hierarchical model, gather-

ing together. In other words, it is identified that mild climate zones, i.e. the 3rd

to 6th climate regions of TBCZs, are not as impactive on turnout component-655

related derailments as the extreme zones.

It can be noted that the proposed model requires considerably resource con-

sumption. It is observed that a computer with I7-8559U processor, 16GB of

ram and macOS Mojave operating system needs around 20 days to compute

the equations and plot the results. There is no arguing that the hierarchical660

model takes more processing time than a single layer Bayesian model. However,

a multi-layer structure is found out to result in more precise estimates on a large

scale rail network.
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8. Conclusion

This study might be considered to start a novel discussion field, which is665

associated with rail safety research, particularly derailment estimates. A rail

accident analysis is presented through a stochastic process, which responds to a

large number of environmental conditions for turnout operations. The previous

studies are often of deterministic approaches, which are limited to conditions

on which the studies were conducted. Therefore, the study has suggested that670

rail researchers can adopt a stochastic based methodology, which associates

with component failures of rail infrastructures. The paper comes up with a

hypothesis asserting that climate considerably impacts the rate of component

failures, depending on its characteristics. Concrete results, which provide ac-

curacy of the asserted statement, are found, which is highly likely to result in675

helping researchers to better estimate derailment rates. This is constitutive be-

cause pooling derailment data is proved to not be the way to precisely estimate

the rates for a large-scale geographic region, where climate zones with differ-

ent characteristics prevail. The proposed hierarchical model can be integrated

into the current train safety and risk analysis, mainly associated with accurate680

estimation of derailment rate.

The study is conducted on the basis of derailment cases, that occurred in the

US rail network, and were recorded by the United States Department of Trans-

portation. As the rail network is in operation in many prevailing climate zones,

whose characteristics are divergent from each other, the study has been able to685

identify the striking impact of the climate. Therefore, the researchers conduct-

ing derailment estimate might be suggested that the presented methodology is

considered to eliminate this impact for obtaining better results.

The other factors such as train speeds, quality of railway tracks and ap-

plied maintenance strategies, variations of rail management techniques might690

be added to the research. Theoretically, if all factors were found out and were

nested layer by layer (as many as they are), the exact or more precise results

would be observed in Figures 16 and 17. However, this requires quite high
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computational power.

Consequently, the authors believe this study can be applied to large-scale695

rail networks such as China‘s and the EU‘s, in order to estimate more accurately

turnout component related-derailments and component failures. As they have a

long-term plan to expand the network, derailment rates will likely be deviated

from previous experiences. On the other hand, a Road Safety Programme which

aims to reduce rail accidents in Europe by half in the next decade was adopted700

by the European Commission a few years ago. Overall statistics across the EU

have been recorded and will be recorded by Eurostat to benchmark the countries,

often making a deterministic comparison with each other, and investigating any

performance increase or decrease with previous experience. It could be highly

effective to implement this study into Eurostat‘s framework. This would reveal705

the intended performance of the EU countries, considering changes in climate,

and the rail networks.
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