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Abstract—With the evolution of electronic devices, such as 3D 
cameras, addressing the challenges of text localization in 3D video 
(e.g., for indexing) is increasingly drawing the attention of the 
multimedia and video processing community. Existing methods 
focus on 2D video and their performance in the presence of the 
challenges in 3D video, such as shadow areas associated with text 
and irregularly sized and shaped text, degrades. This paper 
proposes the first approach that successfully addresses the 
challenges of 3D video in addition to those of 2D. It employs a 
number of innovations, among which, the first is the Generalized 
Gradient Vector Flow (GGVF) for dominant points detection. The 
second is the Wavefront concept for text candidate point detection 
from those dominant points. In addition, an Adaptive B-Spline 
Polygon Curve Network (ABS-Net) is proposed for accurate text 
localization in 3D videos by constructing tight fitting bounding 
polygons using text candidate points. Extensive experiments on 
custom (3D video) and standard datasets (2D video and scene text) 
show that the proposed method is practical and useful, and overall 
outperforms existing state-of-the-art methods. 
 

Index Terms—Gradient vector flow, Wavefront, Deep learning, 
B-Spline curve fitting, Natural scene text detection, Text 
localization in 3D video. 

I. INTRODUCTION 
ext localization in 3D video is an important topic for 
content-based video retrieval, particularly for annotating 
video based on semantics [1, 2]. It has attracted 

considerable research attention due to explosive growth of 
multimedia content which includes 2D and 3D video data, 
available [1, 2]. As a result, there is an increasing number of 
large repositories containing 2D, 3D video/images and 
multimedia content [1]. To ensure the robustness and accuracy 
of retrieval systems, text localization is vital as it provides 
significant semantic information for annotating video [3, 4]. 
Existing models focus on text localization in 2D video but not 
3D video [3, 4].  Therefore, there is a need for a model that can 
work for both 2D and 3D video. Example of retrieval cases can 
include events extraction from 3D sports video, choosing a 

particular scene in a 3D movie, tracking and watching person 
behavior and interaction captured by 3D camera during 
exhibitions, processions, celebrations, etc. These situations 
motivated the authors to introduce the problem of text 
localization in 3D video in this work.  

Since text localization in 2D images is a well-known 
problem, several methods can be found in the literature for 
addressing the challenges of 2D text localization. However, this 
is not the case for 3D text localization [5, 6]. In the work 
described in this paper, if an image contains text with shadows 
and depth, it is considered a 3D text image. Otherwise, it is 
considered a 2D text image. According to this characterization, 
3D video of sports and movies was used to collect samples  to 
be used in the experiments carried out in the context of the 
proposed work.   

Due to the prevalence of 3D cameras, 3D movies and 3D 
sports broadcasts, the presence of 3D and 2D text in a single 
frame/image is becoming increasingly common. When the 
input to a system is a mix of 2D and 3D text images, existing 
models may not work well and hence performance degrades. 
This is arguably inevitable because the depth information in 3D 
text introduces shadows, and at the same time there seems to be 
an increase of use of decorative characters. The presence of 
shadow and decorative characters affects the shape of 
characters and causes non-uniform spacing between characters, 
words, and text lines. Hence the authors’ effort to develop a 
model that can deal both with 2D and 3D text images, which 
can then be used to annotate video in order to retrieve specific 
events, and for understanding video and image irrespective of 
2D and 3D text type.  

It is noted that the uniform color of each character is one of 
the key properties for 2D text localization methods to 
differentiate between text and non-text pixels. However, for the 
images shown in Fig. 1, where shadows are present, this 
property does not work because shadow pixels have also almost 
uniform color. This is one of the main causes of the poor 
performance of existing 2D text localization methods. 
Similarly, due to the presence of decorative characters in 3D 
images as shown in Fig. 1, one can expect irregularly shaped 
text and non-uniform spacing between characters. Most of the 
2D text localization methods use polygonal curve fitting for 
handling arbitrary orientated text, which works well only for 
uniformly sized and spaced text. Therefore, the performance of 
2D text localization methods degrades in 3D images, where 
decorative characters exist [7].  

Fig. 1 shows an example of 3D text (left hand side column) 
and one where both 3D and 2D texts are present. It can be seen 
in the results illustrated in Fig. 1 that the most prominent 
existing methods, such as the Character Region Awareness for 
Text Detection (CRAFT) [8], the Differential Binarization 
Network (DB-Net) [9], the Progressive Scale Expansion 
Network (PSENet) [10] do not detect text accurately within 3D 
video images. It should be noted that the above existing 
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methods have been selected by the authors based on their ability 
to address different challenges like low contrast, low resolution, 
complex background, arbitrary orientation, irregular-sized text, 
etc. which are particularly relevant to the challenges of text 
localization in 3D video. These methods, despite having been 
developed using powerful deep learning models, miss part of 
the 3D text and for the part of the 3D text that has been 
identified, the bounding boxes are not correct as shown in the 
example on the left-hand side column in Fig. 1. Furthermore, 
even though the existing methods work quite well for 2D text 
images, they are not reliable for the images containing both 2D 
and 3D text (as can be seen in the right-hand side column 
example in Fig. 1).  

The above shows that the existing methods are limited to 
2D text localization. On the other hand, contrary, the method 
proposed in this paper localizes text successfully irrespective of 
whether it is 2D or 3D or a combination therefore in the same 
image as shown in Fig. 1. This is one of the significant 
differences between the proposed approach and the existing 
methods. 

 

 
In summary, the contributions of the work described in this 

paper are as follows: (1) A new model is proposed, called 
Generalized Gradient Vector Flow (GGVF), for detecting 
dominant points in video by defining opposite arrow symmetry 
for the text pixels irrespective of challenges posed by shadow 

and decorative characters. (2) A new concept is proposed, the 
Wavefront, to filter out false dominant points, which result in 
potentially necessary candidate points and text patches. This is 
because the wavefront considers both the direction and its 
speed, enhancing the GGVF where only the direction is 
considered. (3) To handle the irregularly sized, arbitrary 
oriented text resulting from the presence of decorative 
characters, the proposed method introduces a new step called 
Adaptive B-Spline Polygon Curve fitting (ABS-Net) for 
accurately creating bounding boxes to describe such text. (4) To 
the best of the authors’ knowledge, this is the first work on text 
localization in 3D video.   

The remainder of the paper is organized as follows. Section 
2 critically discusses related work. The proposed model is 
described in detail in Section 3, while Section 4 presents 
experimental results to validate the steps of the model. Finally, 
Section 5 concludes the paper and discusses future work.  

II. RELATED WORK 
A number of methods have been developed in the past for text 
localization in 2D natural scene images and 2D video but there 
do not appear to have been any approaches proposed in the 
literature for text localization in 3D video. Therefore, the 
review below focuses on those most closely related methods of 
natural scene and video text localization. 

A. Text Localization in Natural Scene Images 
For text localization in natural scene images, powerful CNN 
based methods have been developed, which can be classified as 
regression / anchor-based methods, segmentation-based 
methods, and hybrid methods [11].  

a. Regression/Anchor-Based Methods 

The development of these approaches has been inspired by 
object detection, which considers the whole text as an object for 
text localization in natural scene images.  

Liu et al. [12] proposed a method for Fast Oriented Text 
Spotting (FOTS) in natural scene images. The method focuses 
on a unified approach, which involves detection and recognition 
of text for achieving better spotting results. Liu et al. [13] 
proposed robust curved text localization in natural scene images 
based on conditional spatial expansion. He et al. [14] proposed 
a method for multi-oriented and multi-lingual text localization 
in natural scene images based on direct regression. Cheng et al. 
[15] proposed a direct regression scene text detector for the 
natural scene images based on positive-sensitive segmentation. 
Overall, when faced with the presence of shadows and 
decorative features associated with text in video or scene 
images, the regression-based methods miss the actual text 
information in order to predict the boundary points of the text. 
This is due to a lack of local information for predicting points.  
Therefore, the performance of this type of method is 
significantly reduced for text localization in 3D video.   

The key issue of regression-based methods is the use of a 
rigid reference (anchor) for text localization in natural scene 
images. Due to this constraint, regression-based methods report 
poor results for images of irregularly sized and arbitrarily-
oriented text. To alleviate this problem, anchor-based methods 
have been proposed to enhance text localization performance. 

Figure 1. Examples of text localization in 3D (left) and 3D-2D combined 
(right) video images using the proposed and the other existing methods. 
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Deng et al. [16] proposed a real-time scene text detector using 
learner anchors. The method detects the location of an object of 
any shape by using learned proposals. Sheng et al. [17] 
proposed a single shot-oriented scene text detector with 
learnable anchors. Hou et al. [18] proposed a method for scene 
text localization using a hidden anchor mechanism. In that 
method, the predictions of anchors are considered as hidden 
layers and the weighted sum of the predictions is integrated into 
a direct regression-based network for text localization.  

 An overarching issue with the above methods is that if they 
define incorrect anchors for the text because of confusion 
between text and shadow pixels in 3D video or scene images, 
there is a high probability of considering a non-text region as 
text for predicting subsequent anchors. Therefore, it can be 
reasonably concluded that these methods will not be as effective 
for localizing text in 3D video.  

b. Segmentation-Based Methods  

The regression and anchor-based methods are not robust and 
accurate for localizing curved and short text in natural scene 
images. The motivation therefore arose to propose 
segmentation-based methods, which extract the information at 
pixel and character levels. Since those methods focus on pixel 
and character levels, they can be more robust to arbitrary 
orientation, short text, and irregular-sized text.  

 Baek et al. [8] proposed a method called Character Region 
Awareness for Text Detection (CRAFT). This method exploits 
the information at character level and the affinity between 
characters. Liao et al. [9] proposed a method for text 
localization in natural scene images based on the Differentiable 
Binarization (DB) concept. Based on Progressive Scale 
Expansion Network (PSENet) Wang et al. [10] proposed a 
method for text localization in natural scene images. The 
approach generates different kernels according to the scale of 
characters and text. Tang et al. [19] proposed a method for 
localizing dense and arbitrary oriented text lines in natural 
scene images. Their approach employs Instance Aware 
Component Grouping (ICG), which works based on a bottom-
up procedure. Liu et al. [20] proposed a mask tightness text 
detector for arbitrarily shaped scene text localization. The 
model predicts a mask at pixel level to find text region based on 
learning and predefined knowledge. Dai et al. [21] proposed a 
method for curved text localization in natural scene images 
based on multi-scale context-aware feature aggregation. Zhang 
et al. [22] proposed a method for arbitrarily oriented text 
localization in natural scene images by exploring an omni-
directional pyramid mask proposal network. Xing et al. [23] 
proposed a method based on a convolutional character network 
for text detection in natural scene images. Liu et al. [24] 
proposed a method based on context attention and repulsive text 
border. That method exploits context information extracted 
locally and globally for achieving better results. Zhang et al. 
[25] proposed a deep relational reasoning graph network for 
arbitrary shape text localization in natural scene images. Cao et 
al. [26] introduced a two-stage segmentation-based detector and 
it is coined as NASK (Need A Second look) for addressing 
challenges of arbitrarily shaped text detection in natural scene 
images. Cheng et al. [27] proposed position-sensitive 
segmentation-based model for text detection in natural scene 
images.  

Overall, when images contain text with shadow and/or text 
is affected by perspective distortion due to different shooting 
angle, extracting features that represent a character is 
challenging. Moreover, not infrequently, the pixels that 
represent shadow share the properties of characters and then the 
segmentation-based methods fail to extract actual text 
information and hence their performance diminishes.   

c. Hybrid Methods  

Although segmentation-based methods can be more robust in 
the presence of challenges, the performance of deep learning 
models depends heavily on the number of samples and requires 
a large number of parameters. These hard constraints limit the 
generalization ability of those methods. To find a solution to 
this problem, hybrid methods have been proposed that integrate 
the merits of pixel/character level information (by extracting 
handcrafted features) and deep learning models.  

Wang et al. [28] proposed a hybrid method, which 
combines respective advantages of segmentation and 
regression-based methods to overcome the limitations of either 
method on their own. Roy et al. [3] proposed text localization 
from multi-views of the scene images based on the Delaunay 
Triangulation concept.  Xue et al. [29] proposed a method for 
arbitrarily oriented text localization in low-light natural images. 
The model integrates features extracted from the spatial and the 
frequency domains for enhancing low contrast text pixels in the 
images. Nag et al. [30] proposed a unified method for localizing 
text in images of marathon runners and sports players. The 
method combines dominant information detected by a 
handcrafted feature and a deep learning model to reduce false 
positives.  

It can be reasonably argued that, since these hybrid 
methods involve handcrafted features for detecting local 
information of text regions, the features may not be adequate to 
differentiate text and shadow pixels in 3D video or 3D scenes. 
The review of the methods in this section indicates that existing 
models are capable of addressing the challenges of arbitrarily 
oriented text, different shaped text, and low light text detection 
in the natural scene images. However, none of those methods 
addresses the challenges encountered in text localization in 3D 
videos. This fact motivated the authors to propose the method 
for text localization in 3D video, described in this paper.  

B. Text Localization in Video   
Fassold and Germi [31] proposed a method for video text 
tracking in a real-time environment. Their approach combines 
deep learning and an object detector to achieve improved 
results. Raghunandan et al. [6] proposed a method for text 
localization in video. That approach uses bit plane slicing for 
detecting text in images/frames. Rasheed et al. [32] proposed a 
deep learning-based method for text localization in video 
frames. Shivakumara et al. [33] proposed a method for multi-
oriented text localization in video images based on Fractal 
theory. The fractal concept is employed to enhance the low 
contrast text in video images. Wang et al. [5] proposed text 
localization and tracking in video using fully convolutional 
neural networks. Wang et al. [34] proposed text localization and 
tracking based on hybrid deep text detection and a layout 
constraint (text trajectories). Their approach combines object 
detection and semantic segmentation in a hybrid way for text 
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candidate detection in each frame. Yu et al. [35] proposed a 
method for text localization and tracking in video using deep 
learning models. That approach employs ConvLSTM to capture 
spatial structure information and motion memory.  

Zhou et al. [36] proposed text localization in video using a 
YOLO deep learning model. The Efficient Convolutional 
Operators (ECO) method is used for tracking the text in the 
video. Local and global stitching is proposed to obtain a text 
panorama.  Song et al. [37] proposed a Siamese network for 
video text frame detection. The Siamese network includes one 
branch for text similarity estimation and one for text 
identification. Wang et al. [38] proposed a method for scene text 
localization and tracking in video based on background cues. 
Their method employs background cues in identifying 
candidate text regions and uses spatial, shape and motional 
correlations between text and its background region for 
localization and tracking of that text. Cheng et al. [39] proposed 
a method for fast video text spotting based on text localization 
in video frames.  

It can be noted from the above reviews on text localization 
in video that those methods focus on temporal information for 
text localization and tracking but none of the methods are 
applied to 3D video. Moreover, none of the methods addresses 
the challenges posed by shadow information in the video. 
However, there have been some attempts at the classification of 
2D and 3D text in a video in order to hopefully improve 
subsequent text localization. For example, Xu et al. [40] 
proposed a method for the classification of 2D and 3D text 
regions in video. Their approach uses information on gradient 
direction for differentiating between pixels which represent 2D 
and 3D. Similarly, Zhong et al. [7] proposed a method for 
shadow detection in the 3D video to pave the way for 3D text 
recognition. Nandanwar et al. [41] proposed a method based on 
detecting common points for the classification of 2D and 3D 
text in video/scene images. Nevertheless, the main objective of 
the above three methods is to classify 2D and 3D text, not text 
localization. Recently, Chowdhury et al. [4] explored episodic 
learning based network for text detection on human body in 
sports images. However, the method is confined to video 
images of sports and the method works well for the images that 
contain text with cloth information.     

In conclusion, it is observed that there is no robust method 
for text localization in the 3D video. Hence, this paper proposes 
a new method for text localization in 3D video by introducing 
a combination of novel concepts such as the Generalized 
Gradient Vector Flow (GGVF), the Wavefront, and the 
Adaptive B-Spline Polygon Curve Fitting Network (ABS-Net). 
These concepts enable to proposed method to successfully deal 
with the challenges of text localization in 2D and 3D video.  

III. THE PROPOSED APPROACH  
The proposed approach comprises four key steps, namely, 
dominant point detection using GGVF, candidate point 
detection using wavefront, connected component analysis for 
constructing text patches, and using the ABS-Net for detecting 
and describing the text in the video. These key steps can be seen 
in the block diagram in Fig. 2. It can be observed that the stroke 
width (the thickness of a character stroke) usually has an almost 
constant value for each individual character, irrespective of 2D 

or 3D, in both video and scene images [42]. Moreover, the 
arrows of the Gradient Vector Flow (GVF), which are pointing 
towards the edge pixels, have opposite directions for the pixels 
representing the stroke width, exhibiting what is called an 
Opposite Direction Symmetry (ODS). Based on these 
observations, the proposed method employs Generalized 
Gradient Vector Flow (GGVF) [43] for defining ODS rather 
than using conventional GVF. If the pixels satisfy the ODS, 
they are considered as dominant points. It is therefore expected 
that this step generates dominant points, which represent text 
regardless of 2D and 3D texts.  
 

 
 

Due to the complexity of the problem, sometimes, the 
dominant point detection step misclassifies non-text pixels as 
text pixels. To overcome this problem, we introduce a novel 
concept called Wavefront, which predicts the dominant point 
based on the neighbor points according to the direction of the 
speed motion [44]. This observation inspired us to explore the 
same wavefront technique for predicting the values using a 
point’s 8-neighborhood with the help of horizontal and vertical 
wavefronts. For each dominant point, if it is a text (or non-text) 
pixel, the Wavefront predicts the values using its 8-neighbors 
such that the predicted values exhibit a regular pattern. This 
results in robust candidate points by eliminating false dominant 
points. The proposed method then constructs text patches using 
candidate points with the help of Canny edge components and 
morphological operations. Finally, in order to describe text with 
accurate and tight bounding boxes (excluding excessive 
background pixels), we introduce a new idea of exploring 
Adaptive B-Spline Polygon Curve Fitting (ABS-Net) with a 
new deep learning model. The reason to explore B-Spline curve 
fitting is that it fits smooth curves using control points 
determined by local information, unlike Bezier curve fitting, 
which requires global information. Therefore, in contrast to 
conventional polygonal curve fitting, the ABS-Net is capable of 
overcoming the challenges posed by decorative text, which has 
irregularly shaped characters with non-uniform spacing and 
color bleeding.  

It should be noted that, unlike a single-stage architecture 
system, which lacks robustness, adaptability and generalization 

Figure 2. Block diagram of the proposed approach.  
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ability, the proposed multi-stage system is characterized by its 
flexibility, adaptability and generalization ability for 
successfully addressing the complex issues considered in this 
work. In addition, it is straightforward to expand and extend the 
multi-stage system for diverse data and new applications in 
contrast to single-stage system, which is not flexible for 
expansion and extension.  

 
Finally, a decision has been made to use as input to the 

proposed approach the average of the first three successive 
frames out of the 25-30 frames per each second of video. This 
is due to a number of reasons. First.  the average operation can 
be considered as a type is a type of a low pass filter, which 
attenuates high frequencies (e.g. corresponding to noise), 
resulting in enhanced images. Samples of three consecutive 
frames and average frame are shown in Fig. 3. Second, 
experimental observations indicate that the result of averaging 
the first three frames is almost indistinguishable from the 
average of all 25-30 temporal frames in each second of video, 
in terms of text localization performance. Third, averaging over 
only three frames significantly reduces the number of 
computations, ensuring the proposed method is practical. If 
video is not available, the proposed approach considers an 
individual image for text localization. 

The following sections describe the main steps of the 
proposed method in detail. 

A. Generalized Gradient Vector Flow (GGVF) for Dominant 
Points Detection 
Inspired by the special property of Gradient Vector Flow 
(GVF), namely that the arrows of GVF pointing towards edges 
due to high force at edges [42], we exploit the same property 
for detecting dominant edge points in the average frame of the 
video. This helps us to reduce the complexity of the problem by 
removing unwanted background information in the input frame. 
The conventional GVF has some limitations, however, such as 
confusions in pointing arrows at corners and sometimes failing 
to point an arrow when the edge pixels suffer from 
degradations, low contrast and low resolution. These limitations 
motivated the authors to introduce the Generalized Gradient 
Vector Flow (GGVF), which is invariant to distortion, 
degradations to some extent, and provides correct arrows at 
corners of the edges. The formulation to derive GGVF from the 
conventional GVF is as follows.  

The energy function of the GVF field 𝒛(𝑥, 𝑦) = (	𝑢(𝑥, 𝑦),
𝑣(𝑥, 𝑦))	 is defined as 

𝐸 = 	∬𝑔(|∇𝑓|)(|∇𝑢|1 + |∇𝑣|1) + ℎ(|∇𝑓|)(𝒛 − 	∇𝑓)	𝑑𝑥	𝑑𝑦            (1) 

with 𝑔(|∇𝑓|) = 	 𝑒
7∇8
9                              (2) 

ℎ(|∇𝑓|) = 1 − 	𝑔(|∇𝑓|)                               (3) 

The first term in Equation (1) is a smoothing term, which 
produces a vector field. The second term is the data fidelity 
term, that drives the vector field v close to the gradient of the 
image i.e. ∇f. Parameter k acts as a weighing parameter that 
balances the smoothing and data fidelity terms. The value of k 
is related to the noise level. The higher the level of noise, the 
larger the value of k should be. 

The energy function of the GGVF snake model is obtained 
by modifying Equation (1) as follows 

𝐸 = 	∬𝑔(|∇𝑓|)(∅(|∇𝑢|) + ∅|∇𝑣|) + ℎ(|∇𝑓|)(𝒛 − 	∇𝑓)	𝑑𝑥	𝑑𝑦        (4) 

where ∅(|∇𝑣|) = 	<1 + |∇𝑣|1   and ∅(|∇𝑢|) = 	<1 + |∇𝑢|1	,	 
and the definitions of 𝑔(|∇𝑓|)and ℎ(|∇𝑓|) remain same as in 
Equation (2) and Equation (3). 

The solution to the energy function stated in Equation (4) 
is obtained using the calculus of variation and it is as follows: 

=>
=?
= 𝑔(|∇𝑣|)<1 + (|∇𝑣|)1∇. A ∇>

<BC(|∇>|)D
E − ℎ(|∇𝑣|)(𝑣 − ∇𝑓)          (5) 

=F
=?
= 𝑔(|∇𝑢|)<1 + (|∇𝑢|)1∇. A ∇F

<BC(|∇F|)D
E − ℎ(|∇𝑢|)(𝑢 − ∇𝑓)          (6) 

The terms =>
=?

 and =F
=?

 can be described using the forward 
difference scheme. Hence, we can re-write Equation (5) and 
Equation (6) as  

𝑣GCB − 𝑣G

∆𝑡
= 𝑔(|∇𝑣|) J

K1 + 𝑣L1M. 𝑣NN 	+ (1 + 𝑣N1)	. 𝑣LL 	− 2𝑣N𝑣L𝑣NL
1 + (|∇𝑣|)1

P 	

− ℎ(|∇𝑣|)(𝑣 − ∇𝑓)																																																					(7) 

𝑢GCB − 𝑢G

∆𝑡
= 𝑔(|∇𝑢|) J

K1 + 𝑢L1M. 𝑢NN 	+ (1 + 𝑢N1)	. 𝑢LL 	− 2𝑢N𝑢L𝑢NL
1 + (|∇𝑢|)1

P 						

− ℎ(|∇𝑢|)(𝑢 − ∇𝑓)																																																					(8) 

For our calculations we use standard values of all variables:  
𝑘	 = 	3.8, ∆𝑡 = 0.1	𝑎𝑛𝑑	𝑡 = 20 [43].  

 
The noticeable difference in using GGVF over GVF is the 

use of the modified function ∅(|𝛻𝑢|) + ∅|𝛻𝑣| defined in 
Equation (4). The result of including this function is the 
capturing of the sharp corners of the images with properly 

           Frame-1                                                            Frame-2  

              Frame-3                                      Average of frame-1, 2 and 3 
Figure 3. Exploiting temporal information for enhancing the fine details in 

the images. 

                    (a)  GVF                                           (b)    GGVF 
Figure 4. Comparison between conventional GVF and the proposed 

GGVF. 
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aligned gradient vectors as shown in Fig. 4, where it can be seen 
that GVF does not perform well at the corners, where opposite 
arrow direction for the edges would have been expected. This 
is because GVF is sensitive to low contrast and low-resolution 
edges. In the case of Fig. 4(b), it can be seen that GGVF 
overcomes the limitations of GVF. As mentioned earlier, if 
there is a pair of pixels representing the stroke width (the 
thickness of the stroke), the arrows should have an opposite 
direction, which is ODS. The edge pixels marked in the yellow 
and red color boxes shown in Fig. 4(a) do not satisfy ODS, 
while ODS is satisfied in the case of GGVF shown in Fig.4(b) 
(in Fig. 4, enlarged versions of the two marked portions of the 
upper part of the figures are shown in their respective lower 
parts). Furthermore, it is observed from the direction of arrows 
in both Fig. 4(a) and Fig. 4(b) that GGVF provides orderly and 
cleanly directed arrows while GVF does not. This fact enables 
the proposed method (using GGVF) to obtain accurate results. 

The effects of GGVF on the input images of the example 
2D and 3D video frames are shown in Fig. 5, where (a) is the 
result of GGVF showing all edge pixels for which arrows are 
present, (b) illustrates the ODS for the 2D and 3D video frames, 
(c) is the result of the edge pixels that satisfy ODS, referred to 
as dominant points detection. It is observed from Fig. 5(c) that 
most of the pixels which represent text are retained for both 2D 
and 3D video frames. It is also true that dominant pixel 
detection includes some pixels of non-text edges. This is 
justifiable at this stage because there are edges of background 
objects which satisfy ODS.  

 
B. Mini-Wavefronts for Candidate Points Detection 
When the center pixel in 8-connectivity neighborhoods is 
representing text, one can expect almost the same properties 
among its neighbor pixels, such as color, direction, speed of 
motion, etc [42]. In the previous section, the proposed method 
uses a gradient direction-based feature for separating text and 
non-text pixels in the frame. In this section, we explore the 

direction of the speed of the motion through the Wavefront 
concept to improve the results of the dominant point detection 
step. The introduction of the Wavefront concept is inspired by 
the method proposed in [44] where horizontal and vertical mini 
wavefronts are used to predict the dominant point, through 
interpolation based on the direction of the speed of the motion. 
It is the authors’ understanding that the nature of the predicted 
value depends on its neighbors’ values. The formal steps for 
defining the Wavefront to predict the values in 8-connectivity 
neighborhoods are as follows.  

For each dominant pixel in the frame, the proposed method 
defines a 3×3 window and these are considered as 8-
connectivity grids. The mini-Wavefronts, namely the vertical 
and horizontal Wavefronts are illustrated in Fig. 6(a), where the 
center pixel is considered as the center node and other vertically 
(or horizontally) adjacent points are considered as two 
boundary points of Wavefronts. The step can be formulated as 
follows. Let 𝑆(𝑝) =	 {(𝑝, 𝑇]);	(𝑝_, 𝑇_); 	(𝑝`, 𝑇 )}  be the mini 
Wavefront core information, where (𝑝, 𝑇]) is the position and 
the tentative value in the mini Wavefronts center with	(𝑝_, 𝑇_) 
and (𝑝`, 𝑇 )   being mini wavefront boundaries, respectively. 
With these values, we define 𝑇b(c)(𝑝G) as the tentative value in 
𝑝G  if the solution is propagated from the wavefront section 
𝑆(𝑝) . For each mini-Wavefront, the initial tentative value 
(𝑇]/	𝑇_/𝑇 ) is 0. The tentative value 𝑇e(c)(𝑝e) for reaching point 
𝑝e can be estimated by approximating the integral between the 
reaching point and the Wavefront section in the direction of the 
motion. In other words, the process estimates the traveling cost 
using the speed of motion (F) given at 	𝑝e  as defined in 
Equation (9).  

The speed of motion F= (𝐹N, 𝐹L) in an image with intensity 
𝐼 can be calculated as: 

𝐹N(𝑝) = 	
cos	(|∇𝐼|)
1 +	 |∇𝐼|1 

𝐹L(𝑝) = 	
klm	(|∇n|)
BC	|∇n|D

                                  (9) 

Thus, we can derive Equation (10) and Equation (11) for each 
of the mini wavefronts using Equation (9):   

𝑇e(c)
_ (𝑝e) = min

rs?sB
𝑇(𝑝?_) 	+||𝑝e − 𝑝?_ 	||

K𝐹(𝑝?_M + 𝐹(𝑝e)
2 								(10) 

 where 𝑝?	_ = (1 − 𝑡)𝑝 + 𝑡𝑝_ and 

𝑇e(c)
` (𝑝e) = min

rs?sB
𝑇(𝑝?`) + ||𝑝e − 𝑝?` 	||

(𝐹(𝑝?`) + 𝐹(𝑝e)
2 							(11) 

 where 𝑝?	` = (1 − 𝑡)𝑝 + 𝑡𝑝` 

Finally, 

𝑇e(c)(𝑝e) =  min(𝑇e(c)_ (𝑝e), 𝑇e(c)` (𝑝e))                   (12) 

In Equation (12), by choosing an appropriate value for t, 
one can compute its respective 𝑇(𝑝?)  and 𝐹(𝑝?)  values. To 
achieve this, the proposed method uses gradient information for 
computing t values and linear interpolation to obtain the 
respective 𝑇(𝑝?)and 𝐹(𝑝?)  values. The gradient information 
uses the direction of the speed of the motion to obtain the t 
values as shown in Fig.6(b), where it can be seen that the 
proposed method selects the intersection point between the 

(a) GGVF for both 2D and 3D video frames. 

(b) Opposite direction symmetry illustration 

(c) Dominant points detection for 2D and 3D video frames.  
Figure 5. The GGVF for dominant point detection. 
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Wavefront segment and the line starting in p which follows the 
direction of the speed of motion. Let p be the node which is to 
be updated and predicted and 𝑟, 𝑠 the endpoints of a wavefront 
section, as explained in Fig. 6(a).  With 𝑑	 = 	𝑠	 − 	𝑟, the value 
of 𝑡	is computed as defined in Equation (13).  

 𝑡 = maxx𝑚𝑖𝑛 x{|
( }̀~c})~{}K |̀~c|M

{}�|~{|�}
	 ,1� , 0�														(13) 

 
To obtain the values for the 𝑇(𝑝?), linear interpolation is 

proposed as defined in Equation (14) and Equation (15) with 
Wavefront centered at 𝑝�CB,�CB . In the same way, the values 
of 	𝐹(𝑝?)can be computed through the same interpolation as 
defined in Equation (14) and as shown in Equation (15).  

𝑇bKc���,���M
_ (𝑝?) = (1 − 𝑡)𝑇�CB,�CB + 𝑡𝑇�CB,� 

𝑇bKc���,���M
` (𝑝?) = (1 − 𝑡)𝑇�CB,�CB + 𝑡𝑇�,�CB												(14) 

Similarly, 	
𝐹_(𝑝?) = (1 − 𝑡)𝑇�CB,�CB + 𝑡𝑇�CB,� 

𝐹`(𝑝?) = (1 − 𝑡)𝑇�CB,�CB + 𝑡𝑇�,�CB 

𝐹(𝑝?) = minK𝐹_(𝑝?), 𝐹`(𝑝?)M																											(15) 

For each dominant point in the image, the proposed method 
obtains 12 𝑇e(c)(𝑝e) values which include 6 values from 
horizontal and 6 from vertical Wavefronts. It is expected that 
these values should exhibit a regular pattern if the pixel is text 
else an irregular pattern will be expected among those 12 
values. To determine this observation, the proposed method 
draws a histogram for the 12 values as shown in Fig. 6(c) and 
Fig. 6(d), where a regular distribution can be seen for the 
dominant text pixels (Fig.6(c)) while an irregular distribution 
for non-text dominant pixels (Fig. 6(d)). If the dominant points 
satisfy this regular pattern distribution, the dominant pixels are 
considered as text candidate points else the proposed method 
discards the misleading dominant points. We use the Jarque-
Bera Normal distribution test to determine whether the 
distribution is regular or irregular. 

The effect of applying the Wavefront step can be noted in 
Fig. 6(e) for 2D and 3D frames, where it can be seen that a 
significant number of non-text pixels have been removed 
compared to the results in Fig. 5(c). In addition, the brightness 
of edge pixels has been increased in Fig. 6(e) compared to 
Fig.5(c).  At the same time, we can see a reduction in the 
number of candidate pixels in Fig. 6(e) for both the images. This 
makes it more efficient to differentiate candidate points (which 
represent text) from non-text. The candidate points are 
considered in the next step of the proposed method: the 
construction of text patches.  

C. Adaptive B-Spline Polygon Curve Fitting for Text 
Localization (ABS-Net) 
It is noted that the deep learning models are more effective 
when regions are considered as input, rather than individual 
points. To exploit this advantage, the proposed approach 
reconstructs text patches using points representing text. For this 
purpose, the proposed method uses connected component 
analysis, which extracts edge components from the Canny edge 
image of the input images corresponding to each text 
representative. This results in an image with edge components.  

To combine all the edge components in a single component, 
the proposed approach performs a morphological operation 
over edge component images, which fills the small (usually 
two/three pixels) gap between the edge components and then 
the closed contours are selected, accordingly. This results in 
text patches as shown in Fig. 7(a), where the whole patch can 
be seen as a single component, and it is considered as a text 
region. The actual color information in the input images 
corresponding to pixels of text patches is restored by extracting 
it from the input images as shown in Fig. 7(b). These regions 
are fed to the deep learning model to predict the character 
region heat map. The complete deep learning architecture is 
illustrated in Fig. 8 and its description in terms of learning and 
training are as follows. The first layer is a custom convolution 

(a) Vertical and horizontal mini wavefronts for 8 neighbors 

(e) Candidate points for both 2D and 3D video frames.  

(b) Gradient method for t value estimation, r and s are endpoints, p is 
the point to be updated, where Fp is the Speed of motion at p. The 

value of t must be bounded between 0 and 1. 

Reaching points Wavefront Wavefront Boundary 
Points 

(c) Regular pattern of distribution for text dominant points 

(d) Irregular pattern distribution for non- text dominant points.  

Figure 6. Wavefront for candidate points detection. 
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operation which is a filter (𝐾) as defined in Equation (16) for 
enhancing fine details in the image [45]. 
 

 

𝐾	 = 	 �
−1 −1 −1
−1 10 −1
−1 −1 −1

�																																					(16) 

 
The second layer is a max pooling layer with kernel size 2 

and stride 2. Then the proposed method uses VGG-16-Unet 
[46] with batch normalization as its backbone, which has skip 
connections in the decoding part similar to U-net [47] which 
aggregates low level features. For training the proposed model 
at character level, the character-level SynthText dataset is used 
in a weakly supervised manner, which is publicly available 
[48]. Transfer learning is used onto the proposed text 
localization model utilizing the pre-trained weights of CRAFT 
[8] text detection method in the proposed VGG-16-Unet 
backbone.  

The final output of the proposed model is a single channel 
output, showing the probability of the character center with a 
Gaussian heat map. The instructions given in [8] are followed 
for training the model based on weak supervision. As 
mentioned above, the pre-trained weights of the CRAFT model 
are trained on the SynthText dataset [48] for 50k iterations, each 
benchmark dataset is then trained on to fine-tune the proposed 
model. The ADAM [49] optimizer is used in all training 

processes. For training and testing on image frames, the dataset 
(see Section IV) is split in a 4:1 ratio. For training in each epoch 
data augmentation techniques are also used randomly such as 
zoom in/out, Scaling, Cropping, Padding, Rotation, Affine 
transformation, which increase the dataset size to 4 times the 
actual training data size. The testing time of the proposed 
method is calculated as 168 ms for each image frame at HD 
resolution on an NVIDIA 2080 TI GPU.  

For a word-level annotated sample w of the training data, 
let 𝑅(𝑤) and 𝑙(𝑤) be the bounding box region and the word 
length of the sample w, respectively. The character splitting 
process defined in [6] is used which provides the estimated 
character bounding boxes and their corresponding lengths of 
characters 𝑙](𝑤). Then the confidence score 𝑠]�G�(𝑤)for the 
sample 𝑤 is computed as defined in Equation (17). 

 

𝑠]�G�(𝑤) =
𝑙(𝑤) −min	(𝑙(𝑤), 𝑙(𝑤)) − 𝑙](𝑤)

𝑙(𝑤) 													(17) 

and the pixel-wise confidence map 𝑆]  for an image is computed 
as defined in Equation (18)  

𝑆](𝑝) = 	 �
𝑠]�G�(𝑤)																						𝑝 ∈ 𝑅(𝑤)
1																																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

																(18) 

where p denotes the pixel in the region R(w). Our Loss function 

L is defined as in Equation (19).  

𝐿 = 	�𝑆](𝑝) × (‖𝑆`(𝑝) −	𝑆`∗(𝑝)‖1)
c

																				(19) 

where 𝑆`(𝑝) denotes the ground truth region score i.e 1,  and 

𝑆`∗(𝑝) denotes the predicted region score. The 𝑠]�G�(𝑤) 
increases as the proposed model is trained and, after the 
training, regions with 𝑠]�G�(𝑤)< 0.5 are disregarded as they 
have very low probability of containing text.  

For the Gaussian probability heat map produced by the 
deep learning model as shown in Fig. 9(a) for 2D and 3D video 
frames, in order to fit accurate and tight bounding boxes for 
arbitrary oriented text lines, we explore B-Spline polygon curve 
fitting. It is inspired by the method in [50] where Bezier curve 
fitting is explored for constructing bounding boxes. Bezier 
curve fitting, however, does not work well for irregular sized 
text which contains different fonts and sizes of characters in the 
same line. In contrast, B-Spline curve fitting has the ability to 
fit smooth curves based on control points determined from local 
information [51] as shown in Fig. 9(b) where smooth and 
accurate bounding boxes can be seen fitted on arbitrarily 
oriented text lines.  

To find control points, the proposed method draws a line 
through the local maxima of each character, which is then 
considered as the control line of the whole text line as shown in 
Fig. 9(b). Then the proposed method draws lines, perpendicular 
to the points of the control line, which are based on local 
maxima and extend towards the character boundaries in both 
directions, as shown in Fig 9(b). If the control line is a straight 
line, a conventional quadrilateral is used for fitting the 
bounding box, otherwise a B-Spline Polygon curve is used. The 
boundary points of characters are considered as control points 
as described in Fig 9(b). These control points are fed to the B-

(a) Constructing text patches for 3D frames. 

(b) Text patches with color information for 3D frames.  
Figure 7. Constructing text patches using connected component 

analysis. 

Figure 8. Proposed Deep Convolution neural network architecture 



 9 

spline curve fitting process, which outputs the n-vertices 
polygon. In this work, according to experiments, a maximum 
feasible value of n is 100.  The steps for polygon construction 
are presented in Equation (20). Let the B-spline Polygon fitting 
function be S(x), defined as in Equation (20): 

 𝑆(𝑥) =	∑ 𝑐�𝐵�;�;?(𝑥)G~B
��r 																																								(20) 

𝐵�,r(𝑥) = 	1, 𝑖𝑓	𝑡� ≤ 𝑥	 ≤ 𝑡�CB	, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	0	 

 𝐵�, (𝑥) =
N~?�	
?���~?�	

𝐵�, CB(𝑥) +
?��9��~N

?��9��~?���	
𝐵�CB, ~B(𝑥) 

Here, 𝑡 is number of knots, 𝑐 is the spline coefficients or control 
points, 𝑘 is the B-spline order and n is the number of control 
points (c). Here  𝑡	 ∈ {	−𝑘,−𝑘 + 1, …… , 𝑛 + 2𝑘 − 1} and 𝑘	 =
2.  

 
Due to the complexity of the problem, involving both 2D 

and 3D text in video and natural scene images, there is still a 
possibility of the proposed method misclassifying non-text 
regions as text. Therefore, to improve the performance of text 
localization, a combination of EAST [52], which detects text, 
and Tesseract [53], which recognizes text, is used to eliminate 
false positives. Text regions with bounding boxes are fed to the 
combination of EAST and Tesseract. If at least one of the 
characters is recognized, then the proposed method retains its 

text designation, otherwise it is discarded as a false positive. 
The text localization results of the proposed method for 2D and 
3D frames are illustrated in Fig. 9(c), where it can be seen that 
the proposed method has correctly localized text in different 
orientations, in different font sizes as well as text composed of 
irregular characters.    

IV. EXPERIMENTAL RESULTS   
To validate the proposed method, a new dataset was constructed 
for experimentation since there is no standard dataset for text 
localization in 3D video. The dataset includes text in arbitrary 
orientations, irregularly shaped text and irregularly sized text. 
Sources included 3D movies, sports and other internet video 
sources, such as YouTube, all contributing to a total of 400 
videos captured at 25-30 frames per second. As result, the 
dataset provides 1200 frames including three consecutive 
frames for experimentation. Since the main objective of the 
proposed work is to localize text in 3D video as well as natural 
scene images, rather than just exploring temporal information, 
the proposed method only extracts three consecutive frames 
from the respective video. Each frame is converted to a 
standardized dimension of 1080×1920 pixels for 
experimentation. The frames were annotated manually at the 
word level according to the instructions given for the ICDAR 
dataset construction [54]. The dataset is divided into 80% and 
20% for training and testing, respectively. 

To evaluate and benchmark the ability of the proposed 
method to localize text in 2D video, the community standard 
ICDAR2013 Robust Reading Competition [51] dataset was 
used, which provides 28 videos with 15277 frames containing 
2D text. That dataset also provides ground truth at the word 
level for all the frames. Noted that since the aim of the proposed 
work is to detect text in the video and not for tracking the text 
in the video, the metrics used in [51] are not used for evaluation, 
instead, standard text detection measures are used in this paper. 
Similarly, to evaluate the ability of the proposed method to 
localize text in 2D natural scene images, the following standard 
benchmark datasets (described in more detail further below) 
were used: SCUT-CTW1500, Total-Text, ICDAR 2019-ArT 
and DAST1500. For these experiments, the proposed method 
considers an individual image as input for text localization, 
without any temporal information.  

SCUT-CTW1500[3]: This dataset provides arbitrary-
shaped text-line natural scene images in English and Chinese 
scripts. For experimentation, there are 1000 images for training 
and 500 images for testing. Total-Text [3]: This dataset 
provides images containing curved text similar to CTW1500 
dataset. However, most of the image contains English text lines. 
In this dataset, 1255 images for training and 300 images for 
testing are considered for experimentation. ICDAR 2019 
ArT[55]: This dataset is a combination of the images of Total-
Text, those of the CTW1500 dataset and those of the Baidu 
Curved Scene Text, which was created for detecting arbitrary-
shaped text in the natural scene images. In total, the dataset 
contains 10,166 images, split into a training set of 5603 images 
and a testing set of 4563. DAST1500[19]: This dataset includes 
images with considers dense and arbitrarily shaped text. By 
dense it is meant that there exist several text lines in a single 
image without much space between them. This makes fixing 

(c). Text detection in both 2D and 3D frames.  
Figure 9. Adaptive B-spline curve fitting Network for arbitrary 

oriented text detection 

(a) Predicted character region heat map for both 2D (left) and 3D 
(right) images 

(b) Sample Adaptive B-Spline polygon curve fitting for fixing 
bounding boxes on curved text (for illustration purpose only) 
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bounding box for arbitrary shaped text lines much more 
challenging. Out of a total of 1538 images, 1038 images are 
separated for training and 500 images for testing.  

For evaluating the performance of the proposed method, 
the standard measures and evaluation scheme, Recall (R), 
Precision (P) and F-measure (F) have been used in all the 
experiments reported in this paper. The threshold for 
intersection-over-union (IoU) for classifying true and false 
positive is 0.5 according to the standard evaluation scheme [8-
10, 12, 19].  

For comparative study purposes, the proposed method is 
evaluated alongside the implementations of the most relevant 
prominent and recent existing methods available publicly for 
experimentation. These methods are: The Character Region 
Awareness for Text Detection (CRAFT) [8], the Differential 
Binarization Network (DB-Net) [9] and the Progressive 
Scalable Expansion Network (PSENet) [10]. These methods 
have been developed for text localization in natural scene 
images. As mentioned earlier in this paper, the reasons to 
consider the above methods for comparative study are that these 
approaches are the state-of-the-art methods and address several 
challenges which are very similar to text localization in 3D 
video. Another reason of considering those state-of-the-art 
methods is to evaluate in the first place how effective they are 
in text localization in 3D video. For the purpose of comparative 
study, the methods in [38, 39], developed for text localization 
and tracking in video using spatial-temporal information, have 
also been evaluated.  

All existing methods were first trained using the 
ICDAR2015 dataset and the publicly available SynthText [48] 
dataset, following the instructions mentioned in [8]. Next, they 
were fine-tuned using the proposed 3D text dataset at the word 
level according to the instructions mentioned in each respective 
method. The details of training and testing for the proposed 
method are described in Section III.C.  

A. Ablation Study 
To achieve the best results for text localization in 3D video, the 
proposed method involves several key steps detailed earlier in 
this paper: dominant point detection using the GGVF approach, 
candidate point detection using the Wavefront approach, 
polygon boundary fitting for arbitrarily oriented text lines using 
adaptive B-Spline curve fitting, use of the combination of 
EAST and Tesseract as OCR for eliminating false positives, and 
use of the average frame for enhancing detail in the 
images/frames. To assess the contribution of each step in 
achieving the best text localization performance, we conduct 
the following experiments and calculate measures as reported 
in Table I on the proposed new dataset: Experiment-(i), where 
the proposed method considers the output of GGVF as input for 
text localization without candidate points. Experiment-(ii), 
where the proposed method replaces GGVF with GVF for text 
localization. Experiment-(iii), where the proposed approach 
does not consider dominant points for detecting candidate 
points, instead, it considers the Canny edge image of the input 
image. Experiment-(iv), where the proposed method replaces a 
B-Spline curve fitting with the conventional Bezier fitting 
approach used in [8]. Experiment-(v) is conducted to test the 
contribution of the combination of EAST + Tesseract used for 
eliminating false positives, where the proposed method 

calculates the measures without EAST + Tesseract. Finally, 
Experiment-(vi) assesses the contribution of the average frame, 
where the proposed method is evaluated on individual frames.  
Table I. Effectiveness analysis of the key steps of the proposed method on our 

dataset based on different experiments. 

Experiment 
# Key Steps  P  R F 

(i) Proposed using only the GGVF 
step  69.15 73.90 71.45 

(ii) Proposed using conventional 
GVF  68.31 70.79 69.53 

(iii) Proposed without GGVF 67.20 70.50 68.80 

(iv) Proposed using conventional 
Polygon Fitting [8]  52.69 79.26 63.30 

(v) Proposed without EAST + 
Tesseract 70.90 72.30 71.60 

(vi) Proposed on individual frames 67.82 74.11 70.83 
Proposed Model  70.71 73.67 72.10 

 
 From experiments (i) and (ii) in Table I it can be seen that 

GGVF is better than GVF for localizing text in 3D video. When 
one compares the results of experiments (iii) and the proposed 
method reports poor results without Wavefront and GGVF, 
which indicates that GGVF and Wavefront significantly 
contribute in achieving the best results by the proposed method. 
The results of experiment (iv) and the proposed method show 
that the proposed ABS-Net is more effective than the Bezier 
curve fitting approach. Similarly, the results of experiment (v) 
and the proposed method show that the combination of EAST 
+ Tesseract helps in improving the performance in terms of 
precision and F-measures. Finally, the results of experiment (vi) 
and the proposed method show that the average frame helps to 
improve text localization performance. Overall, it is noted from 
Table I that the key steps employed by the proposed method are 
effective in successfully addressing the challenges of text 
localization in 3D video. 

B. Experiments for 3D Text Localization in 3D Video  
Quantitative results from the proposed and existing methods are 
reported in Table II on the proposed new 3D video dataset. It is 
noted from Table II that the proposed method is the best in 
terms of Precision and F-measure compared to existing 
methods while the existing method in [10] is the best in terms 
of Recall compared to other methods, including the proposed 
method. When one compares the results of the three existing 
methods [8, 9, 10], the method in [8] is the best in terms of F-
measure and the method in [10] is best in terms of Recall. This 
shows that the existing methods do not produce consistent 
results for text localization in 3D video. The main reason for the 
poor results of the existing methods is that the methods are not 
able to adequately cope with the challenges of shadows and 
decorative characters in video. As a result, the existing methods 
are prone to generating more false positives and hence Precision 
is low for all those methods compared to Recall.  

Quantitative results from the proposed and existing 
methods for the benchmark video dataset (ICDAR2013) are 
reported in Table III. In this experiment, since the existing 
methods used individual frames for text localization, the 
proposed approach follows the same approach in calculating the 
evaluation measures for the purposes of comparative study. It 
is noted from Table III that the proposed method outperforms 
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the existing methods in terms of Recall, Precision, and F-
measure. The reason for the inferior results of the existing 
methods is that the features used in those methods are sensitive 
to background complexity. On the other hand, since the method 
proposed in this paper employs dominant point detection by 
GGVF, candidate point detection by Wavefront, and Deep 
learning with adaptive B-spline curve fitting, all of which are 
invariant to the effects of 3D, 2D and multi-font text in video, 
it achieves better results compared to the existing methods. In 
addition, the use of temporal information (effectively the 
averaging process) for enhancing the details in the image/frame 
also contributes to the better performance.  

To validate the above statement, the output of the GGVF 
and the Wavefront steps is fed separately into each of the three 
existing methods listed in Table II and Table III for text 
localization in video. Since the existing methods do not accept 
the dominant points given by GGVF or the candidate points 
given by the Wavefront step as input for text localization, the 
reconstructed text patches obtained by the connected 
component analysis step after the two respective steps are 
supplied to the existing methods to calculate the evaluation 
measures. It is observed from Table II and Table III that the 
results of all the existing methods improve when text patches 
are fed as input compared to existing methods applied directly 
on input images. However, this improvement is not sufficient 
to exceed the performance of the proposed method. One can 
therefore reasonably conclude that the GGVF and the 
Wavefront play a considerable role in improving the 
performance of text localization in 3D and 2D video or images.  

Table II.  Performance comparison of existing methods with the proposed 
method by considering original input images and the results of GGVF and 

Wavefront as input, using the proposed new dataset. 

Methods Original images GGVF as input Wavefront as input 
P R F P R F P R F 

PSENet [10] 62.6 77.7 69.3 62.81 78.18 69.65 64.71 78.15 70.80 
DB-Net [9] 59.9 67.6 63.5 60.61 66.32 63.34 63.32 67.26 65.23 
CRAFT [8] 65.6 77.0 70.8 66.46 77.51 71.56 66.10 77.94 71.53 
Proposed 

model  70.71 73.67 72.1 -- -- -- -- -- -- 

Table III. Performance of the proposed and existing methods on benchmark 
dataset of video (ICDAR2013) 

Methods Original images GGVF as input Wavefront as input 
P R F P R F P R F 

Wang et al. [38] 58.34 51.74 54.45 61.5 56.9 59.1 63.5 60.8 62.1 
Chen et al. [39] 81.45 60.23 69.25 80.7 63.3 70.9 81.1 64.3 71.7 

Proposed Method  81.10 64.60 71.90 - - - - - - 

C. Experiments for 2D Text Localization in Natural Scene 
Benchmark Datasets 
To demonstrate the effectiveness of the proposed method on 
text localization in 2D images, comparative experiments were 
conducted on four benchmark natural scene text datasets as 
discussed earlier. The results of the proposed and existing 
methods for the four datasets are reported in Table IV. It is 
observed from Table IV that the proposed method is the best in 
terms of Precision for all the four datasets compared to the 
existing methods. This indicates that the proposed approach is 
reliable in datasets of different complexities. When one 
examines the results of the proposed method, the method 
achieves almost consistent Precision for all the four datasets 
whereas the existing methods do not. This shows that the 

proposed method works well irrespective of the challenges 
represented in the different datasets. The reason for the inferior 
results of the existing methods is that the methods have their 
own inherent limitations. The Recall of the proposed method is 
low for all the four datasets compared to Precision. Besides, for 
the Total-Text dataset, the proposed method reports the lowest 
F-measure compared to the other datasets. The images of the 
Total-Text dataset are much more complex compared to other 
natural scene text datasets in terms of diversity. In this situation, 
the proposed GGVF and Wavefront steps may miss a minimal 
number of pixels that represent text information. Due to such a 
loss of pixels, the proposed method may miss text information 
and hence the recall can be low. This leads to lower F-measure 
for the Total-Text dataset. However, the precision achieved is 
the highest compared to existing methods for the Total-Text 
dataset. Overall, one can conclude that the proposed method is 
effective and useful.  

 
In particular, when the results of text localization in 3D 

video and 2D images are compared, the proposed method 
reports better for localizing text in 2D images compared to 3D 
images. This is expected as the complexity of 2D images is 
lower than 3D videos. Therefore, one can conclude that the 
proposed method has the ability to achieve better results for 2D 
natural scene text images, without temporal information. The 
same conclusion can be drawn from the qualitative results of 
the proposed and existing methods shown in Fig. 10, where it 
can be seen that the proposed method localizes text well for the 
sample images from both the proposed new 3D video dataset 
and the benchmark 2D video images. However, despite the 
existing methods localize text well for 2D video images, they 
do not perform well for 3D video images as shown in Fig. 10. 
Furthermore, the results from the proposed method on the four 
benchmark 2D natural scene datasets shown in Fig. 11 prove 
that the proposed method localizes text well. Thus, the proposed 
method is independent of multiple font text and can cope well 
with the challenges of different datasets. Moreover, according 

(c) Existing CRAFT Method 
Figure 10. Sample qualitative results of the proposed and existing methods 

for text localization in 3D and 2D video images.  

(b) Existing DB-Net Method 

(a) Proposed Method 
 

Our 3D video                    Our 3D video                         Our 2D video 
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to the experimental results, one can also confirm that the 
proposed combination of feature extraction and deep learning 
is better than the methods which use only deep learning. 
 

 
Table IV. Performances of the proposed and the existing methods on SCUT-

CTW1500, Total-Text, ICDAR 2019 ArT and DAST1500 datasets.  

Methods 
SCUT-

CTW1500 Total text ICDAR 2019 
Art 

DAST1500 

P R F P R F P R F P R F 
PSENet [10] 79.7 84.8 82.2 84.0 77.9 80.8 81.1 57.5 67.3 74.6 50.1 60.0 
DB-Net [9] 80.2 86.9 83.4 87.1 82.5 84.7 56.0 69.9 62.2 51.3 55.1 53.2 
CRAFT [8] 86.0 81.1 83.5 87.6 79.9 83.6 79.4 66.6 72.4 61.9 88.2 72.8 

Xue et al. [29] 56.0 51.0 53.0  67.0 43.0 52.3 --- -- --- --- --- -- 
Dai et al. [21] 85.7 85.1 85.4 84.6 78.6 81.5 --- --- ---- --- -- --- 
Liu et al. [20] 79.7 79.0 79.4 79.1 74.5 76.7 --- --- --- -- --- --- 

Proposed 
method 92.7 74.4 82.4 91.1 52.5 66.6 90.4 61.6 73.3 86.5 64.4 73.8 

 
Finally, it should be noted that sometimes, in superimposed 

text (when a piece of text is written over another piece of text) 
as shown in Fig. 12(a), the proposed system does not work well. 
In this case, the local information of the inner text is missed by 
the candidate point detection step. Similarly, when the color of 
the text is similar to the background, as shown in Fig. 12(b), the 
proposed system misses some points during the dominant point 
detection step and hence the subsequent steps fail to recover the 
missing text. Therefore, there is a scope for improvement in the 
future to handle such challenges. One possible way to address 
such challenges is to design a new unified architecture for 
robust dominant point detection and candidate point detection 
by exploring temporal information as well. 

V. CONCLUSION AND FUTURE WORK 
This paper has proposed a new approach for text localization in 

3D video. The proposed approach is the first to address the 
challenges of this complex application domain. It exploits the 
Generalized Gradient Vector Flow (GGVF), which defines 
opposite arrow direction symmetry for detecting dominant 
pixels irrespective of 2D and 3D text in images/frames. To 
improve the results of GGVF which uses only the gradient 
direction, the proposed method introduces a novel concept 
called Wavefront approach for eliminating false dominant 
points by considering the direction and speed of motion for text 
pixels. The candidate points are used to form text patches based 
on connected component analysis. Next, a deep learning model, 
integrating adaptive B-Spline curve fitting, has been proposed 
for the final text localization using very accurately fitting 
bounding boxes/polygons. Experimental results on a 3D video 
dataset and four benchmark 2D natural scene text datasets show 
that the proposed method outperforms existing methods. 
However, in special case such as superimposed text and text in 
similar colour to the background, as well as when the image is 
affected by blur and in too low a resolution, the performance of 
the proposed method degrades. Therefore, future work will 
focus on exploring temporal information in an effective way to 
overcome those limitations of the proposed approach. 
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