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ABSTRACT 

It is predicted that urban air mobility, including the use of small to medium sized unmanned 

aerial vehicle (UAV) delivery systems, will be introduced into cities across the globe within the 

next 15 years. It is known, however, that noise is one of the main limiting factors for the wider 

adoption of these vehicles. Neither the metrics nor the methods used for conventional aircraft 

seem to be optimal for this novel source of noise. This research will aid in developing suitable 

psychoacoustic methodologies and metrics, specifically designed to quantify the community 

noise impact of these vehicles. This paper describes a psychoacoustic experiment used to 

gather participant responses to UAV sound recordings, performing a variety of different op-

erations at differing distances. Results from this psychoacoustic experiment will be used to 

correlate perceptions of UAV noise with objective sound quality metrics, and build new re-

gression relationships that could describe the impact of a given UAV on a community, as well 

as give insight into the key sound quality metrics that contribute to the perceived annoyance. 

Future extension to the research may include assessing the impact of introducing drone noise 

to a variety of soundscapes, evaluating the differences in psychoacoustic responses when in-

troducing more accurate reproduction methods, such as virtual reality systems, and how these 

could be incorporated into a standardised human response measurement procedure.  

1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs), also known as drones, present an exciting new logistical 

and acoustical challenge that should be addressed to unlock substantial economic and societal bene-

fits [1]. The implementation of a completely new source of transport and logistics also brings into 

question the severity of noise exposure to the health of the public from these vehicles. The potential 

benefits of urban air mobility (UAM) and UAVs are profound, including travel time reduction for 

both the user of the UAV and ground-based vehicles due to reduced congestion, as well as a de-

crease in air pollution from fossil-fuel emissions [2]. It is known, however, that noise pollution is 

one of the most significant causes of adverse health problems, second to air quality. Factors that 

could affect a person’s health introduced by noise include annoyance, sleep disturbance, and hyper-

tension [3]. Without proper exploration into the noise emissions of these aerial vehicles, the adop-

tion of them as a new source of transportation and a logistical tool could be limited.  
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Previous research has tried to fill in the main gaps in the understanding of how drones will be 

perceived and exercised upon successful integration into our transportation and delivery infrastruc-

tures. When compared to conventional aircraft, such as fixed wing vehicles like cargo or passenger 

jets, drone noise can be seen to include significantly more high frequency and tonal noise radiation 

[4]. Furthermore, where conventional fixed wing aircraft observe a large amount of atmospheric ab-

sorption due to the typically long distance between the source and receiver, drone operations, such 

as delivery and transportation, are expected to be much closer to the public. This, combined with 

the already high-frequency characteristic of UAVs, will lead to an extremely high-pitched noise 

perceived during operations [5].  

As well as frequency content, multiple researchers have found that certain sound quality metrics 

(SQMs) are well correlated with the perceived annoyance of UAV noise. These SQMs were devel-

oped to quantify auditory sensations specifically experienced by the human ear [6], and include 

loudness, sharpness, tonality, roughness, fluctuation strength and impulsiveness. Loudness quanti-

fies the sensation of sound intensity perceived by the ear. Sharpness quantifies the ratio of high fre-

quency content perceived by the ear. Tonality quantifies the presence of tonal components per-

ceived by the ear. Roughness and fluctuation strength quantify the presence of slow and fast tem-

poral fluctuations perceived. Impulsiveness quantifies the presence of sudden changes in the sound 

level perceived by the ear. It has been shown that metrics such as sharpness, tonality and fluctuation 

strength are strongly correlated with the perceived annoyance of rotorcraft, and hence may be sig-

nificant indicators of the perceived annoyance to drone noise [7]. Research has also proven that the 

loudness, sharpness, and fluctuation strength were derived to be statistically significant variables in 

predicting the perceived annoyance of hovering drone noise [4]. Although there appears to be clear 

dispute over the prevalence of impulsiveness being a controlling factor in perceived annoyance to 

rotorcraft and helicopter noise [8], it may be deemed appropriate to assess the impact of impulsive-

ness on perceived annoyance for small to medium UAV.  

This paper presents the initial results of an ongoing research aiming to understand how commu-

nities will respond to the noise generated by drone operations. The research described in this paper 

will investigate the perceived annoyance, loudness and pitch of typical small and medium sized 

UAV noise emissions when operating at a variety of distances, and performing various operations.  

An analysis will be described that aims to understand the main factors that contribute to the per-

ceived annoyance of UAV noise, and build regression models that can give insight into the key 

SQMs that should be mitigated to improve the human perception of these new vehicles.  

2. METHODOLOGY 

The research methodology consists of 2 individual subjective tests, although only a detailed de-

scription and analysis will be discussed regarding the first subjective test, and details of the second 

subjective test will be released in a future publication. The first test aims to evaluate noise charac-

teristics of UAV sound files that correlate to human psychoacoustic responses of annoyance, loud-

ness and pitch. The second test will assess the perceived annoyance, loudness, drone dominance and 

soundscape pleasantness of the UAV sound files put into context of a variety of soundscapes repre-

senting typical urban and rural environments. These environments include busy city centres, road-

sides, parks and suburban areas. The efficiency of these environments to mask and reduce the per-

ceived annoyance and dominance of the UAV sound files will be assessed.  

2.1. UAV sound stimuli 

44 recorded UAV sound files were gathered which represented 8 individual UAV models of var-

ying weight, performing several operations at different distances such as flyovers, take-offs, land-

ings and hovering. These UAV sound files were presented to the participants in the first subjective 

test, and were edited to be 4 seconds long [9]. Table 1 gives details of each of the UAV sound files. 



 

Table 1: UAV stimuli included in subjective test 1. 

 

It has been found that when UAV are in flight, they constantly adjust for adverse weather condi-

tions, such as strong winds, by implementing micro-adjustments in the rotational speeds of the 

UAVs rotors in order to maintain the vehicles stability. These micro-adjustments cause rapid fluctu-

ations in the acoustic signature, and may negatively impact the perceived annoyance of the stimuli 

[10]. Therefore, it was decided to include UAV performing a variety of operations, to understand 

the main operating conditions that could be deemed the most annoying. Furthermore, a variety of 

operating distances were included, to assess the impact of audible distance and loudness on per-

ceived annoyance, loudness and pitch. Measurement data, including measurement distance and 

sound level, was provided with the UAV stimuli to calibrate the sound files to specific LAeq values. 

Sound UAV UAV Weight (kg) Operation Distance (m) Calibrated LAeq

1 DJI Inspire 2.85 Flyover 15 52

2 DJI Inspire 2.85 Flyover 7.5 58

3 DJI Inspire 2.85 Landing 7.5 64

4 DJI Inspire 2.85 Takeoff 2 70

5 Intel Falcon 1.2 Flyover 30 54

6 Intel Falcon 1.2 Flyover 60 47

7 DJI Matrice 600 9.1 Takeoff 3 71

8 DJI Matrice 600 9.1 Hover 40 65

9 DJI Matrice 600 9.1 Flyover 40 57

10 DJI Mavic 0.743 Flyover 15 51

11 DJI Mavic 0.743 Flyover 30 46

12 DJI Mavic 0.743 Flyover 60 37

13 DJI Mavic 0.743 Maneuvering 7.5 51

14 DJI Mavic 0.743 Maneuvering 7.5 53

15 DJI Mavic 0.743 Takeoff 7.5 59

16 DJI Phantom 3 1.216 Maneuvering 2 68

17 DJI Phantom 3 1.216 Takeoff 2 64

18 DJI Phantom 3 1.216 Landing 2 62

19 DJI Phantom 3 1.216 Hover 2 69

20 DJI Phantom 3 1.216 Ascending 2 64

21 DJI Phantom 3 1.216 Flyover 2 61

22 DJI Phantom 3 1.216 Flyover 2 63

23 DJI Phantom 3 1.216 Flyover 2 66

24 DJI Phantom 3 1.216 Flyover 5.4 56

25 DJI Phantom 3 1.216 Flyover 5.4 59

26 DJI Phantom 3 1.216 Flyover 5.4 57

27 DJI Phantom 3 1.216 Hover 2.2 62

28 DJI Phantom 3 1.216 Hover 5.1 56

29 DJI Phantom 3 1.216 Hover 2.2 67

30 DJI Phantom 3 1.216 Hover 3.6 67

31 DJI Matrice 200 4 Flyover 46 56

32 DJI Matrice 200 4 Flyover 46 45

33 DJI Matrice 200 4 Takeoff 30 50

34 DJI Matrice 200 4 Landing 30 52

35 DJI Matrice 200 4 Hover 1.2 56

36 Yuneec Typhoon 2 Flyover 46 48

37 Yuneec Typhoon 2 Flyover 46 44

38 Yuneec Typhoon 2 Takeoff 30 46

39 Yuneec Typhoon 2 Landing 30 52

40 Yuneec Typhoon 2 Hover 1.2 57

41 Gryphon GD28X 11.8 Takeoff 30 53

42 Gryphon GD28X 11.8 Landing 30 54

43 Gryphon GD28X 11.8 Maneuvering 30 57

44 Gryphon GD28X 11.8 Hover 1.2 60



This was to maintain the variance in loudness that is typically observed when varying operational 

distance. To calibrate the sounds, a calibration system was designed. This system is described in 

figure 1.  

First, the BSWA 308 meter was calibrated to a 94dB, 1kHz sine wave, and attached to the output 

of the Norsonic 336 microphone pre-amp. UAV stimuli 1 was played out of the laptop, through the 

AKG k501 and Dragonfly headphone pre-amp, and into the microphones located inside the ears of 

the HATS. The signal from the HATS microphones is then amplified by a set level and the BSWA 

308 meter measured the level. 

 
Figure 1: Calibration set up used for subjective test 1 UAV stimuli. 

An initial calibration factor is measured, which is the difference between the measured value by 

the BSWA 308, and the desired LAeq as provided with the UAV stimuli. This calibration factor was 

then saved, and used to adjust the levels of the other UAV stimuli via MATLAB. This system was 

initially designed to record all UAV stimuli through the AKG k501, as this would have been the 

setup used for the stimuli playback had the experiment been carried out within a laboratory environ-

ment, and would be necessary to include the frequency response of the headset when calculating 

SQMs. Due to the restrictions of the COVID-19 lockdown, the experiment was taken online, so 

SQM analysis was carried out using the calibrated raw files rather than the AKG k501 recorded 

files, as these were used in the online subjective testing methodology.  

2.2. Online subjective testing  

The Web Audio Evaluation Toolkit (WAET) [11] was used to build the testing interface for both 

subjective tests. The interface incorporates sliders that the participant uses to give their responses of 

annoyance, loudness, and pitch for the first test. It was decided to include loudness and pitch as re-

sponse values, as well as annoyance, to investigate the correlations between perceived annoyance 

audible distance, perceived loudness and calculated SQMs, as well as how the perceived distance of 

a UAV stimuli impacts the perceived annoyance. The online test took around 20 minutes to com-

plete, and included all UAV stimuli once. The participant listened to one UAV stimuli, as many 

times as they needed, by pressing on a slider. They then gave their response values of annoyance, 



loudness, and pitch. Once the participant was sufficiently satisfied with their responses, they then 

proceeded to the next sound. The order of the UAV stimuli was randomised for each participant. 

Prior to the test commencing, a safety precaution stage took place. Due to the online nature of 

the test, it was difficult to prepare for the vast number of different playback systems that may be 

employed for the test by the participant. Therefore, it was deemed appropriate to introduce safety 

stages to mitigate any potential risk to participant health. This was done by presenting the partici-

pant a practice page, similar in design to the main experiment pages, but with 5 UAV stimuli that 

vary across the whole LAeq range. The participants were then asked to adjust their system playback 

level so that the quietest sound was audible, but the loudest sound was not at an uncomfortable 

level. The participant was then asked that once they had appropriately adjusted their system play-

back level, that they do not adjust it for the remainder of the experiment. As well as this safety 

stage, participants were asked to input their participant ID, which was sent to them via email prior 

to the test, their age, and also asked to match the levels of a series of tones, in order to understand 

their frequency sensitivity. This information can be used to explain any anomalies that may occur in 

the response data (although that analysis is not included in this paper). Furthermore, a channel 

checking stage is included to ensure that stereo playback is being used. Participants were also given 

the option to add written comments on any of the UAV stimuli pages, if they so wished. A total of 

49 participants completed the test, with consent being given at the start of the test via tick boxes.  

2.3. Analysis 

The analysis is split into 3 key stages. Stage 1 will be an initial analysis of the response data 

gathered from the online subject testing and calculated SQMs. Simple regression correlations are 

assessed between the objective metrics and the subjective response values. Firstly, to calculate the 

values of loudness, sharpness, tonality, roughness, fluctuation strength and impulsiveness, the 

HEAD Acoustics ArtemiS SUITE 12.5 software was implemented to calculate the SQMs quickly 

and effectively against time for each UAV stimuli. Loudness was calculated following the DIN 

45631/A1 method [12]. Sharpness was calculated following the Aures model, as the UAV stimuli 

have an observably large variance in loudness [13]. Tonality was calculated following the Aures 

model [14]. Roughness, fluctuation strength and impulsiveness were calculated following the de-

rived models by Sottek [15] [16]. Then, 5th percentile values were calculated for each metric, omit-

ting the first 0.5 seconds of each metric calculation. The 5th percentile, or the value that is exceeded 

for 5% of the stimuli time interval, is commonly used in psychoacoustic analysis to mitigate the ef-

fect of noisy data, and omitting the first 0.5 seconds of each metric calculation removes any poten-

tial transient effects that could influence the SQM values [17]. Once these 5th percentile values were 

calculated, they were used in a linear regression analysis to observe any correlations between the 

SQMs and the response values of annoyance, loudness and pitch. This has been carried out in the 

IBM SPSS statistics software, allowing for efficient and precise models and methods to be utilised, 

and for creating regression result descriptors and plots. A simple linear regression analysis has been 

used to evaluate the statistical significance of the SQMs. The linear regression creates an equation 

which linearly correlates perceived annoyance to several predictor variables, and has a general 

equation which is described by equation 1: 

𝑌𝑖 = 𝛾0 + 𝛾1𝑋1𝑖 + ⋯ + 𝛾𝑛𝑋𝑛𝑖 + 𝑒𝑖 ሺ1ሻ 

Where 𝑌𝑖 is average perceived annoyance of sound 𝑖, 𝛾0 is the y-axis intercept of the model, 𝛾𝑛 is 

the correlation coefficient that pairs with 𝑋𝑛𝑖, the 𝑛-th SQM 5th percentile value of sound 𝑖, and 𝑒𝑖, 

the residual error. A backwards stepwise regression method was implemented in the model to 

choose the most statistically significant variables to include in the linear regression model. Back-

wards stepwise regression determines which variables to include in a model by first including all 

variables in the model, and then removing the metric that has the smallest reduction in R2 value, or 

the most statistically insignificant variable. This process is repeated until no variables can be re-

moved without a significant reduction in R2. 



The stage 2 of the analysis will be a simple, initial investigation into the effects of distance on 

the perceived annoyance, loudness and pitch for the UAV stimuli performing flyover operations. In 

total, 18 of the UAV stimuli were of flyover operations at distances varying from 2 metres to 60 

metres. The intrusiveness of UAVs will no doubt be a key factor in the acceptance of UAV as a via-

ble form of delivery, as well as other services. If the relationships between operation distance and 

perceived annoyance, loudness and pitch can be understood, then these relationships can be used to 

determine acceptable situations where UAV can operate effectively while also mitigating any po-

tentially negative effects of their presence as a sound source.  

Stage 3 consists of a multilevel linear regression analysis, to identify the significance of subject-

dependent responses of perceived annoyance. Multilevel linear regression has been used previously 

to investigate the factors contributing to annoyance for rotorcraft and small UAV, and has found to 

be a useful tool in discovering key variables [4] [7]. Multilevel linear regression is a method that 

integrates no pooling and complete pooling of data between subjects. No pooling would mean that a 

regression analysis for each subject’s response data would be built, meaning that a regression rela-

tionship would be described for each subject. Complete pooling suggests an aggregation of all re-

sponse data, so a regression analysis would build a correlation between the independent data and 

the response data for the whole subject group. This multilevel regression groups by subject, there-

fore assuming a partial pooling of the subject data and a normal distribution across subjects of re-

gression. It is first useful to determine whether a multilevel regression model is appropriate for un-

derstanding any grouping effects that may be causing variance in the response data. This is done by 

using a very simple, fixed intercept model with no predictor variables to understand the effect of 

clustered data on the dependent variable by assessing the interclass correlation coefficient (ICC), 

which is a ratio of the variance of the subject-dependent intercept estimates from the simple model, 

and the sum of this variance with the variance of the fixed intercept value estimated by the model. 

The model is described by equations 2 and 3: 

𝑌𝑖𝑗 =  𝛽0𝑗 + 𝑒𝑖𝑗 ሺ2ሻ 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗 ሺ3ሻ 

Where 𝑌𝑖𝑗 is the perceived annoyance of sound 𝑖 from participant 𝑗, 𝛽0𝑗 is the sum of 𝛾00, the 

overall mean intercept for all subjects, and 𝑢0𝑗, the subject-dependent intercept offset. 𝑒𝑖𝑗 is the re-

sidual error per subject. From this, estimates of the variance of subject-dependent intercept values 

and the estimate of variance of the fixed intercept value can be used to calculate the ICC. If the ICC 

calculation yields a statistically significant result, then it can be assumed that clustering effects in 

the model contribute to the value of the dependent variable, and a more detailed multilevel model 

should be introduced. The next stage is to introduce predictor variables into the mixed model. A 

multilevel regression model, with a variable intercept per participant but fixed slopes of SQMs, has 

a general equation which is described by equation 3 and 4: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛾10𝑋1𝑖 + ⋯ + 𝛾𝑛0𝑋𝑛𝑖 + 𝑒𝑖𝑗 ሺ4ሻ 

𝛾𝑛0, which does not vary per subject, is the regression coefficient of the 𝑛-th SQM 5th percentile 

value of sound 𝑖. Furthermore, introducing subject-dependent regression slope coefficients for each 

SQM can reveal more information about the variance between how participants perceive these met-

rics, but previous literature has found that introducing subject-dependent slopes for this style of 

SQM analysis yielded little improvement to model accuracy when compared to the increase in ac-

curacy introduced by including subject-dependent intercepts [7]. Therefore, a subject-dependent 

slope and intercept model was omitted from this analysis. Metrics will be removed from this model 

to investigate the reduction in 𝑅2 between the model’s predicted values of annoyance and the meas-

ured response values, to determine the significance of each metric as predictor variables.  

 



3. RESULTS 

3.1. Simple correlation analysis 

A simple correlation analysis looked at regression relationships between the calculated SQMs 

and the response data gathered during online subjective test 1. Firstly, the SQMs and dependent var-

iables (responses of annoyance, loudness and pitch) were regressed against each other to illustrate 

any obvious correlations between variables, and the correlation coefficients are presented in table 2. 

Some of the SQMs yield a strong correlation with the response values given by the test participants. 

For perceived annoyance, the most significant correlations are those with loudness (DIN45631), 

sharpness (Aures) and fluctuation strength, indicating that these SQMs may be good candidates for 

predicting perceived annoyance in a regression model. Furthermore, perceived annoyance also cor-

relates strongly with perceived loudness and pitch. This result would suggest that participants 

thought that not only the loudness but also frequency content relating to pitch to be significant fac-

tors influencing annoyance. Pitch correlated strongly with sharpness and tonality, as well as rough-

ness and impulsiveness, meaning these metrics may be useful in quantifying how frequency content 

can be manipulated to reduce perceived annoyance. Perceived loudness correlated strongly with the 

SQM loudness (DIN45631), indicating that it is an applicable metric to represent the perceived 

loudness of UAV stimuli. 

Table 2: Correlation coefficients between SQMs and response values. 

 

Using the SQMs, a simple linear regression model was built using a backward stepwise method 

of determining the most statistically significant metrics to be included, with the iterations of this 

method being displayed in table 3. The first model included all SQMs as predictor variables; loud-

ness, sharpness, tonality, roughness, fluctuation strength and impulsiveness. The second model had 

roughness removed as a predictor variable, due to it having a p-value of 0.624, meaning it offered a 

statistically insignificant contribution to predicting annoyance. The third model excluded tonality as 

a predictor variable, due to it having a p-value of 0.603, but the increase in adjusted R2 is only 0.002 

when this metric is removed. Thus, the final model contained loudness, sharpness, fluctuation 

strength and impulsiveness as predictor variables for perceived annoyance, all with p-values of less 

than 0.05. Loudness yielding the strongest significance, having the largest standardised regression 

coefficient of 0.472, and a p-value of almost 0. Sharpness, fluctuation strength and impulsiveness 

Loudness 

(DIN45631)

Sharpness 

(Aures)

Fluctuation 

strength

Tonality 

(Aures)

Roughness 

(Hearing 

model)

Impulsiveness Annoyance

Loudness 

(perceived 

response)

Pitch

Pearson 

Correlation
.899** .899** .401** 0.254 0.193 -0.160 1 .960** .614**

Sig. (2-tailed) 0.000 0.000 0.007 0.097 0.210 0.298 0.000 0.000

Pearson 

Correlation
.921** .871** .467** 0.150 0.290 -0.083 .960** 1 .438**

Sig. (2-tailed) 0.000 0.000 0.001 0.331 0.056 0.594 0.000 0.003

Pearson 

Correlation
.501** .549** -0.003 .477** -.337* -.368* .614** .438** 1

Sig. (2-tailed) 0.001 0.000 0.983 0.001 0.025 0.014 0.000 0.003

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Annoyance

Loudness 

(perceived 

response)

Pitch



had standardised coefficients of 0.433, 0.143 and -0.114, and p-values of 0.001, 0.014 and 0.039, 

respectively. 

Table 3: Accuracy of simple linear regression iterations using backwards stepwise selection. 

 

These values suggest that as you increase the loudness, sharpness, and fluctuation strength of a 

sound, the perceived annoyance of that sound decreases. Furthermore, as the impulsiveness of a 

sound increases, the perceived annoyance decreases. As previously stated, literature is inconclusive 

on whether impulsiveness should be deemed a controlling factor on perceived annoyance for larger 

rotorcraft vehicles, such as helicopters. In literature cases where it is deemed a significant indicator, 

the impulsiveness of a sound stimuli is accredited to the main rotor blade-vortex interaction (BVI), 

or “blade slap”, which is more prevalent with larger rotorcraft [8]. The scale and dimensions of the 

blades of UAV used to create the subjective test stimuli differ drastically to those of larger ro-

torcraft, and the impulsiveness of these stimuli may be deemed to be more acceptable because of 

this. This is a topic that needs further investigation.  

3.2. Perceived responses as functions of distance 

Values of average perceived annoyance, loudness and pitch for each UAV stimuli performing 

flyover operations were plotted against UAV measurement distance to illustrate the importance of 

correctly positioning UAV operations to mitigate adverse effects on the public. Figure 3 presents 

the plots of each response variable against distance. Perceived annoyance and perceived loudness 

have very strong logarithmic correlations with distance, having 𝑅2 values of 0.7408 and 0.8158, re-

spectively. There is still a logarithmic correlation between perceived pitch and distance, but the re-

sidual differences from the trendline are greater. This may be due to the high frequency content be-

ing less prominent in stimuli which are measured from further away, as air absorption comes into 

play. Since perceived pitch correlates significantly with sharpness, as the high frequency content, 

and consequently the sharpness of a UAV stimuli, then a decreased in perceived pitch is to be ex-

pected. These plots show that a person’s perceived annoyance towards a UAV will increase drasti-

cally as it comes into proximity to them. Furthermore, this is only considering the acoustical charac-

teristics of the UAV, and does not consider non-acoustic factors, such as feelings of danger when 

UAVs are operating very close to an individual. In future studies, it would be of benefit to introduce 

visual stimuli paired with UAV audio stimuli, to assess how the visual perceptibility of UAVs could 

affect perceived annoyance and loudness.  

R R Square
Adjusted R 

Square

Std. Error of 

the Estimate

1 .944a 0.891 0.873 0.06016655

2 .943b 0.890 0.876 0.05956483

3 .943c 0.889 0.878 0.05900900

Model

a. Predictors: (Constant), Impulsiveness, Sharpness (Aures), 

Fluctuation strength, Roughness (Hearing model), Tonality 

(Aures), Loudness (DIN45631)

b. Predictors: (Constant), Impulsiveness, Sharpness (Aures), 

Fluctuation strength, Tonality (Aures), Loudness (DIN45631)

c. Predictors: (Constant), Impulsiveness, Sharpness (Aures), 

Fluctuation strength, Loudness (DIN45631)



 

Figure 2: Plots of average perceived annoyance, loudness and pitch against distance for UAV stim-

uli performing flyover operations. 

3.3. Multilevel linear model analysis 

A simple fixed intercept model with no predictor variables is used to determine whether any var-

iance in the dependent variable, perceived annoyance, is controlled by grouping or clustering effects 

within the data. This follows the simple model described by equations 2 and 3. Table 4 shows the 

estimated fixed intercept for the simple model, which is the mean average of all responses of per-

ceived annoyance for each UAV stimuli. The residual variance, 𝜎𝑒𝑖𝑗
2 , and the variance of the sub-

ject-dependent intercepts, 𝜎𝑢0𝑗
2 , are then used to calculate the ICC, illustrated in equation 7: 

𝐼𝐶𝐶 =  
𝜎𝑢0𝑗

2

𝜎𝑢0𝑗
2 + 𝜎𝑒𝑖𝑗

2
ሺ7ሻ 

Using the values given in table 4, this gives an ICC of 0.185, meaning that only 18.5% of the 

variance in annoyance is explained by the participant, and other effects, like the sound quality of the 

UAV stimuli, are explaining the rest of the variance. This is to be expected, considering the multi-

tude of UAV stimuli that was included in the experiment, each with varying acoustic and non-



acoustic characteristics. This gives a strong case for using a more complex multilevel linear regres-

sion model. The next model built included a variable subject-dependent intercept, and all SQMs as 

predictor variables with fixed slopes.  

Table 4: Estimates of fixed and covariance parameters for fixed intercept model with no predictor 

variables. 

 

Table 5 explains the significance of each SQM within the variable intercept and fixed regression 

slope model. As seen in the previous linear regression model, loudness, sharpness and fluctuation 

strength are strong predictors for the perceived annoyance. Now the model uses subject-dependent 

intercept values, but fixed regression slope coefficients, tonality and roughness are deemed to be 

significant predictor variables for annoyance, but impulsiveness is not. Previously, when using 

fixed intercept and regression coefficient values, impulsiveness was deemed a statistically signifi-

cant predictor variable. This means that the relationship between impulsiveness and annoyance var-

ies between participant, and cannot be deemed an effective predictor from this data. Again, the ef-

fect of impulsiveness on perceived annoyance should be further investigated, using an experimental 

methodology where impulsiveness is specifically controlled for.    

Table 5: Estimates of fixed effects for multilevel model with subject-dependent intercepts and fixed 

regression slopes. 

 

To illustrate the effectiveness of these metrics in predicting perceived annoyance, each metric 

shall be removed from the model individually to assess the reduction in 𝑅2 between the predicted 

and observed values of annoyance. Figure 3 shows that, as expected from the results above, the big-

gest reduction in 𝑅2 between the predicted and observed annoyance values is due to the removal of 

loudness, followed by fluctuation strength, and then sharpness. Tonality, roughness, and impulsive-

ness caused a significantly smaller reduction in 𝑅2 value when removed from the model. This result 

strengthens the case for using loudness, sharpness, and fluctuation strength as predictors of annoy-

ance for the UAV stimuli tested.  

Lower 

Bound

Upper 

Bound

Fixed Intercept (γ00) 0.608795 0.016204 0.000 0.576214 0.641376

Residual (σeij
2) 0.051423 0.001584 0.000 0.048410 0.054624

Intercept (σu0j
2) 0.011698 0.002627 0.000 0.007533 0.018165

Sig.

95% Confidence 

Interval

Covariance 

parameters 

Estimate Std. Error

Lower Upper 

Intercept 0.074151 0.043616 1332.371 1.700 0.089 -0.011413 0.159715

Loudness 0.008036 0.000775 2101.000 10.373 0.000 0.006517 0.009556

Sharpness 0.109507 0.013534 2101.000 8.091 0.000 0.082967 0.136048

Fluctuationstrength 2.465645 0.283398 2101 8.700 0.000 1.909875 3.021414

Tonality -0.218453 0.088759 2101 -2.461 0.014 -0.392518 -0.044387

Roughness -0.447973 0.200772 2101 -2.231 0.026 -0.841706 -0.054240

Impulsiveness -0.169949 0.091062 2101.000 -1.866 0.062 -0.348529 0.008632

Parameter Estimate
Std. 

Error
df t Sig.

95% Confidence Interval



 

Figure 3: Reduction in R-squared value from SQM removal for subject-dependent intercept, fixed 

regression slope model 

4. CONCLUSIONS 

This research was an initial investigation into human response to UAV stimuli, including a mul-

tilevel linear regression analysis to illustrate grouped and subject-dependent trends between per-

ceived annoyance, loudness, and pitch, and calculated SQMs. First, a simple linear regression was 

undergone to discover the key SQMs which best correlate to the perceived response values. It was 

found that loudness, sharpness, and fluctuation strength correlated strongly with perceived annoy-

ance. Perceived loudness and pitch also correlated with perceived annoyance, indicating that if 

these variables could be controlled for, using methods such as increasing the distance between the 

UAV and the receiver, then negative responses to UAV operation may be reduced. It was found that 

the perceived annoyance, loudness, and pitch all had a logarithmic correlation with UAV distance, 

proving that distance is a key factor that should be taken into consideration when assessing the im-

pact of UAV annoyance, not only due to acoustic characteristics, but the implications for non-

acoustic characteristics as well. This could be investigated further using visual stimuli.  

A multilevel linear regression method was used to analyse the subject-dependent variance be-

tween responses of perceived annoyance and the calculated SQMs for the UAV stimuli. It was 

found that loudness, sharpness and fluctuation strength were statistically significant predictor varia-

bles for perceived annoyance. Impulsiveness was not deemed significant in any of the models, and 

may not be an appropriate metric for predicting perceived annoyance.  
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