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ABSTRACT
Propeller and rotor based propulsion systems are the predominant choice of power delivery system
in the upcoming Urban Air Mobility market. Fully electric air-taxis (car sized vehicles with Vertical
Take-off and Landing, VTOL, capabilities) concepts are using the benefits of the scalable properties
of electric motors to distribute propulsor units all over the airframe. The large variety of concepts
and configurations of these vehicles poses a serious issue in predicting noise generated on the
ground. The need for a high-level model to aid in acoustic decision making is evident. Through
the demonstrated methodology of computationally deriving Noise – Power – Distance curves for
conventional turbo fan aircraft, this paper delivers the capability of dealing with propeller propulsion
systems and the associated propeller tonal noise sources to generate the NPDs and therefore noise
exposure maps. The aims can be broken down into two objectives: a) demonstrate the capabilities
of the proposed propeller harmonics noise scaling laws to calculate noise variation from a baseline
scenario and b) incorporate the scaling components into the larger capability of producing noise
exposure contours, by the means of computationally deriving Noise-Power-Distance curves for
propeller power aircraft. Preliminary NPD curves for General Aviation sized propeller power
aircraft are generated and discussed.
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1. NOMENCLATURE

SYMBOLS

Ω 2π times the shaft rotation frequency

ΨV ,ΨD,ΨL normalised source transforms

θ radiation angle from propeller axis

B number of blades

BD = b/D, chord-to-diameter ratio

CD drag coefficient

CL lift coefficient

D propeller diameter

Jn Bessel function

kx, ky wave numbers

m harmonic of blade passing frequency

Mh =

√
M2

x + M2
t helical tip Mach number

Mr =

√
M2

x + z2M2
t section relative Mach number

Mt Ωrt/c0, tip rotational Mach number

Mx = V/c0, flight Mach number

n = mB = harmonic of shaft frequency

p pressure disturbance

Pn complex Fourier coefficient of p

r Distance from origin to observer

rt = D/2 propeller tip radius

tb ratio of maximum thickness to chord

V flight speed

y observer distance from propeller axis

z = r0/rt normalised radial coordinate

2. INTRODUCTION

The Urban Air Mobility (UAM) market [1] is quickly taking over a major part of research within
the aeronautic and aviation industry. While simultaneously investors and financial researchers are
evaluating the market growth could create a $1.5 trillion market by 2040 [2], with evidence lying in
the fact that major airlines placing orders of billions worth of electric vertical take-off and landing
(VTOL) aircraft.

Many designers are choosing propeller and rotor propulsion systems alongside fully or
hybrid electric energy storage and delivery systems. As an inevitable consequence the study of
propeller/rotor noise is regaining the interests of research organisations. The major noise generating
mechanisms are basically the same for all rotating blades, whether that be propellers or rotors. These
mechanisms can be further broken down into discrete frequency noise (thickness, loading, etc) and
broadband components with the relative importance of each depending on design and operating
conditions.

In a greater attempt to model the noise of these novel aircraft and their operations in the Institute
of Sound and Vibration (ISVR), this paper initiates the development of a framework able to carry
out high-level assessment of UAM vehicles early in the design process, when limited input data
is available. There is an obvious necessity for tools able to carry out multiple studies at low
computational cost to 1. enable the exploration of a large design space in terms of noise output
early in the decision-making process and 2. provide crucial information to manufacturers about the
acoustic impact their vehicle will have in the community of operation.

This paper focuses on the purely computational generation of Noise-Power-Distance (NPD) curves
of propeller/rotor powered aircraft. NPD curves could then be coupled with traditional airport noise
models such as the FAAs AEDT [3] and Eurocontrol’s tool IMPACT [4] or high level community
noise models such as RANE [5] to calculate noise maps (contours). The framework is based on the
knowledge of baseline noise levels of an appropriately chosen baseline aircraft. Then using individual
noise source prediction scaling laws for the dominant sources of sound, changes to the sound power



output, between the baseline and study aircraft are evaluated. Once the initial points of the LA,max

NPDs are calculated, the standard SAE AIR 1845 [6] computational procedure is used to extrapolate
to all other NPD distances. SEL NPDs are then also computationally generated by implementing
flyovers of a lumped source model comprised of said dominant sources. Finally, to demonstrate the
capability of the model, preliminary NPDs for two current propeller aircraft are generated; a single
reciprocating engine powered Cessna 172 and the twin engine turboprop de Havilland Canada DHC-6
Twin Otter.

3. REVIEW OF HANSON FREQUENCY DOMAIN MODEL FOR PROPELLER
HARMONIC NOISE

The development of scaling laws in many cases depends on experimental measurements and data
collected for specific sources and operations parameters. These are laws based on empirical or semi-
empirical models and have proved to be a reliable way of predicting the acoustic field for various
aeroacoustics sources; some of these include, fan noise [7], jet noise [8] and airframe noise [9] . In
this paper, a simplified version of the frequency domain method developed by Hanson is derived, with
the intention of understanding the underlying physics connecting the noise output and key parameters.

Figure 1: Geometry of rotating source and acoustic field.

As previously mentioned steady loading and thickness noise sources constitute the linear content
of the sound field that can be modelled by the linearised equations of motion for an inviscid fluid. The
Hanson model is a far-field frequency domain model for a single rotating propeller using a helicoidal
surface representation of the blades. Hanson’s formulation was chosen in this study as it accounts for
the linear thickness and loading sources and the nonlinear quadrupole sources (although emitted due
operation regime) including forward flight, and to this day represents a unifying theory of propeller
harmonic noise. Hanson published an extension to the method to account for unsteady-loading which
will be omitted for the analysis presented within this paper but will be considered in future work.

Hanson’s derivation starts at the Goldstein version of the acoustic analogy,

ρ′(x, t) = −
1
c2

0

∫ T

−T

∫
S (τ)

(
ρ0Vn

∂G
∂τ

+ fi
∂G
∂yi

)
dτ + −

1
c2

0

∫ T

−T

∫
ν(τ)

Ti j
∂2G
∂yi∂y j

dydτ (1)

An approximation from thin wing aerodynamic theory is used, permitting the surface boundary
conditions to be satisfied on a mean surface rather than on the blade upper and lower surfaces. Thus,
the source strengths Vn and fi are determined from actual blade geometry but their point of action is
on the mean helicoidal surface (To be further discussed in the asymptotic approximation Section 4).

For B blades, the mth harmonic of blade passing frequency is found by setting n = mB and
multiplying by Ω. Waveforms can be computed from the Fourier series. To study the effects of
blade design and operation parameters Hanson recast his solution into a form that explicitly displays



these variables. This form is duplicated here for the ease of the reader and is the starting point of the
asymptotic analysis and scaling model within this paper:


PVm
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PLm
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ρ0c2

0B sin β exp
[
imB

(
Ωr
c0
− π

2

)]
8π

(
y/D

)(
1 − Mx cos β

)
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1∫
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(
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xtbΨV(kx)
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with φs representing a phase lag due to blade sweep (neglected further on in this study as simple
blade geometry is assumed), while kx and ky being dimensionless wave numbers defined by,

kx =
2mBBDMt

Mr(1 − Mx cos θ)
(3)

ky =
2mBBD

zMr

(Mx − M2
r cos θ

1 − Mx cos θ

)
(4)

In this form, ΨV ,ΨD and ΨL represent the Fourier transforms of the three sources giving the
thickness and loading distributions of the blade,

ΨV(kx)

ΨD(kx)

ΨL(kx)

 =

1
2∫

− 1
2


H(x)

fD(x)

fL(x)

 exp (ikxx)dx (5)

Finally the contributions of the individual sources may be summed to get the Fourier transform
coefficient of the pressure at the mth harmonic of the blade passing frequency PmB, while the far-field
time domain pressure may be given Fourier transform itself.

4. SCALING OF PROPELLER HARMONIC NOISE

The use of analytical formulas for the derivation of scaling laws is advantageous as direct insight
to the influence of design geometry and operating conditions have on the fundamental and its
harmonics, may be accomplished without full scale experimental procedures. Literature suggests
that for propeller harmonic noise not single global scaling law exists (such as Lighthill’s eighth
power law for jet noise) and rather analytical time or frequency domain models may be used (with
the disadvantage a slight increase in time, computational power and inputs requirement) to get much
more accurate estimation of the sound power (total acoustic energy) emission [10].

Some of the main assumptions of the Hanson frequency domain model will be transcribed here, as
the applicability and limitation range of the approximations and scaling laws will directly correlate
to starting model. The problem is treated assuming propeller in flight with uniform flow. The source
terms used in the derivation are, the monopole (volume), dipole (loading) and quadrupole (Lighthill’s
stress tensor neglecting viscosity), however the quadrupole term is ignored as it becomes significant
at transonic blade section speeds [11] (general aviation applications generally consider a maximum
blade tip mach number of 0.8 or Mt < 0.8). The "thin-blade" approximation permits the mathematical
simplification of replacing the blade surfaces by their effect on the fluid, this results in errors only at
very high harmonic order, and out of the plane of rotation. Finally, Doppler factors in both amplitude



and frequency roles are contained with the model, although the relatively low cruise speeds of general
aviation vehicles in question are not strongly affected.

The Bessel function makes an appearance in all harmonic noise terms PVm, PDm and PLm, it largely
contributes to the spectral shape of the radiated noise and the overall level and is sometimes referred
to a "radiation-factor". The argument mBzMt sin β/(1 − Mx cos β) takes maximum values within the
plane off rotation, that is β = 90o, and is equal to mBzMt. For tip Mach numbers applicable to
general aviation vehicles the argument mBzMt remains approximately equal (or slightly smaller) to
the order mB of the Bessel functions where its value peaks. This behaviour may be approximated
using the small argument asymptotic formula. For the ease we introduce the variable α1 where α1 =

sin β/(1−Mx cos β), therefore the asymptotic approximation of the Bessel function in Equation 2 may
be given by,

JmB

(
mBMtα1

)
∼

1
(mB)!

(
mBMtα1

2

)mB

(6)

The source terms (the terms in braces of the integral in Equation 2) may be broken down into
term in two components: a Spectrum shape component and a spectrum level component. The Ψ

terms represent the effect of chordwise noncompactness, that is, interference at the observer location
of signals emitted from various source locations along the chord, contributing to the spectrum shape
definition. Chordwise blade geometry and loading is what determines these characteristics, therefore
we assume a simple parabolic thickness distribution and uniform lift and drag distribution. The
thickness, drag, and lift noise components are directly proportional to the thickness ratio tb, drag
coefficient CD, and lift coefficient CL, respectively. Combining the noncompactness effect relation
along with the proportionality we may estimate the source term transforms by,

ΨV(kx) ≈
1
k2

x
=

(
1 − Mx sin θ
2mBBDMt

)2

(7)

ΨD(kx) = ΨL(kx) ≈
1
kx

=

(
1 − Mx sin θ
2mBBDMt

)
(8)

Therefore the individual source contributions may be estimated as simple functions of the blade
thickness, tb and blade loading, CL and CD ,

k2
xtbΨV(kx) ≈ tb (9)

kx(CD/2)ΨD(kx) ≈ CD/2 (10)

kx(CL/2)ΨL(kx) ≈
CLky

2kx
≈

(Mx − M2
h cos θ)

Mt

CL

2
(11)

The dominating term within the integral in the radial direction is the square of the section relative
Mach number, M2

r . The section relative Mach number take maximum at the tip of the propeller, and
is equal to the helical Mach number Mh. We may estimate the value of the integral by assuming it is
directly proportional to M2

h , and for a static case proportional to M2
t , as can be seen,

M2
r ≈ M2

h = M2
x + M2

t (12)

This assumption implies that the thickness and loading sources are applied on the propeller tip
section. To correct the thickness and loading parameters to account for the entire blade we assume
the thickness ratio at the blade tip takes the average value over the blade, tb(z = 1) = t̄b, and the loading
coefficient follow accordingly, CD(z = 1) = C̄D and CL(z = 1) = C̄L (Note: the loading parameters



CD and CL may instead be defined in terms of thrust and torque, dT/dz and dQ/dz respectively, with
the integral over the radius giving the thrust and torque acting on the blade).

Combining of the above mentioned procedures and adding the contributions of the individual
sources together we may estimate PmB = PVm + PDm + PLm as,
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As we are interested in the sound power output as a function of design and operational parameter
we must first estimate the intensity which is proportional to p2

rms, therefore we have,

p2
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(14)

The asymptotic approximation allows for some simple observations to be made regarding the
influence of the tip Mach number. Assuming as previously, Mt < 1 the M2mB

t term in Equation
14 shows that at a given rotation rate propellers with larger blade number generate less sound and
furthermore the contribution of the higher harmonics rapidly decreases with increasing harmonic
order m while the tip rotation speed remains subsonic. This allows for a modelling technique used
by Heidmann for the estimation of fan discrete-tone and combination-tone noise [7], to be applied.
The procedure involves predicting the spectrum level and spectrum shape. The spectrum level is
defined at each design/operation point by the fundamental tone, while the levels of remaining spectral
frequencies are estimated by referencing the blade passing frequency and the spectral shape function.
However, unlike Heidmann the spectrum shape is not constant, rather a function of the blade number
and tip mach number.

The sin θ present within the Bessel function argument, and therefore in the approximation relation,
causes highly documented dipole behaviour of the propeller. The radiated noise diminishes towards
the propeller axis as approached from both front and rear directions. Additionally, the Doppler factor
1 − Mx cos β) causes a shift of that directivity pattern into the forward hemisphere with respect to the
propeller plane.

The overall sound power output of the system may therefore be evaluated through the average
intensity emitted over angles β and ϕ, which may be evaluated in the far field through the root-mean-
square,

W = 4πR2 Ī =
4πR2

ρ0c0

2π∫
0

π∫
0

p2
rmsR

2 sin β dβdϕ (15)



The calculation of Ī pressure depends on the integration over the spherical surface surrounding the
source. The integral over ϕ takes a trivial answer as rotational symmetry exists around the propeller
axis. When considering the evaluation of the integral over the polar angle β over in the interval
β ∈ (0, π) the solution is no longer trivial. The problem may be divided into two cases, a. a static
(or hovering) propeller, meaning Mx = 0 and b. the case where mean flow is non-zero, Mx , 0 and
assuming subsonic flight speeds (Mx < 1).

The evaluation for the two cases are omitted for terseness, and will included in future publications.
In addition the methodology following in Section 5 allows for calculation of the variation of
sound power emitted including directivity effects, therefore the overall sound energy quantification
bypassed.

5. NOISE VARIATION DUE TO CHANGES

To incorporate the effect of changing engine power settings, the derived equations are functions
of propeller and aircraft operational parameters (thrust setting, torque, rpm e.t.c.) that vary between
operational procedures.

It has been previously demonstrated that the use of changes in noise, or ∆PWL, as compared
to a baseline scenario gives more accurate prediction than attempting to evaluate absolute values
directly using the scaling laws. Coupled with the capability of using ∆PWL in order to generate
Noise-Power-Distance curves the use of the scaling formulation may be extended to computationally
evaluating modified rotor designs in an urban airport environment through the use of exposure metrics
and contours.

Figure 2: Diagram of typical flyover procedure for obtaining NPD data.

The basis of this methodology assumes that any noise level (PWL) of the subject ( modified )
aircraft is given in terms of the sum of a baseline aircraft noise level and the difference in noise level
between the two aircraft,

Considering a baseline aircraft, it consists of noise sources emitting overall sound power W0. As a
result of operational or technological changes, the acoustic noise sources on the aircraft may change
in number, magnitude and other acoustic properties, e.g. spectral content, therefore denoting n the
total number of noise sources after the modifications and s an individual noise source that changed by
acoustic power ∆Ws we may write,

W = W0 +

n∑
s=1

∆Ws (16)

noting that for noise sources that previously did not exist, ∆Ws = Ws and for sources that were
removed, ∆Ws = −Ws. Therefore in order to calculate the acoustic emission of the novel aircraft
design, knowledge on the acoustic output of the baseline aircraft is required, along with the individual
changes of the acoustic sources. As mentioned, Synodinos [12] demonstrated this methodology
for jet, fan and airframe noise sources on conventional turbofan aircraft, and applied it on novel



ducted fan configurations (considering the same acoustic sources [13]). Following we will extend
the methodology to incorporate the propeller harmonic noise sources though the use of scaling
expressions developed in the previous sections. The methodology includes an elegant way of
including the tonal spectral content of propeller noise when calculating the change in noise( ∆Noise)
between configurations. This is achieved through the use of a spectral shape function. In this paper, a
spectral shape function is explored through the use of the scaling expressions and therefore a product
of the starting Hanson model, however other functions may be used to define the spectral content
shape according to the application.

The remaining part of this section is dedicated to deriving the change in noise (or specifically
the change in SPL) emitted by a propeller aircraft, considering loading and thickness noise sources.
The propeller discrete tone noise (as it pertains to the mentioned sources) of any aircraft may be
expressed as the energy sum across all harmonics. The individual harmonic levels may be related to
the fundamental tone by some spectra shape function, allowing for the SPL to be written as,

Lp,0 = 10 log10

 ∞∑
m=1

10
[

L f1 ,0+F1

(
f

f1 ,0

)]
/10

 (17)

with f = mBΩ and f1 = BΩ represent the frequency of mode m and the fundamental tone respectively,
while L f1,0 is the SPL of the baseline fundamental. F1 denotes the spectra shape function.

When modifications in terms of operational and/or design parameters are made, changes to the
fundamental tone, ∆L f1 and the shape of the harmonics ∆F1 are observed, leaving the new SPL as,

Lp = 10 log10

 ∞∑
m=1

10
[

L f1 ,0+F1

(
f

f1 ,0

)
+∆L f1 +∆F1

(
f
f1

)]
/10

 (18)

where L f1 = L f1,0 + ∆L f1 represents the new level of the fundamental tone, and Lm( f ) = L f1 +

∆F1( f / f1) represents the new sound level of the harmonics (narrowband spectrum).
Returning to Equation 14, we may consider a case where modifications to a baseline aircraft are

made. The change in level of the fundamental frequency observed may be estimated by setting m = 1
in both cases and taking the difference between the two, leaving,

∆L f1 = 10 log10

 p2
f1

p2
f1,0

 (19)

or
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where the subscript 0 denotes the values corresponding to the condition before the modifications were
applied (baseline).

Separating all terms including the mode number m in Equation 14 we may define a function S .
This function determines the shape of the harmonics.

S (m) =

(
sin β

1 − Mx cos β

)4mB+2( 1
(mB)!

)2(mBMt

2

)2mB

(21)



Normalising this expression by its value for m = 1,

f
f1

(m) =
S (m)
S (1)

=

(
sin β
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)4B(m−1)( B!
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)2(BMt
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)2B(m−1)

m2mB (22)

noting that f
f1

(1) = 1 by definition. Finally the change in level of the harmonics (m > 1) between a
baseline case and a modified counterpart may be given by,
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6. NOISE-POWER-DISTANCE CURVE GENERATION

This section presents the methodology of computationally generating NPDs using the knowledge
of how propeller noise changes as a function of changes in the design and operational parameters.
The same approach to the derivation of computational NPDs can be seen in [12], where NPDs for fan,
jet and airframe noise sources were calculated. The work in this section is novel with regards to the
propeller noise sources, and aims on extending the methodology presented in said publications.

The steps in producing NPD curves for propeller powered aircraft from a baseline measured NPD
point and aircraft noise variation due to design or operational changes are almost identical to that
of conventional aircraft, although differences do occur in the treatment of the spectral content of the
sound levels, as changes to the discrete tonal content are also accounted for by the propeller scaling
model. For brevity reasons a detailed explanation is omitted but is intended for future publications.
For detailed explanation the reader is encouraged to follow the procedure described in [12] and [14]
along with the SAE AIR1845 [6] computational step.

7. PRELIMINARY NPDS FOR PROPELLER POWERED AIRCRAFT

In order to validate while at the same time demonstrating the capability of the scaling laws in
conjunction with the ∆PWL methodology, this section estimates both LA,max and SEL NPD curves of
two different propeller powered aircraft and compares to published data [15].

For each aircraft a baseline point is chosen (depicted with a red cross in Figures 3 and 4, this
point corresponds to a specific power setting j and slant distance d) on the LA,max curves, according
to the type of operation of interest. Using the single baseline value and the methodology described in
Sections 4, 5 and 6 predictions for the rest of the NPD slant distances and power setting are made. The
first validation case is the Cessna 172 (Maximum take-off weight (MTOW) 1,114 kg). The chosen
NPD point corresponds to that of slant distance equals 304.8 m (or 1,000 ft). Figure 3 show the
departure NPDs for the Cessna 172 at two specific power setting; 59.6% and 100% of maximum
static thrust (MST) respectively. The published data may be seen in dashed lines, while the predicted
in solid ones.

The second validation case demonstrates the capability of estimating NPD for slightly larger turbo-
prop (MTOW 5,682 kg, still within the "small" noise category of aircraft defined by the ICAO Annex
16 [16]) with a twin engine configuration. Figure 4 compares the published and predicted take-off

NPD curves (using same notation) at this time 30% and 100% of MST.
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Figure 3: Published and predicted departure NPDs for a single engine Cessna 172 Skyhawk.
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Figure 4: Published and predicted departure NPDs for twin engine de Havilland Canada DHC-6 (Twin
Otter)

8. CONCLUSIONS

The work presented within this paper summarises the methodology of computing NPD curves
for propeller/rotor power aircraft. A scaling law of the dependence of the fundamental tone of the
harmonic noise due to thickness and loading source is coupled with a spectral shape function to fully
define the discrete tonal content of a propeller source. Using a reference baseline, the change in
overall noise output due to changes in propeller parameters is calculated. This change in noise is then
used to computationally derive Noise-Power-Distance curves, which serve as the main input for noise
exposure map models.

The validation / case studies presented within this paper represent initial results that are tied to a
few significant simplification assumptions. Namely a) both types of NPD curves presented (LA,max

and SEL) are strongly dependant to the overall directivity of the aircraft. In this initial study the
assumption of a simple dipole source directivity was made. This assumption is closely related to the
next assumption discussed, that of a single dominant acoustic noise source. The aircraft is represented
by the assumed dominant propeller tonal noise. Propeller tonal noise due to loading and thickness
source as discussed by Hanson in [17], [18], [19] and others [20], [21]. Realistic directivity data
of propeller aircraft flyovers could potentially reduce the error in both types of NPD curves. b)
the propeller and specifically propeller tonal noise is assumed to be the dominant source. As of



this preliminary study this assumption results in the negligence of other possible aeroacoustic noise
sources (e.g. airframe noise, reciprocating engine noise, jet noise etc. ) that may be present. This
assumption may be justified for takeoff procedures as high thrust requirements lead to heavily loaded
propeller blades contributing to the discrete loading noise. However, approach procedures may suffer
from the opposite effect of low loading characteristics. Therefore future approach calculations will
consider addition model to account for airframe noise etc, as in [12]. In the case of the Cessna 172,
the reciprocating engine noise is assumed to be effectively masked by the propeller noise [22]. The
same hold for turboprop engine architectures as in the case of the DHC-6, where the combustion and
jet noise sources are considered negligible with respect to the propeller source [23]. Finally, c) the
final point of discussion brings two points into one. The frequency content of the predicted NPD
curves depends on two factors, 1. the baseline spectra and 2. the predicted changes to the spectra
by the scaling model. Baseline spectral data (specifically spectral shapes) for different operational
regimes are not readily available. The predictions within this paper are based on spectral shapes of
flyover measurements at the highest possible power setting (100 % MST). The predicted changes to
the spectra may also lead to errors as discrete-tonal noise of the propeller is only accounted for (e.g.
changes in high-frequency vortex broadband noise are not captured). As mentioned closely coupled
with the frequency content of the sound in the atmospheric attenuation. As the attenuation is related
to the propagation distance and the frequency of the sound, the large NPD slant distances tend to
amplify the error associated with the prediction of the spectra shape change.

Nevertheless, despite the sources of error discussed, the framework provided estimates with an
average error of ± 1.5 dB for the LA,max NPD curves and ± 2 dB for the SEL NPD curves, which is
within the tolerance suggested by the ECAC Doc 29 [14]. Finally, it worth noting that the framework
is by nature computational therefore eliminating errors associated with experimental measurements
of flyover procedures.

It may therefore be concluded that the framework has the potential to provide good NPD estimates
for propeller aircraft, as mentioned, when limited data is available at the early stages of design. Future
publications will aim at demonstrating the application of the framework on novel fully electric fixed
wing and rotorcraft designs and their and contemporary operations.
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