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ABSTRACT:   

The present study considers the mathematical modelling of unsteady non-Newtonian hydro-magnetic nano-

hemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular). 

The Ostwald-De Waele power-law fluid model is adopted to simulate the non-Newtonian characteristics of 

blood. Inspired by drug delivery applications for cardiovascular treatments, blood is considered doped with 

a homogenous suspension of biocompatible nanoparticles. The arterial vessel exhibits the permeability 

effect (lateral influx/efflux), and an external magnetic field is also applied in the radial direction to the flow.  

A combination of the Buongiorno and Tiwari-Das nanoscale models is adopted. The strongly nonlinear 

nature of the governing equations requires a robust numerical method, and therefore the finite difference 

technique is deployed to solve the resulting equations. Validation of solutions for the pure blood case 

(absence of nanoparticles) is included. Comprehensive solutions are presented for shear-thickening (n=1.5) 

and shear-thinning (n=0.5) blood flow for the effects of crucial nanoscale thermophysical, solutal 

parameters, and hydrodynamic parameters. Comparison of profiles (velocity, temperature, wall shear stress, 

and flow rate) is also made for composite and irregular stenosis. Colour visualization of streamline plots is 

included for pure blood and nano mediated blood both with and without applied magnetic field. The 

inclusion of nanoparticles (Cu/blood) within blood increases the axial velocity of blood. By applying 

external magnetic field in the radial direction, axial velocity is significantly damped whereas much less 

dramatic alterations are computed in blood temperature and concentration profiles. The simulations are 

relevant to the diffusion of nano-drugs in magnetic targeted treatment of stenosed arterial diseases. 

KEYWORDS: Stenosis; non-Newtonian fluid (power-law fluid), nanofluid drug delivery, permeability,  

Magnetic field, finite difference method.  
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NOMENCLATURE 

Roman 

1B              Pressure gradient parameter 

0B               Uniform magnetic field 

C              Nanoparticle concentration 

d               Distance of stenosis from origin 

Da           Darcy number (vessel wall permeability parameter) 

BD  Brownian diffusion coefficient 

TD  Diffusion coefficient 

TGr            Thermal Grashof number 

NGr            Nanoparticle Grashof number 

Le             Lewis number 

0l               Length of stenosis 

M             Magnetic parameter 

n              Power-law rheological index 

Nb            Brownian motion parameter 

Nt            Thermophoresis parameter 

Pr              Prandtl number 
p              Pressure 

Q               Flow rate 

r                 Radial co-ordinate 

R                  Radius of the artery (stenotic)  

Ro                   Radius of the artery (non-stenotic) 

Re                  Reynolds Number 

, ,rr rz zzS S S     Stress tensor components 

t                    Time 

T                   Temperature 

wT                     Wall temperature 

u                    Radial velocity 

Uo                  Reference velocity 

w                   Axial velocity 

We                Weissenberg number 

Bw  Slip Velocity 

z                              Axial co-ordinate 

 

 Greek  

                    Dimensionless temperature 

σ  Dimensionless concentration 

0                  Reference viscosity 

                    Density 

                     Dimensionless nanoparticle concentration 

pC                   Heat capacitance 

k                    Thermal conductivity 
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0                   Viscosity constant 

                    Depth of stenosis 

                    Thermal expansion coefficient 

                    Wall shear stress 

nf  Nanoparticle electrical conductivity 

1. INTRODUCTION:  

The study of stenotic hemodynamics in arteries is a critical area of interest owing to many 

significant applications in cardiovascular diseases such as atherosclerosis, aneurysms, angina, or 

heart attacks which are among the leading causes of deaths worldwide. Cardiovascular diseases 

often arise in coronary arteries and are associated with the deposition of fatty substances inside the 

arterial wall lumen. Several studies have been carried out theoretically and experimentally to 

understand the exact mechanisms of stenosis development and its influence on blood flow 

characteristics. Shareghi and Toghraie [1] addressed the computational hemodynamics in healthy 

human arteries by using the finite volume method. Mishra et al. [2] studied the flow characteristics 

through composite stenosis while considering the arterial wall permeability effect. Srivastava et 

al. [3] considered the catheterized blood vessel featuring a composite stenosis. Furthermore, many 

fundamental studies of Newtonian blood flows have established that resistance impedance 

increases on increasing catheter and stenosis severity. Abdullah et al. [4] conducted a study for 

electrically conducting blood flow through an irregular stenosis. They presented a solution for the 

dimensionless time-dependent nonlinear governing equations using a robust finite difference 

method. From literature, it is evident that blood possesses two different characteristics, Newtonian 

and non-Newtonian, depending upon the shear rate conditions. Studies show that the constitutive 

relation of non-Newtonian models is a more accurate methodology for representing the actual 

characteristics of blood. Among various non-Newtonian models, the Ostwald-DeWaele power-

law fluid model (and its modifications) is the most amenable approach for representing 

hemodynamic phenomena over different shear rates. Manica and Bortoli [5] conducted 

computational analysis for incompressible Newtonian and non-Newtonian blood flow through 

channels. In the present article, the power-law model is implemented to elucidate the shear-

thinning and shear-thickening behaviour in composite stenotic arterial blood flow. Yan et al. [6] 

presented a numerical study of non-Newtonian (Sisko model) blood flow through an artery having 

a cone-shaped stenosis, giving results for different stenosis angles and Sisko parameters. Zaman 
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et al. [7] analyzed the blood flow numerically through a tapered catheterized artery. They assumed 

blood to be a non-Newtonian micropolar fluid and the artery to feature a combination of an 

aneurysm and stenosis. Some of the other studies considering non-Newtonian blood flow models 

are Toghraie et al. [8], Yan et al. [9], Foong et al. [10], Karimipour et al. [11] etc.  

In recent decades, nanofluids have emerged as a significant development in biomedical 

engineering. Choi [12] proposed the term "nanofluid," which constitutes a suspension of different 

nanoparticles in a base fluid to elevate overall thermal characteristics [13-15]. The nanoparticles 

are usually oxides, carbides, or metals with high thermal conductivities. The base fluids include 

water, oil, plasma etc. Many nanoparticles are biocompatible and therefore offer almost limitless 

possibilities in 21st-century medical engineering. Among numerous nanotechnology applications, 

drug carriers allow researchers to make an effort at a molecular level to bring significant 

improvement in healthcare. Tripathi et al. [16] presented a detailed review of the recent blood flow 

advancements for nano-drug delivery systems. Vasu et al. [17] conducted a detailed finite element 

analysis of non-Newtonian blood flow in a stenosed coronary artery using FREEFEM++ software. 

Bashaga and Shaw [18] addressed a nanoparticle dispersion during nanodrug delivery in blood 

flow through a micro-vessel. A two-phase fluid model (non-Newtonian Herschel Bulkley model 

and Newtonian) is considered to define the blood characteristics. Similarly, other studies related 

to nanoparticle drug delivery are presented by Roy and Shaw [19], Maiti et al. [20], Shaw [21] and 

Tripathi et al. [22].   

An important feature of real arteries is the permeability of the blood vessel. This property permits 

the diffusion of oxygen and other key nutrients through the vessel into the streaming blood flow. 

Many computational investigations have been communicated in recent years for hemodynamic 

transport with the arterial wall permeability. Bali and Awasthi [23] presented a detailed study for 

hemodynamic flow through a composite artery with a porous wall also considering Newtonian 

blood flow characteristics. Likewise, further studies addressing the effects of permeability or 

various stenoses have been communicated by Singh et al. [24], Tripathi [25], and Eldesoky [26]. 

The presence of iron in the hemoglobin molecule (established by Nobel Laurate, L. Pauling at 

Caltech in the 1930s) and the frequent presence of ions in the blood render it electrically 

conducting. Applying a static or alternating magnetic field therefore produces 

magnetohydrodynamic behaviour in streaming blood. This property of blood can be exploited in 
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bio-magnetic therapy to treat arterial diseases like atherosclerosis [27]. In different cardiac 

operations, magnetic blood pumps etc, extra-corporeal magnetic fields can be deployed to control 

surgical circuits to invoke MHD behaviour to regulate the blood volumetric flow rate. Ali et al. 

[28] analyzed the transient hydromagnetic blood flow, heat, and mass transfer model with nano-

doping and the Buongiorno nanoscale model in a tapered stenotic artery. Haik et al. [29] noted that 

on applying the magnetic field of 10 Tesla intensity, a reduction of 30% in blood flow volume rate 

is achievable. A similar reduction has also been produced by Yadav et al. [30] but with a magnetic 

field of much smaller magnitude (0.002 Tesla) in the stenotic area. Nadeem et al. [31] studied 

magnetohydrodynamic blood flow in a stenosed artery, also noting that stronger transverse static 

magnetic field reduces the blood flow velocity in that area.  

With the motivation of these above-mentioned studies, in the current investigation, a novel 

mathematical model is developed for time-dependent nano-magnetohydrodynamic (Cu/blood) 

diseased arterial hemodynamics considering two different stenosis (composite and irregular). To 

represent the non-Newtonian characteristics of blood, the power-law fluid model is applied. An 

external static radial magnetic field is included, although magnetic induction effects are neglected 

(small magnetic Reynolds number approximation). In addition, the permeability of blood vessel 

and pulsatile pressure gradient effects are implemented to provide a more realistic representation 

of actual blood flows. Heat generation effects are also included in the energy balance. The 

Buongiorno nanoscale model takes into account the Brownian motion and thermophoresis effect 

in energy equation and found that absolute velocity of nanofluid which could be estimated as sum 

of base fluid velocity to relative velocity. On the other hand, the Tiwari-Das nanofluid model 

examined nanofluid behaviour by considering the solid volume fraction. Considering the all 

factors, a combination of the Buongiorno and Tiwari-Das nanoscale model is adopted allowing 

Brownian motion, thermophoresis, nano-particle diffusion and different nanoparticles to be 

studied simultaneously. The main novelty of this research is therefore the combination of 

nanoparticles (Cu) with applied external magnetic field, considering non-Newtonian 

characteristics of blood as a power-law fluid, vessel permeability and both nanoparticle species 

diffusion and nanoparticle types. These characteristics have to the authors’ knowledge not been 

considered simultaneously thus far in a single model in biomedical applications. The normalized 

(non-dimensional) non-linear conservation equations are solved by efficient finite difference 

method (FTCS). Further simulations and visualizations are produced in MATLAB software.  The 
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remainder of the article is divided into the following sections: Section 2 illustrates the arterial 

geometry of model (for composite and irregular stenosis) with associated geometric formulations. 

Section 3 explains the mathematical formulation based on the nanofluid model and elaborates on 

the partial differential conservation equations (mass, momentum, energy and nanoparticle species) 

and boundary conditions. In section 4, non-dimensionalization of the boundary value problem is 

performed, which permits the introduction of key scaling parameters i.e., Reynolds number, Lewis 

number, Brownian dynamics parameter, magnetic body force parameter etc. Section 5 provides a 

detailed explanation of FTCS numerical technique. Section 6 presents a comprehensive validation 

of problem. Section 7 contains all the results and physical discourse for the impact of selected 

parameters on velocity, temperature, nanoparticle concentration (volume fraction), wall shear 

stress, flow rate and resistance impedance profile. Lastly, in section 8, the principal findings of the 

study are summarized with some pathways suggested for future work in nano-hemodynamics. 

2. GEOMETRY OF THE MODEL:  

In this study, a bi-directional rheological blood flow model for transport in the human coronary 

artery is taken into account, wherein the blood (base fluid) is doped with nanoparticles i. e. 

nanomediated. Blood characteristics are simulated with Ostwald-DeWaele power-law fluid model. 

Unsteady, incompressible, laminar flow is considered through an axisymmetric (rigid cylindrical 

but porous walled) artery as a representation of a diseased segment featuring two different 

stenoses; one is a composite stenosis while the other is an irregular stenosis. Owing to the unsteady 

nature of the blood flow, pulsatile pressure gradient effects in streaming blood are considered. The 

mathematical equations representing both geometrical configurations of the stenosed artery [32] 

are formulated in a cylindrical coordinate system ( , , )r z  as: 

(i) Composite Stenosis: 

0

0

0

2 ( 2 ),

( , ) 1 cos2 2 ' 2
2 2

,

o

o
o o

R z d d z d l

l
R z t R z d d l z l

R otherwise






− −   + 
 

      
= − + − − +        

      
 
 

      (1) 

(ii) Irregular symmetric stenosis: 
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−   +  =         − −                 

 
 

      (2) 

Since the flow is taken as axisymmetric, hence the contribution of the azimuthal i. e. tangential 

(circumferential) ( )  direction is neglected.  In the above expressions, ( )R z  is the radius of 

stenotic artery, 
0R  denotes the radius of non-diseased artery,   denotes the height of stenosis, 0l  

is the total length of stenosis and d  is the distance of the stenosis segment from the origin (entry 

point to the hemodynamic flow regime). Figure 1(a) and (b) shows the geometry of the artery with 

both different stenosis. 

3. MATHEMATICAL BIO-RHEOLOGICAL NANO-HEMODYNAMIC TRANSPORT 

MODEL:  

Considering that the blood flowing through the artery is unsteady and bi-directional, the velocity, 

temperature and nano-particle concentration fields can be presented as: 

[ ( , , ),0, ( , , )]V u r z t w r z t=  

 

( , , )C C r z t=              (3) 

In equation (3), the radial and the axial velocity components are denoted by u  and w  respectively. 

Therefore, the conservation equations for mass, momentum, energy and nanoparticle concentration 

(volume fraction) for the nano-mediated stenotic blood flow can be expressed as follows [33]: 

0
u u w

r r z

 
+ + =

 
                        (4) 

( ) ( )

( ) ( ) ( ) ( ) 2

1 1 0

1 rz zz

nf nf

nfnf nf

w w w p
u w rS S

t r z z r r z

g T T g C C B w

 

  

        
+ + = − + + +           

− + − −

     (5) 

( , , )T T r z t=
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( ) ( )
1 rr rz

nf nf

u u u p
u w rS S

t r z r r r z
 

        
+ + = − + +           

                     (6) 

2 2

2 2

2 2

1

1
( )

( )

( ) ( )

P nf nf

P S T
B

P f w

T T T T T T
C u w k

t r z r r r z

C C T C T D T T
D

C r r z z T T r z







       
+ + = + + +          

            
+ + +            −          

    

            (7)  

  

  

 (8) 

    (8) 

In equation (5), the last term i. e. the Lorentzian drag force term is due to the applied magnetic 

field in electrically conducting blood flow. Ohm’s law explains the relationship between electrical 

and magnetic fields, and for low Reynolds numbers, can be written as [49]: 

                                                        
2

0' nfJ B B V = −      (9) 

The physical parameters that emerge in the above set of equations are defined as follows: nf  is 

the density, nf is the viscosity, nf is the thermal expansion coefficient, nf is electrical 

conductivity, nfk is thermal conductivity and ( )p nfC is the specific heat at constant pressure for 

nanofluid model, BD  shows the Brownian diffusion coefficient, 
1T  is reference temperature, wT  

is arterial wall temperature and TD  is the diffusion coefficient. 
0B  presents the uniform magnetic 

field. The Cauchy stress tensor for a power law fluid is given by [49]: 

                                                            
1

1

nT pI A −= − +  ,     (10) 

Here p represents the pressure, I  is the identity tensor, n is the rheological power-law index (n< 

1 for pseudoplastic blood, n = 1 for Newtonian blood and n > 1 for dilatant blood), 1A is the first 

Rivilin- Ericksen tensor, where [49] 

                                                    1

T

A L L= + ,     (11) 

2 2 2 2

2 2 2 2

1

1 1

( )

T
B

w

C C C C C C D T T T
u w D

t r z r r r z T T r r r z

            
+ + = + + + + +          −        
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                                                        L u=  ,        (12) 

And                                        
2

1

1
( )

2
trace A =      (13) 

 Extra stress tensor components ( ), ,rr zz rzS S S  in the power-law fluid model [34] take the following 

form: 

2zz w
S m

z

 
= −  

 
     (14) 

2rr u
S m

r

 
= −  

 
     (15) 

rz w u
S m

r z

  
= − + 

  
     (16) 

Where    

( 1)
1

2 2 2 2 2

2 2 2

n

u u w u w
m

r r z z r

− 
            

= + + + +         
             

 

    (17) 

4. NON-DIMENSIONALIZATION OF NANO-HEMODYNAMIC TRANSPORT MODEL:   

The mathematical model defined by Equations (4-8) can be made dimensionless with the help of 

the following set of scaling parameters [33]:   

0

r
r

R
= ,  

0

w
w

U
= ,    0

0

U t
t

R
= ,  
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p

U l 
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1B
b

f

D C
N

k


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( )

( )

p S

p f

C

C





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0

0

zz
zz
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l
S S

U 
= ,   

0

0

rr
rr

f

l
S S

U 
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0

0
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f

R
S S

U 
= ,   1

1w

T T

T T


−
=

−
 

2

0 1

0

f

N

f

gR C
Gr

U

 


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2

0 1

0

( )f w

T

f

gR T T
Gr

U

 



−
= ,   1

1

C C

C


−
= ,    

0 0
Re

f

f

U R


= ,     e

f

f B

L
D




= ,   

0 0

f

f

M B R



= ,   

( )
Pr

p f f

f

C

k


= ,   

T
t

f

D
N

k


=      (18) 

Here r presents the dimensionless radial coordinate, w  is the dimensionless axial velocity, R is 

dimensionless radius, z  is dimensionless axial coordinate, v  is dimensionless radial velocity 
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component, t is dimensionless time, p is dimensionless pressure,   is dimensionless blood 

temperature,   is the dimensionless concentration profile. oU  appears as a reference velocity of 

blood flow and wT is wall temperature. f is blood viscosity, 
rr

S , 
rz

S , 
zz

S are the dimensionless 

extra shear stress components. In addition to this, Pr is the Prandtl number, Re is the Reynolds 

number, NGr  is the Grashof number, TGr  is the thermal Grashof number, Le is the Lewis number, 

Nb  is Brownian motion parameter, Nt  is the thermophoresis parameter and M  is the magnetic 

interaction (Hartmann number) parameter. In the above-defined variables, the non-dimensional 

geometric parameters are stenosis height parameter ( )*

0R =  and vessel aspect ratio

0( )oR l = . Introducing the above-defined variables given in Eqn. (18) and after dropping the 

bars, equations (4)-(8) will take the form:  

  0
u u w

r r z


  
+ + =   

                                                                     (19)         

( ) 2

2

1
Re ( ) ( ) ( )

( ) ( )

( ) ( )

nf rz zz

nf

f

nf nf nf

T N

f f f

w w w p
u w rS S

t r z z r r z

Gr Gr M w


   



  
 

  

            
+ + = − + +                   

 
+ + −  

 
 

                (20)

( )
3

20 0

2

0

1
( ) ( ) ( )rr rz

nf nf

f

U R u u u p
u w rS S

l t r z r r r z


    



            
+ + = − + +                   

                (21)  
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2

2 2

2 2

2 2

( ) 1
RePr ( ) ( )

( )

p nf nf

p f f

b t

C k
u w

C t r z k r r r z

N N
r r z z r z

      
  



     
 

           
+ + = + +                    

                 
+ + + +           

                  

 

       (22) 

2 2 2 2
2 2

2 2 2 2

1 1
Re ( ) ( ) t

b

N
Le u w

t r z r r r z N r r r z

        
   

            
+ + = + + + + +                 

    (23) 
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Consequently, dimensionless quantities for shear stress of non-Newtonian power-law fluid model 

are described as: 

2zz

f

m w
S

z

 
= −  

 
,        2rr

f

u
S m

r





   
= −       

,         

21rz

f f

w u
S m

r z



 

      
= − +             

        (24) 

( 1)
1

2 22 2 22 2 2 2 2 *

0 0 0 0 0

2 2 2 2

0 0 0 0 0

2 2 2

n

U u U u U w U u U w
m

l r l r l z l z R r

  

− 
                          = + + + +                                              

  

 

     (25) 

With regard to the ensuing analysis, two different hypotheses have been taken into account; 𝛿 ≪

1and (1)O =  i. e. stenosis height parameter is greatly less than one, and the vessel aspect ratio is 

of comparable magnitude to unity. After imposing these suppositions, Eqns. (19)-(23) will be 

reduced to: 

0
w

z


=


     (26) 

0
p

r

 
− = 

 
      (27) 

( ) 2
( ) ( )1

Re
( ) ( )

nf nf nf nfrz

nf T N

f f f f

w p
rS Gr Gr M w

t z r r

   
  

   

          
= − + + + −                    

       (28) 

22

2

( ) 1
RePr

( )

p nf nf

b t

p f f

C k
N N

C t k r r r r r r

      



                   
= + + +                                    

                       (29) 

        (30) 

    

Similarly, applying the two hypotheses, the constant m and shear stress component, Srz of non-

Newtonian fluid are further defined as:

2 2

2 2

1 1
Re t

b

N
Le

t r r r N r r r

            
= + + +             
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( )

( 1)( 1) 11
22 2 2 222 2 2

20 0 0

2 2 2

0 0 0

( 1)
1

2 2
2 2

2 2

( )

nn

n

U w U w U w w
m

l z R r R r z

w w
We We

r r



−−

−

  
                       

= + = + =                   
                          

   

 
    

= =   
     

 

( 1)
2 2

n−

  
 
  

( 1)
2 2

21
( )

n

rz

f

w w
S We

r r

−

     
= −    

    

                         (32) 

In equation (32),  ( )0 0We U R=  is the Weissenberg number which characterizes the relative effect 

of elastic force to viscous force in the non-Newtonian nano-doped blood. Further, inserting rzS

i.e. Eqn. (32) in Eqn. (28) the latter (momentum conservation) emerges as:

( 1)
2 2

2

2

( )1
Re ( )

( )

( )

( )

n

nf nf nf

T

f f f

nf nf

N

f f

w p w w
r We Gr

t z r r r r

Gr M w

  


  

 


 

−   
                  = − − + +                                      

 
−  
 
 

        (33) 

Additionally, the non-dimensional form for the geometric relations represented by Eqns. (1) and 

(2) is given as: 

(i) Composite Stenosis- 

1 2 ( 2 ), 1

1
( ) 1 1 cos2 2 ' 1 2

2 2

1,

z d d z d

R z z d d z

otherwise






− −   + 
 

      
= − + − − +        

      
 
 

         (34) 

(ii) Irregular Stenosis- 

1
cos 2

2 4
1 2 , 1

( , ) 7 1
cos 32 2

100 2

1,

z d

d z d
R z t

z d

otherwise







   −  
− −    

    
−   +  =          − −                 

 
 

         (35) 

(31) 
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The equations for the thermophysical properties of nanofluid (i.e. blood doped with nanoparticles) 

are defined following [35]: 

5 2(1 )

f

nf





=

−
,           (1 )nf f s   = − +  

( ) (1 )( ) ( ) , ( ) (1 )( ) ( )p nf p f p s nf f sC C C         = − + = − +  

2 2 ( )

2 ( )

nf s f f s

f s f f s

     

     

+ − −
=

+ + −
,            

2 2 ( )

2 ( )

nf s f f s

f s f f s

k k k k k

k k k k k





+ − −
=

+ + −
         (36) 

In the above-mentioned equations, f is the viscosity of the base fluid, f as density, ( )p fC is 

heat capacitance, f is thermal expansion coefficient, f  is electrical conductivity and fk is the 

thermal conductivity of the base fluid. For two different nanoparticles (i.e. hybrid nanofluids), 

1 2( , )  stands for the volume fraction, 
1 2

( , )S S   is the density of solid particles, 

1 2
[( ) ,( ) ]p S p SC C   is the heat capacitance, 

1 2
[ , ]S S  is a thermal expansion coefficient, 

1 2
[ , ]S S 

is electrical conductivity, and 
1 2

[ , ]S Sk k is thermal conductivity of solid nanoparticles,  respectively. 

Introducing the nanofluid properties in Eqns. (33), (29) and (30), the emerging conservation 

equations take the form: 

( ) ( )

( )

( )

( )

( )

( 1)
2 2

2

5 2

1 1
1 Re

(1 )

(1 ) (1 )

n

s

f

s s
T

f f

w p w w
r We

t z r r r r

Gr Gr


 

 

 
    

 

−   
                    − + = − − +                  −                        

      
      − + + − +

            

2
2 2 ( )

2 ( )

s f f s

N

s f f s

M w
    


    

 + − −
−  
 + + − 

    (37) 

( )
( )

2

2

2

2 2 ( ) 1
(1 ) RePr

2 ( )

p s f f ss

s f f sp f

b t

C k k k k

t k k k k r r rC

N N
r r r

   
 



  

    + − −       − + = + +          + + −        

         
+       

          

       (38) 

2 2

2 2

1 1
Re t

b

N
Le

t r r r N r r r

            
= + + +             

           (39) 
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Subsequently, with the help of Burton [36], the axial pressure gradient can be represented as: 

1 cos(2 )o p

p
A A w t

z



− = +


,  0t            (40) 

Here 
0A is the mean pressure gradient and 1A designates the amplitude of the pulsatile component, 

which is subjected to diastolic and systolic pressures. By using non-dimensional parameters, the 

normalized form of Eqn. (40) becomes: 

1 1[1 cos( )]
p

B e c t
z


− = +


          (41) 

Where 
2

01 0
1 1

2
, ,

po

o f o o

R wA A R
e B c

A U U




= = =           (42) 

Invoking Eqn. (41) into the given axial momentum equation, Eq. (37) then becomes: 

( )   ( )

( )

( )

( )

( )

( 1)
2 2

2

1 1 5 2

1 1
1 Re 1 cos( )

(1 )

(1 ) (1 )

n

s

f

s s
T

f f

w w w
B e c t r We

t r r r r

Gr


 

 

 
    

 

−   
                 − + = + − +                −                      

      
      − + + − +

            

2
2 2 ( )

2 ( )

s f f s

N

s f f s

Gr M w
    


    

 + − −
−  
 + + − 

   (43) 

Further, Eqns. (43), (38) and (39) are subject to the following boundary and initial conditions: 

( , ) , ( , ) 0, ( , ) 0Br R r R r R
w r t w r t r t 

= = =
= = =            (44) 

0 0 0
( , ) 0, ( , ) 0, ( , ) 0

r r r
w r t r t r t 

= = =
= = =            (45) 

( ,0) 0, ( ,0) 0, ( ,0) 0w r r r = = =            (46) 

B porous

w
w w

r Da


 = − 

           (47) 

In the boundary equation (46), Da presents the Darcy number (a dimensionless permeability 

parameter characterizing the porous nature of the vessel wall),   is defined as dimensionless slip 

parameter, Bw  is the slip velocity and porousw  as the velocity of permeable boundary [50]. 

According to Darcy’s law, porousw  is given by:  porous

dP
w Da

dz

 
= −  

 
        (48) 
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The hemodynamic quantities of interest are volumetric flow rate, wall shear stress (WSS) and 

resistance impedance which may be formulated as: 

1

0

2 ,

R

Q wrdr=             (49) 

,S

r R

w

r


=

 
= − 

 
           (50) 

.

p
L

z

Q


 
 
 =               (51) 

For restraining the geometric effects, the radial coordinate transformation 
( )

r
x

R z
=  is employed 

in the above governing equations. Hence Eqns. (43), (38), (39) and (44)-(47) are contracted to the 

following form: 

( )  

( )

( )

( )

( )

( 1)
2 2 2

1 1 5 2

1 1
1 Re 1 cos( )

(1 )

(1 ) (1 )

n

s

f

s s
T

f f

w We w w
B e c t x

t x x R x x

Gr


 

 

 
    

 

−   
                   − + = + − +                  −                        

     
    − + + − +

        

2
2 2 ( )

2 ( )

s f f s

N

s f f s

Gr M w
    


    

  + − −
  −  

 + + −    

 

     (52) 

( )
( )

2

2 2

2

2 2

2 2 ( ) 1 1
(1 ) RePr

2 ( )

1 1

p s f f ss

s f f sp f

b t

C k k k k

t k k k k R x x xC

N N
R x x R x

   
 



  

    + − −         − + = + +           + + −          

             
+           

              

 (53) 

2 2

2 2 2 2

1 1 1 1
Re t

b

N
Le

t R x x x N R x x x
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     (54) 

Furthermore, the associated dimensionless boundary and initial conditions are written as: 

1 1 1
( , ) , ( , ) 0, ( , ) 0Bx x x

w x t w x t x t 
= = =
= = =      (55) 
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0 0 0
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( ,0) 0, ( ,0) 0, ( ,0) 0w x x x = = =      (58) 

Similarly, the volumetric flow rate, wall shear stress (WSS) and resistance impedance respectively 

[Equations (49)-(51)] take the following form: 
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Replacing the pressure gradient term in Eqn. (61), it can be written as follows: 

 1
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L B e t

R wxdx






+
=

 
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 


         (62) 

5. NUMERICAL SOLUTION:  

To obtain the exact solution of the nonlinear partial differential equations (PDEs) describing the 

nano-hemodynamic stenotic magnetohydrodynamic flow regime is difficult, if not impossible. 

Hence it is necessary to use numerical methods for solving Eqns. (52) - (54) under the prescribed 

boundary and initial conditions (55)-(58). A suitable numerical technique in this regard, based on 

the discretization of PDEs is the explicit finite-difference FTCS (forward in time (FT) and central 

in space (CS) technique), which is described in Hoffmann’s book [37]. Furthermore, FTCS has 

been verified extensively by many researchers in diverse fluid mechanical studies [38, 39] and 

confirmed to be very stable, rapidly convergent and easy to program. In this scheme, firstly the 

spatial domain is discretized and after that, the value of velocity component is calculated at each 
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node ix and over the time instant kt , which is written as k

iw . According to Hoffmann [37] the central 

differencing formulation is of second order and the forward differencing formulation is of first 

order. The relevant partial derivatives are defined as: 

1 1

2

k k

i i
x

w w w
w

x x

+ − −
 =

 
,                  (63) 

( )

2

1 1
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2k k k

i i i
xx

w w w w
w

x x

+ − − +
 =

 
,                  (64) 

and 
1k k

i i
t

w w w
w

t t

+ −
 =

 
        (65) 

Incorporating the difference equations for the partial derivatives, Eqns. (52)-(54) will readily be 

reduced to the following form given below: 
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Further, the associated boundary and initial conditions Eqns. (52)-(55) are represented by: 

1 1 1 0i i iw  = = =           at 0t =                     (69) 

1 0kw = ,   1 0k = ,   1 0k =        at 0x =           (70) 
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          (72) 

In this numerical scheme, the spatial variable is discretized into N+1 grid-points where the step 

size is taken as 1
1

x
N

 =
+

. The time instant is defined by
kt , where the value of 

kt is given as 

( 1)kt k t= −  , in which t denotes a small increment in time. The velocity component is further 

calculated at each node and for every time instant. As stability of this numerical scheme is 

dependent on step size and time increment, hence 0.025x =  and 0.0001t =  are prescribed in 

the numerical code to fulfill the stability condition. These values confirm the stability and 

convergence of this scheme as documented in Hoffmann’s book [37]. The FTCS code has been 

extensively validated and implemented in numerous previous simulations including solar energy 

radiative heat transfer flows [40], periodic hydromagnetic flows in geophysics [41], viscoelastic 

blood flow with body acceleration [42], peristaltic gastro-intestinal pumping [43], thermosolutal 

cross fluid blood flow in tapered arteries [44] and non-Newtonian coating hydromechanics [45]. 

Confidence is therefore justifiably high in the FTCS scheme which is ideal for multi-physical 

blood flow simulations in complex geometries, as considered in the present work.  

6. VALIDATION:  

To validate the FTCS numerical method which has been chosen to solve the current problem, the 

numerical results obtained by Ijaz and Nadeem [46] (computed by using the same FTCS method) 

for the axial velocity profile of blood flow are compared with present results when the stenosis 

height (δ = 0.01) and different volume fractions (ϕ = 0.00, 0.02) over various radial coordinate 

values, r are given in Table 2. From the table, evidently very good correlation between the present 

FTCS code and the computations in [46] is achieved at all values of radial coordinate. Confidence 

is therefore established in the FTCS algorithm.  

 

7. RESULTS AND DISCUSSION: 

In this section, the hemodynamic characteristics of a stenosed artery in the presence of copper 

nanoparticles under radial magnetic field are discussed. With reference to emerging parameters, 
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the results for axial velocity, temperature, concentration profiles, wall shear stress, volumetric flow 

rate and resistance impedance are illustrated in graphical form. For computations with the FTCS 

code, the default values of various parameters which are used are documented in Table 3. These 

values are consistent with actual clinical scenarios and have been extracted from a number of 

previous studies [32-46]. 

Figure 2(a)-(b) exhibits the impact of nanoparticle concentration on axial blood velocity 

component for shear-thickening (n>1) and shear-thinning (n<1) fluids respectively. From both the 

figures, it can be seen that with increasing nanoparticle concentration, the velocity profile is 

elevated i. e. the axial blood flow is accelerated. It is also evident that the attained velocity 

magnitude is higher for shear-thickening fluid in comparison to shear-thinning fluid. Also, results 

are drawn for both (composite and irregular) stenosis and it is evident that velocity is 

comparatively less for an irregular stenosis than a composite stenosis. The addition of nanoparticle 

in blood is extremely favorable therefore for arterial disease blood flow manipulation as it clearly 

modifies the flow velocity magnitudes.  Figure 3 (a)-(b) shows the impact of nanoparticle volume 

fraction on temperature and concentration profile, respectively. Temperature profile is 

progressively an increasing function of volume fraction while nano-particle concentration is found 

to be a decreasing function. The thermal enhancement properties of nanoparticles are therefore 

confirmed again with the current simulations. Additionally, for both the figures, the irregular 

stenosis exhibits higher maximum temperature or nano-particle concentration compared with the 

composite stenosis.  The geometrical nature of the stenosis therefore clearly influences thermal 

and nano-particle diffusion in the streaming blood flow. Using only a composite stenotic model 

will lead to an under-prediction in temperature and concentration values.  

Figure 4(a)-(b) depicts the influence of slip parameter (α) on velocity profiles for n=1.5 and n=0.5, 

respectively. In the case of shear-thickening fluid (dilatant i. e. n > 1), when we increase the slip 

parameter, then more resistance is generated to the blood flow, which results in flow retardation 

i.e. a depletion in velocity values. The opposite effect is generated for shear-thinning fluid i. e. n 

<1; in other words flow acceleration is induced since lower resistance is offered to the streaming 

blood. The effect of Darcy number on velocity profile is presented by Figure 5(a)-(b) for two 

different stenoses. For both n=1.5 and n=0.5, enhancement in Darcy number accelerates the blood 

flow indicating that greater permeability of the vessel wall adds momentum via lateral influx which 
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assists the streaming flow in the artery. From figures, it is seen that the irregular stenosis attains 

higher velocity magnitudes for shear-thickening blood while the composite stenosis achieves 

higher velocities for shear-thinning blood.  

The velocity profiles for different Grashof numbers Gr are plotted in Figure 6 (a)-(b) for n>1 and 

n<1, respectively. Grashof number (GrT) is the ratio of thermal buoyancy force to viscous force. 

The species (solutal) Grashof number, GrN is not varied (concentration differences of nanoparticles 

within blood increases the species buoyancy force, although this is not plotted). Stronger thermal 

buoyancy effect aids in momentum development, intensifies the blood flow and is associated with 

a reduction in resistance to hemodynamic transport and a concomitant acceleration. Evidently flow 

deceleration arises with vanishing thermal buoyancy force (Gr=0) as seen in Figure 6 (a)-(b) and 

this corresponds to the purely forced convection scenario. On comparing these two figures, the 

maximum attained velocity is observed for shear-thickening fluid at the highest value of Gr.  

Similarly, the effect of Lewis number (Le) on velocity profile is given in Figure 7 (a)-(b) for both 

types of stenosis. Lewis number is defined as the ratio of thermal diffusivity to mass diffusivity. 

The graphs show that increment in the value of Le manifests in a suppression in the magnitude of 

velocity in both the figures i. e. flow deceleration. For an irregular stenosis, lower velocity values 

are computed compared with a composite stenosis.  

Figure 8 (a)- (b) depicts the evolution in velocity profile with modification in the magnetic 

parameter (M) considering the shear-thickening and shear- thinning fluid, respectively. It is 

apparent that a higher M value (associated with stronger Lorentzian drag force) significantly 

retards the blood flow around the centerline of the artery (core zone). The case of electrically non-

conducting blood is retrieved for M = 0 i. e. vanishing radial magnetic field. For the case M = 1 

both magnetic and viscous hydrodynamic forces are equivalent (Hartmann number, M, expresses 

the ratio of these body forces). Effectively the blood flow is regulated i. e. damped with stronger 

magnetic field which permits improved control of biomedical operations through a non-intrusive 

methodology (i. e. external magnetic field). In the shear-thickening fluid case, higher velocity is 

computed for an irregular stenosis while in the shear-thinning fluid, maximum velocity is 

associated with composite stenosis geometry, for each M value.  
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Figure 9 (a)- (b) depicts the distribution in velocity profile for different values of Brownian motion 

parameter (Nb). The Nb value corresponds to the nanoparticles size as high Nb values are 

representative of smaller nanoparticle and vice-versa in the adopted Buongiorno formulation. The 

profiles indicate that the axial velocity decreases with enhancing the parameter Nb i. e. smaller 

nanoparticles result in flow deceleration. It is also clear that in the shear-thinning case, the 

irregular stenosis produces lower velocities comparatively to the composite stenosis while for 

shear-thickening fluid, a mixed variation is seen.     

The impact of thermophoresis parameter (Nt) on blood flow velocity is presented in Figure 10 (a) 

- (b) for both stenotic cases. Contrary to the trend induced by increment in Brownian motion 

parameter, the velocity profile is substantially increased with elevation in thermophoresis 

parameter. The thermophoretic body force (which is proportional to Nt) drives nanoparticles under 

the force of a temperature gradient. This aids in momentum development and accelerates the flow. 

For the shear-thickening blood case, higher velocity magnitudes are associated with the irregular 

stenosis whereas for shear-thinning (pseudoplastic) blood, greater velocities are obtained for the 

composite stenosis.  

Impact of Brownian motion and thermophoresis parameter on concentration profile is presented 

in Figure 11 (a) - (b). From graphs, it is exhibited that on enhancing the Brownian motion 

parameter, the concentration is reduced while the same profile increases on increasing the 

thermophoresis parameter. The erratic random movement of microscopic particles in a fluid, as a 

result of continuous bombardment from molecules of the surrounding medium is known as 

Brownian motion. In nanoscale systems, this bombardment is significant, and many ballistic 

collisions will naturally occur. These will inhibit the overall concentration in the streaming blood 

flow i.e.  oppose species diffusion. Additionally, for both pseudoplastic and dilatant blood flow, 

the irregular stenosis produces higher velocity magnitudes up to a fixed radial position whereas 

after this critical radius, evidently the composite stenosis attains higher velocity magnitudes up to  

the vessel wall.    

The effect of Reynolds number (Re) on blood flow velocity and temperature profile is elaborated 

in Figure 12 (a) - (b). It is noteworthy that very low Reynolds numbers are considered (laminar 

flow) and the regime is therefore a viscous-dominated one. The graphical trends show that by 

increasing the value of Re from 1 to 5, a significant amount of reduction in velocity is produced. 
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In the same manner, an increment in Re also results in a depletion in the magnitude of temperature 

i. e. the streaming blood regime is cooled with greater inertial force relative to viscous force (for 

Re = 1 both forces are equivalent, and this is frequently termed “creeping flow”). Although inertial 

force is increased with Reynolds number, the overwhelming effect is nevertheless flow 

deceleration owing to the stenotic obstruction and population of nanoparticles which alter the 

internal dynamics of the blood flow. Figure 12 (a) also shows that a higher value of velocity is 

computed for shear-thickening (dilatant) blood (n > 1) and this progressively decreases as we move 

to the Newtonian (n = 1) and shear-thinning (n < 1) blood scenarios.  

The impact of Weissenberg number (We) on blood flow velocity in the stenotic region is given in 

Figure 13 (a) - (b). It is observed that as We increments from 1.5 to 3.5, the velocity profile 

decreases for shear-thickening blood whereas it shows an enhancement for shear-thinning blood. 

Weissenberg number expresses the relative role of elastic and viscous forces in non-Newtonian 

fluid mechanics. For We > 1 elastic forces dominate and these induce deceleration in dilatant 

blood. The reduction in viscous forces relative to elastic forces (We >1) implies a decrease in 

viscous resistance to the streaming blood which produces the observed acceleration in the shear-

thinning (pseudoplastic) case.  

The volumetric flow rate profile for various nanoparticle volume fractions through both stenotic 

regions considering non-Newtonian fluid (for both n=1.5 and n=0.5) is presented in Figures 14-

15. It is clear, that, increment in volume fraction generates substantial flow rate enhancement for 

both cases. It is also evident that flow rate is markedly higher for the composite stenosis in 

comparison to the irregular stenosis. On comparing these two figures it is noted that higher flow 

rate is registered for n=1.5 i. e. the dilatant blood flow case.  

Volumetric flow rate profiles for variation in the magnetic parameter (M) for both pseudoplastic 

and dilatant blood cases is displayed in Figures 16-17. The graphs indicate that flow rate exhibits 

an inverse relationship with magnetic field parameter i.e., flow rate is depressed on increasing the 

magnitude of magnetic field (stronger Lorentzian drag force). For both the shear-thickening and 

shear-thinning fluid cases, an irregular stenosis produces lower flow rate values compared to the 

composite stenosis. Additionally, the highest overall flow rate value is again registered for shear-

thickening (dilatant) blood.   
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The influence of Darcy number on wall shear stress and flow rate profiles for both type of stenosis 

is presented in Figures 18-21. From figures 18-19, it can be deduced that on increasing the Darcy 

parameter, wall shear stress is boosted for both the blood rheology cases (n=1.5 and n=0.5). Again, 

this is due to the assistive nature of wall permeability (influx) on momentum development which 

accelerates the blood flow and therefore induces greater shearing effect at the wall. It is noted that 

in the shear-thickening blood case, an irregular stenosis attains slightly higher wall shear stress 

values than the composite stenosis while in the shear-thinning fluid case the contrary trend is 

computed i. e. the composite stenosis produces greater wall shear stresses than the irregular 

stenosis. Figure 20-21 illustrate the flow rate profiles for various Darcy parameters again for both 

shear thickening and shear thinning blood cases. On increasing the Darcy parameter from 0.05 to 

0.15, accentuation in the flow rate magnitudes is produced. For both blood cases, an irregular 

stenosis produces comparatively lower flow rates than a composite stenosis. In shear-thinning 

case, negative value arises for Da=0.05 and for this case, a wavy distribution is computed for all 

the parametric values.  

The impact of Reynolds number on volumetric flow rate profile is presented in Figures 22-23. 

The graphs show that enhancement in the magnitude of Reynolds number results in a decrement 

in flow rate. In both blood rheology cases, a composite stenosis has slightly higher flow rate than 

an irregular stenosis and flow rate is suppressed for higher value of Re. On comparing these two 

figures, it is seen that maximum flow rate is achieved for the dilatant (shear-thickening) blood.  

The effect of Weissenberg number (We) on wall shear stress and flow rate profile is represented 

in Figures 24-27. For both blood flow cases, an inverse trend is observed for wall shear stress as 

well as for flow rate profiles. In the shear-thickening case, these figures reveal that both the wall 

shear stress and volumetric flow rate are reduced for larger values of Weissenberg number while 

in the shear-thinning fluid case, both profiles are enhanced by increasing the value of Weissenberg 

number. Additionally, for n=1.5, in both the wall shear stress and flow rate graphs, the irregular 

stenosis attains slightly higher magnitudes than the composite stenosis while for n=0.5, the 

composite stenosis registers higher magnitudes than the irregular stenosis.  

Figure 28-29 display the time profile of hemodynamic resistance (impedance) to flow at the 

stenosis throat for the considered set of parameter values and for different blood rheology cases 

(n=1.5 and n=0.5). The impedance profile shows opposite trend to volumetric flow rates as from 
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the mathematical formulation described earlier, it is clear that both the profiles are inversely related 

to each other. In both figures, the black line (ϕ=0.03) shows the impedance for the default set of 

parameters given in Table 3. Both the graphs present an almost identical trend for variation in the 

control parameters. The results reveal that the magnitude of resistance impedance is increased by 

raising the magnitude of Reynolds number (Re=5) and magnetic parameter (M=2) parameter while 

it is decreased by enhancement in the Weissenberg number (We=3.5). On comparing these two 

figures it is noteworthy that the magnitude of resistance impedance is much higher for the shear-

thinning case compared to the shear-thickening fluid.  

Table 4 presents the comparison for the values of volumetric flow rate with alteration in Brownian 

motion and thermophoresis parameters. The computations are given for both composite and 

irregular stenoses with both shear-thickening and shear-thinning blood. These values are registered 

at time t=1.0 and the other emerging parameters are taken as default values. The data indicates that 

on increasing the thermophoresis parameter from 0.1 to 0.5 i. e. with stronger thermophoretic body 

force, enhancement in flow rate profile is shown for both stenoses and comparing the data for 

n=1.5 and n=0.5, higher values are noticed for n=1.5 (shear-thickening). Additionally, flow rate 

values decrease with an increment in the Brownian motion parameter from 0.1 to 0.5, which is 

again associated with a decrement in velocity (flow deceleration). 

To analyze the view of blood particles along the axial direction, the blood flow contour patterns 

are visualized in Figure 30 panels (a)-(d). As each panel consists of four subfigures [(a)-(d)] 

which describes the streamlines for composite and irregular artery, firstly considering the shear-

thickening fluid while the last two figures for shear-thinning fluid, and this also shows the 

randomness of the graphs. Panel (a) shows the blood flow pattern for the considered default set of 

parameters given in Table 3. To calculate the difference on changing the defined parameter, panel 

(b)-(d) will be compared with panel (a). Comparison between the panels exhibits the change in the 

movement of blood particles by particularly changing some specific parameters.  Panel (b) displays 

the pattern for pure blood case with the other defaulted parameters. On comparing each sub-panel 

of panel (b) with the corresponding sub-panel of panel (a), it is clear, that, inclusion of 

nanoparticles in streaming blood flow increases the axial velocity and achieves marked 

acceleration in stenotic geometries. Panel (c) shows the blood flow pattern in the arterial region 

without magnetic field (M=0) with the other defaulted parameter values. On comparison with panel 
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(a), it is noted that axial velocity is higher without magnetic field for each case. Absence of 

Lorentzian body force generated by the radial magnetic field therefore results in flow acceleration 

whereas inclusion of the magnetic retarding force achieves the desired flow deceleration of interest 

in biomedical flow control applications. In the same manner, Panel (d) presents the flow pattern 

for changing the Weissenberg number (We=3.5). The comparison of panel (d) with panel (a) 

demonstrates that higher blood flow velocity is achieved with greater values of We which is again 

associated with the concomitant decrease in viscous forces relative to elastic forces in streaming 

rheological blood for We > 1. 

8. CONCLUSIONS: 

Inspired by nano-drug delivery technologies for the treatment of arterial diseases, this study 

provides a deeper understanding of magneto-nano-hemodynamics of stenotic arteries via 

computational simulations of hydromagnetic blood mediated nanoparticle transport through an 

artery having two different stenosis i.e., composite and irregular stenosis. An external radial 

magnetic field is also applied to a rigid permeable walled artery to simulate more accurately the 

electrically conducting blood flow characteristics in stenotic regions. To mimic the non-Newtonian 

characteristics of blood, the power-law fluid model is taken into account and comparison between 

shear-thickening blood (n=1.5) and shear-thinning blood (n=0.5) is investigated. For realistic flow 

situations, the unsteady component of pulsatile pressure gradient is also included. Further, to know 

blood characteristics (velocity, temperature, concentration, wall shear stress, flow rate and 

resistance impedance) in stenotic regions, the governing equations are solved with the help of finite 

difference method (FTCS). The key conclusions from the present numerical computations are 

summarized as follows:   

• The inclusion of nanoparticles (Cu/blood) within blood increases the axial velocity of 

blood. Additionally, on increasing the nanoparticle volume fraction, temperature profile is 

boosted while concentration follows the reverse trend. 

• On variation in slip parameter (α), axial velocity decreases in shear-thickening blood while 

it increases for shear-thinning blood. Likewise, enhancement in Darcy number (Da) causes 

blood flow acceleration for both blood rheological types. 
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• Enhancement in thermal buoyancy effect as simulated via Grashof number (Gr) increases 

the axial velocity while for higher values of Lewis number (Le), velocity magnitudes are 

suppressed i.e., flow retardation is induced for both stenoses.  

• By applying external magnetic field in the radial direction, axial velocity is significantly 

damped whereas much less dramatic alterations are computed in blood temperature and 

concentration profiles.  

• The axial velocity of blood increases with greater thermophoresis parameter (Nt) while the 

flow deceleration is produced with increasing Brownian motion (Nb) parameter. Minor 

modifications are generated by these parameters on temperature profiles. 

• Concentration magnitudes are depressed with rising values of Brownian motion (Nb) while 

they are elevated with increment in thermophoresis parameter (Nt). 

• On varying the Reynolds number (Re) from 1 to 5, deceleration in axial velocity and 

depletion in temperature magnitudes is registered for both shear-thickening and shear-

thinning blood cases. 

• Increasing the Weissenberg number (We) cause axial flow retardation in the shear-

thickening blood case while it induces acceleration for the shear-thinning blood case.  

• Wall shear stress and volumetric flow rate are boosted with increasing the magnitude of 

Darcy number (Da). Both profiles show enhancement for either composite or irregular 

stenoses.  

• For shear-thickening and shear-thinning blood, resistance impedance is calculated for 

changing some parameters and it shows the opposite behaviour to that computed for 

volumetric flow rate. 

• On comparing, the new results reported here show that blood flow characteristics (velocity, 

wall shear stress and flow rate) are always higher for shear-thickening blood flow (n>1) 

than shear-thinning blood (n<1). However, it does not show any influence on temperature 

and concentration profiles.  

• For shear-thinning case, composite stenosis achieves slightly higher value comparing to 

irregular stenosis while reverse behaviour is registered for shear-thickening case in which 

irregular stenosis accomplish maximum value.  
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The present simulations have revealed some interesting insights into non-Newtonian 

magnetohydrodynamic nano-doped blood flow. However, a relatively simple rheological model 

has been implemented and the influence of electrical fields has been neglected. Electrokinetic 

viscoelastic blood flows [47] are also of great interest in nano-pharmacodynamics. Furthermore, 

Taylor dispersion is also of great relevance as are chemical reaction effects in oxygen diffusing 

through rheological blood [48]. Shape factor effects of the nanoparticles have also not been 

considered in the study. Additionally, the present study is restricted to a single stenosis and may 

be generalized in the future to examine the combination of stenoses and aneurysms with tapering 

effects. The potential benefits of nanoparticle drug and gene-eluting stents for the pretension and 

treatment of coronary re-stenosis [51] are also robust areas to explore with computational fluid 

dynamics. Future studies will be orientated in these directions and will be communicated 

imminently.  
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Figures and Tables 

 

 

Figure 1 (a): Geometry of the artery with two differently shaped stenosis 
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Figure 1(b): Geometry of the stenotic arterial segment where d is distance from origin and l0 is total stenotic length 

 

   

Figure 2: Effect of nanoparticle concentration on axial velocity for (a) n=1.5 (b) n=0.5 through two different 

stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  

 

    

Figure 3: Effect of nanoparticle volume fraction on (a) temperature and (b) concentration profiles through two 

different stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  
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Figure 4: Effect of various α on velocity profile for (a) n=1.5 and (b) n=0.5 through two different stenosis at 

1 1.41, 0.1, 1.5, 1.2B z t= = = =  

   

Figure 5: Effect of various √Da values on velocity profiles for (a) n=1.5 and (b) n=0.5 through two different 

stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  
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Figure 6: Effect of various GrT values (thermal Grashof number) on velocity profile for (a) n=1.5 and (b) n=0.5 and 

through two different stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  

   

Figure 7: Effect of various Le values on velocity profiles for (a) n=1.5 and (b) n=0.5 and through two different 

stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  

  



34 
 

  

Figure 8: Effect of various M values on velocity profiles for (a) n=1.5 and (b) n=0.5 through two different stenosis 

at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  

    

Figure 9: Effect of various Nb values on velocity profile for (a) n=1.5 and (b) n=0.5 through two different stenosis 

at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  
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Figure 10: Effect of various Nt on velocity profile for (a) n=1.5 and (b) n=0.5 through two different stenosis at 

1 1.41, 0.1, 1.5, 1.2B z t= = = =  

   

Figure 11: Effect on nano-particle concentration profiles for (a) various Nb values and (b) various Nt values for two 

different stenosis at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  
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Figure 12: Effect of various Re values on (a) velocity and (b) temperature profiles in two different stenosis at 

1 1.41, 0.1, 1.5, 1.2B z t= = = =  

    

Figure 13: Effect of various We values on velocity profile for (a) n=1.5 and (b) n=0.5 through two different stenosis 

at 
1 1.41, 0.1, 1.5, 1.2B z t= = = =  
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Figure 14: Effect of nanoparticle concentration on flow rate for n=1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 15: Effect of nanoparticle volume fraction on volumetric flow rate for n = 0.5 through two different stenosis 

at 
1 1.41, 0.1, 1.5B z= = =  
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Figure 16: Effect of magnetic Hartmann number on volumetric flow rate for n = 1.5 through two different stenosis 

at 
1 1.41, 0.1, 1.5B z= = =  

 

Figure 17: Effect of magnetic Hartmann number on volumetric flow rate for n = 0.5 through two different stenosis 
at 

1 1.41, 0.1, 1.5B z= = =  
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Figure 18: Effect of Da values on wall shear stress for n=1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 19: Effect of Da values on wall shear stress for n = 0.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  
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Figure 20: Effect of Da values on volumetric flow rate for n = 1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 21: Effect of Da values on volumetric flow rate for n = 0.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  
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Figure 22: Effect of Re values on volumetric flow rate for n = 1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 23: Effect of Re values on flow rate for n = 0.5 through two different stenosis at 
1 1.41, 0.1, 1.5B z= = =  
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Figure 24: Effect of We values on wall shear stress for n = 1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 25: Effect of We values on wall shear stress for n = 0.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  
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Figure 26: Effect of We values on volumetric flow rate for n = 1.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  

 

Figure 27: Effect of We values on volumetric flow rate for n = 0.5 through two different stenosis at 

1 1.41, 0.1, 1.5B z= = =  
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Figure 28: Time variation of resistance impedance for n = 1.5 through two different stenosis with other default 

parameter values 

 

Figure 29: Time variation of resistance impedance for n = 0.5 through two different stenosis with other default 

parameter values 
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Figure 30: Blood Flow pattern along the axial direction with the following data 

(a) For default parameter values through composite and irregular stenoses and for n=1.5, n=0.5 respectively 
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Figure 30: Blood Flow pattern along the axial direction with the following data 

(b) For pure blood (ϕ=0.00) through composite and irregular stenoses and for n=1.5, n=0.5 respectively 
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Figure 30: Blood Flow pattern along the axial direction with the following data 

(c) For without magnetic parameter (M=0) through composite and irregular stenoses and for n=1.5, n=0.5 

respectively 
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Figure 30: Blood Flow pattern along the axial direction with the following data 

(d) For higher Weissenberg number (We=3.5) through composite and irregular stenoses and for n=1.5, n=0.5 

respectively 
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Thermophysical 

properties 

ρ (Kg/m3) K (W/m-K) γ x 10-5 (K-1) Cp (J/Kg-K)  σ ( S / m) 

Blood  

   (f) 

1063 0.492 0.18 3594 6.67x10-1 

Nanoparticle   

(Cu) 

8933 400 1.67 385 5.96x107 

Table 1: Thermophysical properties of blood and nanoparticles [27] 

 

Radius Ijaz and Nadeem 

[46]  

ϕ=0.00, δ=0.01 

Present results Ijaz and Nadeem 

[46] 

ϕ=0.02, δ=0.01 

Present results 

0.1 0.00 0.00 0.000 0.000 

0.2 0.0317 0.0319 0.0645 0.0649 

0.3 0.0418 0.0422 0.0820 0.0826 

0.4 0.0420 0.0425 0.0776 0.0782 

0.5 0.0366 0.0369 0.0613 0.0618 

0.6 0.0283 0.0288 0.0390 0.0394 

0.7 0.0191 0.0199 0.0152 0.0181 

0.8 0.0109 0.0110 -0.0060 0.0064 

0.9 0.0052 0.0055 -0.0206 -0.0210 

1.0 0.0039 0.0039 -0.0248 -0.0248 

Table 2: Comparison of FTCS code results with Ijaz and Nadeem [46] for axial velocity at throat of stenotic artery 

1.5z =   and 1.2t =  

 

Parameter   ϕ  B1 Wb   α GrT=GrN Pr Re Le Nb  Nt M We 

Value 0.03 1.41 0.1 0.1 2 14 2 2 0.3 0.3 1 2.5 

Table 3: Default value of emerging parameters implemented in FTCS simulations 
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Nb 

variation 

Nt 

variation 

Composite Stenosis Irregular Stenosis 

n=1.5 n=0.5 n=1.5 n=0.5 

0.1 0.1 3.028584277 1.054112418 3.0537867 0.989232198 

 0.3 6.527871622 2.938486635 6.67247306 2.75087741 

 0.5 10.00981999 4.816168309 10.27212639 4.50341293 

0.3 0.1 1.861258313 0.42590075 1.846111827 0.401226285 

 0.3 3.034468979 1.057133953 3.058820242 0.991307471 

 0.5 4.202018947 1.686196952 4.265292935 1.57840247 

0.5 0.1 1.62779312 0.300258417 1.604576853 0.283625103 

 0.3 2.335788451 0.680863416 2.336089678 0.639393483 

 0.5 3.040458739 1.06020268 3.063926244 0.993400379 

Table 4: Volumetric flow rate for various emerging parameters considering n = 1.5 and n = 0.5 at time t=1.0 

 


