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Abstract

Fracture-based models commonly use a characteristic length as the basis for

determining size effects in concrete beams. The characteristic length is related

to the concrete fracture process zone and defined in terms of the concrete frac-

ture properties. Semi-empirical constants are then developed to accommodate

any unidentified (geometric or crack bridging) parameters. However, a reliance

on semi-empirical factors can limit the applicability to different systems, con-

cretes and reinforcing materials. The aim of the current work is to formulate an

analytical size effect model based solely on fundamental material and geometric

properties. The particular focus is unreinforced and lightly reinforced concrete

beams that fail in flexure due to unstable crack propagation. The proposed

’generalised’ characteristic length approach is based on the mode-I fracture be-

haviour of concrete and includes crack bridging forces due to the presence of

longitudinal reinforcement. The theoretical expressions suggest that the geo-

metric shape of a beam, the fracture properties of the concrete and the crack

bridging forces (where present) significantly influence the characteristic length.

Experimental investigations on geometrically similar unreinforced and lightly

reinforced concrete beams in 2-D are undertaken as a means for initial valida-

tion. The validation is then extended to a wider dataset of existing experimental
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results in the literature. The generalised characteristic length approach is able

to capture both the influence of the concrete strength and the size effect mitiga-

tion due to the inclusion of longitudinal reinforcement. This confirms that the

generalised approach holds promise and could be expanded to other quasi-brittle

materials and non-conventional reinforcing materials.

Keywords: characteristic length; size effect; reinforced concrete; fracture

mechanics

Nomenclature

a Crack depth

B Dimensionless constant

b Width of concrete beam

c Concrete cover

D Depth of the plate/beam

D0 Characteristic length

da Maximum aggregate size

E Elastic modulus of concrete

Ef Elastic modulus of reinforcement

fc Concrete compressive cube strength

fcy Concrete compressive cylinder strength

ff Yield stress of reinforcement

Fs Crack bridging force applied by reinforcement

ft Tensile strength of concrete

GF Concrete fracture toughness
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k
(
a
D

)
Shape factor

KI Stress intensity

KIc Critical stress intensity

KIF Stress intensity factor due to the crack bridging force in the reinforce-

ment

KIM Stress intensity factor due to bending

M Bending moment across a crack

n Exponential power of normal stress distribution in the fracture process

zone

s Shear span of concrete beam

s
d Shear span to depth ratio

∆a Additional crack extension

∆ae Depth of fracture process zone

∆Nu Norminal strength

η Geometric shape constant

λ Size effect reduction factor

ψ Portion of reinforcement yield force

ρ Percentage of reinforcement

σ Tensile stress perpendicular to crack face

σc Concrete plastic strength

σn Uniform tensile stress away from crack

CMOD Crack mouth opening displacement

LEFM Linear ealstic fracture mechanics

2−D Two dimensionsional
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1. Introduction1

It has been observed that structural concrete exhibits a strong size effect.2

Researchers initially believed that size effects were associated with the vari-3

ability in the concrete material strength (statistical size effect) [1]. However,4

it has since been discovered that size effects depend on the material, mechan-5

ical and geometrical properties of concrete [2]. Bazant’s earlier work on size6

effect resulted in a size effect law, which was for quasi-brittle materials with a7

pre-existing crack or crack notch. This was later classified as the Type 2 deter-8

ministic (or energetic) size effect problem [2, 3]. It was shown that quasi-brittle9

materials without a pre-existing crack or crack notch manifest both statistical10

and deterministic size effects; thus Weibull and Bazant’s models were integrated11

to address what was classified as the Type 1 size effect problem [4, 5, 6]. Size12

effects that can influence the nominal strength of concrete structures include a13

boundary layer effect, a fracture mechanics size effect, an influence due to the14

fractal nature of the crack surface, variability in the material strength, and a15

size effect associated with chemical reactions, heat conduction and pore water16

transfer [7]. The contribution of each of these factors is not fully understood.17

The mechanical behaviour of concrete is a result of multiple mechanisms at18

macro-, meso- and micro- length scales. Recently, the modelling of concrete at19

the meso-length scale has been a focal point. At the meso-scale, concrete is20

taken as a multi-phase composite material with the mortar, the aggregates, and21

the interfaces between the mortar and aggregates taken as separate phases [8].22

The material size effects are then investigated [9, 10, 11] albeit that typically23

the primary distortion/deformation is limited to the interface elements between24

the mortar and aggregates. The purpose of this paper is to investigate the25

size effects at the system level (macro-length scale) with the inclusion of crack26

bridging effects.27

The properties that determine the Type 2 size effect can be expressed in28

terms of an intrinsic or characteristic length which is defined by linear or non-29

linear fracture mechanics. Size effects in flexural unreinforced concrete beams30
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that fail due to a single crack have been studied extensively [12, 13, 14]. For31

longitudinally reinforced concrete beams that fail in flexure due to unstable32

crack propagation (where the post peak loads do not exceed the peak load,33

which corresponds to the load at crack initiation), the size effects will depend on34

the percentage of reinforcement. Ruiz et al [15] and Carpinteri et al [16] showed35

that lightly reinforced concrete beams may not develop a full or partial hinge,36

and thus exhibit a size effect. Gerstle et al [17] used a cohesive crack model37

to theoretically investigate the flexural behaviour of longitudinally reinforced38

concrete beams and observed a strong size effect in a beam with less than39

0.1% of longitudinal reinforcement. With increasing percentages of longitudinal40

reinforcement size effects were reduced. Based on Hillerborg’s [18] study of41

Corley’s experimental results [19] size effects were found to be less significant42

for a beam with more than 1% of longitudinal reinforcement. It has been shown43

that over-reinforced concrete beams exhibit size effects in flexure as a result of44

concrete crushing in the compression zone [20, 21]. Concrete crushing in the45

compression zone is the leading cause of failure when an over-reinforced concrete46

beam fails due to a diagonal shear-compression failure, where a similar size47

effect phenomenon was observed [22, 23]. However, size effects due to concrete48

crushing are beyond the scope of this paper; thus, discussed no further.49

In practice beams typically contain more than the minimum amount of lon-50

gitudinal reinforcement and so are not as susceptible to flexural size effects.51

Hence, size effects in lightly reinforced beams that fail due to mode I fracture52

have not been widely studied. In contrast, size effects in longitudinally rein-53

forced concrete beams that fail in shear [24, 25, 26] have been the subject of54

significant research effort. Statistical analyses of existing experimental results55

[27] have then been used as the basis for the development of semi-empirical56

models. These semi-empirical models are typically based solely on the con-57

crete material properties (e.g. Bažant and Kim [27]). Numerical analyses, e.g.58

Gustafsson and Hillerborg [28] also suggest that the characteristic length is a59

material property of concrete. For concrete beams with internal longitudinal60

and transverse shear reinforcement, Bažant and Sun [29] proposed an approach61
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which takes into account transverse steel in the sense of being a systems prop-62

erty.63

The semi-empirical nature of some of the proposed models and the lack of64

a unifying theory means that it is difficult to extend existing research to con-65

sider new types of concretes and/or other reinforcing materials. Furthermore,66

the transition from brittle to ductile behaviour is not depicted within a com-67

mon framework. To address these shortcomings, a new characteristic length,68

hereafter referred to as the ’generalised characteristic length’, was derived from69

first principles using a mode I non-linear fracture model together with a crack70

bridging effect from the reinforcement. The uniqueness of the generalised char-71

acteristic length is that the concrete element, which exhibits size effects, is72

contemplated as a system property (a combination of material, geometry and73

interaction properties). This is in contrast to existing size effect models that74

consider the concrete element as a material property alone. Moreover, the re-75

sulting expression for the generalised characteristic length is defined in terms76

of fundamental contributing factors such as the geometry of a beam, material77

properties of the concrete, and crack bridging force. Each of these contribu-78

tions provides insight into how the predicted characteristic lengths, and hence79

size effects, depend on prescribed parameters such as the concrete strength and80

reinforcement percentage. Geometrically similar unreinforced and lightly rein-81

forced concrete beams are tested to supplement a validation database against82

which the model predictions are interrogated.83

2. Fracture mechanics - size effects84

Linear elastic fracture mechanics (LEFM) can be used to describe crack85

propagation in brittle materials, where the fracture process zone is negligible86

[30]. However, quasi-brittle materials such as concrete, ceramics and hardened87

ice deviate from LEFM behaviour as a result of a sizeable fracture process zone88

at the crack tip compared to the size of specimen. In order to minimise the89

level of additional complexity due to the non-linear behaviour, various modified90
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Figure 1: Distribution of internal stress in the region of a flaw: (a) elliptical flaw and (b)

sharp flaw.

LEFM models have been proposed.91

2.1. LEFM92

In LEFM, it is assumed that a crack propagates when the applied stress in-93

tensity (or the resultant stress intensity if there is more than one external load)94

reaches the material critical stress intensity factor. In terms of an energy ap-95

proach, this is analogous to the energy available for crack propagation reaching96

the material fracture toughness. Fig. 1 illustrates the assumed mode I fracture97

conditions in a semi-infinite 2−D plate subjected to a uniform tensile stress, σn.98

For an infinitely wide plate with a crack length of 2a, the stress concentration99

at the crack tip is defined in terms of the applied stress (σn). The associated100

value of the mode I fracture stress intensity factor is given by Irwin [31] as:101

KI = σn
√
ak
( a
D

)
(1)

where D is the overall depth of the plate, a is the crack depth and k
(
a
D

)
102

is a factor, also known as the shape factor, which is dependent on the depth103

of the crack and geometry of the structure. At failure, the stress intensity KI104

would equal the fracture toughness or critical stress intensity factor, KIc of the105

material.106
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Figure 2: An (a) LEFM and (b) equivalent crack model approximation.

2.2. Equivalent crack model107

The LEFM approach assumes that the inelastic fracture process zone is zero108

(see Fig. 2(a)). In practice the fracture process zone in concrete has a finite size109

since the material is quasi-brittle. It has been shown that the departure between110

actual and theoretical predictions using LEFM in large concrete structures such111

as dams, where the size of the fracture process zone is much smaller than the112

size of the structure, is minimal [32]. Thus, the prediction of size effect in a113

large concrete structure using LEFM can be acceptable. Nonetheless, when it is114

necessary to take into account the fracture process zone, equivalent crack models115

have been proposed [33]. Equivalent crack models are based on the concept116

that the non-linear fracture process zone decreases the stiffness of the structure117

thereby allowing the crack length to increase while the rest of the structure118

continues to behave as a linear elastic material [34, 35]. The equivalent crack119

model therefore simulates the response of the specimen and the fracture process120

zone by assuming that the crack tip is ahead of the actual crack tip. Fig. 2(b)121

shows an equivalent crack model which includes the fracture process zone (the122

zone with micro cracks). In the figure, ft is the tensile strength of the concrete,123

CMOD is the crack mouth opening displacement, a is the crack depth, ∆ae is the124

fracture process zone where the stress reaches infinity and ∆a is the additional125
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crack extension to the point where the tensile strength of concrete is reached.126

In the equivalent crack model, the effective crack length is implicitly taken as127

(a+ ∆ae) and the rest of the specimen is linear elastic. Elices and Planas [36]128

studied tension softening models to define the equivalence between a specimen129

with an equivalent crack and a linear elastic cracked specimen. It was found130

that the equivalent crack solution approaches that of the LEFM model as the131

size of the fracture process zone reduces.132

2.3. Bazant’s size effect model133

Bazant’s size effect equation for pure tension mode I fracture using an equiv-134

alent elastic crack model is summarised in this section. For further details,135

please see [3]. Using an equivalent crack approach the effective crack depth is136

modelled as the addition of the actual crack depth (a) and a fracture process137

zone in the region ahead of the original crack tip ∆ae (see Fig. 2(b)), at the138

point of crack propagation. Therefore, for a quasi-brittle material, Irwin’s stress139

intensity factor can be rewritten as:140

KIc = σNu
√
Dk

(
a+ ∆ae

D

)
(2)

where KIc is the critical stress intensity factor and σNu is the nominal141

strength. Using this substitution, and approximating k2
(
a
D + ∆ae

D

)
using the142

first two terms of a Taylor series expansion with respect to a
D , gives:143

k2

(
a

D
+

∆ae
D

)
≈ k2

( a
D

)
+ 2k

( a
D

)
k′
( a
D

) ∆ae
D

(3)

where144

k′
( a
D

)
=
∂k
(
a
D

)
∂
(
a
D

) (4)

By defining145

B =
KIc

ft

√
2k
(
a
D

)
k′
(
a
D

)
∆ae

(5)
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and146

D0 =
2k′
(
a
D

)
∆ae

k
(
a
D

) (6)

Eqn. 2 can be simplified to147

σNu =
Bft√
1 + D

D0

(7)

where ft is the tensile strength of the material, B is a dimensionless constant,148

D0 has a dimension of length and is known as the characteristic length, and D149

is a characteristic dimension, which in the current work is taken as the beam150

depth. Both B and D0 depend on the fracture properties of the material and the151

geometry of the structure, but are not dependent on the depth or characteristic152

size of the structure, as will be discussed later. Eqn. 7 is also known as Bazant’s153

size effect law.154

2.4. Fracture and ultimate nominal strength155

A graphical representation of Eqn. 7 is shown schematically as the curved156

line in Fig. 3 where the relationship between the nominal strength σNu and157

the characteristic size D of a beam has been plotted. In Fig. 3, the plastic158

strength and the linear elastic fracture mechanics failure criterion are shown159

as a horizontal line and an inclined line with a 1:2 slope respectively. Small160

structures do not show a significant strength reduction. Therefore, in this case161

the nominal strength approaches Bft, where Bft(= σc) is the plastic strength.162

A size effect reduction factor λ
(

= σNu

σc

)
relative to the nominal plastic strength163

can then be defined as164

λ =
1√

1 + D
D0

(8)

In practical applications, the majority of design codes are based on lower165

bound plasticity analyses [37, 38]. Plasticity theory has no size effects. Never-166

theless, since plasticity equations are available in design codes, the incorporation167
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Figure 3: Relationship between strengths and characteristic size

of a size effect reduction factor such as that given by Eqn. 8 into a plastic ap-168

proach has been seen as preferable to developing a new analytical expression.169

3. Derivation of generalised characteristic length170

Bazant’s size effect equation, developed by combining linear elastic frac-171

ture mechanics and the equivalent crack model, shows that the characteristic172

length D0 plays an important role in defining the size effect in concrete beams.173

However, the presence of reinforcement would be expected to change the char-174

acteristic length and, to date, this issue has not been sufficiently addressed.175

In the following, a new, ’generalised’, characteristic length is derived using an176

approach that is equally applicable to beams with, or without, reinforcement.177

The generalised characteristic length is derived by combining a non-linear178

fracture mechanics model and crack bridging forces to represent longitudinal179

reinforcement.180

To reflect the additional crack bridging forces due to the presence of rein-181

forcement, the principle of the superposition of stress intensity factors is used. In182

linear elastic fracture mechanics (LEFM), the mode I stress intensity factors for183

various combinations of external loading can be superposed [16][39]. Therefore,184

Bosco and Carpinteri [40] proposed that the resultant stress intensity factor for185
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Figure 4: Superposition of external applied loads.

a concrete beam with longitudinal reinforcement subjected to bending can be186

calculated as the superposition of the stress intensity factor due to the applied187

bending moment and the stress intensity factor due to the force in the reinforce-188

ment. This superposition is shown schematically in Fig. 4. Using this concept189

the resultant critical stress intensity factor at the onset of crack propagation for190

a given crack depth, a, can be given as191

KIc = KIM +KIF (9)

where KIM and KIF are the stress intensity factors due to the bending mo-192

ment (M) and the reinforcement forces, Fs, respectively. When reinforcement193

bridges a crack, the resultant stress at the crack tip is enhanced by the contri-194

bution from KIF . The stress and the length of the non-linear zone therefore195

change. A representation of a crack region with reinforcement bridging the crack196

using an equivalent crack model combined with LEFM is shown in Fig. 5. The197

contribution from the reinforcement is represented as equal and opposite forces198

Fs at the crack face.199

At the crack tip, the crack has already completely softened and the points200

ahead of the crack tip are in an intermediate state of fracture. Therefore, the201

stress distribution in the non-linear elastic zone can be taken as a polynomial202

function
(
σ = ft

(
x

∆a

)n)
[41]. The stress resultant from an inelastic zone of size203

∆a can be set equal to the stress resultant of the elastically calculated stress204 (
σ = KIc+KIF√

2π(x−∆ae)

)
. Due to the equivalent crack model assumption, the far205

field stress is taken from LEFM. Therefore, the area under the plastic stress206

field is equal to that of the elastic stress field. Thus, in Fig. 5 the area of the207
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Figure 5: Stress distribution at the crack tip with a crack bridging force in the reinforcement

region AEBCA must be equal to the area of region EBCDE. Therefore,208

∫ ∆a

∆ae

KIc +KIF√
2π(x−∆ae)

dx =

∫ ∆a

0

ft

( x

∆a

)n
dx (10)

Integrating this equation then gives209

(KIc +KIF )

√
2(∆a−∆ae)

π
=
ft∆a

n+ 1
(11)

The condition σ = ft for x = ∆a, with KIc+KIF√
2π(x−∆ae)

, immediately leads to210

∆a−∆ae =
1

2π

(
KIc +KIF

ft

)2

(12)

From Eqn. 11 and 12, the non-linear zone ∆a can be calculated as211

∆a =
n+ 1

π

(
KIc

ft

)2(
1 +

KIF

KIc

)2

(13)

By substituting Eqn. 13 into 12, the crack extension can then be given as212

∆ae =
2n+ 1

2π

(
KIc

ft

)2(
1 +

KIF

KIc

)2

(14)

By comparing Eqn. 14 and 13, it can be seen that the non-linear fracture213

process length (∆a) and the equivalent crack extension (∆ae) are proportional.214

The characteristic length D0 in Eqn. 7 is also proportional to the equivalent215
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crack extension (∆ae) (since for a given crack depth
2k′( a

D )
k( a

D )
is a constant).216

Therefore, it can be represented as217

D0 = η
2n+ 1

2π

(
KIc

ft

)2(
1 +

KIF

KIc

)2

(15)

where218

η =
2k′0
k0

(16)

is a dimensionless geometric constant. The characteristic length D0 is then219

the product of four component terms, each of which will influence the charac-220

teristic length (from here onwards this will be referred to as the ’generalised’221

characteristic length). The first term η depends on the geometric shape of the222

beam. The second term 2n+1
2π is a function of the concrete stress distribution223

in the fracture process zone which is reflected in the value of n. The third224

term,
(
KIc

ft

)2

, reflects the concrete material properties, including the tensile225

strength (ft) and fracture toughness (KIc). Finally,
(

1 + KIF

KIc

)2

includes both226

the concrete fracture properties and the crack bridging force(s), which depend227

on the reinforcement percentage, yield stress and bond-slip behaviour between228

the concrete and reinforcement.229

The generalised characteristic length for mode I flexural cracking from a230

crack notch in a reinforced bending element was developed from first princi-231

ples using a non-linear fracture model, known as an equivalent crack model.232

This non-linear fracture model is applicable to any quasi-brittle material, i.e.233

concrete, mortar, ceramic and ice. Besides, the crack bridging effect of rein-234

forcement in the non-linear fracture model was implemented as a force. Hence,235

the crack bridging effect is not limited to steel alone. Therefore, the generalised236

characteristic length model can be applied to any quasi-brittle materials with237

any reinforcement that fail due to unstable mode I fracture. However, the main238

challenges are to establish an accurate shape constant for a given geometry239

and loading condition and the crack bridging force at the point of crack prop-240

agation, which is significantly influenced by the type of reinforcement and the241
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bond-slip behaviour between the quasi-brittle material and the reinforcement.242

Therefore, a steel-reinforced concrete beam with a crack notch at the mid-span243

is considered in this investigative section.244

With increasing brittleness of concrete, the size of the fracture process zone245

reduces and so will the generalised characteristic length. Bazant’s size effect246

equation shows that the size effect reduction factor (λ) decreases with a reduc-247

tion in characteristic length. It can be deduced that the size effect is directly248

proportional to brittleness. How each parameter in Eqn. 15 is related to brit-249

tleness is discussed in more detail in the following.250

3.1. Geometric shape constant (η)251

The applied bending moment promotes crack propagation whereas the ten-252

sile reinforcement resists crack propagation. The nominal strength is calculated253

based on the applied bending moment. Therefore, the geometric constant is cal-254

culated using the shape function associated with the applied bending moment255

and depends on the loading. For example, the stress intensity factor caused by256

a bending moment M applied across a cracked section is given in Tada et al.257

[42] as258

KIM = σNu
√
Dk
( a
D

)
(17)

where a is the crack depth, σNu is the nominal strength and k
(
a
D

)
is a shape259

function. For a shear span to depth ratio of 2, the shape function can be given260

as:261

k
( a
D

)
=

√
a

D

1.99− a
D

(
1− a

D

) [
2.15− 3.93 a

D + 2.7
(
a
D

)2]
(
1 + 2a

D

) (
1− a

D

) 3
2

 (18)

where the accuracy of the function is within 0.5% for a relative crack depth262

a/D of up to 0.6. The accuracy reduces for relative crack depths of more than263

0.6. For a shear span to depth ratio of 4, the shape function is:264
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Figure 6: (a) Shape functions and (b) geometric shape constants vs. relative crack depth

(19)
k
( a
D

)
=
√
π

[
1.106

( a
D

) 1
2 − 1.552

( a
D

) 3
2

+ 7.71
( a
D

) 5
2 − 13.53

( a
D

) 7
2

+ 14.23
( a
D

) 9
2

]
where again an accuracy within 0.5% is expected for a/D of up to 0.6. The265

shape function for pure bending is:266

(20)
k
( a
D

)
=
√
π

[
1.122

( a
D

) 1
2 − 1.40

( a
D

) 3
2

+ 7.33
( a
D

) 5
2 − 13.08

( a
D

) 7
2

+ 14.0
( a
D

) 9
2

]
and is associated with an accuracy within 0.2% for a relative crack depth of267

up to 0.6.268

In Fig. 6(a), the bending shape functions as a function of relative crack depth269

for span to depth (s/d) ratios of either 2 or 4 and pure bending are shown. The270

resulting geometric shape constants η (see Eqn. 16) are plotted against relative271
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crack depth
(
a
D

)
in Fig. 6(b). The shape functions and geometric constants for272

s/d=4 and pure bending are almost the same but differ from those for s/d=2.273

The geometric shape constant is directly proportional to the generalised274

characteristic length. For a given beam depth, the smallest value of D0 will275

result in the largest D
D0

which maximises the denominator in Eqn. 7 leading to276

the biggest size effect reduction (this represents the smallest size effect reduction277

factor λ). It should be noted that the highest value of the size effect reduction278

factor (λ) is 1. For s/d=4 or pure bending, the size effect reduction factor (λ)279

therefore reaches its minimum value at a relative crack depth of 0.31 (when η280

reaches a minima of 5.1). For an a
D value between 0.31 and around 0.85, the281

size effect reduction factor (λ) increases with advancing crack depth. However,282

for s/d=2, the minimum η value of 8.03 corresponds to a relative crack depth283

of 0.41. The η value then continues to rise with increasing relative crack depth.284

Unreinforced concrete beams fail due to unstable crack growth. Therefore,285

η should be calculated for the point of the initiation of the crack. For notched286

beams this would be the tip of the crack notch. Hence, according to the model,287

the η value will be different for different relative crack notch depths for beams288

that were otherwise identical. For example, consider two sets of geometrically289

similar beams with the same shear span to depth ratio of s/d=4 but with relative290

crack notch depths of 0.3 and 0.5. Based on Fig. 6(b) the beams with relative291

crack notch depths of 0.3 would exhibit stronger size effects as the η value would292

be smaller. This demonstrates that the size effect is influenced by the shape of293

the beam including the crack notch depth.294

3.2. Mode I non-linear stress distribution in the fracture process zone (n)295

In the generalised formulation, the size effect reduction factor also depends296

on the exponential power of the stress distribution in the fracture process zone,297

n which is connected to the material plasticity [7]. Possible stress distributions298

for different values of n are shown in Fig. 7. Irwin [31] considered a linear stress299

distribution in the fracture process zone which would be equivalent to a value300

of n=1. Reinhardt [41] conducted an extensive numerical study investigating301
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the parameter n. Reinhardt’s validation on normal strength concrete suggested302

that the value of n lies between 1.25 and 1.8. Reinhardt [41] also concluded that303

the stresses in the softening zone of a discrete crack comply with the assumed304

power function and that n increases with higher quality concrete. Therefore, a305

higher strength concrete would be more sensitive to cracks than a lower strength306

concrete.307

3.3. Concrete fracture toughness (KIc) and tensile strength (ft)308

The fracture toughness, or the critical stress intensity factor, and the tensile309

strength of concrete significantly affect the generalised characteristic length.310

Test methods have been proposed to calculate both the fracture toughness and311

tensile strength of concrete [43].312

If not measured directly in experiments, these terms can be inferred. The313

fracture toughness (GF ) can be calculated based on the empirical equation314

proposed by Phillips and Binsheng [44] where:315

GF = 43.2 + 1.13fc (21)

where fc is the compressive cube strength in N/mm2 and GF is the frac-316

ture toughness in kN/mm. The Young’s elastic modulus of concrete E can be317

determined from the ACI 318-05 [45] expression where:318

E = 4.73 (fcy)
1
2 (22)
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where fcy and E are the compressive cylinder strength in N/mm2 and the319

elastic modulus in kN/mm2, respectively. Using linear elastic fracture mechan-320

ics, the stress intensity factor (KIC) can then be calculated from GF and E:321

KIc =
√
GFE (23)

fcy can be calculated as 0.80% of the concrete cube strength [46] in cases322

where the cylinder strength is not available.323

ACI 318-14 [47] suggests that:324

ft = 0.62
√
fcy (24)

where ft and fcy are the modulus of rupture and cylinder compressive325

strength in N/mm2 respectively.326

However, Carrasqillo et al [48] found that this equation underestimates the327

modulus of rupture strength and so have suggested that ft can instead be found328

from:329

ft = 0.97
√
fcy (25)

where ft and fcy are the modulus of rupture and cylinder compressive330

strength in N/mm2 respectively. It should be noted that the concrete mate-331

rial properties obtained using test methods recommended by standards are size332

dependent and the reader is advised to be mindful of this.333

The aggregate size is not an explicit parameter in these expressions. But it334

has been shown that the aggregate size plays a significant role in the fracture335

toughness, tensile and compressive strengths of concrete [49]. Therefore, it336

can be deduced that the aggregate size implicitly influences the generalised337

characteristic length.338

3.4. Crack bridging force in the reinforcement (KIF )339

In a reinforced concrete beam subjected to bending, the internal reinforce-340

ment can carry a certain amount of force, which resists the bending. This force341
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changes the stress field at the crack tip and the generalised characteristic length342

increases due to the presence of the reinforcement. If the stress intensity factor343

is increased, the stress distribution shifts. The characteristic length then also344

increases leading to a smaller size effect reduction (the value of the size effect345

reduction factor λ approaches 1).346

Fig. 4 illustrates the force across a crack at the level of the reinforcement.347

When a LEFM specimen is subjected to a force across a crack, the stress inten-348

sity factor can be found (Tada et al [42]) as349

KIF =
Fs

bD
1
2

YF

( a
D
,
c

a

)
(26)

where Fs is the force applied across the crack, c is the cover depth (distance350

between the bottom fibre of the concrete beam and the centre of the reinforce-351

ment), b is the width of the beam and YF
(
a
D ,

c
D

)
is the shape function for the352

force applied across a crack. The shape function YF
(
a
D ,

c
D

)
can be given as353

YF

( a
D
,
c

a

)
=

√
4D

πa

G
(
a
D ,

c
a

)
(
1− a

D

) 3
2

√
1−

(
c
a

)2 (27)

where354

G
( a
D
,
c

a

)
= g1

( a
D

)
+ g2

( a
D

)( c
a

)
+ g3

( a
D

)( c
a

)2

+ g4

( a
D

)( c
a

)3

(28)

and355

g1

( a
D

)
= 0.46 + 3.06

( a
D

)
+ 0.84

(
1− a

D

)5

+ 0.66
( a
D

)2 (
1− a

D

)2

(29)

g2

( a
D

)
= −3.52

( a
D

)2

(30)

(31)
g3

( a
D

)
= 6.17− 28.22

( a
D

)
+ 34.54

( a
D

)2

− 14.39
( a
D

)3

−
(

1− a

D

)3/2

− 5.88
(

1− a

D

)5

− 2.64
( a
D

)2 (
1− a

D

)2
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(32)
g4

( a
D

)
= −6.63 + 25.16

( a
D

)
− 31.04

( a
D

)2

+ 14.41
( a
D

)3

− 2
(

1− a

D

)3/2

+ 5.04
(

1− a

D

)5

+ 1.98
( a
D

)2 (
1− a

D

)2

The value of KIF for a given crack depth, and the relationship between η356

and a
D , will also dictate whether stable or unstable crack growth is expected.357

It has been shown elsewhere that the forces in the reinforcement change with358

crack propagation and, as a consequence, KIF will depend on the crack depth359

[50, 51, 40]. At the critical crack development stage, the force in the rein-360

forcement is dictated by the geometry of the specimen, amount and type of361

reinforcement, type of concrete and bond-slip conditions between the reinforce-362

ment and concrete. In order to precisely predict the generalised characteristic363

length, a model is therefore required to connect the force in the reinforcement364

with crack depth. Models to determine the reinforcement force such as that of365

Carpinteri [50, 51] can be incorporated. However, the purpose of the current366

work is to introduce the idea of a generalised characteristic length and identify367

the sensitivity of the characteristic length to various parameters. So, a simpli-368

fied approach where the bridging force is assumed to be a portion (0 ≤ ψ ≤ 1)369

of the yield force of reinforcement will be used. Introducing the factor ψ into370

the generalised characteristic length equation 26 leads to:371

D0 = η
2n+ 1

2π

(
KIc

ft

)2
(

1 +
ρD1/2ψfyYF

(
a
D ,

c
a

)
KIc

)2

(33)

where ρ and fy are the percentage of longitudinal reinforcement and the372

longitudinal steel yield strength respectively. The reinforcement was considered373

to be a linear elastic plastic material.374

3.5. Comparison with Bazant’s and Hillerborg’s characteristic lengths375

For concrete beams with no reinforcement, the stress intensity factor (KIF )376

due to the reinforcement is zero, and the generalised characteristic length re-377
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duces to an expression which depends only on the geometric and concrete ma-378

terial properties of the beam:379

D0 = η
2n+ 1

2π

(
KIc

ft

)2

(34)

The
(
KIc

ft

)2

term is the same as Hillerborg’s [52] characteristic length cal-380

culated for unreinforced concrete, which is a pure material property. So for the381

case when η 2n+1
2π = 1 and KIF = 0, the generalised characteristic length gives382

an expression which is analogous to Hillerborg’s result. Furthermore, KIc is383

believed to be a function of the aggregate size [53, 54]. Bazant and Kim [27]384

suggested that equivalent crack length ∆ae (Fig. 5) was approximately propor-385

tional to da, where da is the maximum aggregate size (∆ae ∝ da). Although it386

should be noted that Bazant and Kim’s approximation was for a diagonal shear387

failure in longitudinally reinforced concrete beams, where the crack bridging388

effect of the steel (due to the inclination of the shear crack) was not as signif-389

icant compared to reinforced concrete beams failed in bending. Furthermore,390

it was shown that during shear failure the longitudinal steel did not develop391

its full tensile capacity at the initiation of diagonal shear cracks. This propor-392

tionality factor for the characteristic length (∆ae ∝ da) was obtained by curve393

fitting with existing experimental results for longitudinally reinforced concrete394

beams. The generalised characteristic length presented here can be expressed as395

D0 = η∆ae and so, for geometrically similar beams, the length is constant for396

a given ∆ae. Hence, Bazant’s and Hillerborg’s characteristic lengths that are397

based on the material properties such as the tensile strength and fracture tough-398

ness of concrete can be deduced from the proposed formulation. It should be399

noted that the characteristic lengths reported in the literature and generalised400

characteristic length derived in this paper are for a non-dimensional geometry401

with a specific relative crack depth. These characteristic lengths do not depend402

on the sample size.403
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4. Experimental results and reference databases404

Existing studies on unreinforced and lightly reinforced beams were reviewed405

to extract validation data for the generalised characteristic length approach.406

Key criteria for inclusion in the validation databases were that the beams needed407

to be prismatic and failure was due to a single flexural crack in the middle of the408

beam. These constraints were necessary to be consistent with the theoretical409

derivation. It was also desirable for the beams to be geometrically similar such410

that η remained constant.411

Experimental results for bending failures in geometrically similar unrein-412

forced samples were collated from [12, 14, 55, 56, 57, 58, 59, 60, 61, 62, 63] and413

are summarised in Appendix A. In most cases, there is a single specimen for a414

specific size. Where more than one specimen was available, average values are415

reported. It should be noted that the geometry, test set-up (three- or four-point416

bend tests) and presence or absence of a notch differ between the tests series (for417

details please see Appendix A). However, for the selected results, the samples418

within a given series are geometrically similar.419

Experimental results on size effects in longitudinally reinforced concrete420

beams that failed in bending were surveyed. However, for reasons discussed421

previously, the majority of experimental results on longitudinally reinforced422

concrete beams use higher percentages of reinforcement. Collectively the stud-423

ies by Lepeach and Li [64] (ρ = 1.6%), Belgin and Sener [22] (ρ = 3%), Sreehari424

and Jeenu [21] (ρ = 1.5%), Adachi et al [65] (ρ = 0.72% − 2.5%), Yi et al [20]425

(ρ = 1.11% − 1.33%), Zhou et al [66] (ρ = 1.05% − 1.65%) and Wu et al [67]426

(ρ = 0.36% − 0.44%) cover a range of reinforcement ratios (0.36% < ρ < 3%)427

and beam sizes. However in each case the authors note that the beams failed due428

to stable crack growth. Carpinteri et al [16, 56] (ρ = 0.196%− 2.01%), Ozbolt429

and Bruckner [68] (0.151%) and Ruiz et al [69] (ρ = 0.065% − 0.262%) tested430

beams with low percentages of reinforcement. However, Ozbolt and Bruckner’s431

(0.151%) and Carpinteri et al’s [56] (0.196%) most lightly reinforced beams432

were still reported to exhibit stable crack growth. In addition, Carpinteri et al’s433
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specimens were not geometrically similar. Corley et al’s [19] reinforced concrete434

beams are not geometrically similar so η will vary between test samples. Ruiz et435

al’s [69] (ρ = 0.065%−0.262%) specimens were geometrically similar but the re-436

sults were presented in plots (not tabulated). Hence, the relevant data that was437

extracted from Ruiz et al’s experimental load-deformation plots is summarised438

in Appendix B and used in subsequent sections for further validation.439

In light of the relative paucity of experimental studies on lightly reinforced440

geometrically similar concrete beams failing due to unstable crack growth, ad-441

ditional experimental testing was undertaken. The aims were to help establish442

the crack bridging effects in lightly reinforced concrete beams failing in bending443

and clarify the transition from brittle to plastic behaviour using the generalised444

characteristic length. Of particular interest were beams that were very lightly445

reinforced e.g. with ρ < 0.1%.446

4.1. Experimental investigation447

A series of unreinforced and lightly reinforced specimens with beam depths448

of 50 mm, 100 mm, 150 mm and 200 mm were tested as shown in Fig. 8(a).449

The notch depth and the span between the support and loading plate were450

increased in proportion with the beam depth. However, the beam width (b) of451

100 mm was the same for all the specimens. The unreinforced and reinforced452

cross sections are shown in Fig. 8(b) and 8(c) respectively. In the reinforced453

beams, the distance between the centre of the reinforcement and the bottom454

surface of the beam was (0.2d) and so varied proportionally with the beam455

depth to achieve geometrically similar beams. The reinforcement ratio was456

fixed at 0.053% and the number of bars was increased proportionally with the457

beam depth. To reduce any influence due to debonding, the 1.84 mm diameter458

bars were threaded although this is not typical of steel reinforcement used in459

the construction industry.460

For each set of beam parameters, three specimens were prepared, and the461

specimens were cast from a single mix to minimise any irregularities in the con-462

crete properties. A maximum aggregate size of 8 mm was selected to minimise463
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Figure 8: (a) Test set up; (b) cross sections of unreinforced beams (d=50, 100, 150, 200 mm;

b=100 mm); (c) cross sections of reinforced beams (d=50, 100, 150, 200 mm; b=100 mm);

(d) schematic view of test specimen and (e) cracked faces of unreinforced specimens.
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Table 1: Mechanical properties of concrete and reinforcement

Concrete

Cube strength (fcu) 31.6N/mm2

Cylinder strength (fcy) 34.8N/mm2

Young’s modulus of elasticity (Ec) 23800N/mm2

Modulus of rupture (ft) 4.03N/mm2

Fracture toughness (GF ) 0.066N/mm

Reinforcement

Yield strength (ff ) 597N/mm2

Young’s modulus of elasticity (Ef ) 102× 103N/mm2

any issues related to segregation during compaction due to the small beam size.464

The aggregate size was not scaled. Various concrete and steel material proper-465

ties were measured using recommended test guidelines [43, 70, 71, 72]. These466

properties are summarised in Table 1 where each value is an average of at least467

three control test specimens.468

The displacement at first cracking in the mid span during a displacement469

controlled test is expected to increase with increasing beam span. So a constant470

displacement rate (loading rate) is expected to lead to different kinetic forces in471

the samples. To minimise this effect, automated servo displacement-controlled472

tests were carried out with displacement rates of 1, 2, 3 and 4 mm/min for the473

beam depths of 50, 100, 150 and 200 mm, respectively. The beams were tested474

to failure and all the unreinforced and lightly reinforced beams failed due to475

a single flexural crack, as shown in Fig. 8(e). The relevant beam details and476

failure loads have been included in Appendices A and B for the unreinforced477

and reinforced beams respectively.478
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4.2. Application of generalised characteristic length approach to experimental479

findings480

Across the results in the experimental databases, there are differences in481

terms of the presence or absence of a notch, the span to depth ratios, the482

smallest sample size and the material properties reported. To facilitate the483

comparison of disparate samples, common principles in the application of the484

generalised characteristic length approach were followed.485

For unstable crack growth, the maximum load is associated with the initi-486

ation of a crack from the tip of the crack notch. Some of the beams within487

the validation database do not have notchs. As fracture theory only applies488

to flawed specimens, when there is no initial crack (flaw) then theoretically489

fracture mechanics would not yield a solution. Nevertheless concrete exhibits490

micro-cracking so it was deemed justifiable to assume a virtual crack notch of491

0.2 for concrete specimens without notchs. Therefore the value of η was either492

calculated at the depth of crack inducer (notch depth) or at the depth of a493

virtual crack notch for the beams with no physical crack notch. The database494

span to depth ratios range from s/d=0.75 to s/d=4. The shape functions re-495

ported earlier do not cover all these cases. So the geometric shape constant η496

was interpolated for beams with shear span to depth ratios (s/d) less than 4,497

using the shape functions for s/d = 2 and s/d = 4. For example, for a shear498

span to depth ratio of s/d = 3 and relative crack notch depth of 0.25, η would499

be taken as 7.097 (see Fig. 6(b)). The pure bending η function was used when500

a specimen’s shear span to depth was greater than 4.501

If not tested experimentally, the material properties KIc and ft were calcu-502

lated using the approaches presented in section 3.3.503

A challenge when using the characteristic length to calculate the size effect504

reduction is the need to define a plastic strength σc. In the current work,505

baselines based on expressions for ft found in Equations (25) and (24), or an506

empirical approach were used. In the empirical approach the smallest sized507

beam in a given beam series is used to define the nominal plastic strength. The508

drawback is that the experimental beam series use different smallest sized beams509
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Figure 9: Comparison of generalised characteristic lengths for various values of n, Hillerborg’s

characteristic length and lengths of 5da, 25da and 50da (with an assumed maximum aggregate

size of da = 12.5mm) which are indicative of the range suggested by Bazant [73].

so the baseline beam size is then not the same when comparing different series.510

5. Generalised characteristic length and size effects for unreinforced511

concrete512

5.1. Generalised characteristic length predictions for unreinforced concrete513

A theoretical study was undertaken to explore how the concrete strength514

and assumed concrete stress distribution influences the predicted generalised515

characteristic lengths for unreinforced concrete. In the theoretical predictions,516

a shear span to depth ratio of s/d = 3 and relative crack notch depth of 0.25517

were assumed and hence η = 7.097. In Fig. 9, the generalised characteristic518

lengths using values of n of 0.25, 0.5, 1 and 2 have been plotted for different con-519

crete compressive strengths. Hillerborg’s characteristic length and characteristic520

lengths of 5da, 25da and 50da have been included in the figure for comparison521

purposes.522
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As expected, Hillerborg’s characteristic length is smaller than the generalised523

characteristic length prediction, even for n=0.25. As described in Section 3.5,524

Bazant considered that the characteristic length is proportional to the maxi-525

mum aggregate size (da). Bazant and Kim proposed a characteristic length of526

25da using a statistical curve-fitting approach on experimental results on lon-527

gitudinally reinforced concrete beams that failed in shear [27]. A characteristic528

length of 25da is not dissimilar to that obtained using n = 1 as shown in Fig.529

9. Later, to predict the experimental results of reinforced concrete beams with530

shear links, Bazant and Sun added a term, which depends on the percentage531

of shear links, to 25da to modify the characteristic length. In this case, the532

characteristic length was considered a system property [29]. Bazant’s recent533

statistical analyses suggest that the multiplier on da is between 5 and 50 [73],534

indicative values (5da, 25da and 50da) within these bounds are plotted in Fig. 9,535

and confirm that the generalised characteristic length is consistent with the sta-536

tistical observations. However, a characteristic length that is solely a function537

of aggregate size is not a direct indicator of concrete strength. Reinhardt [74]538

showed that the value of n varies with concrete strength. So this variation could539

be captured in the generalised characteristic length approach where different n540

values could be used for different concrete strengths.541

5.2. Implication of selection of nominal plastic strength and value of n542

The unreinforced experimental results reported here were used to demon-543

strate how the selection of the value of n and the nominal plastic strength544

influence the expected size effect reductions.545

The size reduction factor
(
λ = σNu

σc

)
was plotted against the non-dimensional546

ratio D
D0

in a log-log graph as shown in Fig. 10. In this figure, the plastic line547

(the size independent flexural strength of the concrete beams as plasticity the-548

ory does not recognise size effects) is plotted and the LEFM curve represents549

the
√

D
D0

size effect. Bazant’s size effect Eqn. 7 is presented in Fig. 10 as a550

curve. σNu is the measured experimental strength for a given beam (see Ap-551

pendix A) and the circled point is the location associated with n=1 and a σc552
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Figure 10: Sensitivities of modulus of rupture and value of n: modulus of rupture is varied

between 0.62
√
fcy and 0.97

√
fcy , which shifts the location vertically and n is varied between

0.25 and 2, which shifts the location horizontally.

determined from the failure of the smallest beam (50 mm deep). The value n=1553

represents a linear stress distribution in the fracture process zone. According to554

Bazant’s size effect law (equation 7), the strength of smaller samples approaches555

the plastic strength. Hence, the size effects of the larger samples were calculated556

by considering the smallest sample as size independent. The selected n values557

and size independent modulus of rupture dictate the location of the experimen-558

tal results. n alters the generalised characteristic length D0 and thus D
D0

. The559

horizontal bar in Fig. 10 shows the effect of a change in D0 due to different n560

values where the left limit is for n = 2 and the right limit is for n = 0.25. A561

different reference strength shifts a point vertically where the bottom limit was562

based on the modulus of rupture strength calculated using Eqn. 25 and the top563

limit was that based on Eqn. 24.564
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5.3. Unreinforced size effect reduction factors and validation against experimen-565

tal database566

The experimental data compiled in Appendix A was used to determine ap-567

propriate n values and to validate the generalised characteristic length predic-568

tions for unreinforced concrete. Unless stated otherwise, the size effect reduction569

factor (λ) was obtained using the modulus of rupture strength calculated from570

Eqn. 25 [48] as the baseline.571

The size effect reduction factor in Eqn. 8 can be rearranged in the form of572

a linear regression equation (y = mx+ c) as:573

1

λ2
=

1

Do
D + 1 (35)

where m = 1
Do

and c = 1.574

A plot of 1
λ2 versus the beam depth (D) for the database of unreinforced575

beams is shown in Fig. 11(a). In this statistical analysis, the elimination of576

outliers was not considered to be appropriate as there are limited experimental577

results available for geometrically similar beams. It should be noted that any578

deviations in λ, which are due to inevitable variations in the experimental results579

and the issue of defining the plastic strength, amplify the values in the vertical580

axis of Fig. 11(a) as the inverse of lambda is squared
(

1
λ2

)
. When all the581

results were grouped together, a linear regression analysis suggested a best fit582

characteristic length of Do ≈ 136 mm. There is significant scatter in the results583

and the R2 is 0.4201. However, Bazant and Planas [75] show that the size effect584

reduction factor differs between concrete and mortar and others suggest that585

the size effect reduction is significantly higher in high strength concrete [76].586

For these reasons, the data gathered in Appendix A was grouped into concrete587

(0-50 N/mm2), high strength concrete (HSC) (≥ 50 N/mm2) and mortar in Fig.588

11(b). Linear regression analyses were undertaken on each subcategory of data589

and the characteristic lengths for each subset are given in the Figure. The R2
590

values for the mortar and concrete categories improved somewhat to 0.6185 and591

0.5452 respectively but there was a slight reduction in the R2 value to 0.3856592
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Figure 11: 1
λ2 vs. depth of beam D of unreinforced concrete beams presented in Appendix A

(a) all the samples (b) grouped into concrete, high strength concrete (HSC) and mortar (the

Do values presented in the plots are obtained from linear regression analyses).
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for the HSC. It can be seen that the best fit characteristic lengths of the HSC593

(132 mm) and mortar (48 mm) beams were found to be smaller than that of594

the normal strength concrete beams (207 mm).595

Bazant contested that the aggregate size is one of the main factors that596

influence the size effect of concrete elements [73]. According to the generalised597

characteristic length, the aggregate size is an implicit parameter, which alters598

the mechanical properties of concrete, such as the fracture toughness and tensile599

strength. It can be noted that the generalised characteristic length uses the600

ratio between the fracture toughness and the tensile strength of concrete. To601

understand the impact of aggregate size on the generalised characteristic length,602

existing experimental results which investigate the effect of fracture toughness603

and tensile strength with varying aggregate sizes are discussed.604

Elice and Rocco [49] tested two different concrete matrices each with three605

different untreated aggregates (with average sizes of 3, 9 and 14 mm). For606

matrix one, the fracture toughness increased by 20% whereas the tensile strength607

decreased by 6% when the average aggregate size increased from 3 mm to 14 mm.608

For matrix two, the fracture toughness increased by 16% when the aggregate609

size increased from 3 mm to 14 mm but there was no observable change in tensile610

strength. Petersson [77] showed that the fracture toughness increased by 13%611

while the tensile strength decreased by 12.5% when the maximum aggregate612

size increased from 8 mm to 16 mm. Chen and Liu [78] also showed that the613

fracture toughness increased with aggregate size and observed a 37% increase614

in toughness when the maximum aggregate size increased from 10 mm to 20615

mm. However, Chen and Liu did not investigate the tensile strength. Saouma616

et al. [79] tested larger size aggregates and found that the fracture toughness617

increased by 31% while the tensile strength decreased by 7% when the maximum618

aggregate size increased from 19 mm to 76 mm. In Rao and Prasad’s [80] work,619

an increase in maximum aggregate size from 4.75 mm to 20 mm led to an620

increase in fracture toughness of 84% and a 28% increase in tensile strength.621

In general it has therefore been found that the fracture toughness increases622

with aggregate size. Chen and Liu [78] studied the crack surfaces using X-ray623
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inspection and showed that the width of the crack increases with aggregate size.624

A narrower crack width results in a smoother crack surface, while a broader625

crack width results in a rough and complex crack surface and hence an in-626

crease in fracture energy with increasing aggregate size. The trends for tensile627

strength are more varied. Nevertheless, all the reported findings would lead to628

an increase in the ratio
(
KIc

ft

)2

in Eqn. 34 with increasing aggregate size. So a629

larger aggregate size would increase the generalised characteristic length and a630

corresponding reduction in size effect would then be expected.631

The findings in Figure 11(b) support the conclusion that for a given beam632

depth the size effect reductions are higher for HSC and mortar than for normal633

strength concrete [60, 81, 82, 76, 83]. However, it should be noted that the char-634

acteristic length is also related to the exponential power (n) of the non-linear635

stress distribution in the fracture process zone. Existing knowledge and under-636

standing as to how the aggregate size influences the n value is limited. But, the637

generalised characteristic length allows for such differences to be accommodated638

through the adjustment of n.639

As previously illustrated in Fig 10, the location of the experimental results640

(data points) are dictated by the characteristic length and the plastic strength641

of the sample. These dependencies are further demonstrated in Fig. 12, where642

the size effect reduction factor λ
(

= σNu

σc

)
is plotted against the ratio between643

the beam depth and characteristic length
(
D
Do

)
. In Fig. 12, the horizontal line,644

inclined line, and curve represent the plastic strength, the LEFM and Bazant’s645

size effect equation, respectively. The upper and lower boundaries of the shaded646

region are for a ± 10% variation in Bazant’s size effect equation. In Fig. 12(a)647

and (b), a constant value of Do of 136 mm (based on the best fit line in Fig648

11(a)) is used for all the specimens in the database (Appendix A) irrespective649

of the material and geometric properties. In Fig 12(a) the plastic strength was650

taken as modulus of rupture strength whereas in Fig. 12(b) the smallest sample651

is taken to be size-independent; thus, the smallest sample manifests the plas-652

tic strength. The experimental data points shift vertically (no horizontal shift)653
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when the reference plastic strength changes (Fig. 12(a) vs Fig. 12(b)) while654

D/Do remains the same. The scatter in Fig. 12(a) and (b) illustrates that the655

characteristic length is a complex material and geometric property, which can-656

not be deduced from a single characteristic length value. Fig. 12 (c) and (d) use657

Hillerberg’s characteristic lengths, where the characteristic length parameter is658

based on pure material properties. Again, the influence of the plastic refer-659

ence strength can be observed in the difference between Fig 12(c) (modulus of660

rupture reference strength) and Fig 12(d) (smallest size reference strength). A661

comparison of Fig. 12(a) vs Fig 12(c) and Fig 12(b) vs Fig 12(d) shows that the662

locations of the experimental data points shift horizontally (no vertical shift)663

due to the changes in the predicted characteristic length. Most experimental664

data points in Fig 12(d) lie outside the shaded size effect equation region which665

suggests that the characteristic length cannot be a material property alone. Fig.666

12 (e) and (f) use the generalised characteristic length with a fixed value of n=1.667

The experimental data shifts and is more aligned in Fig 12 (f) to the size effect668

predictions than was the case in Fig 12(d). This suggests that the characteristic669

length is a function of not only the material properties but also the geometric670

properties (system properties). To further explore the influence of the stress671

distribution in the fracture process zone n is varied in Fig. 12(g) and Fig. 12(h)672

where the generalised characteristic length predictions used n = 1 for normal673

concrete, n = 0.4 for HSC and n = 0.2 for mortar. As previously demonstrated674

by Reinhardt [41, 74], the stress distribution within the fracture process zone675

depends on the concrete properties. The current understanding of the shape676

of the stress distribution within the fracture process zone, as is required to677

quantify n, for different concrete and mortars is limited. However, the trends678

shown in Fig 12(h) suggest that implementation of material specific n values679

could lead to improved size effect predictions. Overall, the results illustrate680

that the characteristic length is a system property. Moreover, the generalised681

characteristic length theory provides a more solid explicit understanding of how682

the characteristic length changes with the basic properties of concrete and the683

overall system.684
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In Fig. 12, the size effect reduction factors were calculated by assuming685

the plastic strength was either the modulus of rupture strength or the smallest686

sample strength in each subset. The results demonstrate that the modulus687

of rupture strength is size-dependent when obtained using recommended test688

standards. The depths of the smallest samples in all the test series are between689

30 and 100 mm, which are smaller than the test samples recommended by690

standards. It is therefore felt to be reasonable to assume that the smallest691

sample in a given experimental series is size-independent, albeit different sample692

depths were taken as size-independent within each subset. This shows that the693

appropriate plastic strength is important to establish the size effect. Inverse694

methods could potentially be applied to help establish a size independent plastic695

strength [84].696
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Figure 12: Size effect reductions for experimental unreinforced concrete beams: (a) Do = 136 mm (See Fig. 11(a)) and λ (= σNu/σc) calculated

assuming the plastic strength as σc = 0.97
√
fcy ; (b) Do = 136 mm and λ calculated assuming the smallest beam of the subset is size-independent;

(c) Do calculated using Hillerberg’s characteristic length expression (KIc/ft)
2 and λ calculated assuming the plastic strength is 0.97

√
fcy ; (d) Do

calculated using Hillerberg’s characteristic length expression (KIc/ft)
2 and λ calculated assuming the smallest beam of the subset is size-independent;

(e) Do calculated from the generalised characteristic length with n = 1 and λ calculated assuming the plastic strength is 0.97
√
fcy ; (f) Do calculated

from the generalised characteristic length with n = 1 and λ calculated assuming the smallest beam of the subset is size-independent; (g) Do calculated

from the generalised characteristic length with n = 1 for normal strength concrete, n = 0.4 for HSC and n = 0.2 for mortar and λ calculated assuming

the plastic strength is 0.97
√
fcy ; and (h) Do calculated from the generalised characteristic length with n = 1 for normal strength concrete, n = 0.4

for HSC and n = 0.2 for mortar and λ calculated assuming the smallest beam of the subset is size-independent. The upper and lower limits of the

shaded region are 10% higher and lower than the size effect equation, respectively.
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6. Lightly reinforced concrete beams697

6.1. Generalised characteristic length predictions for lightly reinforced concrete698

Figure 13(a) illustrates the theoretical relationship between the generalised699

characteristic length and the depth of lightly reinforced concrete beams with700

various percentages of reinforcement. For this theoretical prediction, the same701

geometry and material properties presented in Fig. 8 and Table 1 are used. i.e.702

for a concrete beam without reinforcement, a generalised characteristic length of703

Do ≈ 323mm was calculated using Eqn. 34 with η = 7.097 which corresponds to704

a shear span to depth ratio of s/d=3 and relative crack notch depth of a/D=0.25705

with concrete material properties KIc = 39.63 N/mm
3
2 , ft=4.03 N/mm2 and706

n=1. For a concrete beam with a longitudinal reinforcement percentage of 0.1%,707

yield strength of steel fy=597 N/mm2 and relative cover depth of c/D=0.2, KIF708

was calculated to be 28.89 N/mm
3
2 for a 100mm beam depth, using Eqn. 26709

and 27. For this prediction, the steel was assumed to have yielded so ψ = 1710

in Eqn. 33. And, thus a generalised characteristic length of Do ≈ 984mm was711

calculated using Eqn. 33.712

The predictions for longitudinal reinforcement percentages of 0.1%,0.2%,713

0.3% and 0.4% are compared with those of an unreinforced beam (where ρ=0).714

A higher ρ, which is analogous to a larger crack bridging force, leads to a larger715

generalised characteristic length. According to Bazant’s size effect equation, a716

larger characteristic length then corresponds to a smaller size effect reduction.717

The resulting size effect reduction factor λ is plotted as a function of beam718

depth in Fig. 13(b). The figure shows that the crack bridging force signifi-719

cantly influences the anticipated reduction. Even a relatively small percentage720

of longitudinal reinforcement mitigates the size effects prevalent in unreinforced721

beams. For unreinforced beams, reductions between 34-52% would be expected722

for beam sizes between 300mm and 800mm. For beams with 0.1% reinforce-723

ment, the reductions would be between 11-15% for a similar size range and as724

the percentage of reinforcement increases above 0.2% they would be less than725

6.5%.726
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Figure 13: (a) Changes in generalised characteristic length with crack bridging force (percent-

age of reinforcement ratio ρ) (b) size effect reduction factor (λ)

6.2. Implication of crack bridging force727

In Fig. 14, a plot of σNu/σc(= λ) versus D/D0 using the experimental728

results from the current work further demonstrate the influence of the crack729

bridging force. The reinforcement percentage was 0.053% and the smallest sized730

beam (50 mm) was taken to be size-independent. The concrete was the same as731

that used in the companion unreinforced beams reported in Section 5.2 where732

n=0.35 was found to provide the best fit with the size effect equation. So n733

was taken as 0.35. The size effect of reinforced concrete beams is often treated734

solely as a concrete material property. If this were the case, the characteristic735

length of a reinforced concrete beam would be independent of the steel force.736

Fig. 14(a) illustrates the experimental results for the reinforced concrete beams,737

where the effect of the reinforcement is neglected by assuming KIF = 0 in the738

generalised characteristic length formulation. The data points are all to the739

right of Bazant’s size effect equation. In the generalised characteristic length740
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theory, the characteristic length depends on the crack bridging force from the re-741

inforcement too. However, the force exerted by the reinforcement at the critical742

stage of crack development has not yet been fully established. Thus, the crack743

bridging force was varied from zero (ψ=0) to 50% of the yield force (ψ=0.5) to744

the full yield force (ψ=1), as shown in Fig. 14(b). As the crack bridging force745

increases, the location of the experimental results shift left horizontally. This is746

due to the increase in generalised characteristic length. According to Fig. 14747

(b), the full yield force condition (ψ=1) provides the best fit with Bazant’s size748

effect equation.749

6.3. Lightly reinforced concrete size effect reduction factors and validation against750

experimental database751

As discussed previously, there are limited suitable lightly reinforced con-752

crete experimental results against which the generalised characteristic length753

approach can be validated. The class of beams that could meet the require-754

ments need to have low reinforcement ratios and fail due to unstable crack755

propagation. Similar geometric and loading conditions, shear span to effective756

depth ratios, concrete and reinforcement properties, reinforcement percentages,757

bond conditions, relative cover depths and relative crack notch depths are also758

desirable. Furthermore, the use of the full yield strength in Equation 33 is most759

likely to be justified in lightly reinforced cases (e.g. ρ ≤ 0.2%) where the re-760

inforcement is well-bonded and a single flexural crack exhibits unstable crack761

growth that leads to failure.762

The subset of results that comply with these constraints were limited to763

the experimental beams tested here and the beam results of Ruiz et al [69]764

which were inferred from the plots presented in their paper. Ruiz et al did765

not test geometrically similar unreinforced specimens so it was not possible to766

back calculate an appropriate n value specifically for their concrete. Ruiz et767

al use a normal strength concrete with cylinder strength of 39.5MPa so based768

on the findings in Fig. 12, n was taken as 1. In each case, the smallest sized769

experimental beam was taken to be size independent. However, as discussed770
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Figure 14: Current experimental reinforced concrete beams results: (a) characteristic length

without crack bridging effect of reinforcement (KIF = 0) and (b) Effect of crack bridging force

in lightly reinforced experimental beams: no force (ψ = 0); 50% steel yield force (ψ = 0.5)

and 100% steel yield force (ψ = 1) with n = 0.35

41



10-2 10-1 100 101

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Current investigation

Ruiz et al (1999)

10-2 10-1 100 101

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 15: Current and Ruiz et al’s experimental results of reinforced concrete beams as shown

in appendix B: (a) D0 was considered as materials and geometric properties with n = 0.35

and n = 1 for current investigation and Ruiz et al respectively, therefore (KIF = 0) and (b)

D0 was calculated with full yield crack bridging force ψ = 1 for the corresponding percentage

of steel reinforcement.

previously, if the assumption for the plastic strength is erroneous, the data771

points would shift vertically when plotting σNu/σc versus D/D0.772

A plot of σNu/σc versus D/D0 for the selected lightly reinforced results can773

be found in Fig. 15. In Fig. 15(a) ψ was taken as 0 which equates to no crack774

bridging contribution from the reinforcement whereas in Fig. 15(b) the full yield775

force (ψ=1) is used.776

A comparison of Fig. 15(a) and Fig 15 (b) demonstrates how the generalised777

characteristic length provides an explanation for the transition from brittle to778

ductile behaviour in the presence of reinforcement. According to the model, the779

generalised characteristic length significantly increases with increasing force in780

the reinforcement such that size effects diminish. Hence the inclusion of the781

crack bridging force where ψ=1 (as in Fig. 15(b)) leads to a better agreement782
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with the size effect equation than when bridging forces are neglected (as in Fig.783

15(a)). According to the size effect model and the generalised characteristic784

length, the brittleness of a reinforced concrete beam (unstable crack growth) and785

thus the size effect recedes with increasing reinforcement. Reinforced concrete786

elements migrate from brittle (unstable) to ductile (stable) behaviour with a787

higher reinforcement contribution. This observation is in agreement with recent788

guidelines on required minimum flexural reinforcement in reinforced concrete789

elements, where the percentage of minimum reinforcement varies with the size790

[85] [86].791

7. Conclusions792

A new generalised characteristic length is derived to quantify size effects in793

unreinforced or lightly reinforced concrete beams failing in flexure due to un-794

stable crack propagation. The 2-D formulation explicitly reveals a dependency795

on the geometric shape of the beam, concrete stress distribution in the fracture796

process zone, concrete material properties and crack bridging force due to the797

reinforcement (when present). The generalised approach has certain advantages798

over other characteristic lengths since the unknown parameters can be derived799

from first principles.800

Size effect predictions using the new formulation were initially validated801

using experimental results reported here for tests on unreinforced and lightly802

reinforced (0.053%) concrete beams with depths varying from 50 mm to 200 mm.803

The experimental unreinforced and reinforced concrete beam strengths reduced804

by ≈ 36% and ≈ 15.5% respectively when the beam depth increased from 50805

mm to 200 mm. The generalised characteristic length predictions capture the806

experimental trends for the loss of strength with size. However, the agreement807

depends on the assumed reference nominal plastic strength and parameter n808

which describes the shape of the stress distribution in the fracture process zone.809

Validation against a wider database of unreinforced concrete beams in the810

literature further suggests that the choice of n is influential in the generalised811
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characteristic length predictions. There was a better correlation when beams812

with different concrete types were grouped into categories of normal strength813

concretes, high strength concretes and mortars and appropriate values of n (1,814

0.4 and 0.2 respectively) were assigned to each category. The generalised char-815

acteristic predictions showed a better agreement with the size effect equation816

than those obtained using a single fixed characteristic length or Hillerborg’s817

characteristic length.818

In reinforced beams, the crack bridging force is required in the generalised819

approach. A database of very lightly reinforced beams that fail due to unsta-820

ble crack propagation was therefore considered for validation purposes. While821

there were limited results that met the necessary criteria, the initial comparison822

suggests that the use of the steel yield force may be a reasonable assumption.823

For concrete beams that fail in flexure due to mode I fracture, the gener-824

alised characteristic length approach offers a powerful means to demonstrate the825

influence of longitudinal steel on the size effect. Using the concrete properties826

and geometric shape reported in this study, the predicted change in flexural827

strength with beam depth was calculated using the generalised characteristic828

length theory. The analyses show that an increase in beam depth from 100 mm829

to 1000 mm would lead to a 43% reduction in the predicted flexural strength of830

an unreinforced beam. The predicted flexural strength reduction for the same831

increase in depth (100 mm to 1000 mm) is only 7.3% for a beam reinforced832

longitudinally with 0.1% steel. The flexural strength reductions decline even833

further to 2.2%, 0.9% and 0.5% for reinforcement ratios of 0.2%, 0.3% and834

0.4%, respectively.835
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[11] P. Grassl, D. Grégoire, L. Rojas, G. Pijaudier-cabot, International Jour-873

nal of Solids and Structures Meso-scale modelling of the size effect on the874

fracture process zone of concrete, International Journal of Solids and Struc-875

tures 49 (13) (2012) 1818–1827. doi:10.1016/j.ijsolstr.2012.03.023.876

URL http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023877

[12] P. F. Walsh, Fracture of plain concrete, The Indian Concrete Journal878

46 (11) (1972) 469–470.879

[13] P. F. Walsh, Crack initiation in Plain concrete, Magazine of Concrete Re-880

search 28 (94) (1976) 37–41.881

[14] Z. Bazant, P. Pfeiffer, Determination of fracture energy from size effect882

and brittleness number, ACI Materials Journal 84 (November-December)883

(1987) 463–480.884

URL http://www.concrete.org/Publications/ACIMaterialsJournal/885

ACIJournalSearch.aspx?m=details&ID=2526886

[15] G. Ruiz, J. Planas, M. Elices, Cuantia minima en flexion: Teoria y norma-887

tive, Anales de Mechnica de la Fractura 13 (1996) 386–391.888

[16] A. Carpinteri, Energy dissipation in R.C. Beams under cyclic loadings,889

Engineering Fracture Mechanics 39 (2) (1991) 177–184.890

[17] W. H. Gerstle, P. D. Partha, N. N. V. Prasad, P. Rahulkumar, Xie M.,891

Crack growth in flexural members - a fracture mechanics approach, ACI892

Structural Journal 89 (6) (1992) 617–625.893

[18] A. Hillerborg, Fracture mechanics concepts applied to moment capacity and894

rotational capacity of reinforced concrete beams, Engineering Fracture Me-895

chanics 35 (1-3) (1990) 233–240. doi:10.1016/0013-7944(90)90201-Q.896

46

https://doi.org/10.1617/s11527-013-0084-7
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
https://doi.org/10.1016/j.ijsolstr.2012.03.023
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.concrete.org/Publications/ACIMaterialsJournal/ACIJournalSearch.aspx?m=details&ID=2526
http://www.sciencedirect.com/science/article/pii/001379449090201Q
http://www.sciencedirect.com/science/article/pii/001379449090201Q
http://www.sciencedirect.com/science/article/pii/001379449090201Q
https://doi.org/10.1016/0013-7944(90)90201-Q


URL http://www.sciencedirect.com/science/article/pii/897

001379449090201Q898

[19] Corley G. W., Rotational capacity of reinforced concrete beams, ASCE899

Proceedings 92 (5) (1966) 121–146.900

[20] S. T. Yi, M. S. Kim, J. K. Kim, J. H. J. Kim, Effect of specimen size on901

flexural compressive strength of reinforced concrete members, Cement and902

Concrete Composites 29 (3) (2007) 230–240. doi:10.1016/j.cemconcomp.903

2006.11.005.904

[21] S. Sreedhari, G. Jeenu, Size Effect on Flexural Behaviour of Reinforced905

High Strength Concrete Beams, International Journal of Engineering and906

Technical Research (IJETR) 2 (9) (2014) 221–226.907
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