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ABSTRACT 

Buoyancy-driven reactive flows feature extensively in geophysics, materials processing and energy systems. In 

respect to the latter, geothermal energy holds gtreat promise in India and other Asian geographical locations and 

offers immense resources in the 21st century. Motivated by such applications, in the current study a mathematical 

model is developed for thermo-solutal convection flow in an open two-dimensional vertical channel containing a 

porous medium saturated with reactive Newtonian fluid is studied. Robin boundary conditions are prescribed and 

a first order homogenous chemical reaction is considered.  The Darcy-Forchheimer model is used to simulate both 

first and second order porous medium drag effects. The reference temperatures are taken as symmetric or 

asymmetric. Viscous heating is also included in the model. The conservation equations are written in 

dimensionless form taking into account the effects of viscous dissipation. For the case of small Brinkman number 

(i.e.viscous heating parameter) and neglecting the Forchheimer quadratic drag effect, perturbation solution of the 

simpler Darcian boundary value problem is developed. For the general non-Darcy-case, a numerical solution is 

presented with the Runge-Kutta quadrature and a shooting method. Good correlation between analytical and 

numerical solutions is demonstrated. The influence of thermal and solute Grahsof numbers, Biot numbers, 

Brinkman number, first order chemical reaction parameter, porous medium parameter and Forchheimer (inertial 

drag) parameter on velocity, temperature and concentration (species) distributions is visualized graphically. 

Nusselt number and skin friction at the walls are computed for selected parameters relevant to real geothermics.   
Increasing porous media parameter (decreasing medium permeability) reduces temperatures for both equal and 
unequal Biot numbers. Increasing thermal Grashof number accelerates the flow and elevates temperatures for 
both equal and unequal Biot numbers.  With higher values of solutal Grashof number velocity and temperature 
near the cold plate (wall) are reduced whereas the converse behaviour is induced at the hot wall. Increasing 
chemical reaction parameter elevates the species concentration in the left half space of the channel whereas it 
suppresses concentration in the right half space and in both scenarios a parabolic distribution is observed.  In the 
absence of chemical reaction, a linear growth in concentration is computed from the left plate to the right plate.  
With increasing porous medium parameter and Forchheimer inertial parameter the flow is strongly decelerated 
across the channel span whereas there is a much weaker reduction in temperatures. Skin friction is consistently 
lowered at both plates with increasing thermal Grashof number for equal Biot numbers. However, with unequal 
Biot numbers, skin friction at the left plate is increased whereas it is still reduced at the right plate. With increasing 
solutal Grashof number, skin friction is always reduced at both plates for both equal and unequal Biot numbers. 
There is also a consistent decrease in Nusselt numbers at both plates with increasing solutal Grashof number.  
 
KEYWORDS: Geothermal reactive systems; Non-Darcy porous medium, Robin boundary conditions, perturbation 
method; thermosolutal buoyancy; convection; chemical reaction; Runge-Kutta method; Nusselt number. 
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LIST OF SYMBOLS 

A      constant 

1 2,Bi Bi  Biot numbers at the left and right channel walls   

Br   Brinkman number    

pc   specific heat at constant pressure 

FC  Forchheimer drag term 

D   Hydraulic diameter,  2L  
g   acceleration due to gravity  

I  inertial parameter 

1   thermal Grashof number  

2   solutal (species) Grashof number  

1 2,h h
  

external heat transfer coefficients 

K    thermal conductivity of the fluid 

mK
 dimensional chemical reaction parameter 

L   channel width  

1 2,Nu Nu
   

Nusselt numbers at the left and right channel walls 

P   Pressure  

0P p gX= +  difference between the pressure and the hydrostatic pressure  

Re   Reynolds number  

TR
 

temperature difference ratio  

S   dimensionless parameter   

T  temperature  

1 2,T T
 

reference temperatures of the external fluid 

0T
 

reference temperature  

u   dimensionless velocity in the X - direction     

U  velocity component in the X - direction 

0U
 

reference velocity   

X   stream wise coordinate  
y  dimensionless transverse coordinate    

Y   transverse coordinate  
 
Greek symbols 
  chemical reaction parameter 

T  
thermal expansion coefficient  

C  
concentration expansion coefficient  

T  reference temperature difference  
   dimensionless parameter  

   dimensionless temperature  

  dimensionless concentration   
  density of the fluid 

0  
value of the mass density when 0T T=       
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   dynamic viscosity  

   kinematic viscosity 
  porous media permeability parameter 
 
1. INTRODUCTION 

Thermosolutal buoyancy-driven flows are mobilized by variations in density variation induced by 
species concentration and temperature. Such flows which feature coupled heat and mass transfer often 
arise in porous media. Applications of these “double-diffusive” flows include geothermal energy systems 
(Fig. 1a), contamination fate in soils, petrochemical reservoir dynamics and chromatography. Double-
diffusive natural convection in confined porous media is also of relevance in fuel combustion (e.g. forest 
fires), thermal insulation, materials processing, room ventilation, packed-bed chemical reactors etc.  

 

 
Fig 1a: Schematic of a geothermal duct with porous media and reactive flow 

 
Thermosolutal transport in porous media has been reviewed extensively by Kaviany [1], Nield 

and Bejan [2] and Ingham and Pop [3], who have provided an excellent range of modelling approaches 
and identified many new emerging areas of application of both internal flows (cavities, channels, heat 
pipes) and external boundary layer flows (polymer fabrication, spray deposition, filtration etc). Many 
further geological applications of heat and mass transfer in permeable media have been reviewed by 
Phillips [4]. Interesting studies of double-diffusive convection in porous media include Gupta et al. [5] 
(on transient micropolar flow in isotropic permeable materials), Mamou et al. [6] (on buoyancy-driven 
heat and mass transfer in a saturated vertical porous media cavity) and Narayana and Murthy [7] (on 
cross-diffusion in thermo-solutal boundary layer flow in homogenous porous media). 

In porous media hydrodynamics, the traditional approach is to use the Darcy law which provides 
the linear relationship between the pressure drop across the porous medium and the Darcian velocity. 
This model is however only valid for low Reynolds numbers i.e. viscous dominated “creeping” flows. It 
has been deployed extensively in recent years in a multiplicity of applications. Relevant studied include 
Prasad and Kulacki [8], Vasseur et al. [9], and Umavathi et al. [10]-[13]. The Darcy model utilized in these 
investigations has also considered the porous matrix to be isotropic and homogenous. At higher 
velocities (which may arise in high-permeability geological formations for example), inertial effects 
dominate the viscous effect. The the pressure drop becomes a quadratic function of the flow rate and a 

Geothermal duct 

with porous filter 

media and 

chemical reaction 
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non-Darcy model is required. Two popular methodologies for non-Darcy models have emerged i.e. 
Brinkman-extended Darcy models [19] and Forchheimer-extended Darcy models [20]. These are 
accommodated well in viscous fluid dynamic models and respectively simulate the viscous stresses 
adjacent to the bounding walls (“vorticity diffusion”) and channeling effects, and the non-linear drag 
effect generated by the solid matrix fibers at higher velocities. Since the inclusion of a Forchheimer 
quadratic term renders the momentum equation nonlinear, generally numerical methods are required 
for deriving solutions. Many researchers have implemented the Darcy-Forchheimer model in recent 
years in both thermal convection and thermo-solutal convection simulations. Bég et al. [21] conducted 
network electro-thermal computational simulations of Sakiadis flow in a thermally-stratified Darcy-
Forchheimer medium with the PSPICE code. Chen [22] used a cubic spline collocation method to 
investigate the influence of Forchheimer quadratic drag on thermosolutal convection boundary layer 
flow from a vertical wavy surface in a non-Darcy fluid-saturated porous medium.  Jena et al. [23] 
employed a finite control volume integration technique to study the combined heat and mass transfer in 
a fluid‐saturated porous medium composite enclosure with a Darcy‐Brinkman‐Forchheimer model.  Bég 
et al. [24] applied the Differential transform method (DTM) to compute buoyancy effects in dusty 
physiological thermo-convection in a Darcy-Forchheimer vertical porous medium channel. These studies 
all confirmed the significant modification in transport characteristics both in the bulk flow and at the 
walls induced with Forchheimer quadratic drag. A rigorous theoretical validation of the Darcy-
Forchheimer model has been presented by Chen et al. [25] via homogenization theory and Whittaker 
[26] with asymptotic methods. Experimental corroboration of this model has also been presented by 
Sener et al. [27]. 

In many geological and engineering systems featuring double-diffusive convection, chemical 
reaction effects arise. Geochemical flows include precipitation reaction (e.g. acidic brine and a calcium 
feldspar), mineralogical dissolution, carbon dioxide injection [28], brine chemo-geothermics in 
domesting heating systems [29] and pollutant leaching [30]. Further examples in industrial technologies 
include polymer radical manipulation, catalytic conversion, exothermic chemical reactions in porous 
media reactors [31], time-dependent corrosion of metallic components [32] and materials synthesis 
[33]. Mathematical models of reactive flows usually feature either homogeneous or heterogeneous 
chemical reactions. Homogeneous reactions occur in one phase only whereas heterogeneous reactions 
occur in two or more phases. Either type may be destructive or constructive. In more complex systems, 
autocatalytic reactions may also arise in which the reaction product acts as the catalyst for the chemical 
reaction. Considerable activity in modelling laminar reactive double-diffusive convection flows has 
emerged in recent years. Anjali Devi and Kandasamy [34] investigated natural convection boundary layer 
flow with higher order chemical reaction. They showed that with stronger chemical reaction and 
decreasing Schmidt number there is an acceleration in the flow and depletion in concentration gradient 
at the wall. Reactive flows in porous media have also been explored extensively. Postelnicu [35] used a 
finite difference technique to study the influence of order of homogenous chemical reaction, chemical 
reaction rate parameter and sustentation parameter on thermosolutal reactive flow in a Darcy medium 
with cross-diffusion effects. Rashad and El-Kabeir [36] deployed a Runge-Kutta integration scheme with 
shooting method to compute the chemical reaction effects in unsteady non-isothermal, non-isolutal 
flow from a stretching sheet embedded in a Darcian porous medium. Kandasamy et al. [37] considered 
variable viscosity and thermophoresis effects on mixed double-diffusive convection in Falkner-Skan flow 
from a wedge in a non-Darcy porous medium with first order homogeneous chemical reaction. They 
noted that species concentration is suppressed with increasing reaction parameter and that opposing 
buoyancy reduces wall mass transfer rates. Zueco et al. [38] studied the effects of Forchheimer inertial 
drag and permeability on thermosolutal convection from a cylindrical body with homogenous chemical 
reaction.  Nguyen et al. [39] used Fourier spectral element and hybrid Adams-Bashforth and backward 
Euler numerical schemes to investigate the thermal convection in a fluid-saturated non-Darcy 
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anisotropic porous medium generated by a surface nth order irreversible reaction. They showed that 
Forchheimer drag and chemical reaction modify the momentum, heat and species diffusion 
characteristics substantially.  

Convective heat exchange at a bounding surface is also an important consideration in thermo-
solutal convection flows. It arises in transpiration cooling processes, cooling or heating of geological 
strata, material drying, heat exchangers, geothermal bore wells etc. Very few studies have incorporated 
the Robin boundary condition i.e. mixed boundary condition. Also known as the boundary condition of 
the third kind, inclusion of this type of boundary condition has been shown to produce results which 
deviate non-trivially from those computed with classical isothermal or isosolutal boundary conditions. 
Zanchini [40] was among the first researchers to analyze in detail with a perturbation method, the fully 
developed mixed convection in a parallel-plate vertical channel in which the walls exchange heat with an 
external fluid. He applied Robin boundary conditions (also known as boundary conditions of the third 
kind) and considered both conditions of equal and of different reference temperatures of the external 
fluid and furthermore included viscous heating effects. Building on Zanchini’s work, Umavathi et al. [41] 
considered the supplementary effects of heat generation and absorption. Umavathi et al. [42] further 
extended the Zachini model to consider non-Darcy effects.   

In the present investigation, a mathematical model is developed to study the collective effects 
of first order homogeneous chemical reaction on double-diffusive convection in a viscous fluid flowing in 
a vertical duct containing an isotropic, homogenous porous medium.  The Brinkman-Forchheimer 
extended Darcy model is employed and Robin boundary conditions are imposed. This work therefore 
further generalizes the study in [42] to consider chemical reaction and viscous heating effects. Viscous 
heating is known to arise in a number of geological applications including mantle convection [43] and 
enhanced oil recovery [44]. Both perturbation and numerical solutions are presented, the former for the 
case of small Brinkman number (dissipation parameter) in the absence of Forchheimer inertial drag. 
Extensive visualization of the influence of non-Darcy, buoyancy, reaction, dissipation and boundary 
conditions on momentum, species and heat transfer characteristics are provided. 
 
2. MATHEMATICAL GEOTHERMAL REACTIVE DUCT FLOW MODEL 
 Steady-state, incompressible, fully developed flow driven by buoyancy due to temperature and 
concentration gradients in a vertical channel containing a saturated non-Darcy porous medium is 
considered.  Viscous dissipation and first order homogenous chemical reaction of the solute are 
assumed. An (X,Y) coordinate system is employed and the origin is located at the mid-plane of the 
channel. The distance between the plates is L as shown in the geothermal duct model i.e. Figure 1b.  The 
fluid properties are assumed to be constant except for density variations in the buoyancy force terms. 
Thermal dispersion, cross-diffusion and stratification effects are neglected. In addition, the 
concentration of the solute constituent in the solution that saturates the porous medium at the left wall 

is 1C  and at the right wall is 
2C  in such way that 

2 1C C .  The velocity is taken as zero on the walls of 

the duct.  The duct walls are infinite in the X -direction. Therefore the flow become one-dimensional 

along the X -axis, and hence velocity is a function of Y  only.  The governing equations for momentum, 
energy and species conservation with the Darcy-Forchheimer model after adopting the Boussinesq 
approximations may be shown to take the form: 

( ) ( )
2

2

0 0 0 0 2
0F

T C

Cp d U
g T T g C C U U

X dY


    

 


− + − − + − − =


                (1) 

22
2

2
0

d T dU
K U

dY dY






 
+ + = 

 
                                                                                  (2) 
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2

2
0m m

d C
D K C

dY
− =                                                                                                            (3) 

 
The thickness of the channel walls is neglected and the walls are assumed to exchange convective heat 

with the external fluid.  The convective heat co-efficient is taken as 1h  at the left wall  and 2h  at the 

right wall of the duct (channel). The reference temperature is 
1T  at 2Y L= −  and 2T  at 2Y L=  

such that 2 1T T . The pressure gradient is treated as constant 
P

A
X

 
= 

 
.  With these assumptions the 

conditions on the boundary for the velocity, temperature and concentration now can be written as:  
 

 
Figure 1b.  Schematic diagram of thermosolutal reactive convection in vertical porous medium 

geothermal duct 
  

0
2 2

L L
U U
   
− = =   
   

                                                                                               (5)                     

1 1 2 2

2 2

, , ,
2 2L L

Y Y

dT L dT L
K h T T X K h T X T

dY dY= − =

          
− = − − − = −          

          
                        (4) 

1 2,
2 2

L L
C C C C
   
− = =   
   

                                                                                                      (6)   

It is pertinent to invoke the following dimensionless parameters:   

X   

Y   

1C C=   
2C C=   

Y b= −   Y b=   

g
 

      

     Flow direction 

Porous 

Medium 

L 

Reactive and 

dissipative 

Newtonian 

fluid 
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0

U
u

U
= ;     0T T

T


−
=


;     

Y
y

D
= ;     

3

2

T
T

g TD
GR






= ;         

3

2

C
C

g TD
GR






= ;          0Re

U D


=  

2

0U
Br

K T


=


 ;     0RT

T T

T

−
=


;      1

1

h D
Bi

K
= ;     2

2

h D
Bi

K
= ;     

D



= ;    

2

0
48

AD
U



−
=       

2

m

m

K D

D
 =  ;   1 2

1 2 1 22 2

Bi Bi
S

Bi Bi Bi Bi
=

+ +
;      0C C

C


−
=


;   

2

0FC D U
I



 
= ;    2D L=                                                                                  

( )1 2
0 2 1

1 2

1 1

2

T T
T S T T

Bi Bi

 +
= + − − 

 
;  

1
Re

TGR
 = ;   

2
Re

CGR
 = ;  

2 1T T T = − ;  2 1C C C = − ;   

1 2
0

2

C C
C

+
=                                                                                                                                     (7) 

Implementing Eqn. (7) in Eqns. (1)–(6) yields the following system of coupled ordinary differential 
equations:                                                                                           
 

2
2 2

1 22
48 0

d u
u I u

dy
    + + + − − =                           (8)   

22
2 2

2
0

d du
Br Br u

dy dy




 
+ + = 

 
                       (9)                                                                                                                                             

2
2

2
0

d

dy


 − =                                        (10)         

 
The associated boundary conditions are:                                                                                                                                                     

1 1
0

4 4
u u
   
− = =   
   

                         (11) 

1 2
1 1

1 2
4 4

1 4 1 4
1 , 1

4 2 4 2

T T

y y

R S R Sd d
Bi Bi

dy Bi dy Bi

 
 

= − = −

            
= − + + = − + +                           

  (12)       

1 1
0.5, 0.5

4 4
 
   
− = − =   
   

                                                                                    (13)  

Here all parameters are defined in the notation. 
 
3. PERTURBATION SOLUTION METHOD  

The closed form solution of the linear species diffusion Eqn. (10) is readily obtained:  

( )

( )2 / 4

Sinh y

Sinh





=                                                      (14) 

 However, the problem represented by Eqns. (8) and (9) i.e. the transformed momentum and 
energy equations, is nonlinear and has no closed form solutions.  Therefore, approximate solutions are 
determined using a regular perturbation method (RPM).  These solutions are valid (in the absence of 
inertial effects) only for small values of the dissipation parameter i.e. Brinkman number (Br) which is 
taken as the perturbation parameter.  The solutions of Eqns. (8) and (9) can be expressed as: 
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2 3

0 1 2 3 .........u u Br u Br u Br u= + + + +                                                                               (15)                                                         
2 3

0 1 2 3 .........Br Br Br= + + + +                                                                                                (16) 

 
Substituting the above expansions (15) and (16) in Eqns. (8) , (9),  (11) and (12) and  equating the 

like powers of Br  one obtains the following equations: 
 

Zeroth order equations  ( )0Br =  

2
20

0 1 0 22
48 0

d u
u

dy
    − + + + =                                                                                       (17) 

2

0

2
0

d

dy


=                                                                                                                                         (18) 

0 0

1 1
0

4 4
u u
   
− = =   
   

                                                                                                         (19) 

0 0
1 0 2 0

1 1
1 2

4 4

1 4 1 4
1 , 1

4 2 4 2

T T

y y

d dR S R S
Bi Bi

dy Bi dy Bi

 
 

= − = −

            
= − + + = − + +                           

 (20)  

 
The closed form solutions of Eqns. (17) and (18) using boundary conditions (19) and (20) emerge as: 
 

0 3 4c c y = +                                   (21)                                                                                                                     

( ) ( )0 5 6 1 2 3( )u c Cosh y c Sinh y d Sinh y d y d  = + + + +                                                    (22) 

 

First order equations  ( )1Br =  

2
21

1 1 12
0

d u
u

dy
  − + =                                                                                  (23) 

22
2 201

02
0

dud
u

dy dy




 
+ + = 
 

                                                                                                        (24) 

1 1

1 1
0

4 4
u u
   
− = =   
   

                                                                                                              (25) 

( ) ( )1 1
1 11 1 2 1

1 14 4

4 4

,
y y

y y

d d
Bi Bi

dy dy

 
 

= − =

= − =

   
= = −   

   
                                                           (26) 

The closed form solutions of Eqns. (23) and (24) using boundary conditions (25) and (26) are: 
 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( )

1 1 2 3 4

5 6 7 8

4 3 2

9 10 11 12 7 8

2 2 2g Cosh y g Sinh y g Cosh y g Cosh y

g Cosh y g y Sinh y g Cosh y g Sinh y

g Cosh y g y g y g y c y c

     

    



= + + + + +

− + + + +

+ + + + +

                 (27) 
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( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )

1 9 10 1 2 3

4 5 6 7

4 3 2

8 9 10 11 12 13 14

2 2 2u c Cosh y c Sinh y f Cosh y f Sinh y f Cosh y

f Cosh y f Cosh y f y Sinh y f y Cosh y

f y Sinh y f Cosh y f y f y f y f y f

    

     

 

= + + + + +

+ + − + + +

+ + + + + +

     (28) 

 
4.MAPLE QUADRATURE NUMERICAL SOLUTIONS 

The approximate analytical solutions obtained are valid only for small values of Brinkman number 
and in the absence of inertia forces.  To relax this condition on Brinkman number and to evaluate the 
effects of porous medium inertial drag (Forchheimer second order impedance) on the flow, the 
momentum and energy Eqns. (8) and (9) are solved numerically using an efficient Runge-Kutta 
procedure with an appropriate shooting method. This may be executed in any number of symbolic 
software including Maple, Mathematica and Matlab. Details of this technique are given in [45]-[47]. 
MAPLE has been used in the geothermal duct simulation. The stepping formulae although designed for 
nonlinear problems, are even more efficient for any order of linear differential equation and are 
summarized below: 
 

( )0 , ,i ik f x y=               (29) 

1 0

1 1
, ,

4 4
i ik f x h y hk

 
= + + 

 
            (30) 

2 0 1

3 3 9
, ,

8 32 32
i ik f x h y k k h

  
= + + +  

  
           (31) 

3 0 1 2

12 1932 7200 7296
, ,

13 2197 2197 2197
i ik f x h y k k k h

  
= + + − +  

  
         (32) 

4 0 1 2 3

439 3860 845
, 8 ,

216 513 4104
i ik f x h y k k k k h

  
= + + − + −  

  
        (33) 

5 0 1 2 3 4

1 8 3544 1859 11
, 2 ,

2 27 2565 4101 40
i ik f x h y k k k k k h

  
= + + − + − + −  

  
       (34) 

1 0 2 3 4

25 1408 2197 1
,

216 2565 4101 5
i iy y k k k k h+

 
= + + + − 

 
         (35) 

1 0 2 3 4 5

16 6656 28561 9 2
.

135 12825 56430 50 55
i iz z k k k k k h+

 
= + + + − + 

 
        (36) 

 
Here 𝑦 denotes fourth order Runge-Kutta phase and 𝑧 is the fifth order Runge-Kutta phase. An estimate 
of the error is achieved by subtracting the two values obtained. If the error exceeds a specified 
threshold, the results can be re-calculated using a smaller step size. The approach to estimating the new 
step size is shown below: 

1
4

1 1

.
2

old
new old

i i

h
h h

z y



+ +

 
=   − 

            (37) 
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The solutions obtained by the numerical scheme (RKM) are used to validate the perturbation 
solutions (RPM), for small values of Brinkman number. Excellent correlation is obtained as described in 
due course (Tables 3 and 4).  
 
5 ENERGY DESIGN QUANTITIES -  SKIN FRICTION AND NUSSELT NUMBER 

The dimensionless skin friction (surface shear stress i.e. velocity gradient) and Nusselt number 
(surface heat transfer rate i.e. temperature gradient) are given by: 

1 2
1 1

4 4

,
y y

du du

dy dy
 

= − =

   
= =   
   

                                                                                           (38) 

1 2
1 1

4 4

,
y y

d d
Nu Nu

dy dy

 

= − =

   
= =   
   

                                                                                          (39) 

 
 
6. RESULTS AND DISCUSSION 

Figures 2-23 display the profiles for the velocity, temperature and solute concentration obtained 

with the numerical method (RKM).  These results illustrate the effects of Brinkman number Br , thermal 

Grashof number 1 , solutal (concentration) Grashof number 2 , chemical reaction parameter  , 

Forchheimer inertial parameter I  for different values of porous parameter  , Biot numbers and 
temperature difference ratio RT.  Eqns. (8) to (10) along with boundary conditions (11) to (13) are solved 
analytically using the regular perturbation method (RPM) which is valid when Brinkman number is less 
than one and numerically with the Runge-Kutta and shooting method (RKM) which can be employed for 
any values of Brinkman number.  

The effects of thermal Grashof number 1  and porous medium parameter   on the velocity 

and temperature characteristics are shown in Figs. 2 to 4.  In the absence of viscous dissipation 

( )0Br = , there is a flow reversal near the cold wall for strong thermal buoyancy cases with values of  

1 500, 1000 = .  Figure 2 also indicates that increasing porous medium parameter   decelerates the 

flow for all values of thermal Grahsof number,  1 .  
D




=  and evidently this parameter is inversely 

proportional to the medium permeability, . It arises in the Darcian linear impedance term in the 

normalized momentum eqn. (8) i.e. - 2u. Clearly as -  increases the medium permeability is reduced 
and this increases the resistance of porous medium fibers (fabric) to the flow. Velocity is therefore 
depleted. The temperature profiles as seen Figs. 3 and 4 are drawn for different values of Brinkman 

number Br  and porous parameter   in the absence of thermal Grashof number  1  for equal and 

unequal Biot numbers.  In the absence of viscous dissipation, the temperature profile is linear as the 
heat transfer contribution is dominated by thermal conduction.  The effect of viscous dissipation 

( )0Br   is to increase the temperature field for equal and unequal Biot numbers.  This is due to the 

conversion of kinetic energy into heat via viscous heating which increases temperatures in the regime. 
However, the nature of profiles is markedly different for equal and unequal Biot numbers.  There is a 
convective heat transfer domination over conduction heat transfer in the boundary layer region 
adjacent to the walls.  Figures 3 and 4 also imply that the effect of increasing permeability parameter   
is to reduce the temperature magnitudes for both equal (symmetric case) and unequal (asymmetric 
case) Biot numbers. Decreasing permeability offers less fluid volume for thermal convection and greater 
solid fibers for thermal conduction. This cools the regime.  The results obtained in Figs.  2 to 4 in the 
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absence of porous medium parameter, inertial parameter and concentration Grashof number are similar 
to those obtained by Zanchini [40].   

The impact of thermal Grashof number on velocity and temperature evolution in the regime is 

illustrated in Figs. 5 to 8 for various values of Brinkman number Br  and porous medium parameter  .  

The effect of viscous dissipation (simulated in the nonlinear term, 2Bru2 in the energy eqn. (9)) is to 

enhance the flow for all values of porous medium parameter  and Biot numbers (Bi1 and Bi2).  The large 

values of  as noted earlier, decrease medium permeability and therefore inhibit thermal convection.  
The frictional drag resistance and inertial quadratic drag significantly retard the flow for both equal and 
unequal Biot numbers.  Temperatures are significantly elevated with greater Brinkman number and 
higher magnitudes are obtained for the asymmetric Biot number case (fig. 8) compared with the 
symmetric Biot number case (fig. 6). Evidently therefore the inclusion of Robin boundary conditions 
produces substantially different magnitudes compared with conventional boundary conditions. 

The effect of thermal Grashof number 1  and porous parameter   on the velocity and 

temperature fields are displayed in Figs. 9 to 12 for equal and unequal Biot numbers.  The effect of 

thermal Grashof number 1  is to enhance the velocity and temperature fields for both equal and 

unequal Biot numbers.  This is due to the fact that with higher values of thermal Grashof number there 

is an enhancement in thermal buoyancy force in the body force term, + 1 in Eqn. (8) which serves to 
accelerate the flow, as noted in many studies including Gebhart et al. [48].  The effect of porous 
parameter   is again to suppress the convection motion and reduce temperatures in the regime owing 
to the increased Darcian drag counteracting the flow for both equal and unequal Biot numbers.   

The effect of concentration Grashof number 2  and porous parameter   is shown in Figs. 13 

and 14.  As the concentration Grashof number 2  increases, the species buoyancy force modelled via 

the term +2 is increased. The velocity and temperature near the cold wall decreases, whereas it 
increases at the hot wall for different values of porous parameter  .  The effect of concentration 

Grashof number 2  on the velocity and temperature fields for unequal Biot numbers show a similar 

effect to that computed with equal Biot number (Figs. 13 and 14) and are therefore not included. The 
effect of chemical reaction parameter   on the concentration field is to increase the velocity field near 
the left wall and decrease it at the right wall as shown in Fig. 15.  The impact of chemical reaction is 
therefore not consistent across the vertical channel span. The homogenous chemical reaction is both 
destructive (in the right half space) and constructive (in the left half space). Equation (10) implies that 
the concentration field is influenced only by the chemical reaction parameter   and remains invariant 
with the other parameters. In the absence of chemical reaction effect there is clearly a linear ascent in 
concentration from the left wall to the right wall. This is warped into an increasingly parabolic profile 
with stronger chemical reaction effect. 

Figures 16 to 19 display the effect of Forchheimer inertial parameter I  and porous medium 
parameter   on the velocity and temperature distributions for equal and unequal Biot numbers.  The 
effect of inertial parameter is to decelerate the flow for both equal and unequal Biot numbers.  The 

impact of inertial parameter I  is more prominent at smaller values of porous parameter   as noted by  
Lai and Kulacki [48]. Clearly the neglection of Forchheimer second order drag leads to over-predictions 
in the velocity magnitudes. Temperatures are also strongly suppressed with increasing  inertial 
parameter, I and the distributions for the both equal (symmetric) and unequal (asymmetric) Biot 
number cases are distinctly monotonic in nature at high permeability parameters ( ) whereas they are 
morphed into parabolic profiles at lower values of  .  

Figures 2 to 19 are drawn for asymmetric condition i.e. temperature difference ratio is non-zero 

( )0TR  .  To understand the flow nature for the symmetric condition ( )0TR = , the velocity and 
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temperature profiles are shown in Figs. 20 to 23 for equal and unequal Biot numbers and for different 

values of Brinkman number Br . The effect of Brinkman number for the symmetric condition is similar 
to that observed for the asymmetric condition (Figs. 5 to 8).  That is to say that, Brinkman number 
accelerates the flow for equal and uneqal Biot numbers whereas the porous medium parameter 
consistently decelerates the flow.  The effect of Brinkman number for equal and unequal Biot numbers is 
again in good agreement with the nature of the results observed by Zanchni (1998) in the absence of 
porous medium and chemical reaction effects. 

The values of skin friction and Nusselt numbers are shown in Tables 1 and 2 respectively for all 
the emerging thermophysical parameters for both equal and unequal Biot numbers.  For equal Biot 

numbers, as the Brinkman number Br  and chemical reaction parameter   are increased, skin friction 
increases at the left wall whereas it decreases at the right wall with greater values of thermal Grashof 

number 1 , solutal (concentration) Grashof number 2 , porous parameter   and inertial parameter 

I . The skin friction at the right wall increases in magnitude with an elevation in values of thermal 
Grashof number, solutal Grashof number and Brinkman number whereas the converse behavior is 
observed with increasing the values of chemical reaction parameter, porous parameter and inertial 
parameter. A similar trend is computed for the asymmetric case of unequal Biot numbers. 

The rate of heat transfer i.e. Nusselt number 1Nu  at the left wall increases with greater  values 

of thermal Grashof number, Brinkman number and chemical reaction parameter whereas it decreases 
with concentration Grashof number, porous medium parameter and Forchheimer inertial parameter.  

The Nusselt number 
2Nu  at the right wall however decreases with  increasing the values of thermal 

Grashof number, concentration Grashof number and Brinkman number whereas it increases with 
chemical reaction parameter, porous medium parameter and Forchheimer inertial parameter.  For 

unequal Biot numbers, 1Nu  increases with thermal Grashof number, Brinkman number and chemical 

reaction parameter, whereas it is reduced with increasing concentration Grashof number, porous 

medium parameter and Forchheimer inertial parameter.  At the right wall, 
2Nu  increases with thermal 

Grashof number, concentration Grashof number and Brinkman number whereas it decreases with 
chemical reaction parameter, porous medium parameter and Forchheimer inertial parameter.    

The results illustrated in Figs 2-23 and Tables 1 and 2 are evaluated by solving the                Eqs. 
(8) to (10) along with the boundary conditions (10) to (13) using the Runge-Kutta-Shooting method 
(RKM). To verify the solutions obtained by Runge-Kutta-Shooting method, a comparison is made with 
the analytical solutions obtained using regular perturbation method (RPM) in the absence of inertial 
effects.  The comparisons are documented in Tables 3 and 4 for equal and unequal Biot numbers 
respectively.  In the absence of Brinkman number, analytical and numerical solutions for the velocity, 
temperature and concentration fields are the same for both cases of equal and unequal Biot numbers. 

For equal Biot numbers and 0.01Br = , the analytical and numerical solutions agree to the three 

decimal places for the velocity field, one decimal place for the temperature field and they are identical 

for the species (concentration) field. As Br  increases ( )0.5Br = , the error between the analytical and 

numerical solutions increases. The difference between the analytical and numerical solutions for the 
temperature filed is more significant for the case of unequal Biot numbers compared to the case for 
equal Biot numbers. Exact solutions are obtained for the concentration field and hence there is no 
deviation between analytical and numerical solutions for either case of equal and unequal Biot numbers. 
 
7. CONCLUSIONS 

Thermosolutal dissipative chemically reacting flow in a vertical geothermal duct channel 
containing a non-Darcy porous medium with Robin boundary conditions has been studied theoretically.  
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The transformed, non-dimensional equations for momentum, energy and species conservation have 
been solved both with a perturbation method (for low Brinkman number in the absence of Forchheimer 
drag) and with Runge-Kutta quadrature and a shooting method in the presence of inertial effects. Good 
correlation of both solutions has been demonstrated in the absence of inertial effects. The simulations 
have shown that for the small values of Brinkman number, the analytical and numerical solutions agree 
and the error increases as Brinkman number increases.  For the non-Darcy case, an increase in Brinkman 
number and thermal Grashof number induces significant flow acceleration. With increasing solutal 
(concentration) Grashof number the velocity distribution is less significantly affected and the flow 
decreases at the cold wall and increases at the hot wall for both equal and unequal Biot numbers. An 
increase in homogenous first order chemical reaction parameter decreases the velocity magnitudes. 
Increasing porous medium (Darcy inverse permeability) parameter and Forchheimer second order 
inertial parameter both inhibit flow and manifest in strong retardation.  The skin friction at the left wall 
is elevated with greater viscous dissipation (i.e. Brinkman number), chemical reaction parameter 
whereas it is reduced with increasing thermal Grashof number, concentration Grashof number, porous 
medium and Forchheimer inertial parameters for both equal and unequal Biot numbers.  At the right 
wall, the skin friction is enhanced with greater thermal Grashof number, concentration Grashof number, 
Brinkman number and the contrary effect is induced with higher values of chemical reaction parameter, 
porous medium and Forchheimer inertial parameter.  The Nusselt number at the left wall is boosted 
with greater thermal Grashof number, Brinkman number, chemical reaction parameter whereas it is 
suppressed with greater concentration Grashof number, porous medium and Forchheimer inertial 
parameter for equal Biot numbers.  At the hot wall the rate of heat transfer (Nusselt number) decreases 
with an increase in the values of thermal Grashof number, (solutal) concentration Grashof number and 
Brinkman number and the opposite behavior is generated with an increase in the chemical reaction 
parameter, porous medium and Forchheimer inertial parameters. Overall the inclusion of viscous 
dissipation, chemical reaction and Robin (mixed) boundary conditions modifies the transport 
phenomena characteristics significantly and provides for more realistic simulations of geological 
(geothermic) double-diffusive convection flows. The current study has been confined to Newtonian 
fluids. Future studies will consider non-Newtonian models and more complex porous media models of 
relevance to geothermal energy systems and will be reported soon.  
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Figure 12  Plots of  for different values of  
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Figure 16   Plots of u for different values of I and 
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Figure 17   Plots of  for different values of I and 
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Figure 18   Plots of u for different values of I
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Figure 19   Plots of  for different values of I
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Figure 20  Plots of u  for different values of Br
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Figure 21  Plots of   for different values of Br
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Figure 22  Plots of u  for different values of Br
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Table 1.  Values of skin friction for 
1 21.0, 0.1, 5.0, 5.0,TR Br  = = = =               

4.0, 4, 2.0I = = =  

 
1 210, 10Bi Bi= =  

1 21, 10Bi Bi= =  

 
1  2  

1  2  

1      

0 8.20961740 -9.66979819 8.20961741 -9.66979817 

1 8.02258775 -9.90405984 8.07487173 -9.90808428 

10 8.17853069 -10.20209829 8.76825020 -10.28391936 

15 8.17471594 -10.48219512 9.12954560 -10.64964620 

2      

0 8.92198237 -9.19971245 9.20543493 -9.23294741 

10 8.55619963 -9.56564540 8.83568246 -9.59665599 

15 8.37333986 -9.74864341 8.65096071 -9.77860981 

20 8.19050118 -9.93166244 8.46634234 -9.96062885 

Br   

0 8.61880003 -9.26093744 8.69674926 -9.18302219 

0.1 8.73908047 -9.38266842 9.02050713 -9.41476862 

0.25 8.93370857 -9.57956463 9.60097625 -9.82858396 

0.5 9.30448798 -9.95440573 11.00456636 -10.82170361 

   

2 8.73066964 -9.39108481 9.01196010 -9.42310853 

4 8.73908047 -9.38266842 9.02050713 -9.41476862 

6 8.75094236 -9.37079924 9.03255979 -9.40300648 

8 8.76422503 -9.35750902 9.04605371 -9.38983481 
      

2 10.51822810 -11.18994069 10.89017888 -11.27808897 

4 8.73908047 -9.38266842 9.02050713 -9.41476862 

6 6.93569686 -7.53849292 7.13590776 -7.52731639 

8 5.52045106 -6.07667328 5.66585566 -6.04313955 

I      

0 8.95016417 -9.59937974 9.25515002 -9.64623862 

4 8.55273965 -9.19117075 8.81516225 -9.21177612 

8 8.23576153 -8.86498898 8.46924677 -8.86890439 

12 7.97319433 -8.59435797 8.18553630 -8.58680505 

 

Table 2. Values of Nusselt number for 
1 21.0, 0.1, 5.0, 5.0,TR Br  = = = =                 

4.0, 4, 2.0I = = =  

 
1 210, 10Bi Bi= =  

1 21, 10Bi Bi= =  

 
1Nu  

2Nu  1Nu  
2Nu  

1      

0 2.20590246 0.58641333 0.96508232 -0.65440681 

1 2.20274019 0.57056862 0.96624557 -0.67561102 

10 2.24398751 0.51993840 1.01314568 -0.83307637 
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15 2.26612337 0.48278372 1.04479064 -0.94909266 

2      

0 2.25330114 0.59097032 1.00103041 -0.71926289 

10 2.23799593 0.57332905 0.99374506 -0.72683200 

15 2.23083496 0.56401640 0.99032844 -0.73141408 

20 2.22400171 0.55437568 0.98706252 -0.73652758 

Br   

0 1.42857143 1.42857143 0.62500000 0.62500000 

0.1 2.24548465 0.58231369 0.99731231 -0.72278159 

0.25 3.56829007 -0.78642688 1.66717021 -3.12403029 

0.5 6.09162205 -3.39234347 3.29821141 -8.86814262 

   

2 2.24495965 0.58170685 0.99706236 -0.72304286 

4 2.24548465 0.58231369 0.99731231 -0.72278159 

6 2.24622029 0.58315811 0.99766245 -0.72242132 

8 2.24703481 0.58408524 0.99805013 -0.72203008 

      

2 2.43406463 0.38852539 1.08684360 -1.04457598 

4 2.24548465 0.58231369 0.99731231 -0.72278159 

6 2.04557087 0.78782259 0.90382367 -0.38627518 

8 1.88601903 0.95207874 0.83031980 -0.12121522 

I      

0 2.30008798 0.52648241 1.02363517 -0.81726044 

4 2.19887822 0.62999707 0.97505296 -0.64284628 

8 2.12303228 0.70765867 0.93919988 -0.51400837 

12 2.06347537 0.76870215 0.91133820 -0.41380703 

 
Table 3.   Values of velocity, temperature and concentration for equal Biot numbers 

1 2 10Bi Bi ,= =
1 21.0, 5.0, 5.0, 4.0, 6.0, 0.0TR I   = = = = = =  

 Velocity 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 0.0 0.0 0.0 0.0 0.0 0.0 

-0.15 0.507763 0.507763 0.508537 0.508388 0.546435 0.543576 

-0.05 0.734476 0.734476 0.73566 0.735413 0.793645 0.788179 

0.05 0.747206 0.747205 0.74843 0.748146 0.808406 0.801080 

0.15 0.534372 0.534371 0.535217 0.535002 0.576642 0.570525 

0.25 0.0 0.0 0.0 0.0 0.0 0.0 

 Temperature 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 -0.357152 -0.357142 -0.348766 -0.350897 0.062149 0.000378 

-0.15 -0.214291 -0.214285 -0.201573 -0.203530 0.421609 0.401931 

-0.05 -0.071430 -0.071428 -0.055591 -0.054356 0.720533 0.668960 

0.05 0.071430 0.071428 0.088575 0.084436 0.928667 0.816485 
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0.15 0.214291 0.214285 0.230340 0.225279 1.016730 0.843386 

0.25 0.357152 0.357142 0.368392 0.363628 0.919112 0.727605 

 Concentration 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

-0.15 -0.270870 -0.270870 -0.270870 -0.270870 -0.270870 -0.270870 

-0.05 -0.085660 -0.085660 -0.085660 -0.085660 -0.085660 -0.085660 

0.05 0.085660 0.085660 0.085660 0.085660 0.085660 0.085660 

0.15 0.270870 0.270870 0.270870 0.270870 0.270870 0.270870 

0.25 0.5 0.5 0.5 0.5 0.5 0.5 

 
 
 
Table 4.  Values of velocity, temperature and concentration for unequal Biot numbers 

1 21 10Bi , Bi ,= = 1 21.0, 5.0, 5.0, 4.0, 6.0, 0.0TR I   = = = = = =  

 

 Velocity 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 0.0 0.0 0.0 0.0 0.0 0.0 

-0.15 0.511053 0.511053 0.512743 0.512223 0.595549 0.592291 

-0.05 0.736066 0.736066 0.738781 0.737917 0.871818 0.864793 

0.05 0.745616 0.745615 0.748608 0.747613 0.895212 0.884697 

0.15 0.531082 0.531081 0.533337 0.532554 0.643856 0.633721 

0.25 0.0 0.0 0.0 0.0 0.0 0.0 

 Temperature 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 -0.156250 -0.156250 -0.141546 -0.146320 0.578967 0.528364 

-0.15 -0.093750 -0.093750 -0.068566 -0.075659 1.165420 1.158835 

-0.05 -0.031250 -0.031250 0.002975 -0.007365 1.680040 1.628224 

0.05 0.031250 0.031250 0.072650 0.058840 2.101260 1.952966 

0.15 0.093750 0.093750 0.140007 0.122945 2.406610 2.131153 

0.25 0.156250 0.156250 0.203940 0.184566 2.540730 2.134406 

 Concentration 

 Br =0.0 Br =0.01 Br =0.5 
y  RPM RKM RPM RKM RPM RKM 

-0.25 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

-0.15 -0.270870 -0.270870 -0.270870 -0.270870 -0.270870 -0.270870 

-0.05 -0.085660 -0.085660 -0.085660 -0.085660 -0.085660 -0.085660 

0.05 0.085660 0.085660 0.085660 0.085660 0.085660 0.085660 

0.15 0.270870 0.270870 0.270870 0.270870 0.270870 0.270870 

0.25 0.5 0.5 0.5 0.5 0.5 0.5 
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