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ABSTRACT 

Motivated by recent developments in bio-inspired medical engineering microscale pumps, in 

the present article a 3-dimensional sequential simulation of a peristaltic micro-pump is 

described to provide deeper insight into the hydromechanics of laminar, viscous flow in 

peristaltic propulsion. The Carreau and power-law models are employed for non-Newtonian 

behavior. The commercial software package ANSYS Fluent is utilized to conduct a numerical 

simulation of laminar peristaltic pump fluid dynamics, based on the finite volume method and 

steady space laminar solver. Details are provided for the geometric pump design (conducted 

with AUTOCAD), pre-processing (meshing) and necessary boundary conditions to simulate 

the peristaltic flow within the pump. Extensive visualization of velocity, pressure and vorticity 

contours is included. The present simulations provide a benchmark for future comparison with 

experimental studies and indeed more advanced numerical simulations with alternative non-

Newtonian models. Applications of the study include biomimetic blood flow pumps, blood 

dialysis machines, microscale infusion pumps etc. 

KEY WORDS: Peristaltic micro-pumps; CFD; flow visualization; Vorticity; Carreau and 

power-law model. 
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NOTATION 

Times new Roman 

g is gravitational acceleration (m/s2) 

n is exponent (power law) index in both Ostwald-DeWaele and Carreau models (no units) 

p is pressure (Pa) 
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t is time (s) 

u,v,w are the velocities in the (x,y,z) coordinate directions respectively (m/s) 

Greek  

 is fluid density (kg/m3) 

  is dynamic (Newtonian) viscosity (Pa s), 

 
0
 is the zero shear rate viscosity in Carreau model (Pa s), 

 


 is the infinite shear rate viscosity Carreau model (Pa s), 

λ is the relaxation time (s) 

• is shear rate in both power-law and Carreau model (s-1) 


0
 * is the flow consistency index in power-law model (Pa s), 

 

1. INTRODUCTION 

Bio-inspired micro-pump design in medical engineering has witnessed significant interest in 

recent years [1]. Many sophisticated mechanisms arise in nature which can be mimicked to 

improve the efficiency and robustness of industrial micro-pumps. These include ciliated walls, 

variable stiffness and wall deformability, adaptive healing, surface tension, electro-osmosis 

and many other intriguing features. One of the most efficient and frequently deployed 

mechanisms of biological transport is peristalsis. Peristalsis involves the propulsion of 

physiological fluids via rhythmic contraction of the walls of a vessel. It arises in phloem trans-

location in botany, embryonic heart development, blood transport in narrow vessels and 

intestinal dynamics. Numerous studies of peristaltic pumps have been communicated in recent 

years [2-6]. The majority of computational and analytical studies which address peristaltic 

pumping flows have used Newtonian models and have been restricted to 2-dimensional 

simulations employing lubrication theory. Interesting Newtonian peristaltic analyses include 

Tsui et al. [7], Kothandapani and Srinivas [8], Kumar et al. [9], Jimenez-Lozano and Sen [10] 
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and Reddy et al. [11]. These studies have addressed both tube and channel geometries with 

deformable conduit walls. Most physiological fluids including blood however exhibit non-

Newtonian properties which manifest as deformation-rate dependency, yield stress, 

viscoelasticity, thixotropy. The high concentration of suspended particles (red blood cells, 

proteins, nutrients, leukocytes) and their inherent elasticity contribute strongly to non-

Newtonian behavior, especially in narrow vessels (micro-circulation). Non-Newtonian effects 

are therefore also likely to contribute strongly in blood micro-pump dynamics even at low 

deformation rates [12]. Many researchers have therefore employed a range of non-Newtonian 

(bio-rheological) models to simulate peristaltic flows of blood and other biological fluids. 

These studies include Muthu et al. [13] who considered micropolar fluid theory (to represent 

spin of suspended particles). Tripathi et al. [14] utilized a Nakamura-Sawada bi-viscosity 

model to study peristaltic pumping in a curved conduit. Shafie et al. [15] studied heat transfer 

in peristaltic flow of Sisko fluids with cross-diffusion effects, examining both shear-thinning 

and thickening effects. Tripathi and Bég [16] presented a detailed study of a variety of 

viscoplastic biofluids propelled by peristaltic waves, including the Casson model, Herschel-

Bulkley Vocadlo models. Viscoelastic fluid peristaltic propulsion has also been studied using 

the Reiner-Rivlin third order model by Ali et al. [17] (who also examined wall slip) and the 

Jefferys model by Tripathi et al. [18] who also considered electro-osmotic and finite conduit 

length effects. A simple but popular model in non-Newtonian fluid mechanics is the Ostwald-

DeWaele power-law model. This allows deviations from the non-Newtonian model via a power 

law index for the shear rate and includes both dilatant (shear-thickening i.e. viscosity is 

elevated under increasing shear strain and power-law index exceeds unity) and pseudo-plastic 

(shear-thinning i.e. viscosity reduces under increasing shear strain and power-law index is less 

than unity) fluids, the latter being more appropriate for blood flows. Several studies of power-

law peristaltic hydrodynamics have been comunicated including the articles of Rao and Mishra 
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[19] and Hina et al. [20]. Reddy et al. [21] also studied power-law channel flow under 

peristaltic waves with the same speed but different amplitudes and phases on the flexible walls 

of the channel, presenting extensive solutions for the influence of power-law rheological index 

on pumping characteristics and axial velocity distributions. Another relatively simple non-

Newtonian model is the Carreau fluid which also exhibits shear-rate dependent viscosity. An 

interesting feature of this model is that it degenerates to the Newtonian viscous fluid at small 

shear rates and behaves as a power-law fluid at large shear rates. Sobh [22] investigated using 

a perturbation method the peristaltic pumping of a Carreau fluid in an asymmetric channel, 

describing the influence of Weissenberg number and wall slip on the axial velocity and pressure 

gradient. Ali et al. [23] used a finite difference numerical method to simulate the peristaltic 

transport of a Carreau fluid in a curved channel under the long wavelength and low Reynolds 

number assumptions, noting that for shear-thickening fluids, significant axial flow acceleration 

accompanies an increase in Weissenberg number. Further studies of Carreau fluid peristalsis 

and power-law peristaltic dynamics have been presented by Akram [24] and Chaube et al. [25], 

respectively. The above studies have generally utilized numerical methods to solve 

dimensionless models under lubrication approximations. This approach severely limits the 

applicability of these models to actual engineering and clinical applications. Modern 

computational fluid dynamics (CFD) commercial softwares however provide currently the 

most comprehensive simulation tools for modelling real-world peristaltic flows. These tools 

utilize finite volume or finite element solvers. Several authors have successfully analyzed 

peristaltic Newtonian flows by simulating fluid structure interaction (FSI) between the 

propelled fluid and the deformable walls.  Kozu et al. [26] used a commercial CFD code to 

analyze the two-dimensional intra-gastric peristaltic flow and mass transfer a gastric digestive 

enzyme (pepsin) generated by an antral contraction wave (ACW) along the walls of the distal 

stomach. Vahidi and Fatouraee [27] presented a two-dimensional ureteral laminar peristaltic 



5 
 

simulation employing a hyperelastic, isotropic, incompressible and homogeneous material 

model for the wall and the ADINA finite element code with solid elements for large 

displacement for the wall structure, and planar fluid element for the urine flow. Najafi et al. 

[28] employed the ANSYS FLUENT finite volume code to analyze the dynamics of kidney 

stone displacement in ureteral peristalsis, visualizing extensively the influence of stone shape 

on bolus dynamics, velocity distributions, mass flow rates, pressure gradients, and wall shear 

stresses.  

The above CFD peristaltic flow simulations were all restricted to Newtonian viscous fluids and 

did not consider applications in bio-inspired peristaltic micro-pumps. In the present article, 3-

dimensional simulations of both Newtonian and non-Newtonian fluids in a peristaltic blood 

micro-pump are described. The Carreau and power-law models are deployed to characterize 

rheological behaviour. ANSYS Fluent [29] is implemented for the simulations. Contour plots 

for velocity, pressure and vorticity are incorporated. The current work is relevant to providing 

more realistic numerical simulations of actual peristaltic propulsion hydromechanics in bio-

inspired micro-pumps [30] and it is envisaged that it will provide a useful compliment to 

experimental studies [2] and more elaborate non-Newtonian simulations. 

 

2. GEOMETRIC MODEL 

Utilizing the modified design of a peristaltic micro pump produced by Rishi Kant et. al [2]  a 

three-dimensional  model was constructed using the 3D design software AutoCAD. The outline 

of the model from the original study was traced and a three-dimensional copy of the domain 

was formed. Comparison between the original design and the traced model can be seen in Figs. 

1 and 2, while Fig 3 displays the geometry produced on AutoCAD.  The domain of peristaltic 

pump model was 9 mm in length and 2 mm in width. The height of the tube leading to the 
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pump outlets measured at 0.2 mm. This geometrical model was imported to ANSYS Fluent 

Software and the material specifications on the layers were defined. The design was further 

improved to include an inlet layer of 0.2 mm width to represent the pump inlet surface (Fig. 3). 

 

3. MATHEMATICAL FLOW MODEL 

Laminar, viscous dominated peristaltic flow is considered in the geometrical micro=pump 

domain described in Section 2. The fundamental equations for mass and momentum 

conservation employed in ANSYS FLUENT are the 3-D unsteady incompressible Navier-

Stokes equations which comprise the mass conservation and x-, y- and z-momentum 

conservation equations. These may be stated as follows [29, 30]: 

D’Alembert mass conservation (3-D continuity) 

       (1)  

X-direction momentum conservation 

  (2)  

Y-direction momentum conservation 

  (3)  

Z-direction momentum conservation  

 (4)  

Where (u,v,w) are the velocities in the (x,y,z) coordinate directions respectively, p is pressure, 

Fx,Fy,Fz are the body forces (gravitational, magnetic, electrical etc),  is fluid density,  is 
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dynamic viscosity, t is time. The eqns. (1)-(4) are employed in the Newtonian flow simulations. 

For the non-Newtonian flow simulations, both power-law and Carreau models are utilized, as 

defined in ANSYS FLUENT [29] with a modified viscosity formulation. The simulations are 

described in Secn. 6. Based on the experimental data used by Rishi Kant et al. (2012), the inlet 

was specified as pressure-inlet type zone with and both outlets as a pressure-outlet zone with a 

target mass flow rate specified accordingly. The temperature influence was neglect as the 

energy equation solver was turned off. A summary of the boundary conditions used in the 

simulations can be found in Table 1 below. The viscosity in eqns (2)-(4) is modified for both 

the non-Newtonian Carreau model and the power-law model. The Carreau viscosity-shear rate 

relation as given in ANSYS Fluent [29] takes the form: 

                                        = 
∞

+ (
0

− 
∞

)[1 + (𝜆•)2]
𝑛−1

2      (5) 

Here 
0
 is the zero shear rate viscosity (= 0.056 𝑃𝑎 ∙ 𝑠), 


 is the infinite shear rate viscosity 

(0.00345 𝑃𝑎 ∙ 𝑠), λ is the relaxation time (=3.313s), • is shear rate (s-1) which is variable and 

n is power law index (= 0.3568). The values of the parameters as used in the ANSYS 

simulations are given in brackets and taken from Gijsen et al. [31] and Robertson et al. [32]. 

The power-law model formulation for viscosity-shear rate takes the form [29]: 

 = 
0

∗ (𝛾•)𝑛−1      (6) 

Here 
0
 * is the flow consistency index (= 0.035 Pa·s), • is shear rate (s-1) which is variable 

and n is power law index (= 0.6 i.e. pseudo-plastic). We further note that for the Newtonian 

simulations, blood has a constant viscosity of  = 0.0035 𝑃𝑎 ∙ 𝑠 . 

 

4. FINITE VOLUME MESHING, PRESSURE-BASED SOLUTION, CONVERGENCE 

AND GRID INDEPENDENCE 
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A body-sizing meshing approach, compromising mainly of tetrahedron cells to accommodate 

the anomalous structure of the model, was used to produce an adequate meshing that satisfies 

the problem specifications. Refinements concentrated at the edges of the inlet and outlets where 

placed to resolve the complex flow in these zones. The smallest elements were situated at the 

walls to accommodate boundary layer conditions. The cell distribution around the model can 

be seen in Figs. 5 and 6 below. Additionally, refined meshes for the domains were employed 

to investigate the influence of mesh size on the results for the grid independency study 

conducted below in Table 2 and Fig. 7. The results of the grid independency study clearly 

shows that the values for the outflow velocity stabilizes at around 330,000 elements, with a 

slight difference in values after that. Thus making the original mesh the ideal choice in this 

situation. The simulations were conducted with the pressure based solver due to the 

incompressible assumption for blood [29]. The pressure-based solver relies on two types of 

algorithms, a segregated algorithm and a coupled one. The segregated algorithm uses 

sequential steps to solve the governing equations in a more memory efficient manner by storing 

the discretized equations once in the memory. The coupled solve solves the governing 

equations by coupling them together resulting in a delay in convergence and requiring more 

memory. Convergence is critical to achieving fast, accurate solutions. Monitoring of the 

regulated equation residuals of the momentum and continuity equations should preferably be 

lower than 10-5. However, this criterion alone does not guarantee the effective validity of 

results. Some of the cases might not fulfill the required residual criterion regardless of the 

validity of the results, and other cases might yield incorrect solutions even with low residuals. 

Thus, the monitoring of the mass, conservation and output pressure is required. The total 

fractional difference between the inward and outward mass flow of the domain should ideally 

be below 0.01 %, while the outlet pressure and mass flow through open boundaries should 

remain constant for a number of iterations before settling for convergence. Furthermore 
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validation of the ANSYS Fluent simulations confirms the accuracy of the computations. 

Validation of the results can be achieved via three mechanisms- with previous theoretical, 

experimental or analytical work. This step guarantees the reliability of the model, where failure 

might lead to the need to re-assess and further modify the model to achieve optimal results. In 

the present study, results of the modified peristaltic micro-pump simulation are compared with 

the experimental work of Rishi Kant et al. [2].Table 3 below shows the experimental results 

for the flow rate versus the actuating pressure for the optimized design peristaltic micro pump. 

The values were converted to accommodate the ANSYS fluent parameter requirements and the 

simulation was conducted for each actuating pressure factor to verify the simulative reliability. 

Excellent verification of solutions is demonstrated in Table 3. Confidence in the present 

ANSYS Fluent results is therefore justifiably high. 

5. SIMULATIONS 

3-D peristaltic flow simulations were conducted in ANSYS Fluent – first for two Newtonian 

cases (water and blood) and secondly for the two non-Newtonian blood cases. Blood was 

assumed to have constant density of 1050 kg/m3 [32]. The simulations utilized the steady space 

laminar solver with a constant viscosity for the Newtonian behavior. Viscosity variation was 

incorporated with ANSYS Fluent definer functions for the non-Newtonian behavior for the 

Power Law and the Carreau solver models. The first part of the experiment involved simulating 

the fluid flow through the optimized peristaltic pump design. Water was also used for testing 

simulations to emulate the experimental conditions set by Kant et al. [2]. Their experimental 

study involved pumping a water solution containing fluorescent microbeads through an 

optimized chamber design assembly. A steady space pressure solver, coupled with a viscous 

laminar model, was deemed suitable for this investigation.  All current simulations have been 

performed using a Lenovo Y510p laptop machine with 8 GB of RAM and an Intel® Core i7-

4700MQ CPU @ 2.4 GHz processor with a NVidia® 755m gt SLI GPU running on a Windows 
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10 platform. The solver was set to include double precision option to allow a higher rate of 

accuracy and parallel processing option was enabled to utilize the power of the multi core 

system and the double GPU feature within the machine. The effect of gravity was also taken 

into consideration with g = -9.81 m/s2 along the z-axis. First the velocity distribution along the 

length of the micro channel was computed. Next the pressure distribution was computed. In 

addition the vorticity was also computed at specified regions of action around the design of the 

micro pump. All of the distributions presented were taken along half of the length of the 

microchannel due to the symmetrical nature of the results on both sides. The visualizations to 

be described include 4 cases: water, Newtonian blood, and two non-Newtonian models for 

blood in peristaltic propulsion.  

5.1 Velocity Distribution along the Micro pump 

The velocity distribution along the micro-pump for all the 4 cases are plotted in Figs. 8-11. 

Velocity contours for each case were also visualized and are presented in Figs. 12-15. Figure 

16 furthermore summarizes the above plots to provide an easy means of comparison. All cases 

follow the same trend as the fluid flows from the inlet toward the outlet. They exhibit a 

sigmoidal velocity growth which is characteristic of micro-pumps [3, 4]. An inlet velocity of 

0.2 at the inlet induces a small spike in the velocity profile across the four micro pumps that 

moves at a steady rate towards the outflow pump at 0.75 mms from the inlet. The micro pump 

design allows the emulation of the peristaltic action that propels the fluid from the main 

chamber towards the outlet by the rhythmic contraction of the pump chamber walls. This action 

induces a large spike in velocity as the fluid moves through the outflow pipe as can be seen in 

figure 16 above. The highest spike is associated with the non-Newtonian blood flow simulated 

by the Carreau model as the velocity increased to value of approximately 1.8 m/s. The power 

law model of the non-Newtonian blood flow showed a similar rate of increase as the Carreau 

model. However the spike settled at a lower velocity of approximately 1.3 m/s. Newtonian 
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blood flow, interestingly, showed a comparable velocity profile to that of the non-Newtonian 

power law model reaching velocities of 1.3 m/s, however, at a slightly lower flowrate. As 

expected the trend lines for both Newtonian flows showed close correlation with an almost 

identical trend as the fluid reaches the outflow pump. The much lower viscosity of water 

allowed the attainment of significantly higher velocity magnitudes. The relatively low viscosity 

of water also enables it to achieve a steady rise in velocity (flow acceleration) as it progresses 

through the distensible tube, reaching velocities of 1.795 m/s. The simulations confirm the 

potential of using peristaltic pumping as an efficient mechanism for transportation of both low 

and high viscosity fluids. Backflow is eliminated and steady flow profiles are generally 

maintained along the length of the micro-channel. The results also demonstrate the deviation 

in response (and hydro-mechanical pumping efficiency) between the power law model and the 

Carreau model, with the latter attaining more realistic values. The non-Newtonian property of 

blood i.e. shear thinning, leads to a drop in viscosity. This drop in viscosity is due to the increase 

in shear strain observed when the fluid moves from the main chamber towards the outflow 

pipe. This behavior is not seen in Newtonian fluids and thus explains the average rise in speed 

observed above for the non-Newtonian cases. The figures provide a clear visual representation 

of the fluid dynamics of 3-D peristaltic pumping. 

5.2 Pressure Distributions along the Micro Pump  

We now consider the pressure and pressure contour distributions for all 4 cases produced 

through the ANSYS Fluent simulations. As can be seen above from the pressure distribution 

plots, Figures 17-20, there are clear distinguishing factors between the Newtonian and non-

Newtonian models. The first two Newtonian models showed very similar trends with high 

pressure regions being observed in the chamber area and a steady sharp decline as the fluid is 

pumped out of the microchannel. This can be attributed to the viscosity profile of the 

Newtonian fluids. The water model showed a higher starting pressure that undergoes a drop in 
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magnitude from 1.84e5 Pa to approximately 1.81e5 Pa. However the Newtonian blood model 

achieved lower pressure levels due to its higher viscos nature with a starting pressure of 8.3e4 

Pa dropping at a higher rate to 7.5e4 Pa. The shear thinning behavior, commonly seen in non-

Newtonian fluids, results in magnitudes of pressure which deviate significantly from those 

computed for Newtonian fluids. The starting pressure for both the power law model and the 

Carreau model remained high at 8.3e4 Pa and ascended up to 8.95e4 Pa for the power law 

model and 9.13e4 for the Carreau model. This once again proved the efficiency of the Carreau 

model over the Power Law model for peristaltic pumping. Visualization of all four cases can 

be seen in Figures 21-24. The trapped bolus is clearly visualized again in these plots. 

5.3 Vorticity Distribution along Micro-Pump 

This section outline the vorticity distribution plots and contours for all cases produced through 

the simulation. Vorticity allows an appreciation of the tendency of a fluid particle to rotate or 

circulate at a particular point. It also contributes strongly to trapping phenomena in peristaltic 

fluid mechanics [33]. ANSYS Fluent allows vorticity computation easily via the “flow physics” 

GUI specifications [29]. Figs. 25- 28 illustrate the vorticity distributions all 4 cases examined, 

namely the Newtonian cases (water and blood) and the non-Newtonian cases (power-law and 

Carreau). Figs. 29-32 present the 3-D vorticity contour visualizations again for all 4 cases 

studied. The vorticity distribution profiles are particularly interesting for the four cases due to 

the varying nature of the results. We note that vorticity equals the curl of the velocity, and 

effectively embodies how a fluid element rotates as it travels with the main stream of flow. A 

small increase in vorticity at the inlet as the fluids hit the back of the chamber is evident for all 

the cases with water retaining the maximum vorticity at this point, reaching values of 15000 

(s-1)   followed by a vorticity ranging from 7500 (s-1)   to 10000 (s-1)   for the remaining cases. 

For both Newtonian cases, the maximum vorticity was noted at the entrance of the outflow 

pump from the main chamber achieving values of 83000 (s-1)   and 50000 (s-1)   for the water 
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and blood respectively. On the other hand maximum vorticity for the non-Newtonian cases was 

achieved at the micro pump outlet with the power model achieving a modest 57500 (s-1)   while 

the Carreau model attained significantly higher vorticity of 85000 (s-1). 

 

 

 

6. CONCLUSIONS 

A 3-D computational fluid dynamics (CFD) study has been presented to investigate the 

peristaltic transport on Newtonian and non-Newtonian fluids along an optimized micro-pump 

channel. The micro-pump design is based on previous experimental investigations and has been 

computationally rendered using AutoCAD software. The geometric micro-pump model has 

then been imported into the ANSYS Fluent (finite volume method) solver to simulate the 

peristaltic flow. A grid independence study has been performed to confirm adequate meshing 

for the solver. The solver settings were set to emulate experimental conditions and the 

simulation was initially tested for water pumping. The consistent validation of results allowed 

the progression of the study into the simulation of blood flow using both Newtonian and non-

Newtonian models. Due to the large variety of existing rheological models available for non-

Newtonian fluid characteristics, two simple but relatively accurate non-Newtonian models 

were selected, namely the Ostwald-DeWaele power law model (for pseudo-plastic shear-

thinning fluids) and the more complex Carreau model. Extensive simulations were performed 

and detailed visualization of velocity, pressure and vorticity profiles along the length of the 

micro pump presented. Carreau fluid was shown to achieve the best performance and maximum 

pumping efficiency and indeed is the most robust of the models studied for blood simulation. 

The current investigation may be extended by considering more complex rheological models 
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(micropolar, viscoelastic) and also curvature of the pumping conduit. These will be addressed 

in the future.  
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FIGURES 

 

 

Figs. 1 and 2 Comparison between original (left) and traced (right) design 

 

Fig. 3 Three dimensional model created on AutoCAD  

 

Fig. 4 Modified geometry of the model including inlet surface. 
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Fig. 5 Isometric top view of the model mesh indicating the inflation presented along the 

boundary walls 

 

Fig. 6 isometric side view of the model mesh outline indicating the refinement along the inlet 

surface. 
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Fig 7: Grid independence study 

 

 

Fig. 8 Velocity plot for water (Newtonian) 
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Fig. 9 Velocity plot for blood (Newtonian) 

 

Fig. 10 Velocity plot for blood (power-law non-Newtonian) 

 

Fig. 11 Velocity plot for blood (Carreau non-Newtonian) 
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Fig. 12 3-D velocity contour plot for water (Newtonian) 

 

Fig. 13 3-D velocity contour plot for blood (Newtonian) 
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Fig. 14 3-D velocity contour plot for blood (power-law non-Newtonian) 

 

 

Fig. 15 3-D velocity contour plot for blood (Carreau non-Newtonian) 
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Fig. 16 Summary comparing velocity distribution for all 4 cases 

 

 

 

 

Fig. 17 Pressure plot for water (Newtonian) 
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Fig. 18 Pressure plot for blood (Newtonian) 

 

Fig. 19 Pressure plot for blood (power-law non-Newtonian) 

 

Fig. 20 Pressure plot for blood (power-law non-Newtonian) 
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Fig. 21 3-D pressure contour plot for water (Newtonian) 

 

Fig. 22 3-D pressure contour plot for blood (Newtonian) 
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Fig. 23 3-D pressure contour plot for blood (power-law non-Newtonian) 

 

Fig. 24 3-D pressure contour plot for blood (Carreau non-Newtonian) 
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Fig. 25 Vorticity distribution for water (Newtonian) 

 

Fig. 26 Vorticity distribution for blood (Newtonian) 
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Fig. 27 Vorticity distribution for blood (power-law non-Newtonian) 

 

 

Fig. 28 Vorticity distribution for blood (Carreau non-Newtonian) 
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Fig. 29 3-D vorticity contours for water (Newtonian) 

 

Fig. 30 3-D vorticity contours for blood (Newtonian) 
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Fig. 31 3-D vorticity contours for blood (power-law non-Newtonian) 

 

Fig. 32 3-D vorticity contours for blood (Carreau non-Newtonian) 
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TABLES 

 

Boundary Condition 

Inlet Pressure -inlet 

Outlet 1 Pressure-outlet 

Outlet 2 Pressure-outlet 

Top wall Stationary wall with no slip conditions 

Bottom wall Stationary wall with no slip conditions 

Side wall 1 Stationary wall with no slip conditions 

Side wall 2 Stationary wall with no slip conditions 

Table 1 Simulation Boundary conditions 

 

Mesh 
Total no. of 

cells 

Total number on 

Nodes 

Velocity at 

outlet (m/s) 

Computational 

time(minutes) 

Double refinement 1114910 204773 1.80382 90 

Original mesh 334012 64397 1.795915 20 

Half element sizing 143003 28954 1.752749 5 

Quarter element 

sizing 
73214 15410 1.715272 2 

Table 2: Representation of the effect of mesh density on the simulation values 
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Pressure 

(Psi) 

Flow rate [2] 

(µl/s) 

Flow rate (µl/s) 

Present solution (ANSYS Fluent)  

0 0 0 

2 0.00122 0.0012 

4 0.0094 0.00942 

6 0.019 0.0188 

8 0.025 0.0245 

9 0.031 0.030 

10 0.036 0.0356 

11 0.041 0.0461 

12 0.036 0.036 

 

Table 3 Validation results for the simulation 


