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ABSTRACT: Existing computational fluid dynamics studies of blood flows have 

demonstrated that the lower wall stress and higher oscillatory shear index might be the cause 

of acceleration in atherogenesis of vascular walls in hemodynamics. To prevent the chances of 

aneurysm wall rupture in the saccular aneurysm at distal aortic bifurcation, clinical biomagnetic 

studies have shown that extra-corporeal magnetic fields can be deployed to regulate the blood 

flow. Motivated by these developments, in the current study a finite element computational 

fluid dynamics simulation has been conducted of unsteady two-dimensional non-Newtonian 

magneto-hemodynamic heat transfer in electrically conducting blood flow in a bifurcated artery 

featuring a saccular aneurysm. The fluid flow is assumed to be pulsatile, non-Newtonian and 

incompressible. The Carreau-Yasuda model is adopted for blood to mimic non-Newtonian 

characteristics. The transformed equations with appropriate boundary conditions are solved 

numerically by employing the finite element method with the variational approach in the 

FreeFEM++ code. Hydrodynamic and thermal characteristics are elucidated in detail for the 

effects of key non-dimensional parameters i. e. Reynolds number (Re = 14, 21, 100, 200), 

Prandtl number (Pr = 14, 21) and magnetic body force parameter (Hartmann number) (M = 

0.6, 1.2, 1.5) at the aneurysm and throughout the arterial domain. The influence of vessel 

geometry on blood flow characteristics i. e. velocity, pressure and temperature fields are also 

visualized through instantaneous contour patterns. It is found that an increase in the magnetic 

parameter reduces the pressure but increases the skin-friction coefficient in the domain. The 

https://www.sciencedirect.com/science/journal/00262862
https://www.sciencedirect.com/science/journal/00262862
https://www.journals.elsevier.com/microvascular-research
mailto:bvasu@mnnit.ac.in
https://www.sciencedirect.com/science/journal/00262862
https://www.sciencedirect.com/science/journal/00262862
https://www.sciencedirect.com/science/journal/00262862


2 
 

temperature decreases at the parent artery (inlet) and both the distant and prior artery with the 

increment in the Prandtl number. A higher Reynolds number also causes a reduction in velocity 

as well as in pressure. The blood flow shows different characteristic contours with time 

variation at the aneurysm as well as in the arterial segment. The novelty of the current research 

is therefore to present a combined approach amalgamating the Carreau-Yasuda model, heat 

transfer and magnetohydrodynamics with complex geometric features in realistic arterial 

hemodynamics with extensive visualization and interpretation, in order to generalize and 

extend previous studies. In previous studies these features have been considered separately and 

not simultaneously as in the current study.  The present simulations reveal some novel features 

of biomagnetic hemodynamics in bifurcated arterial transport featuring a saccular aneurysm 

which are envisaged to be of relevance in furnishing improved characterization of the 

rheological biomagnetic hemodynamics of realistic aneurysmic bifurcations in clinical 

assessment, diagnosis and magnetic-assisted treatment of cardiovascular disease. 
 

KEYWORDS: Arterial bifurcation, Saccular aneurysm, Non-Newtonian flow, Magneto-hemodynamics, 

Finite Element Method; skin friction; biomagnetic therapy. 

 

NOMENCLATURE 

*

1,A A  Constants 

J   Electric current density 

Gr   Grashof Number   

g       Gravitational vector  

M             Magnetohydrodynamic parameter    

0B       Magnetic field   

Pr        Prandtl Number 

p         Pressure 

n       Power-law index

Re        Reynolds number  

1A   Rivlin-Ericksen Tensor 

0T       Reference temperature  

fC          Skin-friction coefficient 

T            Temperature 

wT       Temperature at wall 

V    Velocity vector 

u        Velocity in x-direction 

v            Velocity in y-direction 

Q          Volumetric flow rate 

                                  

Greek Letters: 

s      Cauchy stress tensor 

              Density of the fluid 

  Electrical conductivity                             

       Fluid viscosity 

      Infinite shear-rate viscosity 

      Womersley number 

0                 Zero shear rate viscosity 

           Material time constant 

        Non-dimensional temperature   

        Shear rate 

k                  Thermal conductivity of fluid   
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1. INTRODUCTION 

Blood is an immensely complex aqueous ionic solution containing cellular elements and these 

elements include microscopic cells such as erythrocytes (red blood cells), leukocytes (white blood 

cells), thrombocytes, lymphocytes and lipoproteins suspended in a continuous saline plasma. It 

enables the sustained and efficient transportation of oxygen and CO2, nutrients, hormones and 

metabolic wastes, among many other functions, throughout the body to maintain cell-level 

metabolism. Blood circulation is also critical in maintaining the necessary regulation of the pH, 

osmotic pressure and temperature of the whole body and protecting it from microbial and 

mechanical damage [1]. The plasma generally behaves as a Newtonian fluid [2], is composed of 

water (93%) and electrolytes, organic molecules, numerous proteins (3%), and waste products, 

whereas the whole blood (a suspension of cells and highly viscous in nature), exhibits the property 

of a non-Newtonian fluid, in particular in smaller vessels. At high shear rate blood usually behaves 

like a Newtonian fluid as observed in large arteries [3, 4]. Arterial blood flow is fundamental to 

the human circulatory system, and the presence of arterial stenosis (constriction) adversely 

influences the health of the cardiovascular system [5]. Blood flows to the body organs and body 

cells through a complex network of arteries, veins, and capillaries. The motion of blood is due to 

continuous pumping by the heart as deoxygenated blood is transported to the heart from all the 

body organs through veins and the heart pumps oxygenated blood to the whole body through the 

arteries. Over the past few decades, an impressive number of comprehensive theoretical and 

experimental investigations related to blood flow in arteries in the presence of a stenosis have been 

conducted with various methodologies [6]. Relevant examples include Criminale et al. [7], comes 

with the results that the accurate identification of blood hemodynamics is an essential step in 

characterizing flow regimes that would govern processes in physiology and pathology. Mathur and 

Jain [8], developed the mathematical model to study the blood flow behavior in stenosed artery 

and investigated the effects of stenosis on the blood flow analytically. Tripathi et al. [9], 

investigated the pulsatile blood flow behavior in stenosed artery with the suspension of hybrid 

nanofluid. The simulated results of the study shows the significant effect of hybrid nanofluid on 

the flow rate and wall shear stress. More recently non-Newtonian hemodynamics has been 

addressed by a number of investigators. Reddy et al. [10] studied blood flow by treating the blood 

as a polar (couple stress) fluid, showing that significant deviation in flow characteristics arise 

compared with the classical Newtonian model. Several investigators have also analysed 

theoretically and computationally the contribution of blood rheology to coronary artery disease 

and cerebral aneurysms. Agrawal et al. [11] studied the shear-thinning characteristics of blood 

with a Carreau–Yasuda Model, for coil embolization as a mildly invasive endovascular method 
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for treatment of a cerebral aneurysm. The study leads to the observation that the blood rheology 

exerts a prominent role in the performance of the coil which is aimed at reducing fluid loading of 

the blood vessel and delaying subsequent vessel wall deformation. 

Simulation of blood flow has been widely used in recent decades for better understanding the 

symptomatic spectrum of various diseases in order to improve already existing treatments, or to 

develop new therapeutic techniques. The characteristics of blood flow in an artery can be modified 

significantly by arterial disease, which may include aneurysms and stenoses. The domain of 

hemodynamics has grown into a significant branch of modern fluid mechanics and includes an 

extensive number of theoretical and experimental investigations. In the initial stages of arterial 

disease, arteriosclerotic lesions (stenoses) are not distributed randomly within the arterial network 

as they usually appear around junctions of arteries, arterial curvatures and bifurcations of large and 

medium arteries, where the usual flow patterns are significantly altered resulting in complexities 

in the cardiovascular system [12]. As a result of the complex flow phenomena owing to the 

continuous development of stenoses, it often becomes extremely difficult to distinguish these 

disturbances from the normal flow characteristics in these critical regions. Hence hemodynamical 

studies play an essential role in elucidating blood flow around bends and bifurcations in many 

large arteries as well as in various arterial diseases. The various models and methodologies adopted 

in these studies are as diverse as the geometric parameters and hydrodynamic conditions of arterial 

bifurcations. These have been comprehensively reviewed in by Lou and Yang [13] who 

emphasized that in low wall shear stress and recirculation regions such hemodynamic patterns play 

an important role in the development of atherosclerotic lesion and their subsequent progression. 

Furthermore, physiological risk factors such as hypertension, hyperlipidemia, high blood pressure 

and diabetes mellitus, are known to be major causes of atherosclerosis and aneurysms. Seo [14] 

and Zhang et al. [15] described numerical simulations of blood flow behavior in the bifurcated 

carotid artery. Seo [14] discussed the wall shear stress (WSS) distributions as well as pressure 

profiles due to the shear thinning behavior in both the internal carotid artery and external carotid 

artery and showed computationally that the variation of the flow characteristics can be dependent 

on the arterial bifurcation geometry which exerts an important role in the development of 

atherosclerosis. Zhang et al. [15] computed the wall shear stress and wall pressure gradient in the 

left as well as right coronary artery bifurcation identifying that the region of low wall shear stress 

(WSS) and magnitudes of maximum wall pressure gradient (WPG) increases with the angles of 

bifurcation. Further investigations also concluded that the initiation of the type of aneurysm is 

likely to be strongly influenced by the geometry of the arteries [16, 17]. The inner curved arterial 

walls and zones in the vicinity of flow separation at the bifurcation, are strongly associated with 
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initial development of atherosclerosis and aneurysms. Therefore, the local flow patterns in curved 

locations and bifurcations are of significant relevance to the study of atherogenesis. In order to 

quantify accurately hydrodynamic characteristics in the regions of recirculation and separation at 

curved locations and bifurcations, numerous studies have been performed in recent years [18-20].  

The role of hemodynamics in the growth of aneurysms has in particular stimulated 

considerable interest among researchers. Valencia et al.,[21] studied the effect of saccular 

(intercranial) aneurysms on blood flow in the artery with non-Newtonian and Newtonian fluid 

models. Rathish Kumar et al. [22] studied the blood flow in an asymmetrically dilated fusiform 

artery under pulsatile inflow conditions for a full cycle of period, T. Increasingly the Carreau- 

Yasuda bio rheological fluid model has attracted considerable attention from mathematicians and 

engineers due to its broad applications in quantifying non-Newtonian behavior of real blood. The 

Carreau-Yasuda fluid model has been implemented in blood flow computation by Khan et al. [22] 

for a diseased artery. Ali et al. [24] have investigated the biological interactions between Carreau 

fluid and micro-swimmers in undulating conduits (vessels) with a modified Taylor swimming 

sheet model, magnetic field and porous medium effects, motivated by microbot treatment of 

hemotological disorders. 

“The presence of both ions in blood and iron in the haemoglobin molecule produces electrically 

conducting properties in blood. Streaming blood, can, therefore, be manipulated via the application 

of extracorporeal magnetic fields, which may be static or alternating. Arterial diseases such as 

arteriosclerosis and aneurysms, may, therefore, be treated via biomagnetic therapy. 

Magnetohydrodynamics (MHD) involves the motion of electrically conducting fluids under the 

influence of an applied magnetic field and arises in both Newtonian and non‐Newtonian fluid 

flows. The emergence of new diverse technological applications of MHD, in medical engineering 

(magnetic blood separation, biomagnetics etc), chemical engineering, energy systems and 

materials processing, etc have stimulated high interest in magnetic fluid dynamic simulations in 

recent years. Extracorporeal magnetic field has a significant effect in reducing the flow velocity 

when needed which can be critical in flow regulation to mitigate disease. Gireesha et al. [25] 

studied the MHD fluid flow with the suspension of nanoparticles over a stretched sheet and 

investigated the influence of nanoparticle volume fraction and magnetic field on heat and mass 

transfer. Other studies have addressed the application of magnetic fields to manipulate nanoparticle 

concentration in fluid flow of relevance to nano-drug delivery [26-27]. Mahanthesh et al. [28], 

presented a detailed mathematical model for unsteady three‐dimensional Eyring-Powell fluid flow 

under static magnetic field. They obtained extensive numerical results using a shooting technique 

coupled with a fourth-fifth order Runge–Kutta–Fehlberg scheme. Recently, Sreedevi et al., 
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[29,30], studied the effect of MHD heat and mass transfer on nanofluids containing single walled 

water-based carbon nanotubes (SWWNT) and multi-walled water-based carbon nanotubes in 

external flow from a  vertical cone and internal flow between two stretchable rotating disks, 

respectively. They showed that with an increase in magnetic field parameter velocity is diminished 

and temperature is increased for both nanofluids. Reddy and Chamkha [31] considered the three-

dimensional hydromagnetic flow of alumina-water nanofluid over a stretching sheet, observing 

that with an increment in magnetic field heat transfer is strongly modified. MHD blood flows also 

feature in electromagnetic medical pumps, where for some specific cardiac operations, magnetic 

fields can be used to regulate flow rates. In diseased arteries, the effect of vessel tapering, in 

addition to, the shape of stenosis also constitutes an exciting scenario for magnetic blood flow 

simulation. Nadeem et al. [32], discussed the effects of induced magnetic field on blood flow 

through stenosed vessels. This and other investigations have shown that the imposition of a 

magnetic field to streaming blood induces both electric and magnetic fields, which interact to 

generate a Lorentzian body force, which is resistive in nature and opposes the movement of blood 

[33, 34]. Vasu et al. [1], have more recently computed the MHD effect on blood flow through a 

stenosed coronary artery with extensive visualization, noting that blood velocity decreases with an 

increase in the magnetic field due to the Lorentz hydromagnetic drag force. Many different 

mathematical and computational studies have been reported on the influence of magnetization in 

arterial blood flow. Selvi and Ponalagusamy [35] investigated the effect of magnetic field on the 

two‐phase oscillatory blood flow by assuming core and plasma regions as a Newtonian fluid in the 

arterial stenosis, showing that an increment in magnetic field elevates flow resistance of the blood 

flow in a stenosed artery. Ponalagusamy and Priyadharshini [36] extended the study in [35] to 

consider tapered stenotic and non‐Newtonian effects in magnetized oscillatory two‐phase blood 

flow. These studies however often neglected heat transfer effects which are also important since 

a key function of circulating blood is the transportation of heat. Prandtl numbers of streaming 

blood are known to be significantly higher than pure water and are critical to achieving thermo-

regulatory functions in the cardiovascular system.” 

 

The theoretical and numerical studies dealing with the effects of heat transfer and magnetic field 

on the pulsatile flow of blood in a saccular aneurysm at the distant bifurcated aorta, with blood 

considered as a non-Newtonian fluid, have received comparatively less attention. Most studies are 

either experimental or three-dimensional computational simulation of aneurysm in the cerebral 

region neglecting rheological, biomagnetic and thermal effects. It has been observed that the blood 

flow velocity as well as wall shear stress decreases by exposing biological systems to an external 
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magnetic field which permits a powerful mechanism for flow control in saccular aortic aneurysm 

treatment. Motivated by extending these studies to more realistic cases, the present article 

describes a detailed mathematical and numerical study of the unsteady rheological 

magnetohydrodynamic blood flow, heat transfer in a bifurcated artery featuring a saccular 

aneurysm. Also known as berry or inter-cranial aneurysms, they exhibit a characteristic rounded 

shape and are the most frequent contributor to non-traumatic subarachnoid hemorrhages. The 

Carreau-Yasuda [23, 24] model is utilized for non-Newtonian (hemo-rheological) characteristics. 

A Fourier heat conduction model is deployed for thermal conduction heat transfer and unsteady 

nonlinear coupled convective heat transfer is considered in streaming blood flow. With appropriate 

boundary conditions the normalized conservation equations are solved with the finite element 

method using a variational approach provided in the commercial software, FreeFem++ [1]. These 

aspects constitute the novelties of the present work. The results elaborate on the influence of 

several non-dimensional parameters (Reynolds number (Re) and Prandtl number (Pr)) and 

magnetic body force parameter on velocity, skin friction coefficient, temperature profile and 

volumetric flow rate at the aneurysmic section, in addition to throughout the remainder of the 

bifurcated artery domain.  The simulations of the present study are envisaged to be of relevance in 

furnishing improved characterization of the biomagnetic hemodynamics of realistic aneurysm 

bifurcations which will be of benefit in more detailed assessment, diagnosis and magnetic-assisted 

treatment of cardiovascular diseases. This article has therefore been motivated by the growing 

clinical applications of non-intrusive magnetic-assisted techniques in 21st century treatments. The 

advantage of numerical blood flow simulation is that it provides almost limitless (and relatively 

inexpensive) insights which can aid decision-making processes during the treatment of 

cardiovascular diseases. Although a conventional method for treating the aneurysm is to deploy a 

stent or catheter inside the artery, however, nowadays targeting the drugs at desired locations is 

increasingly becoming the new standard. This also triggers the process of clotting formation at the 

diseased part and the effects of such post-treatment processes can also be predicted by 

computational simulation. Detailed interpretation of the computations is also provided of direct 

relevance to the magnetohydrodynamic treatment of rheological blood flow in diseased arterial 

systems. Additionally, the numerical simulations provide a useful compliment to clinical studies 

and may prove beneficial in testing the hypothesis of disease formation and furthermore may be 

of benefit in the design of cardiovascular devices, heart valves, stents, probes etc. 
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2. NON-NEWTONIAN THERMO-MAGNETIC BLOOD FLOW MODEL  

An unsteady two-dimensional mathematical model for blood flow and coupled heat transfer in a 

bifurcated artery is considered wherein blood flow is modelled as non-homogeneous fluid. Blood 

rheology is simulated with the Carreau-Yasuda fluid model. Thermophysical properties are 

assumed constant. For the simulation, the pulsatile nature of blood has also been incorporated. The 

velocity is taken as zero at the walls of the vessel which is modelled as a bifurcated system with a 

singular saccular aneurysm. A Cartesian coordinate system ( , , )x y z  is adopted where flow in the 

z-direction has been neglected i. e. the flow is simulated only in the x-y plane as shown in Fig. (1).  

 

Figure 1.  Schematic illustration of bifurcated artery with intercranial (saccular) aneurysm 

The fluid is incompressible. The bifurcated artery has a finite length L and contains a saccular 

aneurysm at the bifurcation of maximum height 𝛿 and length 0L . 

For unsteady flow of blood in the arterial vessel, the velocity vector V is assumed to be of the form: 

                                              [ , ,0]V u v=                                                        (1) 

Here u and v are the velocity components in x and y directions. Blood is considered to be an 

incompressible Carreau-Yasuda non-Newtonian fluid, which is a complex viscosity rheological 

model originally developed for polymeric dynamics. Neglecting the body forces, the conservation 

equations for mass, momentum and energy (heat) for the blood transport may be presented in 

vectorial form as:  

                                           0V =                                                               (2) 

                    '( ) s

V
V V divT J B

t


 
+  = +  

 
           (3) 

Saccular 

aneurysm 

Bifurcation  
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2( )p

T
c V T k T

t


 
+  =  

 
                                    (4) 

In equation (3) the second term on the right-hand side is the contribution due to applied magnetic 

field in electrically-conducting blood flow. Ohm’s law provides a relation between J and B’: 

'( )J E V B= +             (5) 

Here E represents the electric field, 'B  = B0 + b represents the total magnetic field, σ is the 

electrical conductivity of blood, V is the velocity vector and J represents the electric current 

density. For small magnetic Reynolds number, the induced magnetic field is neglected. Hence: 

2

0'J B B V = −            (6) 

Ignoring magnetic induction effects, the governing conservation equations for unsteady, 

incompressible two-dimensional rheological blood flow and heat transfer may be stated as 

follows by amalgamating the previous saccular geometric model of Valencia et al. [21] and 

Kumar et al. [22], heat transfer model of Khan and Hashim [23] and magnetohydrodynamic 

biological Carreau-Yasuda flow model of Ali et al. [24]:  

0
u v

x y

 
+ =

 
           (7) 

2

0( ) ( )xx xy

u u u p
u v S S B u

t x y x x y
 
      

+ + = − + + + 
      

       (8) 

( ) ( )xy yy

v v v p
u v S S

t x y y x y

      

+ + = − + + 
      

                   (9) 

2 2

2 2p

T T T T T
c u v k

t x y x y


      
+ + = +  

       
                  (10) 

The corresponding boundary conditions are: 

* 2

1 1

2 2

0, 0, , cos ( )

sin ( ), sin ( ),

0, 0, 0 0( )

w

w w

u v T T p p A t at wall

u U A t v U A t at outlet

u v T at t inlet



 

= = = = =

= = = =

= = = =
 (11) 

The constitutive equation for the Cauchy stress tensor in a Carreau-Yasuda fluid [23, 24] is given 

by 

                                                            ST pI S= − +                                        (12) 

Here                               1S A=             (13) 

With    
1

22 2
0[ ( )[1 ] ]

n

     
−

 = + − +        (14) 
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Here a more practical case has been considered, where in 0  . Hence   is taken to be zero 

and consequently equation (14) reduces to:  

1
22 2

0[ [1 ] ]
n

   
−

= +          (15) 

Hence      
1

22 2
0 1[ [1 ] ]

n

S A  
−

= +         (16) 

 

In the above equations, 0,   are infinite rate viscosity and zero rate viscosity of blood. In Eqn. 

(13), due to the restraint of incompressibility, −pI represents the spherical stress, and the 

kinematical tensor A1, can be defined by the following equations: 

                                                                     
1 ( )tA V V= +                                                                 (17) 

and      

2

1

1
22 2

1
( )

2

4

tr A

u u v

x y x





=

     
= + +   

      

       (18) 

Using the equations (16) and (18), the equations (7) - (10) become: 

0
u v

x y

 
+ =

 
         (19) 

1

2 22 2 2
2

0 2 2

1

2 22

2

0

0

1 4

2 1 4

1

n

n

u u u p u u v u u
u v

t x y x x y x x y

u u u v

x x x y x

u v

y x y

  

 

 

−

−

 
                 

+ + = − + + + + +       
                 

 

 
         

+ + + +    
          

 

   
+ + + 

   

1

2 22

2 2

04

n

u u v
B u

x y x


− 
       

+ + +    
        

 

     (20) 
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1

2 22 2 2
2

0 2 2

1

2 22

2

0

0

1 4

2 1 4

1

n

n

v v v p u u v v v
u v

t x y y x y x x y

v u u v

x y x y x

u v

y x x

  

 

 

−

−

 
                 

+ + = − + + + + +       
                 

 

 
         

+ + + +    
          

 

   
+ + + 

   

1

2 22

2 4

n

u u v

x y x

− 
       

+ +    
        

 

    (21) 

2 2

2 2p

T T T T T
c u v k

t x y x y


      
+ + = +  

       
      (22) 

 

The hemodynamic wall shear stress is: 

             

1
22 2

0

0

[1 ]
n

w

y

u

y
   

−

=

 
= + 

            (23) 

Skin-friction is: 

2

2 w
f

f w

C
U




=             (24) 

Volumetric flow rate is defined as: 

0

x

Q u x dx=               (25) 

 

It is judicious to introduce the scaled variables to transform the mathematical model:  

0 0 0

0 0 0 0 0 0 0

* 2 2
0* 20 0 0 1 0 1 0 0

1

0 0 0 0 0 0 0

, , , , ,Re ,

, , , , Pr ,
p

w

U U Lu v y x A
u v y x t t A

U U L L L U

cT T L p L A L B L
p A M

T T U U U k





 
  

  

= = = = = = =

−
= = = = = =

−

                                  (26)

  

Here  0 0 0 0, , , wU L T and T denote the reference velocity, reference length of the aneurysm, zero-

shear rate viscosity, reference fluid temperature, vessel wall temperature in the arterial tube model, 

respectively. Implementing Eqns. (26) in Eqns. (19)-(22) the following system of dimensionless 

conservation equations emerges: 
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                                                                  0
u v

x y

 
+ =

 
   (27)

1

2 2 22 2 2
2 0

2 2

0

1

2 2 22

2 0
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2 1 4

n

n

Uu u u p u u v u u
u v

t x y x L x y x x y

Uu u u v

x x L x y x

u

y





−

−

 
                  

+ + = − + + + + +        
                  

 

 
          

+ + + +      
           

 


+



1

2 2 22

2 20

0

1 4

n

Uv u u v
M u

x y L x y x


− 
            

+ + + + +       
            

 

     (28) 
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



−

−

 
                  

+ + = − + + + + +        
                  

 

 
          

+ + + +      
           

 


+



1

2 2 22

2 0

0

1 4

n

Uv u u v

x x L x y x


− 
            

+ + + +       
            

 

       (29) 

2 2

2 2
RePr u v

t x y x y

          
+ + = +  

       
                    (30) 

Consequently, with boundary-layer approximations, the above equations emerge in non- 

dimensional form as: 

0
u v

x y

 
+ =

 
           (31) 
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+ + = − + +       
              

 

 
         

+ +      
         

 

+

      (32)  

0
v p

t y

 
+ =

 
           (33) 

2 2

2 2
RePr u v

t x y x y

          
+ + = +  

       
         (34) 

The associated non-dimensional boundary conditions now take the form: 

* 2

1

2 2

0, 0, 1, cos ( )

sin ( ), sin ( ),

0, 0, 0 0( )

u v p A t at wall

u A t v A t at outlet

u v at t inlet

 

 



= = = =

= =

= = = =

        (35) 

       
3. FINITE ELEMENT SIMULATION WITH FreeFEM++ 

The non-dimensional magnetic bio-rheological blood flow boundary value problem defined by 

Eqns. (31)-(34) with boundary conditions (35) is formidable owing to strong nonlinearity, the 

coupling of many different variables, inclusion of two space variables and time. A robust 

computational scheme is, therefore, essential to obtain fast and rapidly convergent solutions. Finite 

element has been used vastly over different physical problems. The finite element method involves 

dividing the domain of the problem into a collection of subdomains, with each subdomain 

represented by a set of element equations to the original problem, followed by systematically 

recombining all sets of element equations into a global system of equations for the final calculation. 

FEM’s popularity has been increasing due to the greater flexibility it offers in modeling complex 

geometries. FEM has a solid theoretical foundation which gives added reliability and makes it 

possible to mathematically analyse and estimate the error in the approximate solution. Many 

researchers have employed finite element methods for engineering simulations. Reddy et al. [37], 

investigated the carbon nanotube nanofluid flow and heat transfer with thermal radiation flux 

between two stretchable rotating disks using finite element method.  Reddy et al. [38], employed 

a variational finite element method to simulate the nanofluid flow over a vertical cone. Sreedevi 
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et al. [39] computed the heat and mass transfer for 2 3Al O and 2TiO nanofluids over a wedge and 

with a Galerkin finite element method. 

 Many studies of medical fluid dynamics have been reported using finite element techniques. 

Rajashekhar et al. [40] investigated two-dimensional steady blood flow through an arterial 

bifurcation by employing finite element analysis (FEA) with different geometries. Rehman et al. 

[41], employed finite element method to study the heat transfer due to heated elliptical cylinder in 

a rectangular chamber having heated triangular ribs. They have also considered triangular finite 

elements for the meshing of the domain with/without heated triangular ribs. Very recently Rehman 

et al. [42-44], employed the finite element method to study the heat transfer in different shaped 

domains such as hexagonal, rhombus and trapezium geometries with T-shaped flipper and hybrid 

meshes i.e., both triangular and rectangular shaped elements.  The concept of hybrid meshing has 

also been employed by Zahri et al. [45] in magnetized rectangular chamber optimization (TMRCO).  

In the present study the finite element method (FEM) [46], with the variational approach, as 

available in the FreeFEM++ software, has been used wherein time discretization is achieved with 

a Crank-Nicolson scheme. To obtain a weak formulation of the system of differential Eqns. (31-

34) the function spaces have been defined as: 

 

( ) 

( ) 

1

1

( ) , 0

( ) 0

in wall

in wall

X u H u a on u on

Q u H u on

=   =  = 

=   =   
         (36) 

The weak form of Eqns. (31) - (34) is obtained by determining w ∈ X and ϕ,   ∈ P such that every

v Q and q P  where 2 ( )P L=  . A fundamental aspect of the current modeling is to obtain a 

robust weak form of the above system of Eqns. (31)-(34). To achieve smoothness of the solution 

which is bounded due to the weaker restriction, these differential equations cannot be solved 

directly. Therefore, the finite dimensional subspaces have to be defined as 
hQ Q and

hP P . 

Let us consider the finite dimensional approximations as , ,h h h hu v w Q and h hq P . In view of 

the finite dimensional approximation, the set of Eqns. (31)-(34) becomes: 

 

                                                      0h h

u v
u d u d

x y
 

 
 +   =

     (37)  
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 

   



2

h

h

v d

M u v d





 



+  





      (38) 

    0h h

v p
w d w d

t y
 

 
 +   =

            (39)  

2 2

2 2
RePr RePr RePrh h h hq d u q d v q d q d

t x y x y

    

   

     
 +  +   = +   

     
     (40) 

 

Figure 2. Unstructured fixed mesh of triangular elements 

Eqns. (37)-(40) with boundary conditions (35) are solved numerically using the variational finite 

element method in FreeFEM++. In the present study we consider 6-node triangular elements ( 2P ) 

and design an appropriate finite element mesh (grid) comprising 48021 triangular elements and 

145013 nodes, as presented above in Figure 2. In the fixed mesh the prescribed minimum step 

size (
minh ) is 0.013442 for all simulations.  
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4. MESH INDEPENDENCE ANALYSIS 

 

By conducting several different finite element mesh (grid) distribution tests, it may be established 

whether the calculated numerical results are grid-independent or not. The numerical values for 

skin-friction coefficients, at the aneurysm, for various designs comprising unstructured fixed mesh 

elements with vertices and triangular elements, are provided in Figure 3. Twelve different mesh 

distributions have been tested to ensure the simulated numerical results are mesh independent. 

Therefore, the final optimized selected mesh for the present FREEFEM++ simulations consisted 

of 48021 triangular elements and 145013 nodes, respectively. From Table 1 and figure 3, it is 

evident that increasing the mesh element density beyond this design does not modify the numerical 

values for non-dimensional skin-friction coefficient significantly in the domain with the parametric 

values prescribed i. e. Pr = 14, Re = 21 and M=0.6 (viscous force exceeds magnetic drag force). 

Physically this data is consistent with actual thermal blood properties under laminar flow with 

weak external magnetic field. Mesh independent results are therefore ensured with the mesh design 

comprising 145013 nodes and 48021 triangular elements (simulation number 11 in Table 1). 

 

Table 1 (a). Grid Independency analysis with Pr = 14, Re = 21 and M=0.6. 

 

Simulation  

Number 

Number of Elements Number of Nodes Skin-friction coefficient 

(Aneurysm) 

1. 7908 12098 0.001857 

2. 9044 13812 0.002393 

3. 9882 30127 0.003558 

4. 13634 41473 0.003636 

5. 19672 59677 0.003785 

6. 27407 83081 0.004003 

7. 27466 83229 0.004881 

8. 31068 94015 0.005873 

9. 32931 99693 0.00592 

10. 35949 108697 0.00626 

11. 48021 145013 0.006369 

12. 55335 167015 0.006668 

 



16 
 

16 
 

 

Figure 3 (a): Grid Independence study (skin-friction coefficient) 

 

Table 3: Comparison of velocity (w) values, using the present scheme with the existing schemed 

results for fixed values of 25.0, 2, 0.5, ( ) 1, ( ) 0
p

R z and R z
z

 


= = = = =


in the parent artery of 

arterial bifurcation. 

r - axis Numerical value of velocity 

(w) given by Srinivasacharya 

et al. [47] 

Value of velocity (w) by 

implementation of FEM on 

Srinivasacharya et al. [47] 

modelled problem 

0.00 0.00 0.00 

0.1 0.00768 0.0070204 

0.2 0.01398 0.013904 

0.3 0.01856 0.018538 

0.4 0.02118 0.020763 

0.5 0.02179 0.021698 

0.6 0.02049 0.020071 

0.7 0.01740 0.017453 

0.8 0.01274 0.012857 

0.9 0.00679 0.006872 

1.0 0.00 0.00 

 

To validate the FREEFEM++ code which has been adopted to simulate the problem, 

benchmarking is conducted against the published results obtained by Srinivasacharya et al. [47] 

for velocity of viscous blood flow are compared with the results obtained by using FEM for the 

model and the comparisons are displayed in Table 3. From the table 3 it can be observed that the 
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results acquired by using the method (FDM) and the FEM (variational approach) are match up to 

three decimal points. Hence it can be deduced that the achieved results testifying to the accuracy 

of the FREEFEM++ code. Also figure 3(b) and 3(c), evidently close correlation of fluid behavior 

while comparing the Newtonian and Non-Newtonian fluid model (Carreau- Yasuda model) is 

achieved testifying to the accuracy of the FREEFEM++ code. Non-Newtonian fluid achieves 

higher velocity magnitudes than Newtonian fluids at intermediate times, but the reverse effect is 

computed at small times and high time values. 

 
Figure 3 (b): Comparison of dimensionless velocity (u) values, with FREEFEM++ for             

Newtonian and non-Newtonian fluid at 8.78, 7.00, 0.6,Re 521,Pr 14x y M= = = = = . 

 

 
Figure 3 (c): Comparison of dimensionless wall shear stress values, with FREEFEM++ for             

Newtonian and non-Newtonian fluid at 8.78, 7.00, 0.6,Re 521,Pr 14x y M= = = = = . 
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5. FREEFEM++ RESULTS AND DISCUSSION 

In this section, the quantitative effect of selected parameters i.e., magnetohydrodynamic body 

force parameter (M), Reynolds number (Re), and Prandtl number (Pr), on the velocity, 

temperature, pressure and skin-friction coefficient distributions with the variation of time are 

examined in detail. The results are all visualized via tables, contour plots, and graphs. In the 

computations, the default values of various parameters are as documented in Table 2. 

Table 2: Prescribed parameter values implemented in FREEFEM++ computations. 

Parameter n λ   Pr L Re 
f  M 

Values 1.4 0.7 0.310 21 4.0 14 1060 0.6 

 

Figures 4(a) – 4(d) depict the non-dimensional pressure contours for different values of Reynolds 

number for the whole bifurcated arterial section for fixed values of Prandtl number (Pr), MHD 

parameter (M) and time (t). The pressure initially decreases with the increment of Reynolds number 

(Re) at the saccular aneurysm as well as near its throat. As one can observe from the coloured 

contours present in the figure 4, the pressure increases while moving from the inlet arterial location 

to near the aneurysm wall and attains a maximum near throat of the aneurysm; thereafter pressure 

decreases to both outlets of the artery as the blood vessel widens which re-distributes the flow 

pressure. At higher Reynolds numbers, vortex and inertial effects are intensified. Hence, as can be 

seen from Figure 4, the wall pressure for Re = 200 is reduced along the aneurytic region due to the 

flow separation formed close to the outer wall surface.  

       

     4(a)       4(b) 
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                            4(c)                                                                    4(d) 

Figure 4 Pressure distribution (a) 𝑀 = 0.6, 𝑅𝑒 = 14, 𝑃𝑟 = 21 𝑎𝑛𝑑 𝑡 = 0.4 (b) 𝑀 = 0.6, 𝑅𝑒 = 21, 𝑃𝑟 = 21 𝑎𝑛𝑑 𝑡 =

0.4 (c) 𝑀 = 0.6, 𝑅𝑒 = 100, 𝑃𝑟 = 21 𝑎𝑛𝑑 𝑡 = 0.4 and (d) 𝑀 = 0.6, 𝑅𝑒 = 200, 𝑃𝑟 = 21𝑎𝑛𝑑𝑡 = 0.4 

 

 

Figure 6 Effect of time (t) on pressure distribution in saccular aneurysm region for 𝑅𝑒 = 14, 𝑃𝑟 = 14, 𝑀 =
0.6, and𝑦 = 9.08. 

 

Figure 6 shows the pressure distribution near the throat of the aneurysm (bulge) over a period of 

time with respect to axial axis and evidently pressure decreases as time increases. This is 

attributable to the widening of the arterial region downstream of the aneurysm which results in a 

relaxation in the distribution of pressure in both outlet arterial branches. Figure 7 visualizes the 

pressure distribution near the throat of the saccular aneurysm over a time period but with respect 

to the transverse (y-) axis. As with the figure 6, the trend in figure 7 indicates a similar depletion 

in pressure decreases with time increment.  
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Figure 7 Effect of MHD parameter (M) on pressure distribution over different periods of time (t) in saccular aneurysm 

region for 𝑅𝑒 = 21, 𝑃𝑟 = 14, 𝑎𝑛𝑑𝑥 = 10.00.  

 

Figure 8 Effect of MHD parameter (M) on pressure distribution in saccular aneurysm region for 

𝑅𝑒 = 100, 𝑃𝑟 = 14, 𝑡 = 0.4 𝑎𝑛𝑑 𝑥 = 9.95. 

 

In figure 7 and 8, the pressure distribution in the vicinity of the throat of the aneurysm for two 

different Reynolds numbers i. e. 21 and 100 is computed. Clearly pressure also increases with 

increase in MHD parameter (M). This is attributable to the decelerating nature of Lorentzian 

magnetic drag which reduces velocities and results in a concomitant elevation in pressure (there is 

an inverse relationship between pressure and velocity). All the curves in both figures exhibit a 

gradual decay from their respective maximum value while moving towards the outer wall of the 

artery. It can be observed that with increasing magnetic field intensity, there is a significant 

variation in pressure for low Reynolds number (Re = 21) flow.  
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Figure 9 Effect of periodic time (t) over pressure distribution in saccular aneurysm region for 

𝑅𝑒 = 100, 𝑃𝑟 = 14, 𝑀 = 0.6 𝑎𝑛𝑑 𝑥 = 8.88. 

 

This variation is suppressed as the Reynolds number increases to 100, since the greater inertial 

force in the hemodynamic regime counteracts the impeding nature of the magnetic (Lorentzian) 

drag force. A similar observation for pressure distribution over an arterial segment with increment 

of Reynolds number and magnetic number has been earlier noted in [48]. The increment in 

Reynolds number, while remaining in the laminar regime, still greatly elevates the inertial force 

effect which accelerates the flow against the action of the magnetic field in the core flow and also 

at the vessel walls. This leads to a simultaneous decrement in pressure to the outer wall.  

The non-dimensional pressure distribution for higher Reynolds number (Re = 100) at the aneurysm 

over various time periods has been described in figure 9. The pressure also decreases with respect 

to time and additionally decreases towards the outer wall of the aneurysm. The present unsteady 

simulations therefore hold the advantage that unlike most steady-state hemodynamic bifurcation 

aneurysm computations in the literature, time evolution in flow characteristics cannot be captured, 

which is of great relevance to actual behavior in clinical scenarios.  
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                         10(a)                                                                         10(b) 

  Figure 10 Temperature distribution (a) 1.2,Re 21 Pr 14M and= = =  (b) 1.2,Re 21 Pr 21M and= = = .  

 

Figure 10 (a) to 10 (b) depict the temperature contour distributions in the bifurcated arterial 

section. These coloured contours shows that the temperature decreases with increase of Prandtl 

number. For real blood flows, Victor and Shah [49] have shown that Prandtl numbers fall in the 

region 15 to 25. Since the Prandtl number is the ratio of momentum diffusivity to the thermal 

diffusivity hence larger values of Prandtl number represents the case of less heat transfer from the 

boundary to the fluid. The Prandtl number is also the product of dynamic viscosity and specific 

heat capacity divided by the thermal conductivity of the fluid. Therefore, increment in Prandtl 

number indicates decrement in thermal diffusivity. Heat diffuses slower in blood compared to, for 

example water or air, and this manifests in a temperature decrement, for Pr = 21 compared with 

Pr =14. This has important implications in homeostasis and the prescription of correct 

thermophysical data for the heat conducting characteristics of blood (often ignored in numerical 

models), provides a more realistic estimation of actual thermal characteristics. 
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Figure 11 The temperature distribution over different time periods near the distal outlet of the bifurcated arterial 

region for 𝑅𝑒 = 14, 𝑃𝑟 = 14, 𝑦 = 0.00 𝑎𝑛𝑑 𝑀 = 1.5 

 

Figure 12 The temperature distribution over different time periods near the distal outlet of the bifurcated arterial 

region for 𝑅𝑒 = 14, 𝑃𝑟 = 21, 𝑦 = 0.00 𝑎𝑛𝑑 𝑀 = 1.5. 

 

Figures 11 and 12, show the periodical variation in temperature at the distal outlet of the artery 

for different values of Prandtl number. The following graphs shows clearly that temperature 

increases with the time increment but decreases with elevation in Prandtl number from (Pr = 14 to 

Pr = 21) as increment in the Prandtl number causes decrement in thermal diffusivity and 

temperature decreases. Evidently therefore the thermal diffusion in streaming blood is assisted 

with progress in time which is an important factor linked to the time taken for the human being to 

acclimatize and absorb heat into the circulatory system, often as a by-product of food consumption. 

This effect is not instantaneous and takes time, as noted by Çinar et al. [50].  
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Figure 13 The temperature distribution for different values of Re and Pr near inlet of the bifurcated arterial region for 

0.6, 0.03, 7.80M t and y= = = . 

Figure 13 shows the temperature distribution over various values of Reynolds number (Re = 14, 

21 and 100) and Prandtl number (Pr =14, 21) near the inlet of the artery. The graph shows that 

temperature increases with an increment in Reynolds number but decreases with an increment in 

Prandtl number. Again, the elevation in inertial force) Reynolds number expresses the ratio of 

inertial force to viscous force) will contribute to the intensification in heat diffusion in the blood 

flow. This will elevate temperatures via convective transport, despite the inhibiting effect of higher 

Prandtl number [51, 52].  

 

Figure 14 Effect of Reynolds number on temperature distribution at the prior outlet of the bifurcated arterial region 

for 𝑃𝑟 = 21, 𝑀 = 0.6, 𝑡 = 0.03, 𝑎𝑛𝑑 𝑥 = 3.97. 
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Figure 15 Effect of Reynolds number on temperature distribution at the prior outlet of the bifurcated arterial region 

for 𝑃𝑟 = 14, 𝑀 = 0.6, 𝑡 = 0.03, 𝑎𝑛𝑑𝑥 = 3.97. 

 

The figures 14 and 15, describes the temperature distribution at prior outlet for different values 

of Reynolds number and Prandtl number with y-coordinate (transverse) for a fixed location along 

the axial coordinate (x = 3.97). The above graphs show significant variation in the values of 

temperature with the various values of Re and Pr. Higher Reynolds number generally accentuates 

temperatures with y coordinate, although individual peaks do arise at lower Reynolds number. 

Lower magnitudes are again computed in Fig. 14 with increasing Prandtl number (Pr = 21) 

compared with Fig. 15 (Pr = 14).  Additionally, it is evident from figures 11, 12, 14 and 15 that 

the temperature is significantly escalated from the inlet of the bifurcated artery for fixed values of 

time (t = 0.03). The oscillatory nature of the temperature field induced by pulsatile pressure 

gradient is clearly captured in these figures. 

 

Figure 16 Effect of M on velocity distribution at saccular aneurysm region for 𝑃𝑟 = 21, 𝑥 = 8.49 𝑎𝑛𝑑 𝑦 = 6.45  
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The figure 16 illustrates the response in velocity profiles for different values of Reynolds number 

and magnetic parameter (M) over time (t) at the saccular aneurysm. The curve shows the decrement 

in velocity with increment in Reynolds number and magnetic parameter (M). The increment in 

magnetic parameter (M), produced a corresponding elevation in Lorentzian hydromagnetic drag 

force which inhibits the fluid particles and decelerates the blood flow. The regulatory nature of 

external static magnetic field is therefore confirmed. A similar trend is computed in Figure 17, 

which shows significant decrement in velocity with an increase in the magnetic parameter (M)- 

velocity is minimized with stronger magnetic body force. For M > 1 the magnetic force exceeds 

the viscous force in the blood flow. The velocity profile topology is also warped with time 

progression evolving from a sharp increase at low times to an approximately linear decay with 

larger time elapse. 

 

Figure 17 Effect of Magnetic parameter on velocity profile at saccular aneurysm arterial region for 

𝑃𝑟 = 14, 𝑅𝑒 = 14, 𝑦 = 6.45, 𝑎𝑛𝑑𝑥 = 8.49. 

 

Figure 18 Effect of Reynolds number and magnetic parameter on velocity profile at saccular aneurysm region for 

𝑃𝑟 = 14, 𝑦 = 6.45, 𝑎𝑛𝑑 𝑥 = 8.49. 
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Figure 19 Effect of Reynolds number and magnetic parameter on velocity profile at peak of saccular aneurysm region 

for 𝑃𝑟 = 14, 𝑦 = 6.42, 𝑎𝑛𝑑 𝑥 = 7.70. 

 

Figures 18 and 19, depict the velocity evolution with respect to time for various values of 

Reynolds number and magnetic parameter at the saccular aneurysm and at outer wall of the 

saccular aneurysm respectively. The curves show a substantial decrement in velocity with an 

increment in Reynolds number. As noted earlier, Reynolds number quantifies the ratio of inertial 

(momentum) force to the viscous force. Due to the inertial forces dominating at higher Re, flow 

reversal is also induced near the outer wall. The additional effect of magnetic parameter is to damp 

the velocity field.  

 

Figure 20 Effect of Reynolds number and magnetic parameter on velocity profile at saccular aneurysm region for 

𝑃𝑟 = 14, 𝑦 = 4.92, 𝑎𝑛𝑑𝑥 = 8.83 
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Figure 20 portrays the velocity distribution with respect to time (t) for different values of Reynolds 

number and magnetic parameter (M) near the throat of the aneurysm prior to the outlet of the 

bifurcating artery. Similar to figures 18 and 19, there is a consistent depletion in velocity with 

increment in magnetic parameter (M), but also Reynolds number (Re). The dominant effect is the 

damping magnetic force which supercedes the inertial contribution from higher Reynolds 

numbers. Furthermore, the velocity remains largely invariant at the outer wall of the aneurysm and 

near the throat of aneurysm at a specific time instant (t=0.09). 

 

Figure 21 Effect of magnetic parameter on velocity profile at arterial bifurcation region for 𝑃𝑟 = 14, 𝑅𝑒 = 21, 𝑦 =
6.37, 𝑎𝑛𝑑 𝑥 = 9.95. 

 

Figure 22 Effect of magnetic parameter on velocity profile at arterial bifurcation region for 𝑃𝑟 = 14, 𝑅𝑒 = 14, 𝑦 =
4.92, 𝑎𝑛𝑑 𝑥 = 8.83. 
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Figures 21, 22 visualize velocity profiles with respect to time as magnetic parameter varies near 

both end locations of the aneurysm. The graphs indicate that velocity decreases with a rise in 

magnetic parameter (M) - it is reduced by in excess of 50% just by doubling the magnetic 

parameter (M). It is also evident that velocity changes more periodically at the throat of aneurysm 

in figure 22 in comparison to figure 21. 

 

Figure 23 Effect of magnetic parameter on velocity profile at the throat of saccular aneurysm region and at peak of 

aneurysm for 𝑃𝑟 = 14, 𝑅𝑒 = 14. 

 

 

Figure 24 Effect of magnetic parameter (M) over skin-friction coefficient at saccular aneurysm region for 

𝑅𝑒 = 100, 𝑃𝑟 = 21, 𝑦 = 7.00 𝑎𝑛𝑑 𝑥 = 8.52. 
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Figure 25 Effect of magnetic parameter (M) over skin-friction coefficient near bifurcation region for 

𝑅𝑒 = 100, 𝑃𝑟 = 21, 𝑦 = 2.79 𝑎𝑛𝑑 𝑥 = 8.60. 

 

 

Figure 26 Effect of magnetic parameter (M) over skin-friction coefficient at saccular aneurysm region 

for𝑅𝑒 = 14, 𝑃𝑟 = 21, 𝑦 = 7.00 𝑎𝑛𝑑 𝑥 = 8.52. 
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Figure 27 Effect of M on volumetric fluid flow rate at saccular aneurysm region for 𝑅𝑒 = 14, 𝑃𝑟 = 14, 𝑥 =
8.15 𝑎𝑛𝑑 𝑦 = 6.45.  

 

 

Figure 28 Effect of M on volumetric fluid flow rate near saccular aneurysm region for 𝑅𝑒 = 14, 𝑃𝑟 = 14, 𝑥 =
10.0 𝑎𝑛𝑑 𝑦 = 6.45.  
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Figure 23 presents the non-dimensional velocity evolution with time variation for three different 

values of magnetic parameter (M) at two different points along the aneurysm. The graph shows 

relatively little variation in the velocity at both the points at aneurysm wall; however, there is a 

strong decrease with the increment in magnetic parameter, M. Generally, all the velocity profiles 

are skewed to the left since the streaming blood is just passing through a region with flow 

recirculation along the outer wall side which pushes the fluid layers into the inner wall side of the 

artery. Hence, elevation in strength of magnetic field intensity (greater Hartmann number, M) 

additionally causes deceleration in the flow at the daughter branch. 

Figures 24, 25 and 26, visualize the skin-friction coefficient evolution with variation in time (t) 

for three different values of magnetic parameter (M). Figures 24 and 26 describe the variation in 

skin-friction coefficient with decrement of Reynolds number (Re=100 and Re=14), respectively. 

The skin-friction coefficient (a representation of dimensionless wall shear stress, a key parameter 

in hemodynamics) shows some deviation from the velocity response (described earlier); whereas 

velocity is reduced with greater magnetic field effect, the skin friction is increased with an 

increment in magnetic parameter. However, the response to an increment in Reynolds number is 

similar to velocity distribution i. e. it is reduced with greater magnetic effect. 

Finally Figures 27 and 28 present the volumetric fluid flow rate distributions with time variation at 

the outer wall of the aneurysm and near the aneurysm for M = 0.6, 1.2 and 1.5. Increment in magnetic 

parameter (M) causes enhancement in Lorentz force. This boosts the resistance to blood flow and 

manifests in a deceleration effect leading to a plummet in flow rate magnitudes. The excellent 

mechanism furnished by a non-intrusive magnetic field for regulating blood flow is therefore verified.  

The graph also shows that at a certain time instant (t = 0.09), the flow rate achieves a more constant 

topology at the saccular aneurysm due to bifurcations into the arterial branches. 

 

6. CONCLUSIONS 

In this study, motivated by providing a deeper insight into diseased cardiovascular flow dynamics, 

a finite element simulation of two dimensional magnetohydrodynamic heat conducting blood flow 

with coupled convective heat transfer through a bifurcated artery with a saccular (intercranial) 

aneurysm has been presented. The model generalizes previous studies by amalgamating the 

Carreau-Yasuda model, heat transfer and magnetohydrodynamics with complex geometric 

features in realistic arterial hemodynamics with extensive visualization and interpretation. In 

previous studies these features have been considered separately and not simultaneously as in the 

current study. Following transformation of the conservation equations for momentum and energy 
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with associated boundary conditions, the resulting unsteady nonlinear non-dimensional boundary 

value problem has been solved with a variational commercial software, FREEFEM++. Validation 

with earlier studies has been included. Mesh independence tests have also been conducted. The 6-

node Taylor-Hood triangular elements ( 2P ) have been deployed in the optimized mesh design. The 

effects of selected parameters (magnetic body force parameter, Reynolds number and Prandtl 

number) on velocity, temperature and hemodynamic pressure have been computed. The principal 

findings of the study may be crystallized as follows: 

1. An increment in Reynolds number (Re) significantly decreases the pressure as well as 

velocity at saccular aneurysm. 

2. The velocity shows a major decrement with growth in the magnetic parameter (M) at 

saccular aneurysm as well as near the throat of aneurysm (stronger Lorentzian magnetic 

drag force is produced with higher M values leading to flow deceleration).  

3. The temperature distribution also shows a decrement at the parent artery (inlet) as well as 

at both the both distant and prior artery with enhancement in Prandtl number (Pr), due to 

reduction in thermal diffusivity relative to viscous diffusion rate. 

4.  The skin-friction coefficient shows the contrary behavior to that of velocity with increasing 

magnetic body force parameter i. e. skin friction is boosted with stronger magnetic field. 

However, with increment in Reynolds number, both velocity and skin friction are 

suppressed in magnitudes with some flow reversal arising. 

5. The fluid flow rate also decreases with enhancement in magnetic parameter but tends to a 

near constant magnitude after a certain time elapse at the saccular aneurytic region. 

6. Higher Reynolds number induces greater inertial effects in the blood flow, and creates 

recirculation zones with an associated depression in velocity at the outer wall of the artery. 

7. Non-Newtonian (Carreau-Yasuda) fluid achieves higher velocity magnitudes than 

Newtonian fluids at intermediate times, but the reverse effect is computed at small times 

and high time values. 

 

The present FREEFEM++ computations have revealed some interesting characteristics of 

saccular aneurysm and bifurcated arterial time-dependent hemodynamics for both Newtonian 

and non-Newtonian hydromagnetic blood flow and convective heat transfer. However only rigid 

wall geometries have been considered. It has delivered a greater insight of blood flow behavior in 

saccular aneurysm in the distal aortic artery which contains the aspects of novelty of the present 
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study. Future studies may examine wall distensibility (fluid-structure interaction) and will be 

communicated imminently. 
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