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Abstract

Good slip resistant tread patterns of outer-sole of military boots are vital to minimize 

the risk or severity of slip in combat and physical training situations. This study was 

aimed at how plastic failure of soil mass develops between the boot outer-sole with 

cleats and soft soil surfaces, in contrast with the problem between hard surfaces and 

outer-sole of boot which can be simply modelled using Coulomb-friction 

representation.

The Drucker-Prager elastic-perfectly plastic material failure criterion is employed to 

simulate the behaviour of the soil material. A total of five three-dimensional solid soil 

Finite Element models interactive with the relatively rigid outer-sole of boots with 

different typical tread patterns have been constructed in the Preprocessor of the 

ANSYS finite element package. Vertical and transverse loading conditions were acted 

on the surfaces of soil models interactive with tread patterns. A series of non-linear, 

three-dimensional FE numerical model have been successfully produced in Solution 

of the ANSYS. The numerical modelling results were also validated by experiment. 

These results were analysed and a suitable model was identified to reduce the plastic 

failure in horizontal direction (X) or provide the best traction force effect.

The comparison of numerical modelling results shows that the first tread patterns 

among the total five tread patterns designs displays the best traction force effect to 

resist slip in gaiting direction than the others. The experimental validation study 

proves the FE numerical modelling provided a good agreement with soil failure 

pattern and the maximum failure distances. The methodology created in this study can 

be used as one kind of standard method to judge how performance is for a particular 

tread patterns design mainly on aspect of traction force provision as well as lateral slip 

prevention.
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Chapter 1

Introduction

1.1 Background

The project “Finite Element Analysis of Footwear and Ground Interaction” was 

funded by the UK Ministry of Defence (MOD) in 2000, and this research was started 

on February 2001. The work was carried out in the School of Computing, Science and 

Engineering (Originally the School of Aeronautical, Civil and Mechanical 

Engineering) at University of Salford, with the military footwear section within the 

Defence Clothing and Textiles Agency (DCTA) of the MOD.

The interaction between military footwear and soft ground surfaces is often 

encountered in combat and physical training situations. The sponsor (MOD) wishes to 

improve their understanding of how footwear performance is influenced by the tread 

pattern on the outer-sole, so as to enable improvements in military boot design and 

hence soldier performance. The military boot is designed to prevent soft tissue and 

skeleton of the feet from damage under heavy usage which is most likely to result in 

injuries. Good slip resistant tread pattern of outer-sole of military boot is vital to 

minimize the risk or severity of slip in these tough situations. Therefore, how to 

effectively evaluate various tread pattern designs, regarding good slip resistance, is 

the primary goal of the work. Thereby the possibility of conducting a non-linear three- 

dimensional finite element analysis of footwear and ground interaction, based upon an 

elastic-perfectly plastic material model, was investigated in this research.
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The Drucker-Prager non-linear material model is widely adopted in computerized 

numerical modelling for non-linear soil problems and has already been embedded into 

the ANSYS 5.5-8.1 University High Version. So, we finally select the Drucker-Prager 

model to simulate soil behaviour in this research, other than the well-known Coulomb 

criterion which exhibits comers giving rise to difficulties in computer coding.

1.2 Objective of the Research

The main objective of this research is to develop finite element (F. E.) models that can 

be used to analyse the traction performance of different tread patterns. The 

information, finite element numerical modelling methodology, results, and improved 

understanding achieved from this research will be able to help the MOD’S military 

footwear section in their work to judge footwear design, enhance performance and 

reduce the risk and severity of slip associated with footwear due to the requirements 

of combat, physical training, ammunition carriage, terrain and climate.

1.3 Scope of the Research

As the aim of this research is to judge traction force performance of different tread 

patterns by finite element analysis, it was necessary to review existing information on 

footwear-ground interaction and finite element analysis in this area at the start of this 

research, although this was ongoing throughout the whole research period. Due to the 

nature of this research it was also necessary to study many unfamiliar topics such as 

footwear design, biomechanics, gait of processing, soil mechanics, terramechanics 

and finite element analysis for nonlinear material of soil, etc. Therefore, the scope of 

this research can be summarized as follows.
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1.3.1 Problem Specification and Literature Review

This part of work is the starting point of this research as well as standard research 

procedure. This work will be reported in Chapter 2.

1.3.2 Survey of Plasticity Theories in Soil Mechanics

Comprehensive understanding of the theory of soil plasticity, especially failure 

criteria is essential for this research, because our study mainly deals with plastic 

failure of nonlinear soil material by employing numerical modelling and experimental 

study. Detailed information about plastic theory in soil mechanics is reviewed in 

Chapter 3.

1.3.3 Cases Validation Study

It is important that suitable finite element software with the Drucker-Prager nonlinear 

material model embedded is used in this research, so that the suitability of the 

Drucker-Prager nonlinear material model within the ANSYS can be assessed. The 

purpose of case studies is to validate this suitability. It is also the best means to be 

familiar with the techniques to deal with finite element analysis of soil-structure 

interaction in two-dimensional and three-dimensional situations. Chapter 4 presents 

the two-dimensional case validation study in detail, and the three-dimensional case 

validation study is reported in Chapter 5.

1.3.4 Finite Element Analysis of Footwear and Ground Interaction

This part of the work is the main achievement of this research. It has been successful 

in creating interactive soil finite element models for different tread patterns with 

complex three-dimensional geometry and shape. After successfully meshing the
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created volumes, studying loading conditions, conducting numerical modelling and 

gaining convergent solutions are key aspects of this research we are concerned with. 

Finally, conclusions are obtained from analysis of finite element modelling results. 

The work is comprehensively presented in Chapter 6 step-by-step.

1.3.5 Experiment Study

It is necessary to carry out an experimental study to validate the numerical modelling 

results. Experimental work has been conducted using the prototype soft slip-rig that 

has been modified in this research. A star-shape cleat scaled up 10 times is used in the 

experimental study validated against the FE numerical modelling results. The work is 

reported in Chapter 7 in detail.

1.4 Academic Contribution by This Research

Part of the work was first presented at the Designing for Load Carriage Systems 

Symposium, 2002, hosted by the UK Ministry of Defence. Then, the continuous work 

was presented at and compiled, separately, in proceedings of the International Society 

of Biomechanics XIX th Congress—The human Body in Motion, 2003, New Zealand 

and Salford’s 2nd International Conference “Biomechanics of the Lower Limb in 

Health, Disease and Rehabilitation”, 2003. A case study paper of this research work 

is in press with the International Journal—“Strain”.

1.5 Chapters of the Thesis

Chapter 2 of this thesis is devoted to the literature review. The literature survey was 

set out from the starting point—“Problem Specification”, and followed several main 

routes: finite element analysis of soil-tillage tools interaction, soil-wheel interaction,
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and soil-structure interaction, limit analysis, footwear and ground interaction, etc. 

Having carried out the background literature study, it was understood that a 

comprehensive review for soil mechanics and plastic failure theory was required, and 

that these were the core principles of the mathematical models in this research.

Chapter 3 presents the results of an investigation of plasticity theory in soil 

mechanics. Firstly, the evolution of plasticity theory is historically reviewed. Then, 

some fundamentals of solid mechanics are selectively presented so as to make the 

concepts clear concerning the description of the theory of soil plasticity. In the main 

part of this chapter, flow theory is explained, and then the highlights of this chapter, 

that is, perfectly plastic material models. Five typical, perfectly plastic, models are 

selectively presented, especially the Drucker-Prager material model, which is 

embedded into ANSYS Finite Element software and employed in this research.

Chapter 4 reports two-dimensional validation by case study in detail. First, the 

Drucker-Prager material model in ANSYS software is reviewed. Then, a case study of 

typical earth pressure problems is presented and simulated step by step. The meshing 

scheme, boundary conditions, and loading conditions are presented and analysed. The 

initial stress is comprehensively studied in this 2-D validation and this methodology 

achieved can also be used as a useful means to deal with initial stress effect in 

geotechnical engineering. A series of numerical modellings has been conducted under 

different loading conditions. Finally, these results are analysed, and conclusions 

revealed that the 2-D validation is successful and the ANSYS FE package is suitable 

for modelling soil material.
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Chapter 5 presents three-dimensional validation by two case studies in detail. First, 

the application of FE numerical modelling in the soil tillage process is briefly 

reviewed. Then, case 1 study is introduced step by step as well as case validation in 

ANSYS software. And then, the results are analysed for case 1 study. Thereafter, case 

2 validation study is presented. The meshing scheme, boundary conditions, and 

loading conditions are introduced one by one. Finally, the modelling results are 

presented and analysed. The influence of convergence norm versus the draught force 

is intentionally studied. Conclusions are drawn showing that 3D validation about soil- 

structure interaction problems in ANSYS FE software is satisfied and the Drucker- 

Prager soil material model, in ANSYS can be used for FE numerical modelling of 

footwear and soft ground—soil interaction at the next stage.

Chapter 6 intensively reports the study of finite element analysis of tread patterns and 

soft ground interaction. In total, five tread patterns are studied by using Finite Element 

Method with ANSYS FE package—University High Option. The outdoor boots as 

well as military boots are firstly reviewed. Then, the methodology of constructing soil 

FE model interactive with the first tread pattern is presented in detail. The soil FE 

models interactive with forepart or heel of the first tread pattern are constructed 

separately for different transient times in process of gait. The meshing scheme, 

boundary conditions, and loading conditions are introduced in detail as well. The 

modelling results of the first tread pattern are presented and discussed. In total, five 

soil FE models interactive with the forepart of five tread patterns are built up and 

successfully numerically modelled. Finally, traction performance of each tread pattern 

as well as soil deformation, stresses and strains, etc. are comparatively analyzed and 

conclusive comparative results are achieved.
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Chapter 7 presents details of the experimental validation studies. First, the 

methodology of the experimental studies is introduced. Then, the experiment device 

and the soil selected in this study are reported in detail. And then, FE modelling of 

interaction between scaled up 10 times model with star-shape and soil is presented 

step by step. Loading conditions are intensively studied and the vertical loading 

condition is derived and determined by similarity theory and dimension analysis of 

mechanics. The procedure of experimental validation is then described. Finally, 

results of the experimental study are presented and discussed with comparison of the 

FE modelling results, and a good agreement is achieved between the FE modelling 

and experimental validation studies.

Chapter 8 presents conclusions arisen from this research. First, each chapter of the 

thesis is conclusively reviewed with the conclusions achieved in the relevant studies. 

Then, general conclusions arisen in this research are summarized. Finally, some 

suggestions for future work are proposed.
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Chapter 2

Literature Review

2.1 Introduction

The literature survey is the starting point for the research and an opportunity to obtain 

a general understanding of the related subjects and relevant academic areas. As the 

main objective of this research is to develop finite element models that can be used to 

analyse the traction performance of different tread patterns, it is necessary to 

investigate existing works on numerical modelling methods such as the Finite 

Element Method in the soil mechanics domain and works existing on the topic of 

footwear and ground interaction with soft surfaces. However, before starting the 

research it was already known that little work existed on the topic of footwear and 

ground interaction with soft surfaces, reported by Pisani1 (2002). After an initial 

background literature survey, it was also found that there is still little work existed 

related to finite element numerical modelling of footwear issues.

In the initial background literature study, we have understood the problem 

specification of this research and we are interested in load conditions when plastic 

failure of the soil mass occurs, that is, what the condition is when shear failure of soil 

mass happens between the cleats on the bottom of the footwear.

As little work existed on the topic of footwear and ground interaction with soft 

surfaces, and there is also little work existed related to finite element numerical 

modelling of footwear issue, we must have to refer to similar relevant mechanisms. 

The literature survey was focussed on several relevant topics, such as soil-tillage tools
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interaction, soil- wheel interaction, soil-structure interaction, limit analysis, etc.

2.2 Problem Specification

2.2.1 General Remarks

As the purpose of this research is to improve the understanding of how footwear 

performance is influenced by the tread pattern on the outer-sole of military boot, it is 

necessary to first make clear the problem specification.

As mentioned before, the military boot is designed to prevent soft tissue and skeletal 

of the feet from damage under heavy usage. Besides, boot design should offer 

customers the flexibility, comfort, shock absorption and lighter weight to operate 

regardless of the ground surface texture and various weather conditions. Good slip 

resistant tread pattern of outer-sole are vital to minimize the risk or severity of slip 

under the situations that are most likely to result in accidents. Vertical compressive 

and transverse shear forces are applied to the ground via the footwear during the 

process of gait, regardless of the surface texture. For a hard surface, no sinkage 

occurs, the interaction between footwear and ground can be modelled using the 

Coulomb friction mechanism. It is obvious that this research is not focused on this 

issue, that is, soft surfaces are the main concern. So, soil properties, soil shear failure, 

sinkage, tread pattern, etc, are dominating factors affecting the interaction. Therefore, 

the theories of soil mechanics, plastic failure, etc, will be applied to the study 

throughout this research.

The problems of soil mechanics are divided into two distinct groups, stability 

problems and elasticity problems. Stability problems deal with the conditions of
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ultimate failure of a mass of soil. Problems of earth pressure, bearing capacity, 

stability of slopes and shear failure of a soil mass are most often classified in this 

category. The most important feature of such problems is the determination of the 

loads which cause failure of the soil mass. Solutions to these problems are often 

obtained using the theory of perfect plasticity. The elasticity problems on the other 

hand deal with stress or deformation of the soil when no failure of the soil is involved. 

Stresses at points in a soil mass under a footing, and all settlement problems belong in 

this category. Solutions to these problems are often obtained by using the theory of 

linear elasticity. The problem of progressive failure lies in between the elasticity and 

stability problems. Progressive failure problems address the elastic-plastic transition 

from the initial linear state to the ultimate failure state of the soil. For our research 

purposes, we are interested in load conditions when plastic failure of the soil mass 

occurs and are also concerned with elastic deformation of the soil mass at the same 

time. Obviously, the issue of footwear and ground interaction of this research can be 

classified as the traditional stability problems category of soil mass and solutions to it 

can be obtained using the theory of perfect plasticity. So, elastic-perfectly plastic 

theory was adopted in this study and the Drucker-Prager non-linear material model 

was chosen to model soil property.

2.2.2 Classification of Various Methods/Tools for Soil Mechanics Problems Study

There are several analysis methods/tools existing and used in soil mechanics. They are 

the slip-line method, the limit equilibrium method, the limit analysis method and 

numerical analysis methods/tools, such as Finite Difference Method and Finite 

Element Method, etc. A direct visual classification is shown in Fig. 2.1.
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Fig. 2.1 A flowchart of problem specification

2.2.2.1 The slip-line method

The slip-line method is a method that derives the basic differential equations that then 

make it possible to obtain the solutions of various problems by the determination of 

the so-called slip-line network. One simplification of the slip-line method is that it 

omits the stress-strain relationship of the soil. In general, in a slip-line solution, only a 

part of the soil mass near a footing or behind a retaining wall is assumed to be in the 

state of plastic equilibrium.

2.2.2.2 The limit equilibrium method

The equilibrium method is a method that creates a simplified mode of failure that then 

makes it possible to solve various problems by simple static analysis. In this method,
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it is necessary to make sufficient assumptions regarding the stress distribution along 

the failure surface so that an overall force equilibrium equation can be derived and 

solved for a given problem in terms of stress resultants.

2.2.2.3 The limit analysis method

The limit analysis method is a method that is used for computing the collapse load in 

a more direct manner. The most distinct characteristic of the limit analysis method is 

that no matter how complex the geometry of a problem or loading condition, it is 

always possible to obtain a realistic value of the collapse load. It provides a clear 

physical picture of the mode of failure. Limit analysis method enables a definite 

statement to be made about the collapse load without carrying out the step-by-step 

elastic-plastic analysis.

2.2.2.4 Numerical analysis methods/tools

Numerical analysis methods/tools that are popular computer-based solution technique 

nowadays are rather effective when applied with proper caution. When it is 

impossible to obtain the exact answer to problems of engineering analysis and design, 

the answers of numerical solution are the best estimation for them. The basic 

philosophy of numerical analysis methods is to reduce the complex continuum from 

infinite degrees of freedom to a finite number of unknowns. The Finite Difference 

Method first successfully performed such a process of discretization. The Finite 

Element Method acts as an alternative to such a process.

2.2.3 Finite Element Method & Non-Linear Soil Problems
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The Finite Element Method is essentially a numerical method for the approximate 

solution of practical problems arising in engineering and scientific analysis. It is now 

firmly accepted as a most powerful general technique for the numerical solution of a 

variety of problems from linear to non-linear analysis.

For the increased numerical calculations associated with non-linear problems, 

considerable computing power is needed. However, rapid developments in the last 

decades have ensured that high-speed computing facilities that meet this need are now 

available and the reductions in unit computing costs will continue.

The development of more efficient non-linear solution algorithms and the experience 

gained in their application to engineering and scientific analysis has ensured that non­

linear finite element analysis can now be performed with less barriers than before. 

The Finite Element Method is especially powerful for a numerical solution of 

progressive failure non-linear soil problems.

Nowadays, plenty of commercial packages for finite element analysis are available for 

university campus and industry area. For this research, we have been using Finite 

Element Method CAE (Computer-Aided-Engineering) software—ANSYS 5.5-8.1 

University High Version, which is network supported by the Information Services 

Division (ISD) at University of Salford.

2.3 Soil-Tillage Tools Interaction

Initially, the theoretical approach to the soil cutting problem was based on Terzaghi’s 

passive earth pressure theory. When the computer became more and more popular and
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powerful, the numerical method was developed to solve the cutting problem of soil. 

The effectiveness of the Finite Element Method in modelling interaction between soil 

and tillage tool has been proved by some relevant publications.

Yong and Hanna2 (1977) first proposed a finite element model for a two-dimensional 

soil failure under a wide blade. Chi and Kushwaha3’4 (1988) developed a three- 

dimensional finite element model for a narrow cutting blade. This sort of finite 

element analysis not only gives the soil forces, it also provides stress field, 

displacement field, failure zone, and force distribution.

Chi and Kushwaha3’4 constructed the mathematical model in their study for simulating 

soil-tool interaction by using the partial difference equation derived by Harr5 (1966), 

which can be expressed in a matrix form. As the soil is a non-linear material, the 

hyperbolic stress-strain equation reported by Duncan and Chang6 (1970) was used in 

their finite element model. The incremental method was utilized in the non-linear 

analysis. The change in loading is analysed in a series of increments. At the beginning 

of each new increment of loading an appropriate modulus value is selected for each 

element. Thus, the stress-strain relationship is approximated by a series of straight 

lines. The accuracy of the incremental procedure may be improved if each load 

increment is analysed more than once. The weighed residual method was used to 

develop the finite element model that the exact theoretical solution of the differential 

equation is usually unavailable. By using the Galerkin’s weighted residual method, 

the weighing functions are selected to weight the residual function. As a result, an 

approximate solution of differential equation is obtained with certain boundary 

conditions. The authors adopted a hyperbolic model proposed by Clough and Duncan7
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(1971) for the interface between the soil and the surface of cutting blade. The 

tetrahedral constant strain element was used during the analysis because of its 

simplicity and convenience for non-linear material and large displacement. Only half 

of the total region was considered in the analysis as the soil failure for a narrow blade 

is symmetric about the centre line of the blade. A total of 996 nodes and 4206 

elements, including 18 interface elements, were used for a vertical blade. Laboratory 

tests were also conducted in the soil bin. The values from the finite element modelling 

were smaller than that from the lab test because some acceleration forces have 

introduced some errors while the tests were conducted at a travel speed of 2 km/h.

Nakashima8, et al developed the simulation program for soil-lug system interaction by 

Rigid Plastic Finite Element Method (RPFEM). They focused on the problems 

between lug plate of multiple lugged wheels and its surrounding soil. Firstly they 

applied soil deformation analysis by mixed formulation with no consideration on large 

deformation of the soil to investigate the possibility of RPFEM analysis, and then 

further analysed soil reaction by penalty formulation with mesh rezoning method to 

decrease the calculation time while enlarging the calculation steps in the analysis. 

They developed a FORTRAN program with 180 maximum nodes and 130 maximum 

elements. Two special methods, 1) mesh rezoning and 2) observation markers were 

employed in their program of tracing large deformation within soil. The calculated 

result reflected the better performance of numerical procedures for soil reaction and 

behaviour prediction. The simulated lug reaction showed similar behaviour derived 

from experiments.
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Godwin and Spoor9 studied soil failure mechanisms with narrow tines. Studies were 

carried out using a glass-sided box to observe the soil failure pattern in the vertical 

plane containing the centre line of the tine. The soil failure mechanism below the 

critical depth was considered to be purely two-dimensional in a horizontal plane. They 

developed a force prediction model for tines for a wide range of working depth/width 

ratios. The predictions showed useful agreement with experimental data for the 

horizontal force components with high angles of shearing resistance. Two failure 

mechanisms were identified:

a) an upper failure zone where the displaced soil has forward, sideways and 

upward components, termed crescent failure.

b) a lower failure zone where the displaced soil has components both in the 

direction of travel and sideways, termed lateral failure.

The soil can deform by crescent failure, lateral failure, or a combination of both. The 

critical depth can be estimated using minimizing technique, that is, by iteration or by 

differentiation. The predictions of the curves were closer in the compacted soil than in 

the loose soil when comparing to the experimental data.

K. Araya and R. Gao10 (1995) reported a non-linear three-dimensional finite element 

analysis of subsoiler cutting with pressurized air injection. In their study, a hardening 

cap model was proposed for hysteresis and plastic bulk deformation of soil and being 

as the soil yield criterion. The soil properties of sand as an elastic-plastic body were 

experimentally determined by a triaxial compression test and used in the analysis. The 

experiments in a soil bin were carried out for comparison with the FEM analysis. The 

finite element mesh consists of 315 elements and 480 nodes. The load was applied by 

a 100mm subsoiler movement resulting in the maximum draught force. Air injection
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loading was imposed on the soil assumed that there is an empty element without soil 

at the nozzle port. As flow velocity on soil failure was only one-tenth of static 

pressure, the effect of kinematic pressure was neglected. Only one-half of the region 

was considered in the analysis owing to the subsoiler system is symmetric about the 

central plane. The motion was assumed frictionless, so interface friction between the 

subsoiler and the soil is zero. This study showed the rake angle affected the rupture 

distances dramatically: Good agreement was achieved with FEM prediction and soil 

bin test for forward aspect, vertical soil movements prediction by FEM were smaller 

than those measured in the tests. Little soil failure is observed for the air injection and 

the stress around the cavity zone decreases rapidly.

A. M. Mouazen and M. Nemenyi11,12,13,14,15 (1998-2000) reported tillage tool design 

with the Finite Element Method by numerical modelling soil plastic behaviour and 

experimental validation with soil bin test. A non-linear, three-dimensional finite 

element analysis of the soil cutting process by a variety of shank angles and chisel 

angles combinations were conducted. The Drucker-Prager elastic-perfectly plastic 

material model was used and an incremental technique was adopted to deal with the 

material non-linearity of soil. The geometrical non-linearity was solved by using the 

small strain assumption. A commercial package COSMOS/M 1.71 finite element 

program was to perform the numerical modelling. Linear rectangular prism elements 

with eight nodes were selected to represent the soil material and the total number of 

nodal points and elements were 1374 and 963. The subsoiler was assumed to be a 

rigid body. A uniform horizontal displacement of 15cm was applied for all subsoiler 

interfacial nodes. Interface elements were placed between soil-subsoiler bodies to 

simulate soil-subsoiler interaction by utilizing the Coulomb criterion of dry friction.
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The theoretical results showed that a combination of a shank angle of 75° and a chisel 

angle of 15° made a large reduction in the draught force and vertical forces of the 

subsoiler. A wedge-shaped soil upheaval was produced owing to deformation in front 

of the shank. Concentration of normal pressure at the outer linking edges between 

shank and chisel as well as the bottom comers of the chisel indicated that these 

locations should be better treated against wear and deformation during manufacturing. 

Laboratory soil bin tests proved finite element numerical modelling results agreed 

well with these measurements for the subsoiler draught force and the extent of surface 

soil failure, the over prediction error ranged from 11.76 to 20.04 %.

Renon16, et al reported their study of “Numerical Modelling of soil ploughing for 

military breaching”. In this study, the soil is modelled as a continuous compressible 

plastic medium using 3D FEM. A FEM software developed by CEMEF (Ecole des 

Mines de Paris) has been chosen for this study. The tetrahedral element is used in 

modelling. To handle strong non-linearity, the iterative Newton-Raphson method with 

linear search is used, so that one linear system has to be solved at each step of 

iteration. As a first step, the Drucker-Prager model has been implemented in the FEM 

software. The simulations, involving one single tine, were performed for three 

different rake angles: 45, 75 and 90 degree. 26 hours CPU for 330 time steps 

including 122 remeshings on a SUN E4000/5000 computer (processors SUN 

UltraSPARC-II, 248 Mhz). The average number of Newton-Raphson iterations per 

increment is 7.8, and each one increment takes an average 289s. Simulations results 

express two very different flow modes: a chip in front of the tine (75 and 90 degree) 

and larger bulges (lateral spread, 45 degree).
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2.4 Soil-Wheel Interaction

Since the literature survey of foot-ground interaction has shown little suitable research 

on soft surfaces, it is necessary to investigate other relevant fields, terra-mechanics for 

example. Soil-wheel interaction belongs to this category. Terra-mechanics is the study 

of the performance of a machine in relation to its environment, the terrain. It can be 

divided into two main branches, terrain-vehicle mechanics and terrain-implement 

mechanics. Much research has been carried out on the interaction between soil and 

wheels.

M.G. Bekker carried out soil-wheel interaction study in the 1950’s. He investigated 

the effect of thin and wide wheels on sand and clay and was able to show that the 

behaviour of soil beneath a rolling wheel conforms to the basic principles of soil 

mechanics. Bakker’s theory17, applicable to all soils, was based on some simple tests 

and semi-empirical equations. It does not take into consideration the flow of soil. The 

underlying soil theory of Bakker used in terra-mechanics was actually based upon the 

soil mechanics works of Terzaghi18 used in civil engineering.

Oida and Satoh19 reported their results for three dimensional stress distributions on 

tyre-sand contact surface. By using a forced-slippage test apparatus and a small three 

axial force transducer attached on a tyre surface, the distributions of normal, 

longitudinal and lateral stresses along the tire-soil contact area were precisely 

measured on standard sand in the laboratory and processed by a personal computer. 

Stress distribution patterns, positions of maximum stresses, relations between thrust 

and side force with parameters of slippage and side slip angle and so on were 

presented.
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Ueno, etc20 developed a sub-loading surface model of plasticity by Finite Element 

Method to analyse the problems of soil deformation by the rotation of a rigid wheel. 

The points of this FEM were to express suitably the plastic deformation of soil, to 

represent the boundary conditions at the contact surface between the wheel and the 

soil, and to deal with the rolling condition. The FEM numerical modelling is 

performed with two stages, in the first stage a wheel drops down vertically, and in the 

next stage it rolls keeping the axle load constant. Controlled displacement increments 

were given as boundary conditions at the contact surface of the soil and the wheel. 

The concept of relative slip and the Coulomb’s frictional criterion were employed to 

control these displacement increments. The basic equations were formulated by the 

incremental method in elastic-plasticity and the FEM based on it. The strain and stress 

increments were calculated from the nodal displacement increments. The stress and 

strain of each element, the force and displacement of each node were obtained by 

accumulating these increments. The same process was repeated until reaching to the 

prescribed state. The results by this elastic-plastic FEM analysis for a soil-wheel 

interaction represented some of the fundamental tendencies observed in experiments.

Aubel21 studied the interaction between an elastic tyre and soft soil by FEM- 

Simulation. A new FEM simulation concept VENUS (VEhicle NatUre Simulation) is 

developed. It consists of a soil model, a tyre model and a combination of both. The 

tyre model takes into consideration the different elastic properties as a function of the 

inflation pressure, and the lateral expansion of the tyre cross section seems to be 

neglectable. The soil model is based on the Mohr-Coulomb hypothesis and Drucker- 

Prager’s modified version of the flow criterion by V. Mises. The simulation examples
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in this research are calculated with the FEM program ABAQUS. The numerical 

solution of the interaction is based on a contact algorithm, which works during every 

calculation step. The new FEM simulation model VENUS has the advantage that it 

does not need to estimate any parameters acting in the contact area between tyre and 

soil, opens up a promising field of investigation for the interaction between elastic 

tyres and soft soils.

2.5 Soil-Structure Interaction

The finite element analysis of soil-structure interaction has been applied to a number 

of types of soil mechanics and soil engineering problems since 1960s. The method has 

been used for analysis of stresses and deformations in embankments (Clough and 

Woodward22, 1967), (Finn23, 1967); for the modelling of movements around 

excavations (Duncan and Dunlop24, 1969) (Chang and Duncan25, 1970); for analysis 

of stresses and settlements resulting from footing loads (Girijavallabhan and Reese26, 

1968), (Desai and Reese27, 1970), (D’Appolonia and Lambe28, 1970), (Smith29, 1970); 

and for the modelling of the relationship between earth pressures and wall movements 

(Morgenstem and Eisenstein30, 1970), (Lambe31, 1970), and so on. Most of the studies 

mentioned above have been carried out employing one of two limiting assumptions 

about the characteristics of the soil-structure interface: (1) that the interface is 

perfectly smooth, with no possibility for shear stresses which would retard relative 

movements between the structure and the soil; or (2) that the interface is perfectly 

rough, without possibility for slip between the structure and the soil.

Clough and Duncan7 (1971) developed a procedure for representing the interface 

between a structure and the adjacent soil in finite element analyses of soil-structure
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interaction. The stress-deformation and strength characteristics of interfaces between 

a backfill sand and concrete were investigated by means of direct shear tests on 

composite specimens. Analyses of retaining walls were performed in their studies 

using finite elements to simulate the interface between the wall and the backfill. The 

analyses were performed in a series of increments, adjusting the properties of the 

interface and the backfill in accordance with the stresses for each increment to 

approximate non-linear behaviour. The minimum active and maximum passive 

pressures calculated in these analyses were in good agreement with the results of 

classical earth pressure theory. These incremental finite element analyses provide an 

effective means of analysing soil-structure interaction problems and the procedures in 

this study also show that it has considerable potential for the analysis of complex soil- 

structure problems.

Girijavallabhan and Reese26 reported their study results for finite element method 

applied to soil mechanics. They claimed the basic procedure used in finite element 

analysis to solve foundation problems consists of representing each element as a 

homogeneous, isotropic linear material, which is defined by two pseudo-elastic 

constants, the secant modulus of elasticity and Poisson’s ratio. The solution of a load- 

deformation problem for a soil with a given set of boundary conditions can be 

achieved by finite element analysis. The computational procedure used to solve stress 

problems for soil starts with an assumed pseudo-elastic constant, E. The components 

of strains are computed for a given set of boundary forces and deflections, and then a 

new value for the pseudo-elastic constant is obtained for each element. Iteration is 

continued until the difference between the new and the previous value of the pseudo­

elastic constant for each element is less than a specified small quantity. The results of
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the- problems solved for non-linear media agree closely with experimental results. The 

experiment was performed in the laboratory, where a rigid steel plate was pushed into 

the sand in a way that produced a state of plain strain.

Duncan and Chang25 developed a simple, practical procedure for representing the 

non-linear stress-stress relationship of soils, which is convenient for use with the finite 

element method of analysis. Kondner32 claimed that the non-linear stress-strain curves 

of both clay and sand might be approximated by hyperbolae with a high degree of 

accuracy. Experimental studies by Janbu33 had shown the relationship between initial 

tangent modulus and confining pressure. The authors discussed two techniques in 

their study for approximate non-linear analyses, the iterative procedure and 

incremental procedure. Both of these methods have both advantages and 

shortcomings. The expression for the equation for tangent modulus is derived and 

employed conveniently in incremental stress analyses, and constitutes the essential 

portion of the stress-strain relationship in these studies. A number of experiments have 

been conducted to determine the parameters used in the equation of tangent modulus 

and to evaluate the usefulness of this equation for representing non-linear soil 

behaviour. The authors also discussed a footing in sand and a footing on clay 

examples based upon results of finite element analysis.

Potts and Fourie34 reported their study of the effects of wall deformation on earth 

pressures (1986). The Finite Element Method was used to investigate the effect of the 

mode of wall movement on the generation of earth pressure. Both smooth and rough 

walls were considered. Results proved that the distribution of earth pressure is mainly 

dependant on the assumed mode of deformation. The finite element equations were
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solved using an accelerated incremental form of the initial stress approach. An 

elastoplastic constitutive law using a Mohr-Coulomb yield surface had been employed 

to model the soil behaviour. A number of conclusions arose from their investigation. 

They also studied the effect of soil dilatation, the initial horizontal stress, the 

distribution of soil stiffness with depth, wall translation, rotation about the top and 

rotation about the bottom of a wall. Their results clearly stated that the finite element 

approach is more exact and has considerable advantage comparing with those from 

the other approximate methods, and to be a viable potential alternative for design of 

earth retaining structure.

Schweiger35 discussed the use of different forms of Druker-Prager failure criterion for 

a simple earth pressure problem (1994). Active and passive earth pressure problems 

were simulated in this study under plane strain conditions by applying prescribed 

horizontal displacements to a rigid wall in front of a soil subjected to initial stresses. 

The finite element mesh consists of 300 eight-nodded isoparametric elements and a 

viscoplastic algorithm was employed for solving the non-linear equations. A smooth 

wall was assumed in this series analyses and no geometric nonlinearities were 

considered. The results of this study demonstrated importance for elastic-perfectly 

plastic analyses in geomechanics. The internal and extension cone of failure criteria 

produce approximately the correct pressure distribution other than wall displacements 

compared to Mohr-Coulomb criterion. Neither the compression nor the compromise 

cone can predict the active and passive pressure to an accuracy that is acceptable for 

practical purposes. Even though the Druker-Prager models are popular used for 

engineering problems owing to its simplicity and easiness for the implementation into 

finite element codes, the author suggested a proper Mohr-Coulomb failure criterion
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should be used when it is impossible to use other more refined models.

Jean-Francois61, etc. published their work (2004) about a micromechanical approach 

to the strength criterion of Drucker-Prager materials reinforced by rigid inclusions. 

The paper proposes a theoretical approach to the strength criterion of such a 

composite material. It is shown that the macroscopic stress states on the yield surface 

can be obtained from the solution to non-linear viscous problems defined on a 

representative volume element. The practical determination of the yield surface 

implements a non-linear homogenization scheme based on the modified secant 

method. Two extreme cases of perfect bonding and non-frictional interfaces are 

modelled. In both cases, the method yields a macroscopic strength criterion of the 

Drucker-Prager type. The macroscopic friction angle is a function of that of the matrix 

and of the volume fraction of the inclusions. In the case of perfect bonding, the 

inclusions have a reinforcing effect. In contrast, this may not be true for a non- 

frictional interface.

2.6 Limit Analysis

Limit analysis method was established in 1950s. There have been an enormous 

number of applications with it in a wide field from metal deformation processing to 

the design of reinforced concrete structures. A great deal of effort practicing the limit 

analysis method has been paid to soil mechanics problems since 1970s in addition to 

concrete and .rock^ accompanying, the development of numerical methods in .the 

meantime.

Drucker36 (1953) reported his study about limit analysis of soil mechanics problems.
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A brief discussion is given of suitable general forms of the yield or sliding criterion 

for soils. Coulomb’s equation is interpreted in terms of a modified Tresca as well as a 

modified Mises rule. Particular attention is paid to a soil unable to take tension but 

exhibits both cohesion and internal friction in sliding action. The author claims that a 

modified Tresca criterion is probably more in the spirit of the Coulomb postulate for 

soils than is the modified Mises. Two main limit theorems, that is, the upper bound 

theorem and the lower bound theorem are discussed as well as the dissipation 

function.

Chen37 (1975) carried out comprehensive studies with limit analysis as presented in 

his works “Limit Analysis and Soil Plasticity”. He claims that ‘perhaps the most 

striking characteristic of the limit analysis method is that no matter how complex the 

geometry of a problem or loading condition, it is always possible to obtain a realistic 

value of the collapse load’37. The limit analysis method is an effective method for 

computing the collapse load in a more direct manner. It enables definite statement to 

be made about the collapse load without carrying out the step-by-step elastic-plastic 

analysis. This method provides a clear physical picture of the mode of failure and 

considers the stress-strain relationship of a soil in an idealized manner. This 

idealization, termed normality or flow rule, establishes the limit theorems on which 

limit analysis is based. The plastic limit theorems of Drucker38 (1952) may 

conveniently be employed to obtain upper and lower bounds of the collapse load for 

stability problems. The author also emphasized that limit analysis is not the only 

method of assessing the collapse load of a stability problem in soil mechanics. The 

other standard and widely known techniques used in the solution of soil mechanics 

problems are the slip-line method and the limit equilibrium method.
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Lyamin and Sloan39 reported in their study that, a robust numerical scheme for upper 

bound limit analysis could be used for two- and three-dimensional problems. They 

stated the technique generates the stress and velocity fields at collapse and can be 

implemented using finite element theory and mathematical programming algorithms.

By adopting linear finite elements and a polyhedral approximation of the yield 

surface, the finite-dimensional optimisation problem can be solved using classical 

linear programming techniques. The solution procedure does require the yield 

function to be both convex and smooth. Numerical results show that the new 

algorithm demonstrates fast convergence to the optimum solution and is effective for 

a broad spectrum of stability problems.

Pontes40, etc. presents an algorithm for limit analysis with mixed approach by finite 

elements with application to geo-technical problems. The approach is based on the 

direct application on the sub-differential concept to the flow law and is essentially 

different from the Lagrange multipliers technique. The case of a Drucker-Prager 

model is particularly considered, as well as the Mohr-Coulomb model in plane strain 

conditions. The algorithm is applied to a footing and a shallow tunnel.

Ponter41, etc. describes a generalisation of the programming method for the evaluation 

of optimal upper bounds on the limit load of a body composed of a rigid perfectly 

plastic material. The method is based upon similar principles to the “Elastic 

Compensation” method. The method is demonstrated through an application to a 

Drucker-Prager yield condition in terms of the Von Mises effective stress and the
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hydrostatic pressure. Implementation is shown to be possible using the user routines 

in a commercial finite element code, ABAQUS.

Babakov42, etc. states (1994) that, we know of no studies that have analysed the 

problem when a transverse load is applied to a die embedded in soil. The solution of 

such a problem would require consideration of the irreversible strains undergone by 

the soil, i.e. require the use of a mathematical model of plasticity for the soil. They 

use an established method of solving problems of plasticity theory that is based on 

one of the theorems of limit analysis — the theorem of the upper bound of the limit 

load.

2.7 Footwear and Ground Interaction

During the whole process of this research information concerning footwear and 

ground interaction was constantly searched for. As presented in “Problem 

Specification” section in Chapter 2, we are interested in the issue of footwear and soft 

surfaces ground interaction. Based upon this basic point, the following information is 

useful for this research.

Barry and Milbum43, 44 reported their study on a mechanism of explaining traction of 

footwear on natural surfaces and a footwear traction-measuring device. They review 

and discuss the mechanism associated with footwear-natural surfaces interaction at a 

molecular level and carried out their research based upon tribology and soil 

mechanics. At the molecular level, solid smooth surfaces of a pair of contacted solids 

have valleys and ridges, respectively. These asperities respond to each other when 

sliding happens. Analytical research classifies this contact into a complex molecular-
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mechanical interaction between the contacting surfaces. This interaction was 

considered to be a result affected by various factors, such as the combined effects of 

asperity deformation, ploughing by hard surface asperities and wear particles, and 

adhesion between flat surfaces. This mechanism used to explain how dry friction 

could be treated as a basis to illustrate the mechanism of footwear-natural surfaces 

interaction, even though ‘The classical laws of friction do not apply to footwear 

sliding on artificial and natural surfaces’ (Valiant45, 1993).

The tread pattern or cleat configuration of footwear outsoles interact with natural turf 

surfaces made of particles of soils and grass. Soil consists of discrete particles that are 

not strongly bonded together and are relatively free to move with respect to each 

other. When the soil surface is subjected to a load via the outsole and cleats, the soil 

resists the applied load by developing resistant forces through the responded particles 

in three ways: compressing, bending and sliding. Deformation due to sliding is 

usually the most significant, and is nonlinear and irreversible, making the load- 

deformation behaviour of soil nonlinear and irreversible as well (Lambe & 

Whitman46, 1979). When the applied external become large enough, failure of the soil 

mass may occur when the resistance force reaches its limit and the soil mass as whole 

slides. This mechanism discussed by Barry and Milbum is the same or similar to the 

soil plasticity theory adopted in the work reported in this thesis.

Barry and Milbum also introduced a computer-controlled device to measure traction 

load-deformation properties at the footwear-natural surfaces interface. This device is 

designed based on the traditional methods used in soil mechanics to determine the 

direct shear force of a soil where a horizontal displacement is imposed at the interface
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while its vertical displacement is measured. A number of methods have been used to 

measure the translation or rotational traction between court shoes and artificial 

surfaces and little research has tested the traction of footwear on natural surfaces only 

an exception that the Nike Sports Research Laboratory (NSRL) tested footwear while 

separately translating or rotating (Valiant47, 1990). The method used by Barry and 

Milbum to measure translation or rotation to the footwear was similar to the NSRL 

device, however, its slide rate and displacement were precisely controlled and vertical 

displacement of the boot was measured as it slid over the test surface. The measured 

traction data was fitted by a non-linear regression analysis technique by using 

exponential model used by Wong48 to obtain the maximum traction force in a similar 

way in 1989. The nonlinear load-deformation curves provide the maximum traction 

force, the displacements corresponding to relevant traction forces, and the overall 

stiffness of the interface materials. In the case of footwear sliding on sand, the failure 

surface was clearly observed at the end of test. The experiment showed that the 

foremost cleats of the outsole ‘piggybacked’ on the failure wedge of sand. This 

observation was not obvious for the turf samples, as the binding of the grass roots 

would affect the traction mechanism. Each footwear-surface combination has unique 

interface properties. Typical traction results for football boots bearing on sand and turf 

were studied.

Baroud49, D. etc. presented a non-linear hyper-elastic finite element model of energy 

return enhancement in sport surfaces and shoes. They developed a 3-D F. E. model of 

a sport shoe and surface using a generalized compressible hyper-elastic material 

model. The material parameters were identified based on quasi-static uniaxial 

compression, confined compression, and tension tests. The energy return of the
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structural surface-shoe combination was determined under actual loading. The 3-D 

reaction forces used in the F. E. simulation were measured from one subject during 

forepart of foot running over a Kistler force platform. The numerical results were 

experimentally verified. The agreement between numerical and experimental results 

for a sport surface and /or shoe is much better using the proposed hyper-elastic than 

linear elastic materials models. The generalized 3-D material model, together with F. 

E. modelling provides a means to theoretically examine different designs of sport 

surfaces and/or shoes with respect to their energy storage and return and/or 

cushioning potential.

Garcia50, etc. developed a method for measuring horizontal forces of soccer boots 

studs during skills performance. The author argued that even though some studies 

about ground reaction forces in different skills have been made by using a force 

platform, no studies show the reaction forces in the studs themselves. Therefore, a 

new system to analyze the action of each studs based on strain gauge technology has 

been developed. The system allows measuring horizontal forces in every stud during a 

movement. Thirteen studs instrumented with strain gauges were employed to measure 

the forces in lateral and direction in every stud in real soccer actions. Five male semi- 

professional soccer players have participated in this work. The results measured have 

a very good level in the reliability of modulus in turning movements and starting run, 

but in zigzag movement shows low reliability. The measuring system could be 

considered as a useful training and sports shoe design tool concerning stud behaviour.

Douglas51, etc. studied cleat-surface friction on new and old Astroturf by a cleat 

platform device. Three cleats taken from a shoe are fastened in a triangular array on a
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platform paved by Astroturf. Normal loading was applied symmetrically on the array 

with weights. The array is then pulled across the Astroturf using the crank tower 

affording the polling or friction force that is recorded on a chart recorder. More 

weight can be added and the test is repeatable. This ensures the cleats contact the 

surface in a uniform manner and allows one to observe the static and dynamics 

friction as well as the amount of ‘chatter’ during the sliding. Three types of cleat were 

tested: the Riddell 78 polyurethane screw-on type cleat, the Riddell 391 red-molded 

urethane slightly worn cleat and a very worn Riddell 391 cleat. Experiments shows: 

The Riddell 78 type cleat produces more friction on five year old used and exposed 

Astroturf than on the unused and unexposed Astroturf, the Riddell 391 type cleat 

reverse this behaviour; In general, the 391 cleat has greater friction than the 78 on the 

unused and unexposed Astroturf; Cleat wear of the shoe, the Riddell 391 most 

commonly used on Astroturf, has little effect on friction.

Robert52, etc. reported their investigation about differences in friction and torsional 

resistance in athletic shoe—turf surface interfaces. By using a specially designed 

pneumatic testing system, the shoe-surface interaction of 15 football shoes made by 3 

manufacturers was evaluated in both anterior translation and rotation. The surface 

sample was secured to the turf platform on the testing apparatus. Rotation of a loaded 

shoe on the apparatus was accomplished by rotating the surface using a rotary 

pneumatic actuator, and translation was performed by a linear pneumatic actuator 

acting on the frame. Load was applied with free weights placed on the tibial shaft. The 

shoes included traditional cleated football shoes, court shoes, molded-cleat shoes, and 

turf shoes. All shoes were tested on natural stadium grass and synthetic turf under dry 

and wet conditions. The values on translation with wet versus dry surface were
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significantly different for rotation about the tibial axis. No overall difference between 

shoes on grass versus Astroturf. However, there were significant differences for 

cleated and turf shoes. The authors strongly suggested, on the basis of this study, for 

manufacturers to display suggested indications and playing surface conditions for 

which their shoes were recommended.

2.8 Others

A study about experiment and analysis of the interaction between camel foot and sand 

ground was reported by Xu53, etc. With the use of a footprint measuring instrument, a 

high-speed camera system and a multi-channel data synchronous collecting system, 

the area and shape of interaction between camel foot and sand ground, and the varying 

process of three-dimensional stress of sand beneath a camel foot were measured and 

analyzed. The study of interaction between camel foot and sand is very meaningful to 

develop ideal running gear on sand. The results from footprint measurement shows 

that a camel foot swings with hoof as pivot when it is about to leave sand ground, this 

way of interaction makes the shear capacity of sand under the foot be fully utilized, 

and traction performance improved. The area-increasing characteristics of camel foot 

makes the sand beneath its foot has a small stress with little change.

During the process of literature study and project research, a number of texts and/or 

books were found to be very helpful and benefited for our research. As the soil 

mechanics is the fundamental theory to carry out this our research, a few popular texts 

and/or books about soil mechanics, authored by Craig54, Smith and Smith55, Jumikis56, 

and Yong and Warkentin57 were addressed. The Finite Element Method is the sole 

numerical modelling technique used by us to perform the finite element analysis of
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footwear and ground interaction, so three books describing FEM, written by Rao58, 

Cook59, Lewis and Ward60, were referred to. For the study of theory of soil plasticity 

and failure criterion the following texts were most valuable: Chen37, Hill62, and 

Chakrabarty63 where the basic principles of theory of plasticity and failure criteria of 

soil were derived in detail. The texts by Smith64, and Chen65 were most helpful to 

carry out nonlinear finite element analysis in soil mechanics and civil engineering. 

The books by Duncan66, and Sedov67 were very useful to guide us building up the 

mechanism' of experimental validation. A book authored by Johnson68 was also 

referred to when sorting out contacting problem.

2.9 Summary

The literature survey was initiated from ‘Problem Specification’. Little work existed 

on the topic of footwear and ground interaction with soft surfaces, especially on work 

related to finite element numerical modelling; the literature survey was focussed on 

several relevant topics, such as soil-tillage tools interaction, soil- wheel interaction, 

soil-structure interaction, limit analysis, etc. besides the issue of footwear and soft 

ground interaction.

Plenty of studies concerning soil-tillage tools interaction had been performed, and 

quite a few practices of them were by using FEM since 1970s. Literatures reported by 

K. Araya and R. Gao10 (1995), A. M. Mouazen and M. Nemenyi11,12’13,14,15 (1998- 

2000) are typically selected as the candidates for 3D case study of this research 

reported in Chapter 5; Soil-wheel interaction study began from 1950’s and a number 

of researches by using FEM and Drucker-Prager nonlinear material model are very 

helpful for forming the idea of our research about footwear and ground interaction;
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The finite element analysis of soil-structure interaction has been applied to a number 

of types of soil mechanics and soil engineering problems since 1960s. Works by 

Schweiger35 is specially chosen to be two-dimensional case validation in Chapter 4; 

Being a sort of analytical methods opposite to numerical methods, limit analysis 

method was widely applied in soil mechanics problems since it was established in 

1950s.

A few researches concerning about footwear and ground interaction with soft surfaces 

were mainly by means of experiment methods with respect to artificial surfaces, such 

as Astroturf, and natural surfaces, for instance, football field. The study carried out by 

Barry and Milbum43, 44 was representative and focused on employing experimental 

methods to investigate traction performance of footwear on the soft and natural 

surfaces. The mechanism discussed by them is the same or similar to the soil plasticity 

theory adopted in our work reported in this thesis. We carried out experiments to 

validate the numerical modeling results presented in Chapter 7. Only one works by 

Baroud49, D. etc. was founded by using FEM to study footwear. However, they use 

hyper-elastic material model to simulate footwear behaviour, other than the 

methodology created by us by using DP material model to model interactive soil 

properties, which is reported in Chapter 6 as the main part of this research reported in 

this thesis.

Texts by Chen37, 6S, Smith64 were founded to be most helpful for comprehensive 

understanding of soil plasticity, failure criterion, nonlinear analysis, and FEM in soil 

mechanics. They are reviewed in detail in Chapter 3.
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Chapter 3

Investigation about Theories of Plasticity in Soil Mechanics

3.1 Introduction

As stated in previous chapters, little literature can be found concerning about study of 

interaction between footwear and soft surfaces of natural ground, especially by using 

Finite Element Method. We, therefore, have to investigate some relevant research 

areas by using Finite Element Method, such as soil-tillage tool interaction, soil-wheel 

interaction and soil-structure interaction, etc. at the stage of literature survey. 

However, all of these relevant studies were based upon the fundamental theories of 

soil plasticity and failure criteria that we also employ in this research and are 

embedded in the ANSYS finite element analysis software we used. So, a clear 

understanding of soil plasticity and failure criteria is necessary and important to carry 

out this research.

The theories of soil plasticity and failure criteria were generally considered as early as 

in 1773 originated by Coulomb110 who put forward the Coulomb failure criterion for 

soil. He also proposed the important concept of limiting plastic equilibrium and 

applied it to a fill on a retaining wall to determinate the earth pressure. Rankine111 

introduced the concept of slip surfaces in 1857 through studying about limit plastic 

equilibrium of a half-infinite body. In 1899, Massau112 established the basic geometric 

property of the net of slip-line field. The works of Kotter113 was published in 1903 to 

obtain a set of differential equations of plastic equilibrium and transform them to 

curvilinear co-ordinates (slip-line method). In 1926, Fellenius114 described a 

simplified theory of plastic equilibrium (limit equilibrium method). Subsequently
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many of researchers including Terzaghi developed further Fellenius’s works and that 

were summarized in the Terzaghi’s book18 on soil mechanics in 1943. Sokolovskii 

applied the Kotter’s equations (slip-line method) to various soil stability problems and 

his works was summarized in book115 (1965).

The development relation between the theory of metal plasticity and the theory of soil 

plasticity has been close and interactive. The development of metal plasticity had been 

strongly influenced by the earliest theory of earth pressure. For instance, Tresca’s 

yield condition of metal material presented in 1864, and thereafter116, is a special case 

of Coulomb’s yield condition (1773) which is 95 years before Tresca; Rankine’s 

(1857) theory of plastic states of equilibrium in loose earth preceded De Saint 

Venant’s117 (1870) investigation of such equilibrium states in plastic solids. Von 

Mises, in 1913, introduced a new yield criterion—the von Mises criterion for metals 

to be more convenient for numerical solutions. During the period from 1950s to 1960s 

the theory of metal plasticity has been intensively developed. The fundamental 

theorems of limit analysis about perfect plasticity, the concept of normality condition 

or associated flow rule, and the Drucker’s postulate38 formed the core and most 

extensively developed part of the theory of metal plasticity. The development of the 

modern theory of soil plasticity was also strongly influenced by the well-established 

theory of metal plasticity. Modern researchers have been preoccupied with extending 

these concepts to answer the complex problems in soil mechanics.

The first major advance in the extension of metal plasticity to soil plasticity was 

reported by Drucker and Prager73 in 1952. The authors extended the Coulomb 

criterion to three-dimensional soil mechanics problems. In 1953, Drucker36 interpreted
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the Coulomb criterion as a modified Tresca as well as an extended von Mises yield 

criterion. The latter yield criterion is known as the Drucker-Prager model or the 

extended von Mises model, which was embedded into ANSYS finite element 

software and has been employed by us in this research to study footwear and ground 

interaction. An important advance was achieved reported by Drucker, etc.77 in 1955 in 

the paper “Soil Mechanics and Work-Hardening Theories of Plasticity”. The authors 

introduced the concept of work-hardening plasticity into soil mechanics. The idea of a 

work-hardening cap added to perfectly plastic yield surface, such as the Coulomb type 

or Drucker-Prager type of yield criterion, was a important innovation and has led to in 

turn to the generation of many soil models. Notably, Roscoe and his colleagues118 

introduced the concept of critical state soil mechanics in 1958, and thereafter Cam- 

clay model119 in 1963 with additional experimental data having been gathered, 

interpreted, and matched. ‘This extension marks the beginning of the modern 

development of a consistent theory of soil plasticity’ (Chen37, 1975). From around 

1970s to up to date, the studies focused on constitutive models of soil problems have 

still been being blooming. In the meantime, the rapid development of computing 

technology on the aspects of both “hardware” and algorithm has been playing an 

important role in advancing the theory of soil plasticity. Numerical analysis specialist, 

for instance, Zienkiewicz120 suggested the concept of generalized plasticity, and 

established the system of generalized plasticity theory. He indicated that, comparing 

to the traditional theory of plasticity—the theoiy of metal plasticity, the theory of soil 

plasticity is a sort of generalized theory of plasticity, and the former is just a special 

case of the generalized theory of plasticity.
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This chapter does not aim to review the whole field o f theories o f plasticity in soil 

mechanics. A few fundamental concepts o f soil plasticity and relevant material 

models related to the model employed in our research, i.e. the Drucker-Prager 

material model, are presented.

3.2 Elastic-Perfcctly Plastic Assumption

From the investigation o f plasticity theories and failure criteria in soil mechanics, it 

has been realized that the mechanical behaviour o f soil materials is much more 

complicated than that described by classical elasticity and/or plasticity theories. 

However, the modern theories o f plasticity and failure criteria in soil mechanics have 

been notably based on the classical elasticity and plasticity theories developed in 

structural and continuum mechanics, especially the theory o f metal plasticity. In the 

most o f real cases, the soil behaves as an elastic-plastic material, and its stress-strain 

behaviour is ‘characterized by an initial linear portion and a peak or failure stress 

followed by work softening to a residual stress’ , seen Fig. 3.1. However, the 

necessity o f a good simplification in engineering problems makes it available that to 

ignore the work softening and peak features and to take the stress-strain relationship 

to be consisted o f two straight lines as shown by the dashed lines, oa and ab in

Fig. 3.1 Stress-strain curve for ideal and real soils (From Chen37)
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Fig. 3.1. A material hypothetically exhibiting this property of continuing or 

unrestricted plastic flow at constant stress, i.e. a = oa= <Jb = Constant Stress, is called 

an ideally plastic or perfectly plastic material. Of course, a material assumed to have a 

stress-strain relationship as straight lines oa and ab shown in Fig. 3.1 is an elastic- 

perfectly plastic material, where the yield stress level (a = oa = ob = Constant Stress) 

that the perfect plasticity assumption is made may be chosen to present the average 

stress in an appropriate range of strain.

The stress-strain diagram shown in Fig. 3.1 is associated with a simple shear test or a 

tri-axial compression test. To realize the behaviour of the soil for a complex stress 

state requires a solution where conditions characterize the change of the soil material 

from an elastic state to a yield or flow state (the horizontal line ab, Fig. 3.1). This 

condition was created and developed, called yield criteria (perfect plasticity 

condition), to answer this arisen question of a possible form of the condition that 

characterizes the transition of a soil from an elastic deformation state to a plastic 

failure state. The yield criteria will be narrated in the following sections.

3.3 Theories of Soil Plasticity

3.3.1 General Remarks

In the most fundamental case, the soil acts as an elastic-plastic material, i.e., soil 

deformations are basically inelastic since upon load removal, unloading follows a 

different path from that followed by loading, as well as irrecoverable strains.
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Elasticity-based model can be used to describe the soil behaviour, but a special 

loading criterion must be defined for loading and for unloading. Such a formulation is 

known as the deformation theory of plasticity. The variable modulus models are 

generalized in this kind of theory to deal with incremental stress-strain relationships. 

There are some limitations for the deformation theory of plasticity and the variable 

modulus, which can be overcome by the flow theory of plasticity.

The flow theory of plasticity is based on three basic assumptions: (a) the existence of 

an initial failure surface; (b) the evolution of subsequent loading surfaces (hardening 

rule); and (c) the formulation of an appropriate flow rule. For soils, as for metals, 

perfect plasticity is an ideal design simplification. For more complex stress-strain 

behaviour of soil, it may be simulated by more sophisticated hardening plasticity 

theory. For this research, only the theory of perfect plasticity and perfect plasticity 

material model—Drucker-Prager are mainly employed.

The formulation based on the flow theory of plasticity gives a good fit to date from 

laboratory tests. Existing plasticity models including the Drucker-Prager model can 

represent important soil characteristics such as dilatation, dependency of strength on 

stress or strain history and non-linear behaviour, etc. These models such as Drucker- 

Prager, Coulomb, Tresca and von Mises, etc. rigorously satisfy the basic requirements 

of continuum mechanics such as uniqueness, stability and continuity.

3.3.2 Flow Theory
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In the theory of stress increment—strain increment relationship, the total strain 

increment ds,j is composed of the elastic strain increment ds and the plastic strain 

increment dsPij, i.e.:

dstj = d seij +dsiJp (3.1)

The elastic strain increment obeys Hook’s law where two material parameters such as 

the elastic modulus, E, and the shear modulus, G, are either constants or a function of 

stress invariants and/or strain invariants. On the other hand, the plastic strain 

increment is estimated by the following two concepts of flow/incremental theory of 

plasticity for perfect plastic materials:

1. The existence of a yield surface that is yield criteria.

2. Flow rule that determinates the general form of the stress to the incremental 

plastic strain relationship.

3.3.2.1 Yield criteria

Yield criteria define the stress conditions over which plastic deformation will occur 

for a material element and also separate zones of elastic behaviour from those of 

elastic-plastic behaviour. Stress paths within the yield surface result in pure 

recoverable deformations, while paths that intersect the yield surface produce both 

recoverable and permanent deformations (plastic strains). In general, the initial yield 

function/ (or criterion) can be written down as:

f ( ? V) = fc (3.2)
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w here/c is a constant value for a perfect plastic material.

In a biaxial stress space, the yield surface for a perfect plastic material is fixed, and 

plastic deformation occurs only when the stress path moves on the yield surface (See 

Fig. 3.2).

Fig. 3.2 Yield surface o f a perfect plastic material (From Chen65)

Thus, the loading condition for plastic flow is given by:

f  -  f c and d f  = —̂— d a  — 0
1

(3.3)

If  the new state o f stress is within the elastic domain after an increment o f stress, the 

material is in elastic state, that is:

f < f c

3.3.2.2 Flow rule

(3 4 )

43



The flow rule is related to the relationship between the next increment o f the plastic 

strain increment de Pjj, and the present state o f stress q , for a yielded element 

subjected to further loading. This relationship is established by the concept o f plastic 

potential function Q. According to the theory o f plasticity, the direction o f the plastic 

strain increment is defined by the plastic potential function Q in the form:

d e i , = d X ^ -  (3.5)d°„

where cfk is a positive scalar o f proportionality dependent on the state o f stress and 

load history.

If the potential and yield surfaces coincide with each other ( /  Q ), the flow rule is 

called the associated type, otherwise it is the non-associated type. From equation 

(3.5), we can find that the direction o f the plastic strain increment vector, d e Pij, is 

normal to the surface o f plastic potential Q at the current stress point, q,. This 

normality condition is displayed in Fig. 3.3.

Fig. 3.3 Representation o f flow rule (From Chen65)
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3.3 .2 3 General nature o f plastic theory

The irreversible character o f plastic deformation implies that the work done by stress 

on the change o f plastic strain is positive. Suppose a unit volume o f perfect plastic

Fig. 3.4 Stress path produced by an external agency (From Chen65)

material subjected to a homogeneous state o f stress g  tJ on or inside the yield surface 

(see Fig. 3.4).

In Fig. 3.4, all purely elastic changes are completely reversible and independent o f the 

path from a , ,  to Gj and return to a ,y, all the elastic energy is recovered. The plastic 

work done by the external load on this loading and unloading cycle is the scalar 

product o f the stress vector (cfy -  a ,/) and the plastic strain increment vector de p,y. It 

is obvious that:

(a , j  - < T * , j ) d e pij > 0  (3.6)

The positive scalar product requires an acute angle between the stress vector 

(<Jij -  g  ,j) and the plastic strain increment vector de Pij. As the plastic strain increment
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vector ds  p,y is normal to the yield surface if the normality condition for plastic flow is 

taken, and since equation (3.6) must be satisfied for all stress vectors, (c^ -  er¡j), this 

condition requires that the yield surface be convex. The normality condition for the 

plastic strain increment vector ds  p,y and the convexity property of the yield surface 

imposed on the plastic stress-strain relations are of general nature for plastic theory.

3.3.3 Perfectly Plastic Material Models

As stated in section 3.2, a hypothetical material exhibiting the property of continuing 

plastic flow at a constant stress is called a perfectly plastic material. Similar to the 

historical account in section 3.1 about the theories of classical plasticity and soil 

plasticity, the Coulomb failure criterion110 is a well know perfectly plastic material 

model in soil mechanics. This criterion was proposed in 1773 for geo-technical 

materials much earlier than the Tresca and von Mises yield criteria for metals, and it 

is the first type of failure criterion to take into account the effect of the hydrostatic 

pressure on the strength of granular materials.

The first proposed yield criterion for metals is known as the Tresca criterion116 (or the 

maximum shear stress criterion) dating back to 1864, and thereafter. Von Mises, in 

1913, introduced a new yield criterion for metals that is more convenient for 

numerical solutions than the Tresca criterion. This yield criterion condition is known 

as the von Mises criterion. In 1928, von Mises121 used this criterion and developed a 

constitutive relation based on the normality concept that relates the plastic strain rate 

to the yield surface.
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On the other hand, the concept of perfect plasticity based on the Coulomb criterion, 

the Tresca criterion, and the von Mises criterion has been used broadly in the 

conventional soil mechanics to assess the collapse load in stability problems. Drucker 

and Prager36, in 1953, discussed a modified Tresca yield criterion as well as an 

extension of the von Mises yield criterion that included the hydrostatic component of 

the stress tensor. The extension of the von Mises yield criterion is the Drucker-Prager 

perfectly plastic material model (or the extended von Mises model).

The overall picture of these models can be seen in Fig. 3.5.

Fig. 3.5 The overall picture of main yield criteria

3.3.3.1 Coulomb model

Coulomb criterion states that failure occurs when the shear stress rand the normal 

stress <7 acting on any element in the material satisfy the linear equation:
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r = c + <7tan^ (3.7)

where c and tf> denote the cohesion and the angle o f internal friction, respectively. 

Coulomb criterion in a  -z  space is expressed in Fig. 3.6. For frictionless materials 

which <j> = 0, equation (3.7) reduces to the maximum shear stress criterion o f Tresca, 

r =  c, that is the cohesion becomes equal to the yield stress in pure shear c = k.

Fig. 3.6 Coulomb yield criterion in ct-t space (From Smith55)

If the condition o f stress state is cti > a 2 > 0 3 , the Coulomb criterion can be expressed 

as:

^(cr, -cr3) - j ( a t +cr3)s in tf> + ccos<f> (3.8)

Each principal stress can be represented in terms o f/i , V./2, 0(Lode angle) as follow:

a ' = ^ c o * 0 + ^
(3.9)

48



(3.10)° 2  = ^ V ^ COS( 0 ~ f ; r )  +  J /l

o-3 =^=JJ^cos(0 + ̂ x) + ̂ I, (3.11)

Therefore, from equations (3.8), (3.9), (3.10) and (3.11) the Coulomb criterion can be

expressed by stress invariant as:
*

7,sinii + i|3 (l-sin ii)sin0  + V3(3 + sin(z>)cos0]N/!/7-3ccos^ = O (3.12)

where 6 is Lode angle, c, <f> is same as that of equation (3.7) and I\, Jz is the first 

stress invariants, the second deviatoric stress invariants, respectively. Equation (3.12) 

represents an irregular hexagonal pyramid (Fig. 3.7) in the principal stress space 

whose cross-sectional shape on the /r-plane is an irregular hexagon.

Even though the Coulomb criterion is certainly the best-known failure criterion in soil 

mechanics and generally simple in two-dimensional graphical form, the Coulomb 

model exhibits comers or singularities in three-dimensional generalization. Some 

difficulties in numerical modelling cannot be avoided as the general yield or failure 

function with singularities. In addition to this limitation, the Coulomb criterion 

neglects the influence of intermediate principal stress on shear strength. Nevertheless, 

the Coulomb criterion is the first type of failure criterion that takes into consideration 

the effect of the hydrostatic pressure on the strength of granular materials, and has in 

the past been well established for important and practical soils problem to obtain 

reasonable solutions.
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M ohr-Coulomb Hydrostatic Axis 
( c i i  =  o r 2 =  o r 3 )

Stress paths in conventional triaxial tests

o j  =  Constant plane

a  - Plane

S7Fig. 3.7 Coulomb failure criterion in the principal stress space (From Yong' )

3.3.3.2 Extended von Mises model

Since the von Mises yield criterion is mainly used for metal which yield strength is 

insensitive to the hydrostatic pressure, it is not suitable for stability problems in soil 

mechanics. To consider the hydrostatic pressure effect on soil strength, the von Mises 

criterion can be extended to so-called extended von Mises criterion as follows:

(3.13)

or in the form of Drucker-Prager model as follows:

(3.14)
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where I\t J 2  are same as that o f above the Coulomb’s model, e3, c4, a  and k are 

constants, in which the constants a  and k relates to the Coulomb’s material constants

Axis
"3)

Fig 3.8 Extended von Mises yield criterion for soils (From Chen6S)

c and (p in several ways, as described later. Equation (3.13) or (3.14) represents a 

right circular cone in three-dimensional principal stress space, as be shown in Fig. 3.8, 

which intersection o f the ;r-plane is a circle. It is obvious that equation (3.14) is a 

special case o f equation (3.12) when the Lode angle 6=0.

3 3.3.3 Drucker-Prager model

As presented in section 3.3.3.2, Drucker-Prager model is also called extended von 

Mises model, and was first proposed by Drucker and Prager in 1953 to describe the 

internal cone in applying the limit theorems to perfectly plastic soils. For practical 

application, a smooth surface is often adopted to approximate the Coulomb yield 

surface with singularities in elastic-plastic Finite Element analyses. The Drucker- 

Prager perfect plastic model is the first attempt to approximate the well-known 

Coulomb criterion by a simple smooth function. This criterion, which neglects the 

influence o f ,/3 on the cross-sectional shape o f failure surface, is represented by a
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simple stress invariant function o f the first invariant o f stress tensor, I\, and the second 

invariant o f deviatone stress tensor, Ji, together with two material constants a  and k. 

It has the simple form:

f  ~ od\ "t" yjd 2 — k (3.15)

where the constants or and k is same as that o f extended von Mises model.

The yield or failure surface o f equation (3.15) in the principal stress space depicts a 

right-circular cone with the symmetry about the hydraulic axis as shown in Fig. 3.9. If 

«becom es zero, equation (3.15) reduces to the von Mises yield criterion for metal.

In the three dimensional stress space, the Drucker-Prager criterion can be matched 

with the apex o f the Coulomb criterion for either point A or B on its ^r-plane as shown 

in Fig. 3.10.

Fig. 3.9 Drucker-Prager failure criterion for soils (From Chen65)
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For point A case, the cone circumscribes the hexagonal pyramid. A compressive 

meridian line element connecting the apex O with the point A contains the same line

Fig. 3.10 Drucker-Prager & Coulomb yield criterion on the rt-plane (From Chen65)

for both criteria. So, the relations between a , k, and c, <f) can be found. Substituting 0 

= ;r/3 into equation (3.12), the line element OA is govern by:

v3(3 - s in ^ )  y ~
6c cos </> 

V 3(3-sin  (f>)
(3.16)

Comparing equation (3.16) with equation (3.12) o f the Drucker-Prager criterion, the 

parameters a  and k are, respectively:

2sin^
V 3 (3 -s in ^ )

(3.17a)
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6c cos ̂  _ 2*j3ccos<ß
-v/3 (3 -  sin </>) (3 -  sin <f)

(3.17b)

For the point B case, the corresponding constants for a tensile meridian (0  = 0 degree) 

are:

2s\n6a  = -j=----- -—
V 3 (3 + sin <f>)

(3.18a)

6ccos^ 
•n/3 (3 + sin <f>)

2^ccostf> 
(3 + sin </>)

(3.18b)

For the internal cone of the Drucker-Prager inscribing the Coulomb yield criterion, as 

shown in Fig. 3.10, the corresponding constants are:

a  = sin^ taxup
VJV3 + sin2 <}> ^9 + \2 tm 20

(3.19a)

a/JccOŜ  3c
-y/3 + sin2^ y]9 + l2 tm 2</>

(3.19b)

The Drucker-Prager model has both advantages and shortcomings. It is simple to use 

and available for computer coding, resulting in gained popularity and for analysing 

challenging projects, such as the channel tunnel project; it can be matched with the 

Coulomb model by a set of suitable selection s of constants; limit analysis techniques
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can be used with it; and it satisfies the associated flow rule. On the other hand, the 

Drucker-Prager model exceeds plastic dilatancy at yielding, for instance, the 

compression com of the Drucker-Prager approximation over-predicts the strength of 

soils, whereas the internal com of it results in equivalent friction angles lower than 

intended; it can not predict plastic volumetric strain or compaction of soil materials 

during hydrostatic loading.

An explicit correlation between the Mohr-Coulomb friction angle and the equivalent 

friction angle produced by circular, such as Drucker-Prager criterion, and other 

smooth criteria have been established in Griffiths’s work75, and it was shown that the 

DP compression cone over-predicts the strength of soils. A comparison using various 

Drucker-Prager models has been reported by Zienkiewicz122, et al, for a footing 

problem, and the important conclusion from this study was that the ultimate bearing 

capacity might be grossly overestimated depending on the Dmcker-Prager cone used.

3.3.3.4 The Drucker-Prager hardening cap model

Drucker et a/.77 first suggested in 1955 that soil might be treated as a work hardening 

or strain-hardening material which may reach the perfectly plastic state. A spherical 

end-cap was added to the Dmcker-Prager model in order to control the plastic 

dilatancy of soil. The innovative idea of the spherical cap fitted to the cone of the 

Dmcker-Prager model made a major step to more realistically represent soil 

behaviour. As the soil strain-hardens, both the cone and cap expand. The innovation 

of a cap model introduces the use of current soil density as the strain hardening 

parameter to determine the successive loading surfaces for a particular value of soil
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density. Such successive surfaces are all geometrically similar, but of different sizes 

for different densities.

With the Drucker-Prager strain hardening cap model, for the elastic-plastic state of 

soil, the yield criterion is same as that of the Drucker-Prager model expressed by 

formula (3.15). The cap-hardening function is controlled by 7C, the stress level on the 

current yield surface. Ic is given by the following equation:

In
c D

f

\

e p^bv
W

+1? (3.20)

where Ic° is the stress level on the initial yield surface, £ v is the plastic volumetric 

strain of soil, and D, W are material parameters determined by soil tests10.

3.4 Summary

The theory of perfectly plasticity is the simplest type of flow theory. An existing yield 

surface /  (at)  is postulated for elastic-perfectly plastic materials in the development of 

stress-strain relations. Each stress point inside the fixed surface represents an elastic 

state of stress and each stress point on the yield surface expresses a plastic state. The 

strain in the plastic state is assumed as the sum of the reversible elastic strain and the 

permanent plastic strain. Plastic flow occurs when f - 0  and d f ~ 0, which is used as 

the criterion for loading for a perfectly plastic material. During loading, both elastic 

and plastic strain occurs. Plastic flow is developed along the exterior normal of the 

fixed yield surface, that is, the normality principle for the associated flow rule 

material.
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Perfect plasticity models such as the best-known failure model—the Coulomb 

criterion is well established for hydrostatic pressure sensitive soils. However, it is not 

mathematically convenient in three-dimensional modelling situation owing to the 

existence of comers. The Tresca and von Mises criteria for metals are used for 

determining the collapse or limiting state of a stmcture, but can not describe the shear 

strength of soils except the total stress analysis of saturated undrained soil of clay 

type. The extended Tresca and extended von Mises criteria consider the effectiveness 

of mean normal stress, but the former still has the disadvantage of singularities. The 

latter, also called the Drucker-Prager model, is the simplest perfectly plasticity model 

approximating the well-known failure criterion—the Coulomb model. The Drucker- 

Prager model may give reasonable results for progressive failure analysis of soil, with 

adequate assumption of the material constants, a and k for the particular problems.
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Chapter 4

Case Study for Two-Dimensional Validation

4.1 Introduction

As the final target of this project is to numerically model the soil deformation between 

outer sole of the footwear and the soft surfaces of ground using FEM, to determine the 

limit loading condition which causes plastic failure of soil mass, and to judge which 

kind of tread pattern of military boots displays the best performance of traction forces, 

it is necessary to certify if the ANSYS—University High Option Finite Element 

software supported at Salford University is valid for numerical modelling soil 

problems regarding the use of the Drucker-Prager material model inherently 

embedded in the ANSYS software. For the necessity as mentioned above, we must 

study it step by step from simple two-dimensional soil problems by FE numerical 

modelling.

As the issue of footwear and soft ground surfaces interaction is mainly associated with 

earth pressure problems, so a two-dimensional numerical modelling case for earth 

pressure problem published works by Schweiger35 is selected for validation. For the 

first stage, we use the ANSYS software to conduct two-dimensional finite element 

model construction, applying loading conditions and nonlinear numerical modelling 

of this sort of plane strain situation with the exact same geometry sizes, soil 

properties, material model—Drucker-Prager model and loading conditions as that of 

selected case. Then the numerical modelling results are compared to that of hand 

calculation using typical earth pressure theory as it has been widely used and cited,
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and at the same time to numerically modell results by Schweiger on the use of 

Drucker-Prager model supported in another different software35 (TDV, Graz, Austria).

4.2 Background of Drucker-Prager Material Model in ANSYS Software

Through the literature survey and plasticity theory studied in detail, we understand 

and become focused on the topic of perfect plasticity theory and theoretical models 

based on it, as we are interested in limit load conditions when plastic failure of the soil 

mass occurs. So, what is the condition, when plastic failure of soil mass happens 

under vertical loading and transverse loading conditions acted by tread pattern and the 

outer-sole of footwear. The Drucker-Prager nonlinear material model having been 

embedded in the ANSYS finite element software supplied an effective means to carry 

out this research.

The Drucker-Prager model in ANSYS is applicable to granular (frictional) material 

such as soils, rock, and concrete and uses the outer cone (compressive corn) 

approximation to the Mohr-Coulomb law. This option uses the Drucker-Prager yield 

criterion with either an associated or non-associated flow rule. The yield surface does 

not change with progressive yielding, hence there is no hardening rule and the 

material is elastic-perfectly plastic. The Drucker-Prager yield criterion is a 

modification of the von Mises yield criterion that accounts for the influence of the 

hydrostatic stress component. The higher the hydrostatic stress, the higher the yield 

strength. The Drucker-Prager yield surface is a circular cone with the Mohr-Coulomb 

material parameters chosen such that it corresponds to the outer aspices of the 

hexagonal Mohr-Coulomb yield surface, that is, it is the compressive cone in ANSYS 

software same as that governed by equations (3.16), (3.17a) and (3.17b).
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4.3 Two-Dimensional Validation for Earth Pressure Problems on the Use of 

Drucker-Prager in ANSYS

For this two-dimensional case study, earth pressure problems are simulated under 

plane strain conditions. Loading conditions are acted on by applying prescribed 

horizontal displacements to a rigid wall in left front o f a soil mass. The soil mass is 

subjected to initial stresses. A general picture o f this earth pressure problem is shown 

in Fig. 4.1. Only a translation o f the wall is considered for this validation. The wall is 

assumed to be smooth, that is, no friction. Geometric nonlinearity is not taken into 

account i.e. small strains have been considered.

active passive
-I—>

77TTT7 o s/ x.wn .w  '//

35 m

x

Soil parameters:
E = 75000 kPa (E Young's modulus )
v  =  0.3 ( " Poisson's ratio )
7 = 18 kl\l/m3 ( 7 — Bulk unit weight )
<P =  30° ( < P - — Friction angle )
c = 0.1 kPa ( c — Cohesive strength )

Fig. 4.1 Typical earth pressure problem

4.3.1 Soil Properties

The soil material parameters are chosen to be the same as that o f published works by 

Schweiger35 except the cohesive strength, see also in Fig. 4.1. Cohesion values in both 

cases are originally considered as zero. However, the inputting requirement o f the
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cohesion value in ANSYS must not be zero, otherwise, the numerical modelling can 

not proceed further. So, a relative small value, 0.1, close to zero is selected to be the 

approximation of the cohesive strength of model by Schweiger35. Three material 

constants of Drucker-Prager non-linear material model in ANSYS are inputted:

•  The cohesion value (=0.1)

•  The angle of internal friction (= 30°)

•  The dilatation angle (= 30)

For this case, the dilatation angle is equal to the friction angle, which means the flow 

is associative.

4.3.2 Meshing Scheme

4.3.2.1 The elements

The PLANE82 element in ANSYS is selected to be used for this 2-D numerical 

modelling of soil structure. The PLANE82 element is a 2-D 8-node structural solid 

element. It is a higher order version of the two-dimensional, four-node element 

(PLANE42) and provides more accurate results for mixed automatic meshes and can 

tolerate irregular shapes without as much loss of accuracy. The 8-node elements have 

compatible displacement shapes and are well suited to model curved boundaries. The 

8-node element has two degrees of freedom at each node: translations in the nodal x  

and y  directions. The element has plasticity, creep, swelling, stress stiffening, large 

deflection, and large strain capabilities and can be used as a plane element (plane 

stress or plane strain) or as an axis-symmetric element.

4.3.2.2 The plane strain
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In the case of analysis of dams, foundations, cylinders and retaining walls, the 

boundaries are not clearly defined in the longitudinal direction (z direction), and 

whose geometry shapes and loading do not vary significantly in the length direction. 

Therefore, a unit slice or a cross section of these long bodies can be considered for 

idealization and analysed as a plane strain problem and the dependent variables are 

therefore to be functions of only the x  and y  coordinates in two-dimensional stress- 

strain space, provided the cross section of the body is away from the ends of the body. 

So, the two-dimensional case validation of earth pressure problem in our studies is 

simulated under plane strain conditions.

4.3.2.3 The meshing

4 key points, 4 lines, larea, 981 nodes and 300 equivalent eight-node PLANE82 

elements are created and shown in Fig.4.3.

Normally, the size of elements influences the convergence of the solution. The final 

solution is expected to be more accurate if the size of the elements is small or the 

number of elements is large. Even though the use of elements of smaller size 

traditionally means more computational time and cost, Nowadays fast and remarkable 

advancement in both “hardware” and algorithm of computing technology has greatly 

reduced the sensitivity of rising computational time and cost resulting from using a 

finer meshing scheme.

Comparing to an example of meshing scheme in a paper reported by Clough and 

Duncan7 in 1971, as shown in Fig. 4.2, the average meshing density shown in Fig. 4.3 

is much finer than that of Fig. 4.2. However, there is no costing computational time
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met even though by using a usual desktop PC.

Fig. 4.2 Meshing scheme o f 2-D retaining wall reported by Clough and Duncan7

4.3.3 Boundary Conditions

4.3.3.1 Constraints

For this two-dimensional earth problem, boundary conditions were applied to this 

model on bottom and right ends, the top is left free o f any constraints, the left ends is 

left to be applied by loading conditions. The constraints on the right ends are 

supposed to be on rollers as shown in Fig. 4.3, i.e. the horizontal movement has to be 

restrained and vertical movement is not constrained. The bottom boundary is 

constrained only against vertical movement.

Fig. 4.3 Boundary and loading conditions o f 2-D earth pressure problems

4.3.3.2 Loading conditions
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As also shown in Fig.4.3, horizontal wall displacements in the positive x  direction 

were applied to left hand side of soil mass at rigid interface between retaining wall 

and soil mass as a loading condition to simulate effect of passive earth pressure.

The wall displacement necessary is 11.5cm to predict the passive pressure with 

Drucker-Prager criterion when all elements have yielded for the first time. Increasing 

the wall displacement will cause further plastic deformation. When it reaches 15cm, 

the predicted passive pressure by this validation studies will be very close to the 

results by Schweiger35, see also in section 4.3.5 and 4.3.6 for details.

4.3.4 Initial Stress

4.3.4.1 Introduction

Initial stress was formulated in the geotechnical structure, especially soil structure, 

owing to natural factors, such as gravity, consolidation, etc. In geotechnical 

engineering, the initial stress has a significant effect on a structural analysis. Loading 

initial stress in ANSYS is only allowed in a static or full transient analysis, and the 

analysis can be linear or nonlinear. In a structure analysis, the initial stress can be 

applied only in the first load step of this analysis with ANSYS. The user subroutine 

can be used to input initial stresses. Initial stress can be read from an input file and 

constant initial stresses can be specified using the command. This initial stress 

capability is supported by the following element types, such as PLANE42, PLANE82, 

SOLID45, and SOLID95, etc.

4.3.4.2 Method to calculate initial stress

Initial stress was assumed to act in the soil prior to loading and a FORTRAN routine
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was written to produce initial stress file for this model.

The initial stress in vertical direction and horizontal direction are a y and o x, 

respectively. They are represented by the following equation:

a y =r ( 5 - y )  = 18000(5-^) (4.1a)

crx =K0cry =0.5(Ty (4.1b)

where y is bulk unit weight o f soil mass, Ko is the equivalent initial pressure 

coefficient and y  is the vertical height o f soil mass from its bottom.

4.3.4.3 Producing initial stress by FORTRAN programming

A general form FORTRAN routine was created to produce an initial stress file for this 

model in ANSYS. The sequence o f a scheme to produce initial stress for (n x n) 

elements o f a 2D structure in FORTRAN programme is shown in Fig. 4.4.

ty,m

r NCN-1J +1 NN-1 NN !

m
: ;

/ N+l N+2 N+3 N+4 2N-1 2N 1

vai n
1 2

■ i,w r
3 4 ---------------------- 'K/j N-l N :------- ------ >

I x,m

35 m----------------------------------------------------------------------- *

Fig. 4.4 A scheme to produce initial stress

For each PLANE82 element, the initial stress distribution on eight nodes o f it in
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FORTRAN routine is shown in Fig. 4.5 and the sequence o f the nodes’ distribution is 

ruled in counter-clockwise direction, see also in Fig. 4.5.

7 _______  61 5

s 4

Fig. 4.5 The initial stress distribution sequence on each PLANE82 element

A flow chart o f a user subroutine is displayed in Chart 4.1 as follow. The FORTRAN 

programme is presented in Appendix I.

4.3.4.4 Initial stress effect

The initial stress effect on the soil mass is shown in Fig. 4.6. As seen in Fig. 4.6, the 

deformation due to initial stress is significant. About 95% regions o f the whole soil

■ kPa
- 8 . 8 3 1  8 . 1 9 4  2 S . 2 1 8  4 2 . 2 4 3  5 9 . 2 6 7

- . 3 1 8 4 9 9  1 6 . 7 0 6  3 3 . 7 3  5 0 . 7 5 5  6 7 . 7 7 9

Fig. 4.6 The initial stress (Y-direction) effect on the soil mass
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Start

Presets the variables associated with the scheme to 
produce initial stress

Inputs data defining geometry of Finite Element 
model

Calculates width and height of all equivalent elements

Calculates coordinates of central point of each 
element of all

NO __n

Yes

I>30,

Calculates coordinates of eight nodes of each element 
of all

No1̂ 30, J>10? _ _ _ > = -------— -----

^ [ Y e T

Formulates and calculates initial stresses on each 
node of each element of all

N o ________ ___ —
-----------------— ----< _ ^ E > 3 0 ,  JàlO,

Outputs initial stresses of each element of all

End

Chart 4.1 Flow chart of a user subroutine of producing initial stress
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mass are in compressive state in the Y-direction. The soil deformation at location 

close to upper right ends is gradually decreased in the Y direction. The reason of this 

is due to influence of constraint condition applied at right ends. Even though vertical 

movement is not constrained at right ends, constraints in the X direction could still 

interfere soil deformation in the Y direction. The initial stress in the X-direction is 

distributed in two main regions, the upper half part of the soil mass is in compressive 

state and the lower half part of the soil mass is in tensile stresses. This can be 

explained that the soil element in the upper half part of the soil mass is subjected to 

compressive pressure in both X and Y directions as the effect of gravity is not 

significant as the depth is less than half of height of soil mass. The lower part of soil is 

subject to higher compressive pressure in Y direction as deeper depth, and the soil 

element is tend to expand in the X direction under tensile stresses.

4.3.5 Numerical Modelling Results

After initial stress was acted on the soil mass, the loading condition—wall 

displacement was applied, the model solved and a non-linear convergent solution was 

obtained. A series of solutions were obtained for different loading conditions (wall 

displacements). Numerical modelling results under 0.15m wall displacements are 

shown in Fig. 4.7.
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,l^—  ...... ....................... ......... ............................................ —— —  kPo
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Fig. 4.7 Earth pressure distribution in 0.15m wall movement 

4.3.6 Results Analysis and Conclusions

As shown in Chart 4.2, Chart 4.3 and Chart 4.4 by referring Fig. 4.1, we can find that 

both earth pressure values with Drucker-Prager model used by both in ANSYS and 

Schweiger’s work35 are higher than theoretical limit o f typical theory (Coulomb 

criterion).

Passive Case (0.115m Wall Displacement + Initial
Stress)

—♦—DP in ANSYS by this 
study

-■-Theoretical limit

DP in works by 
Schweiger

Depth, m

Chart 4.2 Earth pressure with 0.115m wall displacement
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Passive Case (0.13m Wall Displacement + Initial Stress)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

DP in ANSYS by this 
study

-•-Theore tica l limit

DP in works by 
Schweiger

Depth, m

Chart 4.3 Earth pressure with 0 .13m wall displacement

From various comparison charts o f numerical modelling results conducted by us, it 

shows that:

Passive Case (0.15m Wall Displacement + Initial Stress)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

DP in ANSYS by this 
study

-■ —Theoretical limit

DP in works by 
Schweiger

Depth, m

Chart 4.4 Earth pressure with 0 .15m wall displacement
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• For Uy = 0 (Bottom of soil mass) and Ux = 0 (Right-hand side of soil mass) 

boundary constraints, the results of our study has a better agreement with the 

result of Schweiger on the same wall displacement, but the latter is higher than 

the theoretical limit with wall movement from 0.115m to 0.13m as shown in 

Chart 4.2 and Chart 4.3.

• When gradually increasing wall displacement to 0.15m, the results of Drucker- 

Prager model in ANSYS become very close to the result of Schweiger, as 

shown in Chart 4.4.

From the result analysis, we can reach a conclusion that two-dimensional validation of 

numerical modelling earth pressure problem in ANSYS is successful, that is, ANSYS 

software is suitable for two-dimensional numerical modelling with soil material.

4.4 Summary

Two-dimensional validation was focused on a case study reported by Schweiger35 

about typical earth pressure problems. The soil material properties are simulated by 

Drucker-Prager material model. The 2-D 8-node structural solid PLANE82 element in 

ANSYS is selected to numerical modelling of soil structure and this earth pressure 

problem in our studies is simulated under plane strain conditions. As usual in 

geotechnical engineering, initial stress is considered in this study and user routine is 

created to produce initial stress effect. Wall displacement is applied as loading 

conditions. A series of numerical modelling results shows that good agreement with 

works of Schweiger35 has achieved and ANSYS software is applicable to 2-D FE 

numerical modelling for soil problems.
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Chapter 5

Case Study for Three-Dimensional Validation

5.1 Introduction

We have successfully conducted a two-dimensional validation about numerical 

modelling for earth pressure problems on the use of Drucker-Prager failure criterion 

comparing the modelling results to hand calculating results using typical theory of 

lateral earth pressure, and the results reported by H. F. Schweiger. So we are 

confident in the effectiveness of the commercial package—ANSYS in numerical 

modelling for two-dimensional soil structure failure issue. Therefore, we can continue 

to undergo validation of numerical modelling for more complex soil structure failure 

problems in three-dimensions with ANSYS FE commercial package, comparing to the 

results of published works, so as to make sure that ANSYS FE commercial package 

is available to model soil failure problem in three-dimensional situation.

Numerical modelling methods have become a standard tool for analysing complex 

problems in geo-technical engineering and in agricultural soil ploughing process. 

After an initial literature survey in the domain of soil-tillage tools interaction, soil- 

wheel interaction and soil-structure interaction, etc., we concentrated on the studies of 

finite element modelling for three-dimensional soil-tillage problems in more depth.

The Finite Element Method is being widely used to investigate the soil tillage process. 

This method is employed to evaluate soil stress distribution, soil deformation, 

positions of soil failure and the effects of tool’s horizontal draught forces and vertical 

uplift forces, etc. For instance, Yong and Hanna2 conducted their finite element
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modelling for cutting of a clay soil with simple tillage tool by adopting the non-linear 

curve-fitting approach considering the soil as elastic material; Chi and Kushwaha76 

reported that the hyperbolic formulate were used to simulate the behaviour of soil in 

the FE modelling. In FE numerical modelling, many of constitutive elastic-perfectly 

plastic material models such as the Drucker-Prager, critical state and cap models, etc. 

were employed to simulate soil behaviour either in practical applications or in 

theoretical research due to its simplicity. For example, Mouazen and Nemenyi123 

proposed a sandy loam soil to be simulated as an elastic-perfectly plastic material, and 

the Drucker-Prager material model was employed in the FE numerical modelling; 

Araya and Gao10 carried out three-dimensional FE modelling of subsoiler cutting with 

pressurised air injection. In their study, the Drucker-Prager harden material model was 

used to treat the soil as elastic-perfectly plastic material. The last two examples123,10 

will be selected as objects of case study for three-dimensional validation in detail in 

the following sections.

5.2 Three-Dimensional Validation for Soil-Tillage Problems on the Use of 

Drucker-Prager Material Model in ANSYS

5.2.1 Three-Dimensional Case 1 Study

First of all, a published paper authored by Mouazen and Nemenyi123 was focused on, 

which is titled as “APPLICATION OF THE DRUCKER-PRAGER ELASTIC- 

PERFECTLY PLASTIC MATERIAL MODEL FOR PERFORMING FINITE 

ELEMENT ANALYSES OF DEEP TILLAGE”. In this reported study, the soil 

cutting process by medium-deep subsoiler was investigated by conducting a non­

linear, three-dimensional finite element analysis.
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From the point of view of agricultural production, the quality of soil cultivation is of 

great importance. Comparing to topsoil, subsoil is also required to be well cultivated, 

‘subsoil’ is explained as ‘the layer of earth which is under the surface level’ in 

Cambridge Advanced Learner’s Dictionary’, as well as ‘the stratum of weathered 

material that underlies the surface soil’ as a noun dated from 1799, and ‘to turn, break, 

or stir the subsoil o f  as a transitive verb dated from 1840 in Merriam-Webster 

Dictionary, ‘subsoiler’ is a nounal format of the transitive verb -  ‘subsoil’. Obviously, 

‘subsoiler’ is equal to ‘tillage tool’ in meaning to some extent.

In this published works, the mathematical construction of the Drucker-Prager model 

was reviewed. An incremental technique was used to deal with the material non­

linearity of soil. Inside each step the Newton-Raphson iteration method was applied. 

In order to study the friction and sliding characteristics of the soil-subsoiler system, 

two nodes gap elements were placed between soil-subsoiler bodies. The subsoiler was 

assumed as a rigid body and a three-dimensional FEM mesh was generated for the 

soil domain in front of the medium-deep subsoiler. From the authors’ report, the finite 

element predictions of subsoiler draught force as well as surface failure dimensions 

agreed with those measured in a soil bin experiment.

However, this paper123 did not give geometry parameters of three-dimensional finite 

element model of soil-subsoiler system in detail, so the 3D FE model of soil-subsoiler 

system of this case study is reconstructed in ANSYS software based upon estimation 

of geometry parameters of that, and is shown in Fig. 5.1. Since the soil cutting is 

symmetric about the centric plane ABCD (Fig. 5.1), only one-half of the total region 

is reconstructed in this case study.
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Fig. 5.1 The model o f case 1 study by estimated geometry parameters

Eight nodes, linear, isoparametric three-dimensional solid elements, that is SOLID45 

element type in ANSYS software, are selected to represent the soil material. The 

element nodes are located at the corners o f the rectangular prism. Each node has three 

degrees o f freedom: translations in the nodal x, y , and z directions. Description of 

SOLID45 element in ANSYS software is presented in detail in three-dimensional case 

2 studies. As shown in Fig. 5.1, the total number o f nodes and elements are 2961 and 

2158, respectively.

The properties o f soil material assigned to this FE model are summarised in table 5.1 

and used as input data for FEA modelling in ANSYS software.
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Boundary and loading conditions are applied to the meshed FE model. As shown in 

Fig. 5.1, the front lateral surface ABCD and the rear lateral surface MNOP are 

constrained in z direction, respectively. The vertical (y) displacement of the bottom

Table 5.1 Soil properties of case 1 study

Soil Property Value Unit

Wet bulk density, p 1.731 k«kg/m3

Cohesion, c 15.5 kPa

Internal friction angle, <f) 31.8 deg.

Flow angle, P 31.8 deg.

Poisson’s ratio, v 0.359 No dimension

Young’s modulus, E 8067 kPa

surface DPOC is also constrained. The right lateral surface BNOC is constrained 

against displacement in the jc direction. The upper surface ANMB and the left lateral 

surface AMPD are left free of any constraints. The subsoiler is assumed to be a rigid 

body, and its Young’s modulus is remarkably greater than that of the soil. So, the 

loading acting on the soil by the subsoiler is prescribed by a uniform horizontal 

displacement in positive x direction of 15 cm for all subsoiler interfacial nodes of soil 

mass. The total displacement is not divided into many small increments.

Then finite element modelling is successfully conducted. The modelling results of it 

are presented in Fig. 5.2. Fig. 5.2 displays the soil deformation situation after 15cm
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Fig. 5.2 Deformed shape with undeformed edge o f case 1 study

horizontal displacement was acted on it as loading conditions. As seen in Fig. 5.2, the 

soil is deformed to form a wedge-shaped soil upheaval on the soil surface in front of 

shank o f the subsoiler. In the region o f above chisel o f the subsoiler, in front o f the 

shank, the soil is forced to move upward, forward and sideways comparing to the 

original position o f the subsoiler. The soil below this region experienced small 

movement except the part o f zone in front o f the tip o f the chisel. The stresses 

distribution in subsoiler travel direction is complex due to complexity in nature o f the 

type o f loading and the tool geometry. Most zones show compressive stresses and few 

regions display tensional stresses.
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As case 1 study is based upon estimation of geometry sizes of soil FE model, only soil 

deformation is discussed as above, and the pattern of the deformation is quite similar 

to that of case 1 reported by Mouazen and Nemenyi123. Validation concerning about 

the aspect of draught force of subsoiler will be conducted in case 2 study in detail.

5.2.2 Three-Dimensional Case 2 Study

A study reported by Araya and Gao10, which is entitled “A Non-linear Three- 

Dimensional Finite Element Analysis of Subsoiler Cutting with Pressurized Air 

Injection”, is chosen to be case 2 for validation about the draught force of subsoiler 

after literature survey in more depth. The geometry parameters of the three- 

dimensional FE model are presented completely and clearly in this literature. The 

mathematical model of soil material in this study is the Drucker-Prager hardening cap 

model, which is a little different from the Drucker-Prager model adopted in ANSYS 

software. The Drucker-Prager hardening cap model has been briefly reviewed in the 

Chapter 3, section 3.3.3.4.

5.2.2.1 General information of case 2 study reported bv Araya and Gao10 

The published paper of case 2 reports experiments in a movable soil bin and a 

theoretical analysis using Finite Element Method of soil failure by a pan-breaker and 

an injector with or without pressurized air injection. A Drucker-Prager’s strain 

hardening cap model was adopted to simulate the soil material and to be as the soil 

yield criterion. A commercial package —  ADANA was used for finite element 

modelling, and a subroutine program was written by the authors. The soil properties 

of sand as an elastic-plastic body were experimentally measured by a tri-axial 

compression test and used in the FEM analysis, as shown in table 5.2. The results by
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subsoiler tests in laboratory showed good agreement with the numerical modelling 

results by FEM.

Table 5.2 Soil properties in case 2 study

Soil Property Value Unit

Wet bulk density, p 1.43 k«kg/m3

Cohesion, c 9.13 kPa

Internal friction angle, <f> 23.8 deg.

Flow angle, P 23.8 deg.

Poisson’s ratio, v 0.248 No dimension

Young’s modulus, E 83360 kPa

Material parameter, D 335 kPa1

Material parameter, W 0.10 No dimension

5.2.2.2 FE modelling of 3-dimensional case 2 study in ANSYS 

The three-dimensional case 2 validation study in ANSYS is conducted for analyses of 

soil cultivated by a shank with 90 degrees rake angle without chisel and air injection, 

as shown in Fig. 5.3.

The parameters of soil material are selected as same as that of “A Non-linear Three- 

Dimensional Finite Element Analysis of Subsoiler Cutting with Pressurized Air 

Injection” reported by Araya and Gao10, seen also in table 5.2.
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The Drucker-Prager material model o f inelastic model o f non-linear model in ANSYS 

is chosen to represent soil material in this validation. A SOLID45 element type in 

ANSYS software is selected to represent the soil material. The SOLID45 element is 

used for the three-dimensional modelling o f solid structure. The element is defined by

Fig. 5.3 Three dimensional finite element model o f case 2 study

eight nodes having three degrees o f freedom at each node in the x, y, and z directions. 

The element has plasticity, creep, swelling, stress stiffening, large deflection, and 

large strain, etc. capabilities. Pressures may be input as surface loads on the element 

faces and positive pressures act into the element.

80



Total 64 keypoints, 144 lines, 108 areas, 27 volumes, 480 nodes, and 315 eight nodal 

SOLID45 elements are created, as shown in Fig. 5.3. The subsoiler-soil system is 

symmetric about the vertical central plane in Fig. 5.3. In order to determine stress 

caused in the plane where the subsoiler passes, the whole symmetrical region in Fig.

5.3 is constructed and numerical analysed.

The boundary conditions are applied to this FE model as shown in Fig.5.3. The 

surface ABCD is not constrained in any direction. The horizontal negative 

displacement of the surface AEHD and the horizontal positive displacement of the 

surface BFGC are constrained. The sideways positive displacement of the surface 

AEFB and the sideways negative displacement of the surface DHGC are constrained. 

The vertical positive displacement of the surface EFGH is constrained.

The specified forced displacements, maximum 0.1 m in the positive jc-direction, are 

loaded at the 10 nodes of four elements of the surface AEHD where the subsoiler 

shank touched. As reported by Chi and Kushwaha3 that the theoretical draught force 

increased accompanying with the increment of the subsoiler’s movement. And after a 

series of progressive increments, the draught force reached a maximum value when 

the tool’s movement is at 0.05 m to 0.1 m because the failure of the soil structure 

occurred. As a result, 0.1 m subsoiler movement is determined to be loaded in this 

validation to analyse the draught force, and the stress and deformation fields. The 

movement of the subsoiler is assumed to be frictionless, that is, interface friction 

between the subsoiler and the soil is zero.

Finally, numerical modelling of this case is conducted and non-linear convergent
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solutions are obtained. The results will be presented and analysed in the following 

section.

5.2.2.3 Results analysis and conclusions

Parts of the FE modelling results about soil deformation are shown in Fig. 5.4 by 

vector plots of translation. Fig. 5.4 (a) is the front perspective drawing of three- 

dimensional oblique vector plot; Fig. 5.4 (b) is the left perspective drawing of the 

three-dimensional oblique vector plot. As seen in Fig. 5.4 (a) and (b), the soil is forced 

to move upward, forward and sideways. The closer the region is near to the shank, the 

greater the soil deformation is. Soil upheaval on the soil surface in front of shank of 

the subsoiler is formed. The soil below the horizontal plane contacting by the bottom 

of the shank experienced very small movement. It is obvious that the soil deformation 

is symmetrical to the central plane being cut by the subsoiler as demonstrated in Fig. 

5.4(b).

The FE analysis results of this vertical shank-soil system are compared to the results 

reported in literature10, and the contours of plastic strain and deformation situation of 

these two numerical modelling are similar or close to each other.

For soil-subsoiler system, the draught force is a dominating factor in assessing the 

function of tillage. In the report of “A Non-linear Three-Dimensional Finite Element 

Analysis of Subsoiler Cutting with Pressurized Air Injection” authored by Araya and 

Gao10, the draught force from FE numerical modelling results was 3.2 AN for 90 

degree shank case without air injection and chisel.
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From our FE numerical modelling results in ANSYS software, the draught force is 3.6 

AN. The error percentage is 11.245%, which is reasonably good agreement.

The convergence norm we selected has an obvious effect on the draught force and 

error percentage o f validation. This effect is investigated in ANSYS and the results of 

investigation are summarized as shown in Chart 5.1. In Chart 5.1, when the 

convergence norm is default value, that is, Norm 0.0010, the error percentage is

Error percentage versus Convergence Norm

nPo '
CO" 0) o> 
.*—< c  o o
oa
2k-LU

Convergence Norms

□  NormO.0010
■  NormO.OOH
□  NormO.001125
□  NormO.0011375
■  NormO.00115
□  Norm0.0012
■  Norm0.0015

Chart 5.1 Error percentage o f draught force versus convergence norm

15.85%, that is the maximum value. If enlarging the convergence norm by one step 

(0.0001), the error percentage drops down dramatically to 11.25%, therefore the 

corresponding Norm 0.0011 can be considered as a threshold value. Continuously
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increasing the convergence norm step by step, there is no improvement for error 

percentage until it equals to Norm 0.00115, the error percentage reaches to a limited 

minimum value, 11.245%. Further enlarging convergence norm after Norm 0.00115 

by two steps, the error percentage of each step remains same value. So, it means 

Norm 0.00115 is the optimum convergence norm for conducting this particular case 

of FE modelling.

From the above analyses of 3D validation of case 2 study, it can be concluded that 

there is a reasonable good agreement for the draught force comparison. Therefore, the 

three-dimensional validation of case study is successful.

5.3 Summary

The three-dimensional validation is conducted by two cases study reported by 

Mouazen and Nemenyi123, and Araya and Gao10 about agricultural soil tillage 

problems. The soil material properties are simulated by Drucker-Prager material 

model in ANSYS FE software package. The SOLID45 8-node 3D structural solid 

element in ANSYS is selected to construct the FE model of soil mass. 0.15m and

0.10m wall displacements of subsoilers are applied to soil structures as loading 

conditions, respectively, in case 1 and case 2. A series of numerical modelling results 

shows that good agreement with the deformation contour and draught force of cases 

has achieved, and ANSYS software is suitable to 3D FE numerical modelling for 

problems of soil and structure interaction.
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Chapter 6

Study of Footwear and Ground Interaction by Using Finite 

Element Method

6.1 Introduction

Having successfully conducted cases validation studies for two-dimensional and 

three-dimensional soil-structure interaction by finite element numerical modelling in 

ANSYS package—University High Option, we are confident in employing Drucker- 

Prager material model in study of footwear and soft ground interaction, by using 

Finite Element Method with the same ANSYS package. Before moving to the issue of 

FE modelling of footwear and ground interaction, a general understanding of 

footwear, especially military boots, and human gait is essential to inform the 

construction of the finite element model.

6.1.1 Outdoor Footwear—Boots

Outdoor footwear development over the past thirty years more has seen that the 

traditional heavy leather boot of the 1970’s was replaced by the “lightweight” 

comfortable boot of the 1980’s with the addition of the synthetic fabric boot boom; 

technological advances in the 1990’s aid the return of leather, with many new 

characteristics such as lighter weight, easy care and more fashionable appearances. 

The trainer-type sports hiking boot has been developed over recent decade to be 

suitable for many terrains. A well-constructed trainer-type sports hiking boot is 

showed in Fig. 6.1.
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Fig. 6.1 Trainer-type sports hiking boot—  

l)Rand, 2)Insole, 3)Midsole, 4)Outsole, 5)Uppers, and 6)Lacing system

The natural environment o f ground varies from grass pastures and soft soil to snow, 

ice and rugged rock. Therefore outdoor activities can be differentiated, for instance, 

walking; hiking; scrambling and climbing. In order to meet these environment 

requirements, the high quality and versatile design o f boots is always demanded and 

advanced. The desired characteristics o f good boot design are comfort, insulation, 

maximized traction and lateral stability, lightness, water resistance, crampon 

compatibility, flexibility, wear resistance, breathing-ability, adaptability and easy 

care, etc. The boot types may be classified as several groups, such as walking, hiking 

boot, climbing boot, and special purpose boot, etc. Depending on how the boot is 

used, not all o f these characteristics are achievable in any one design. The military 

boot is used for the special situations o f combat and physical training. Apart from the 

general characteristics o f boot design, it is subjected to much more emphases on good 

traction performance, lateral stability, comfort, adaptability and prevention o f water 

and granular debris invading into boot, etc.. Therefore these characteristics help to 

enhance soldier performance and reduce injures due to the high demands o f load 

carriage, terrain and climate.
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A good, grippy outsole is essential in slippery, frequently wet environments. This 

depends on soling materials and the tread pattern. Most shoe soles are made from 

rubber, thermoplastic or vulcanised, PU (polyurethane). Many leading footwear 

manufacturers use PU and rubber compounds for outsoles. PU and vulcanised rubbers 

are good durable and wear resistant material for outsole offering traction. Moulded 

PU sole units may have either a thin, more durable skin on a microcellular structure or 

a thicker skin on a lower density partly open cell structure. For the UK Ministry of 

Defence, the outsole of one sort of military boots is made from two densities of 

reaction-moulded polyurethane. The soling compounds are hydrolysis resistant and to 

comply with the physical properties, such as that hardness is 60-70 IRHD, and density 

on whole mouldings is 1.05-1.15 g/cm3 for facer part.

For the natural soft surfaces, as reported in chapter 2, so little information is available 

about the interaction of footwear and soft ground. In this situation, good traction 

should be provided by well-designed tread pattern, producing the maximum shear 

resistant force by cleats and arrangement of cleats. So, how to effectively judge a 

tread pattern design of military boots respect to traction performance have been the 

most concerns in this study. FEM has been selected to be a powerful means to 

accomplish this mission of this project. This study will be presented in detail in the 

latter sections.

6.1.2 Process of Gait

During walking, the body passes over the supporting leg, the other swings forward in 

preparation for its next support phase. In the single support phase, the body tends to
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shift laterally over the weight-bearing limb. One foot is always on the ground, and 

during the period when the support of the body is transferred from one leg to the 

other, there is a brief period when both feet are on the ground. As the speed of 

walking increases, the period of double support decreases. When running, it 

disappears and period of neither foot being on the ground occurs.

During normal walking, a consistent cycle of heel strike and toe-off occurs. Between 

these two extremities, there is foot strike, opposite toe-off, opposite foot strike and 

toe-off. With each step, the body speeds up or slows down, rises and falls, and gently 

sways from side to side. The motion of the body during walking decreases vertical 

displacement of the centre of gravity to conserve energy. Any deviation from normal 

walking pattern and comfortable speed increases energy expenditure. Increased 

gradient or weight by loading affects oxygen intake and energy consumption. The 

nature of terrain has a considerable effect on the metabolic demand of walking. 

Therefore a sort of suitable footwear, especially with well-designed tread pattern, will 

effectively improve the process of gait as well as energy conservation.

6.2 Construction of Interactive Finite Element Model for the First Tread 

Pattern of Military Boots

6.2.1 Some Consideration of Building Up Finite Element Models

By considering the same direction of layout for both existing experimental device and 

finite element model to be built up, it is required that the layout of finite element 

model with tread pattern is identical to that of experiment facility. The experiment 

layout is showed in Fig. 6.2 and Fig. 6.3.
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Fig. 6.2 The experiment layout for direction o f heel strike (From Pisina1)

Fig. 6.3 The experiment layout for direction o f forepart outsole tread

In Fig. 6.2, the soil tray can be only sliding from left-hand side to right-hand side, in 

regard to static boot sample. According to the principle o f relative motion in physics, 

the movement o f the soil tray relative to static boot sample is equal to the movement 

o f heel strike relative to static soil tray, which is natural soft ground in real world. 

This situation is similarly corresponding to a transient state reported by Fendley and 

Marpet106 at 00:30:21:08 in its FIG. la.
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Similarly, the soil tray, in Fig. 6.3, can be only moving from right-hand side to left- 

hand side by measured pulling forces. The movement o f the soil tray relative to the 

static shoe last is equivalent to the movement o f forepart outsole tread relative to 

static soil tray. This case is similar to a transient circumstance reported by Fendley 

and Marpet106 at 00:30:21:18 in its FIG. lb.

6.2.2 Building Up Finite Element Model of Outsole for the First Tread Pattern

A footprint o f the first tread pattern o f military boots is shown in Fig. 6.4 and the real 

military boots (Sizes: M 10) is displayed in Fig. 6.5.

Fig. 6.4 Footprint o f the first tread pattern

Fig. 6.5 The first tread pattern o f real military boots
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A 3d geometrical model of outsole for the first tread pattern has been successfully, 

step by step, constructed and the final version is shown in Fig. 6.6. This geometry was 

used to create the corresponding geometrical depression in the finite element model of 

the soil—as explained in the following sections.

Fig. 6.6 A 3d geometrical model of outsole for the first tread pattern

6.2.3 Construction of Interactive Soil FE Model with Forepart of the First 

Tread Pattern

As reported in section 6.1.1, the hardness of outsole is 60-70 1RHD for military boots. 

Comparing to soft soil, the outsole including forepart, heel and all cleats is assumed to 

be a rigid body. Loads initiated by foot on insole will be transferred by supposed rigid 

outsole with tread pattern on the soft ground, which will be simulated by soil material. 

As discussed in section 6.2.1 associated with Fig. 6.3, an interactive soil FE model 

with forepart of the first tread pattern has been successfully constructed and as shown 

in Fig. 6.7.
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Fig. 6.7 Interactive soil FE model with forepart o f the first tread pattern

6.2.3.1 Geometry size o f the model

The soil is assumed fully compressed before loading. Full sinkage is applied to all 

cleats o f forepart o f outsole, that is, the depth o f full sinkage equals to the height o f 

cleats (= 0.0056 m). As seen in Fig. 6.7, overall depth o f the FE model is designed to 

be 11 times greater than the height o f cleat. Overall length and width ot the FE model 

are considered to be 3 times plus greater than the maximum length and width of 

forepart contour o f the first tread pattern, respectively. The basic element size is 

optimized as 0.022m, which will be explained in the following sections.

6.2.3.2 Soil properties

The soil material parameters in this study are chosen to be the same as that of 

published works by Mouazen and Nemenyi123 and used as input data for FE 

modelling interaction o f outsole with tread pattern and soft ground in ANSYS 

package. These parameters are presented in table 6.1.
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Table 6.1 Soil properties for FE modelling

Soil Properties Value Unit

Wet bulk density, p 1.731 k*kg/m3

Cohesion value, c 15.5 kPa

Internal friction angle, <f) 31.8 deg.

Dilatancy angle, P 31.8 deg.

Poisson’s ratio, v 0.359 No dimension

Elastic modulus, E 8067 kPa

6.2.3.3 Drucker-Prager material model

The Drucker-Prager material model is employed to simulate the behaviour of elastic 

perfectly plastic soil material in this study. It is governed by a yield criterion—the 

Drucker-Prager criterion and an associated flow rule. The increase in material volume 

due to yielding—The amount of dilatancy can be controlled by the dilatancy angle. As 

shown in table 6.1, the dilatancy angle, /? is equal to the internal friction angle, <p, the 

flow rule is associative and there is a material volume increase. If the dilatancy angle 

is zero or less than the internal friction angle, there is no or less of an increase in 

material volume when yielding and the flow rule is non-associated.

6.2.3.4 The element

SOLID45 element in ANSYS package is selected to construct the three-dimensional 

soil FE model. This type of element has been used for 3D cases validation studies as 

described in section 5.2.1 and 5.2.2.2 of Chapter 5 in detail.
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6.2.3.5 Meshing scheme

A basic element size, that is 0.022 m, is optimized to firstly mesh the main block of 

soil volumes surrounding and being adjacent to the first tread pattern, as displayed in 

Fig. 6.8 as follows. After this key step o f meshing is successful, the other parts o f soil 

volumes are meshed and complete meshing is finalized as in Fig. 6.7.

Fig. 6.8 The meshed main block o f soil volumes surrounding and being adjacent

to the tread pattern

Total 961 key-points, 1642 lines, 749 areas, 40 volumes, 4325 nodes, and 3186 eight- 

node SOLID45 elements are created, respectively.

A finer meshing scheme had been tried by selecting the basic element size being 

0.01m. However, this finer meshing scheme was finally abandoned. There are two

95



main reasons to give up this scheme. First, the total element number o f this finer 

meshing FE model is 8516, which is close to the maximum limit o f elements number 

o f ANSYS University High Vision. Secondly, shape testing for this finer meshing 

reveals that 506 o f the total 5258 modified elements violate shape-warning limits. 

This may lead to numerical modelling failure.

6.2.4 Construction of Interactive Soil FE Model with Heel of the First Tread 

Pattern

As discussed in section 6.2.1 associated with Fig. 6.2, a soil FE model interactive with 

heel o f the first tread pattern, similar to forepart reported in section 6.2.3, has been 

constructed as shown in Fig. 6.9.

Fig. 6.9 Interactive soil FE model with heel o f the first tread pattern

6.2.4.1 Geometry size o f the model
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Similar to the methodology used in section 6.2.3.1, the soil is assumed fully 

compressed before loading. Full sinkage is applied to all cleats of heel of outsole, that 

is, the depth of full sinkage equals to the height of cleats (= 0.0056 m). As seen in Fig. 

6.9, overall depth of the FE model is designed to be 11 times greater than the height 

of cleat. Overall length and width of the FE model are designed to be 3 more times 

greater than the maximum length and width of heel tread pattern’s contour, 

respectively. The basic element size is optimized as 0.020m.

6.2.4.2 Soil properties and material model

The soil material properties in this study are also chosen to be the same as that of in 

section 6.2.3.2, and used as input data for FE modelling about interaction between 

heel of the first tread pattern and soft ground in ANSYS software. These parameters 

are already presented in table 6.1.

Same as the material model used in section 6.2.3.3, the Drucker-Prager material 

model is also employed to simulate the behaviour of elastic perfectly plastic soil 

material in this study. As shown in table 6.1, the dilatancy angle, J3 is equal to the 

internal friction angle, (f>, the flow rule is associative and there is a material volume 

increase.

6.2.4.3 Meshing scheme

SOLID45 element in ANSYS package is again selected to construct the three- 

dimensional soil FE model interactive with heel of the first tread pattern. This type of 

element has been used for 3D cases validation studies as described in Chapter 5 in 

detail.
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A optimized element size (0.020m), which is different from that of forepart interactive 

soil FE model, is employed to mesh main block of soil volumes surrounding and 

being adjacent to heel of the first tread pattern. After successfully conducting this key 

step of meshing, the other parts of soil volumes are meshed and complete meshing is 

accomplished as shown in Fig. 6.9. Total 460 key-points, 811 lines, 406 areas, 38 

volumes, 2954 nodes, and 2235 eight-node SOLID45 elements are created, 

respectively.

6.3 Solution of the Soil FE Model Interactive with the First Tread Pattern

6.3.1 Solution of the Soil FE Model Interactive with Forepart

6.3.1.1 Constraints

For this three-dimensional soil problem, boundary conditions are applied to this FE 

model interactive with forepart of the first tread pattern. Referring to Fig. 6.7, the top 

surface ABCD is left free of any constraints in any direction, the lateral surfaces 

AHIB and DCJK are constrained in positive and negative z directions, respectively. 

The vertical y  displacement of the bottom surface HIJK is also constrained. The 

horizontal negative displacement (jc) of the surface ADKH and the horizontal positive 

displacement (jc) of the surface BIJC are constrained, respectively.

6.3.1.2 Loading conditions

Vertical compressive and transverse shear forces are applied to the ground via the 

footwear during the process of gait.
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For static analysis of a transient state in Fig. 6.3, the vertical compressive force is 

mainly a result of the weight of the soldier’s body and ammunition in his backpack. 

Although the weight of the human body is not linearly distributed over the inner sole 

in a particular time instant and position of gait105, the vertical compressive force 

distribution applied to the soft ground via the outer-sole of boot is more even, owing 

to rigidity of outer-sole, than the distribution of body weight over the inner sole.

The most promising tests applied a vertical force equivalent to at least 50% (single 

foot on the ground) of bodyweight and the bodyweight ranges from 400 to 830 N . 

For this study, vertical force is considered as 50%* (“body + ammunition” weight). 

Soldier’s body weight is assumed as 800N and ammunition weight is 200N. Friction 

force in vertical direction is assumed to be zero due to contact is considered as 

frictionless.

The transverse force consists of a shear force due to the vertical areas of cleats and 

friction forces due to contact between the cleats and the soil surfaces in the horizontal 

direction. For this study, the contact between the cleats and the soil surface is also 

assumed to be frictionless, so the transverse force, Ft, is only composed of a shear 

force. A ratio of 0.35 of transverse shear force to vertical compressive force is used to 

calculate the transverse shear force.

6.3.1.3 Methodology of applying vertical and transverse loading 

The applied vertical and transverse loadings—pressures are displayed in Fig. 6.10. 

The methodology of applying loading conditions is presented, step-by-step, as 

following in detail.
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i) Calculating average vertical pressure: The average vertical pressure equals to the 

total vertical forces, which is 500N as described in section 6.3.1.2, divides by total 

area sustaining the total forces. The total area is equal to the sum o f two groups o f

Fig. 6.10 Loading conditions o f soil FE model for the first tread pattern

area. One group of area is a single area (A387) at top surface o f the soil FE model

between the cleats. The another group of area is the sum o f areas (A  2 , As, ....... , A¡,

Am,  ....... , A 2 6 , A 2 1  ) occupied and contacted with bottom surface o f all the cleats at

forepart o f the first patterns as shown in Fig. 6.10. Hence, the average vertical 

pressure, /V, is:
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VerticalForces
V £ ( 4 ss7 +A2+Ai +..... + Ai +AM + ......+A76+A71) ^

= ------— r  = 33.252kPa
0.01503 619m2

ii) Applying vertical loading—the average vertical pressure, Pv, on all the areas in 

Fig. 6.10. The applied vertical loading is shown in Fig. 6.10 at two levels of 

horizontal planes.

iii) Applying transverse loading on specified areas interactive with lateral vertical 

areas of all cleats. The applied transverse loading is also displayed in Fig. 6.10. How 

the transverse loading acts on the specified areas will be presented in next subsection.

iiii) Method of acting transverse loading on specified vertical areas: As mentioned 

before, forepart tread effect is simulated by vertical and transverse force or pressure. 

The moving or slipping tendency of forepart with cleats is horizontally from left to 

right, which is the positive X-direction in Fig. 6.10. In this process, transverse loading 

is acted, by all cleats, on only vertical surfaces of soil model that blocking the moving 

trend of cleats and being interactive with vertical surfaces of cleats. Corresponding to 

Fig. 6.10, these vertical surfaces of soil model are straight lines from the top of view.

How to judge which vertical surface of soil model horizontally blocking the moving 

trend of cleat is to select any a vertical surface of soil model. From the top of view in 

Fig. 6.10, the selected vertical surface becomes a line. If the line is at right hand side 

or up-right hand side or down-right hand side to a corresponding cleat which is 

adjacent to the line, the vertical surface, therefore, blocks the moving or slipping trend
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horizontally forward to right direction. Otherwise, the line which is at left hand side or 

up-left hand side or down-left hand side to a corresponding cleat being adjacent to the 

line does not block the moving or slipping trend forward to right direction.

After selection of all vertical surfaces obstructing moving trend of cleats, average 

transverse pressure, Pat, acted by cleats on all vertical surfaces of soil model is 

calculated. The total transverse force, Ft, initiated by forepart of outer-sole with cleats 

is assumed as 0.35 times greater than the total vertical force, which is 500N as 

described in section 6.3.1.2. As the Ft is assumed to be acting on in the direction of 

paralleling the X-axis, a hypothesis total area, A vh, is calculated by summing up all 

projected areas perpendicular to the X-axis of all transverse surfaces blocking the 

moving trend of all cleats. Total 131 such vertical surfaces are founded as shown in 

Fig. 6.10. So, the AVh can be calculated as:

Ah = Am + Ahi + ..... +Ah,i+Ah,M+......+4*131 (6 2)
=  4 , 1 C 0 S a i + 4 , 2 COS£*2 + .........+  A . i C 0 S a i + A , M C 0 S a M  + ..........+  4 l 3 1 C O S ari31

where Avj, AV2, ........ AVji, AVii+J, ......., Avw  is the areas of all the selected vertical

surfaces, respectively, as shown in Fig. 6.10. The angle ai, 0C2, cch a,+i, ......,

CC131 is the inclination angles between the selected vertical surfaces and the plane 

perpendicular to the X-axis, respectively. These angles are determined by coordinates 

of two key-points of the selected vertical surfaces of soil model at the same depth. 

Finally, the average transverse pressure is solved as:

at

F, _ 035*SOON
Avh ~ 0.00359201893m2

A%.l\9kPa (6.3)
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Then the average transverse pressure is acted on each selected vertical surface, as 

shown in Fig. 6.10. The method of acting on is by selecting each surface which area 

is A vj, of the total 131 selected vertical surfaces, and multiplying it by Pat, and cosine 

of its inclination angle or,, one by one.

6.3.2 Solution of the Soil FE Model Interactive with Heel

6.3.2.1 Constraints

Similar to the scheme of boundary conditions for the soil FE model interactive with 

forepart presented in section 6.3.1.1, the boundary conditions are applied to soil FE 

model interactive with heel. By referring to Fig. 6.9, the top surface MNOP is left free 

of any constraints in any direction, the lateral surfaces MQRN and OPTS are 

constrained in the positive and negative z directions, respectively. The vertical y  

displacement of the bottom surface QRST is also constrained. The horizontal negative 

displacement (x) of the surface MPTQ and the horizontal positive displacement (x) of 

the surface NOSR are constrained, respectively.

6.3.2.2 Loading conditions

Similar to the methodology employed in section 6.3.1.2 and 6.3.1.3, loading 

conditions are applied for this FE model as shown in Fig. 6.11.

Vertical compressive and transverse shear forces are applied to the ground via the 

footwear during the process of gait. For static analysis of a transient state in Fig. 6.2, 

the vertical compressive force is mainly a result of the weight of the soldier’s body 

and ammunition in his backpack plus the tread effect. Due to the rigidity of outer-sole
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1
VOLUMES 
TYPE HUM
PRES-HOKM

9.276 54.673 LOO.07 145.466 190.863
31.975 77.371 122.768 168.164 213.561

Fig. 6.11 Loading conditions o f FE modeling for heel

the vertical compressive force distribution applied to the soft ground via the outer-sole 

o f boot is more even than the distribution o f body weight over the inner sole. The 

soldier’s body weight is also considered as 800N and ammunition weight is 200N. 

Due to the tread effect by heel, a vertical force equivalent to 80% o f (800N+200N), is 

assumed. Friction force in vertical direction is also assumed to be zero due to contact 

is considered to be frictionless in this study.

The transverse force consists o f a shear force due to the vertical surfaces o f cleats and 

friction forces due to contact between the cleats and the soil surfaces in the horizontal 

direction. For this study, the contact between the cleats and the soil surface is also 

assumed to be frictionless, so the transverse force, Fl(heei) , is only composed o f a shear

AN
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force. A ratio of 0.50 of transverse shear force to vertical compressive force is used to 

calculate the transverse shear force due to the severity of possible injury resulting 

from heel slip.

The same methodology as that of used in section 6.3.1.3 is employed to act the 

loading conditions on the soil FE model interactive with heel. It will be presented 

step-by-step as follows.

a) Calculating average vertical pressure: The average vertical pressure equals to the 

total vertical forces, which is 800N as described above, divides by total areas bearing 

the total vertical forces. The total area is equal to summing up areas on the top surface 

of soil FE model bearing the average vertical pressure, and areas on the soil surface 

contacting the bottom surfaces of cleats with full depth sustained the same average 

vertical pressure, and areas on the soil surfaces contacting the bottom surfaces of 

cleats with 0.8 times, 0.6 times, 0.4 times and 0.2 times heights, separately, of full 

depth (0.0056m) of tread patterns of heel.

Hence, the average vertical pressure, Pvfheei), is:

VerticalForces
V(heel))

Z «  107 "t” ^ 9 6  "t" -^98 + 4 o i  ^1 0 4  "t" ^ 1 2  ......... ^ 2 1  ......... ^ 2 4  ^ 3 9  ^ 44 +  • ^ 4 9 )

SOON
0.00625642m2

= 127.869kPa

(6.4)

b) Applying vertical loading—the average vertical pressure, Pv(heei), on all the areas in 

Fig. 6.11. The applied vertical loading is shown in Fig. 6.11.
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c) Applying transverse loading—the average transverse pressure, P at(heei), on all the 

surfaces blocking slipping trend of cleats of heel horizontally from right to left, that is 

the negative X-direction in Fig. 6.11.

From top of view in Fig. 6.11, these vertical soil surfaces are all at left hand side or 

the upper-left hand side or the lower-left hand side of the corresponding cleats being 

adjacent to these surfaces. The methodology of applying transverse loading for soil 

FE model interactive with heel is same as that of for soil FE model interactive with 

the forepart as presented in section 6.3.1.3, part iiii).

After selection of all vertical surfaces obstructing moving trend of cleats of heel, 

average transverse pressure, P at(heei), acted by cleats on all vertical surfaces of soil 

model is calculated. The total transverse force, F t(heei), initiated by heel of outer-sole 

with cleats is assumed to be 0.50 times greater than the total vertical force, which is 

800N. As the F t(heei) is assumed to be acting on in the direction of paralleling the X ~  

axis, a hypothesis total area, A vheei, is calculated by summing up all projected areas 

perpendicular to the X-axis of all vertical surfaces blocking the moving trend of all 

cleats. Total 58 such vertical surfaces are founded. So, the AVheei can be calculated as:

^ h e e l  ~ A vheeh + .......+ vheeli+\ ■+Ai•heelSS

=  A heeA  c o s o W i + A vheen co s  a heet2 + .......c o s a ^ ,, .  + A vh eeW  cosar„eWi,+1 + ......................+ A vhe„ 5g COS O' heeM

(6.5)
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Where Avheellj Avkeeft, . . . . . . .  Awheel,it Avheel,i+1> ...... > AvheelSS is  the STeSS o f  &11 the

selected vertical surfaces, respectively. The angle atheeii, 0Cheei2, ..... , ctheeij, c ih e e iH i,

......., ocheeiss is the inclination angles between the vertical surfaces of soil model and

the plane perpendicular to the X-axis, respectively. These angles are determined by 

coordinates of two key-points of the vertical surfaces of soil model at the same depth. 

Finally, the average transverse pressure, P at(heei), is solved as:

F
p  _  r t(heel)
*at(heel) ,

A vheel

0,50*800#
0.001873w2

213.561 kPa (6.6)

Then the average transverse pressure is acted on each selected vertical surface, as 

shown in Fig. 6.11. The method of acting on is same as that of forepart soil FE model.

6.4 Modelling Results and Discussion of the First Tread Pattern

After the loading conditions are applied and the solution controls are determined, a 

nonlinear numerical modelling is successfully conducted. The modeling results and 

discussion are presented as follows in detail.

6.4.1 Modelling Results and Discussion of Soil Interactive with Forepart

6.4.1.1 Traction effect

As mentioned in section 6.1.1 above, a good grippy outsole, which is depended upon 

the tread pattern of outsole and soling materials, is essential in slippery, frequently 

wet environment. The effect of traction is an important factor in judging how good 

one kind of particular tread pattern design is to resist slip. After having obtained the 

numerical solutions of forepart of the first tread pattern, its traction effect can be
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evaluated. In order to conveniently compare the traction effects associated with the 

other four tread patterns, this section—6.4.1.1 will be presented in section 6.6.2 in 

detail.

6.4.1.2 Soil deformation

The resultant soil displacement vector of soil FE model is shown in Fig. 6.12. As 

shown in Fig. 6.12, the most of large displacements occurs within regions contacted 

by the tread pattern and under the tread pattern, that is, the deformation of soil mass 

contacting forepart with cleats is magnificent other than the other regions far away 

from the forepart.

The distributions of the soil displacements in the X, Y and Z directions are complex in 

nature because of the complex tread pattern geometry and transverse loading 

conditions. However, the situation of soil displacement in each coordinate direction 

can still, generally, be the maximum translation in traction direction (the positive X 

direction) takes place in regions interactive with rear cleats of forepart; the maximum 

translation in vertical loading direction (the negative Y direction) occurs within 

regions at and under the center zone of tread pattern. The other regions’ translations 

decrease progressively along the radial direction from the center zone. The translation 

in vertical loading direction in regions far away from the tread pattern decreases to the 

minimum absolute value being nearly the same; the maximum translation in the 

negative Z direction happens in regions interactive with right hand side of toe part of 

cleats. Most regions of soil experience moderate translation in either the positive Z 

direction or the negative Z direction.
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Fig. 6.12 The resultant soil displacement vector 

6.4.1.3 Discussion o f soil deformation

A series o f cross-sections o f the soil model are captured to observe and discuss soil 

deformation in detail. These cross-sections are perpendicular to the Y, Z and X-axis, 

respectively.

6.4.1.3.1 Soil deformation at cross-section perpendicular to the Y-axis 

First, the group o f cross-sections perpendicular to the Y-axis is shown in Fig. 6.13. By 

observing Fig. 6.13 a), and b), it is obvious that soil deformation in the positive X- 

direction (the dash lines are undeformed shape or edge before loading), that are 

located in regions interactive with toe o f forepart, decreases progressively from depth
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Fig. 6.13 Soil deformation at a) Y = 0, b) Y = -  0.056*2/3 m (by referring Fig. 6.7)
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Y = 0 to Y = -  0.056*2/3 m), as indicated by arrows on the left hand side in Fig. 6.13 

a), and b). The dish lines indicated by arrows are at the same position in the X-Z 

plane, but at different depth in the Y direction. Deformed edges reflect the difference 

of soil deformation extent in the positive X direction. However, at areas related to rear 

part of forepart, the soil deformation increase progressively in depth at the negative Y 

direction as indicated by arrows on the right hand side in Fig. 6.13 a), and b). It 

implies that soil deformation on the top surface interactive with toe part with cleats is 

greater than the other deeper layers beneath toe of forepart. This FE modelling result 

is consistent with a phenomenon in a process of gait that slipping occurs firstly at toe 

part at top soil surfaces if transverse shear load subjected to soil is great enough to 

produce plastic failure of soil.

6.4.1.3.2 Soil deformation at cross-section perpendicular to the Z-axis 

Secondly, two cross-sections perpendicular to the Z-axis are shown in Fig. 6.14. In 

order to clearly observe soil deformation in the Y direction, soil model is cut by these 

cross-sections after removing top layer of elements as shown in Fig. 6.7. Comparing 

Fig. 6.14 a) to b), soil deformation in depth (the negative Y direction) at middle cross 

section (Z = 0.04m) is greater than that of at cross section (Z = 0.01m) far away from 

the middle cross section. Three locations along the X-direction are selected to 

compare soil deformation in the Y-direction at these two cross sections, as indicated 

by arrows in Fig 6.14. It is obvious that the soil deformation in the Y-direction at the 

selected positions at b) cross section is, respectively, greater than that of at a) cross 

section. This conclusive remark is based on comparison of most positions located at 

the bottom contour along the X coordinate.

I l l



Comparison of'soil di-formation in di-ptli at the same position in X-direction

Fig. 6.14 Soil deformation at cross-sections, a) Z = 0.01m, b) Z = 0.04 m
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6.4.1.3.3 Soil deformation at cross-section perpendicular to the X-axis 

Finally, two cross-sections perpendicular to the X-axis, as shown in Fig. 6.15 a) and 

b), are selected to compare soil deformation from left view of the soil model. Similar 

to the soil deformation patterns shown in Fig. 6.14 a) and b), three locations along the 

Z-direction are selected to compare soil deformation in depth at these two cross 

sections, as indicated by arrows in Fig 6.15. It is obvious that the soil deformation in 

the negative Y-direction at the selected positions at middle cross section (X -  0.08m), 

as shown in Fig. 6.15 a), is greater than that of at another rear cross section (X = 

0.12m) shown in Fig. 6.15 b). This is concluded from comparison of most points 

located at the bottom contour along the Z coordinate.

Based on the results of soil deformation discussed in Fig. 6.14 and Fig. 6.15, it makes 

clear that soil mass experiences the maximum deformation in the negative Y direction 

under and interacting with the central part of forepart of the first tread pattern.

6.4.1.4 Soil stresses

Fig. 6.16 shows the stress fields caused in the whole soil mass in the direction of 

traction force (the X-direction) after the particular loading conditions applied as 

described in section 6.3.1.2. As shown in Fig. 6.16, much greater compressive stresses 

in traction force direction were distributed at regions contacting middle and rear part 

of tread pattern in the top elements layer of the F. E. model. Tensile stresses are 

emerged, as shown in brown in Fig. 6.16, in the zone between left boundary ADKH 

of the soil FE model (referring Fig. 6.7) and toe part of outsole in the X direction.
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Comparison of soil deformation in depth at the same position in /^direction

Fig. 6.15 Soil deformation at cross-sections, a) X -  0.08 m, b) X = 0.12 m
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Fig. 6.16 Element solution for stresses in the X-direction

The stress distribution for the first tread pattern is unique and there is a stress image

similar to the first tread pattern contour on the top layer o f elements.

Stress fields caused on the whole soil mass in vertical direction (Y coordinate 

direction) is different from that o f in X coordinate direction. Plastic yielding exists in 

negative Y direction within all elements in the whole soil mass, therefore the stresses 

in negative Y direction within most o f all elements in the zone o f plastic yielding are 

nearly the same, that is -8.96 kPa. The stresses within elements under forepart of 

outsole are ranging from —21.057 kPa to -69.533 kPa.
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Stress distribution on the whole soil mass in the Z direction is also different from 

above. The stresses within in elements surrounding to contour of forepart are positive. 

Whereas, the stresses within other elements in most of zone of soil mass are negative 

and same, that is -12.125 kPa. The stresses within elements around cleats of forepart 

are also negative but varying from -12.125 kPa to -67.104 kPa.

The hydraulic static stresses are equal to V3 (SX + SY + SZ). The SX component has 

been shown in Fig. 6.16. The distribution of hydrostatic stresses is similar to that of 

SX and SZ to some extent. The shearing stresses caused within all elements are also 

calculated, but they are not commented here because they are all smaller or equal to 

the minimum compressive stresses.

As discussed above, the stresses distributions in the X, Y and Z direction indicates 

that the stresses field around cleats of forepart is complex in nature owing to 

complicated geometry shapes and configuration of tread pattern, and the stress field in 

other zone of soil mass displays particular pattern and law. These will be analyzed by 

comparing with the other four tread patterns in section 6,6.

6.4.1.5 Soil strains

Since the soil undergoes elastic and plastic deformation under loading conditions in 

transverse and vertical directions, the resulting total strain is composed of elastic 

strains and plastic strains.

6.4.1.5.1 Soil elastic strains
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The element solution o f soil elastic strains in the X direction is shown in Fig. 6.17 for 

forepart o f the first tread pattern. As shown in Fig. 6.17, elastic strains in the X 

direction reaches a maximum tensile strain, 0.004337 on toe position; the regions 

between left boundary and contour o f toe as well as some small regions contacting 

cleats experiences peak tensile strains within top layer o f elements between 0.000109

- .002709
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Fig. 6.17 Element solution o f elastic strain in the X-direction

and 0.001519. This result is consistent with stress distribution in Fig. 6.16. The strain 

distribution in most o f other regions is more uniform as compressive strains,

-0.002709, and smaller tensile strains, 0.000109 affected by local tensile stresses as 

distribution shown in Fig. 6.16.
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Elastic strains distribution in the Y direction is similar to that of stresses distribution 

in the Y direction. That is to say the regions under the forepart experiences peak 

strains in the negative Y direction, and the other parts within left half of entire soil 

model reaches an uniform compressive strains, -0.001618. An exception for this case 

is that all elements within right half of whole soil model slightly experiences uniform 

tensile strains, 0.000151. This maybe results from squeeze of left half of soil mass.

Elastic strains distribution in the Z direction is also similar to stresses distribution in
\

the Z direction that most of regions experiences smaller uniform strains, -0.001002, in 

the negative Z direction, and the regions being adjacent to lateral contour of forepart 

of tread pattern undergoes smaller strains in the positive Z direction. However, the top 

layer of elements within regions between left boundary and toe part of tread pattern 

does not encounter tensile strains, which is contrary to stresses distribution pattern in 

only this regions.

6.4.1.5.2 Soil plastic strains

Fig. 6.18 shows situation of plastic strains in the X direction. It is obvious that plastic 

yielding does not occur within most of elements, that is plastic strain is zero in the X 

direction under certain loading conditions in vertical and traction force directions as 

presented in section 6.3.1.2. However, a few small regions still experience plastic 

yielding in the X direction as shown in Fig. 6.18, a magnified top view of soil model 

respect to plastic strains in the X direction. All plastic strains are in the positive X 

direction, that is traction force direction, and to range between 0.000152 and 

0.001372. The maximum plastic strain reaches 0.001372 within one element among 

all elements at the top layer of and is located at left hand side of tread pattern’s
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contour. It is expected that further plastic yielding will develop in other elements until 

whole elements reach a state o f plastic yielding or failure, if loads in traction force 

direction are intentionally applied greater than the prescribed value described in 

section 6.3.1.2.

Fig. 6.18 Element solution o f plastic strain in the X-direction

Plastic strains in the Y direction are rather uniform. Because the vertical load is 

greater enough, the entire elements o f soil model experience plastic strains, and 

finally reach a uniform value, -0.0000475, in direction o f vertical loading, that is the 

negative Y direction. Plastic strains at only a few locations are greater than this 

uniform value in the negative Y direction, and one location shows plastic strain in the 

positive Y direction. However, these tiny differences do not violate the entire situation 

o f plastic strains in the Y direction.
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Most o f the elements experience plastic strains in the negative Z direction, and reach a 

consistent value -  0.0000289. Only a few regions develop plastic strains in the 

positive Z direction ranging between 0.0000907 and 0.001047. It is anticipated that 

plastic strains in the negative Z direction will continue to develop if the Z-component 

o f transverse loading increases after the first load step or it is greater enough than the 

prescribed loading conditions presented in section 6.3.1.2.

6.4.2 Modelling Results and Discussion of Soil Interactive with Heel

6.4.2.1 Soil deformation

The nodal solution o f soil displacement in the X direction interactive with heel o f the 

first tread pattern is shown in Fig. 6.19. From Fig. 6.19, it can be seen that all soil

l
NODAL SOLUTION
5TEP=1
3UB = 9 9 9 9 9 9
TIHE=1
UX (AVG)

-.004967 - . 003869 -.00*759 -.001656
-.004415 -.003311 -. 002207 -.001104
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Fig. 6.19 Soil displacement in the X direction (nodal solution)
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displacements occurs in the traction direction (the negative X direction), and the 

maximum translation, -0.004967m, in the traction direction takes place in regions in 

front of the third column straight cleat counting from right end-side of heel. All other 

regions experience uniform minimum translations,-0.000552m.

The situation of soil deformation in the Y direction is that most regions occurs 

uniform translation, -0.000501m, in the negative Y direction (the vertical loading 

direction). Regions under central part of heel experience greater translation, 

-0.001041m, that is two times greater than the uniform translation in the negative Y 

direction. Magnificent translation in the positive Y direction happens within soil in 

front of the third column straight cleat counting from right end-side of heel. It 

indicates that plastic failure remarkably occurs within this regions and the slip surface 

has a bulge shape.

Soil displacement situation in the Z direction is that most regions experience 

consistent translation, -0.0000816m, in the negative Z direction except that some parts 

show slight translation in the positive Z direction. Opposite translations occurs within 

the bulge shape. Small parts of it at left position show progressive translations in the 

negative Z direction, and most parts of it at right hand side display progressive 

translations in the positive Z direction. The extreme values of them reach -0.000296 

and 0.000671, respectively.

6.4.2.2 Discussion
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A group of different horizontal layers of elements are selected and as shown in Fig. 

6.20 a) and b). Fig. 6.20 a) and b) shows soil deformation on top layer of elements 

and the lowest layer of elements, respectively.

It is obvious that soil deformations in the horizontal plane progressively become 

larger in the direction of the negative Y coordinate (dash lines are original shapes 

before applying load). Soil deformation at the lower layer of elements is greater than 

that of the upper layer of elements as indicated by arrows in Fig. 6.20. In general, the 

situation of soil deformation interactive with heel is different from that of forepart of 

the first tread pattern. For instance, the tendency of soil deformation at toe part shown 

in Fig. 6.20 is opposite to that of in Fig. 6.13. That is soil deformation interactive with 

forepart at the lower layer of elements is less than that of the upper layer of elements. 

The loading condition is the main cause of this difference in soil deformations. Loads 

acted on the soil-heel FE model is much greater than that on the soil-forepart FE 

model as described in section 6.3.1.2 and 6.3.2.2. Different geometry sizes between 

soil-heel FE model and soil-forepart FE model maybe affect the soil deformation 

situations as well.

Generally, the deformation of the soil contacting heel with cleats is greater than the 

other regions far away from the heel, and magnificent plastic failure occurs within soil 

mass in front of the third cuboid cleat counting from right end-side of heel. The 

resultant vector results show that the maximum displacement occurs within regions in 

front of the third cuboid cleat counting from right end-side of heel, and reaches peak 

of 0.005598 comparing to 0.000356 of soil-forepart modeling results. Most large
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Fig. 6.20 Soil deformations in a) top layer o f elements, b) the lowest layer o f elements
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displacements happen within regions contacted by the tread pattern and under the 

tread pattern. The other regions o f soil experience very small uniform displacement.

6.4.2.3 Soil stresses

The nodal solution o f soil stresses in the direction o f traction force (the X direction) is 

shown in Fig. 6.21 for heel o f the first tread pattern. Fig. 6.21 shows the stress fields 

in the whole soil FE model, caused by the prescribed loading conditions as described 

in section 6.3.2.2. Most regions experience uniform stresses to range between -53.932 

kPa and 25.031 kPa. Regions beneath tread pattern undergo progressive compressive 

stresses ranging from -132.895 kPa to -685.639 kPa. The extreme value, -685.639 

kPa, emerges at top position o f the regions in front o f the third column straight cleat 

counting from right end-side o f heel.

NODAL SOLUTION
S T E P = 1
S U B  = 9 9 9 9 9 9
T I M E = 1

F E B  2 9  2 0 0 4  
1 5 : 4 2 : 2 2

____________ _______ ______________________________________________________________________ W ÊÊÊÊÊÊÊË
- L U S .b J y  - 5 2 7 . 7 1 2  - 3 6 9 . 7 8 5  - 2 1 1 . 8 5 9  - 5 3 . 9 3 2-606.675 -448.749 -29D.822 -132.895 25.U31

Fig. 6.21 Nodal solution o f soil stresses in the X direction interactive with heel
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Stresses distribution pattern in the Y direction is similar to that of in the X direction as 

shown in Fig. 6.21. That is most regions experience uniform stresses, but the 

distribution range is wider from -121.549 kPa and 24.756 kPa. Only a few regions, 

including the region in front of the third column straight cleat counting from right 

end-side of heel, develop greater compressive stresses in magnitude and the extreme 

reaches -1292 kPa at same location as that of peak value of the total strain in the Y 

direction (see subsection 6.4.2.4).

The distribution patterns of stresses in the Z direction is quite similar to that of in the 

X direction displayed in Fig. 6.21, and these stresses level is close to each other in 

magnitude.

The hydraulic static stress’s distribution pattern is also very similar to that of in the X 

or Y or Z directions.

6.4.2.4 Soil strains

The nodal solution of soil strains in the Y direction is shown in Fig. 6.22 interactive 

with heel of the first tread pattern. Fig. 6.22 a) shows elastic strains in the Y direction, 

and Fig. 6.22 b) displays plastic strains in the Y direction. Elastic and plastic strains in 

the Y direction consist of the resulting total strain in the Y direction by linear 

superposition.

As shown in Fig. 6.22 a), elastic strains reach a uniform value, -0.001978, in most 

regions. Regions around cleats experience further compressive elastic strains and the
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Fig. 6.22 Soil strains in Y direction with heel, a) elastic strain, b) plastic strain
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maximum value, -0.115264, appears in the region where the maximum translation 

occurs. The situation of plastic strains in the Y direction shown in Fig. 6.22 b) is 

similar to that of in the X direction. That is entire region of soil FE model experiences 

plastic strains. Most regions undergo consistent compressive plastic strain, -0.015561.

Regions in front of the third column straight cleat counting from right end-side of heel 

develop greater progressive tensile plastic strains and the maximum value reaches 

0.477245.

The distribution of elastic strain in the X direction is that most regions develop 

uniform compressive elastic strains, -0.008312. Regions around cleats experience 

either further compressive elastic strains or tensile elastic strains. Tensile elastic 

strains also develop in regions between right-hand side boundary and around rear part 

of heel. The maximum tensile elastic strain reaches 0.046605 in region where the 

maximum translation developed as shown in Fig. 6.19. Fully plastic strains exist in 

whole regions of soil FE model in the X direction. Most regions experience consistent 

compressive plastic strain, —0.003294. Regions, where progressive translations 

develop until the maximum translation reached, as shown in Fig. 6.19, develop greater 

tensile plastic strains and the maximum value reaches 0.13383. It indicates that plastic 

yielding or failure has happened in the regions where the maximum plastic strain 

exists, and it will continually develop if the prescribed loading conditions are kept 

acting on. This is consistent with the failure criterion from plasticity theory of an 

elastic-perfectly plastic material—Drucker-Prager material model reviewed in 

Chapter 3.
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The situation of elastic strains and plastic strains in the Z direction is presented as 

follows. Most regions experience uniform elastic strains, -0.003924, in the negative Z 

direction. Regions around or close to cleats undergo elastic strains either in the 

negative Z direction or the positive Z direction ranging between -0.027784 and 

0.015164. The two extreme values appear in the regions in front of the third column 

straight cleat counting from right end-side of heel. Most regions experience consistent 

plastic strain, -0.003717, in the negative Z direction. A few regions around or close to 

cleats develop plastic strains either in the negative Z direction or the positive Z 

direction, and the extreme value in the negative Z direction also occurs in same region 

as where the extreme elastic strain happens. But the maximum plastic strain in the 

positive Z direction emerges in some other small regions other than region where the 

maximum elastic strain develops.

6.5 The Second, Third, Fourth and Fifth Tread Patterns

6.5.1 Introduction

Having successfully conducted FE modelling for soil material interactive with 

forepart and heel of the first tread pattern, it becomes a reality to model more tread 

patterns based upon the methodology achieved in the study of the first tread pattern. 

In total, five tread patterns are investigated in this study by using Finite Element 

Method, so as to judge which tread pattern can provide with the best traction force 

effect as well as other good effects. Therefore, the study for the second, third, fourth 

and fifth tread patterns will be briefly presented in this section.
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Since the main purpose o f this study is to identity which kind of tread pattern is the 

best concerning traction force effect and the tread pattern on the forepart o f the 

outsole dominates the main features o f tread pattern design, only the forepart and the 

interactive soil FE models are built up for the second tread pattern, the third tread 

pattern, the fourth tread pattern and the fifth tread pattern. Analyses o f traction force 

effects about the five tread patterns will being presented in section 6.6 based upon soil 

FE numerical modelling results interactive with forepart o f outsole o f the five tread 

patterns.

The second tread pattern o f a military boots is shown in Fig. 6.23. It is a picture o f 

real left-foot boots with the second tread pattern.

Fig. 6.23 The second tread pattern o f military boots (left foot)

The third tread pattern o f military boots is shown in Fig. 6.24. It is supplied by the UK 

Ministry o f Defence. The third tread pattern is specially designed for military in desert 

terrain. As seen in Fig. 6.24, area o f each cleat is generally greater than that o f
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Fig. 6.24 The third tread pattern o f military desert boot

Fig. 6.25 The fourth tread pattern o f real military boots

conventional boots, so as to prevent sinkage that easily occurs on soft sand surfaces in 

desert.
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The fourth boots tread pattern is shown in Fig. 6.25. It is provided by the UK Ministry 

o f Defence specially designed for military in rough-terrain. As seen in Fig. 6.25, 

cleats are arranged circumferentially on center points o f forepart and heel. Vertical, 

inner, barrier face o f cleats gives traction in every linear, radial direction. It is 

expected that the staggered positioning between concentric rows o f cleats will 

increase the effective area o f the inner, vertical, barrier face o f the cleat to engage 

surface irregularities for grip.

The fifth tread pattern o f military boots is supplied by the UK Ministry o f Defence. 

As shown in Fig. 6.26, it is a scanned picture o f a drawing specially designed by the 

UK Ministry o f Defence to evaluate various tread pattern designs for using in natural 

soft ground surfaces.

Fig. 6.26 The fifth tread pattern

6.5.2 Highlights of FE Modelling for the Second, Third, Fourth and Fifth Tread
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Patterns

6.5.2.1 FE models

Models of forepart of outsole with the second, third, fourth and fifth tread patterns are 

constructed in ANSYS pre-processor and shown in Fig. 6.27. The soil FE models

c) L -----  - d) L—  - ------------ 1

Fig. 6.27 The 3d geometry models of forepart for the a) second, b) third, c) fourth and

d) fifth tread patterns

interactive with forepart of outsole of the second, third, fourth and fifth tread patterns 

are shown in Fig. 6.28. Geometry sizes of these soil FE models are exactly same as 

that of the soil FE model for forepart of the first tread pattern as shown in Fig. 6.7.

The SOLID45 element in ANSYS FE package is also selected to construct the three- 

dimensional soil FE model. Also, a basic element size, 0.022m that is same as that
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c)

d)

Fig. 6.28 Soil FE models interactive with forepart o f the a) second, b) third, c) fourth

and d) fifth tread patterns
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of the first tread pattern, is optimized to mesh soil volumes of these soil FE models 

interactive with the second, third, and fourth tread patterns. A different element size, 

0.0215 m, is optimized to mesh soil volumes of the soil FE model interactive with the 

fifth tread pattern. For the second and fifth tread patterns, shallow slots at toe area and 

some cleats located at middle area of forepart are treated as flat surfaces in the process 

of constructing the soil FE models.

6.5.2.2 Material model

The Drucker-Prager material model is also employed to respectively simulate the 

behaviour of elastic perfectly plastic soil material in these soil FE models interactive 

with forepart of the second, third, fourth and fifth tread patterns. The properties of the 

soil material are selected same as that of in Table 6.1 and to be used as inputting data 

for the FE numerical modelling.

6.5.2.3 Solution of soil FE models for the second, third, fourth and fifth tread patterns 

Similar to the boundary conditions applied on the soil FE model constructed for 

forepart of the first tread pattern, boundary conditions are applied on the soil FE 

models, respectively, for the second, third, fourth and fifth tread patterns. That is the 

top surface of these FE models is left free of any constraints in any direction. The 

other five surfaces are constrained, respectively, in the positive or negative X or Y or 

Z directions, perpendicular to the particular corresponding surface.

Loading conditions are then applied on the constrained soil FE models, respectively, 

for the second, third, fourth and fifth tread patterns. The methodology of applying
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loading conditions used in these numerical modelling processes is same as that of 

used in for the first tread pattern as reported in section 6.3.1.3. Since the total area of 

the surfaces sustaining vertical forces of the second, third, fourth and fifth tread 

patterns is different from each other and also different from that of the first tread 

pattern as well as item of the total area bearing transverse shear forces, the resulting 

loads—total vertical and transverse pressure of the second, third, fourth and fifth tread 

patterns are, therefore, different from each other and also different from that of the 

first tread pattern, even though the total vertical force and transverse force are 

purposely set to be identical for the five tread patterns so as to compare their traction 

force effect based upon identical comparison criterion. As results, the average vertical 

pressures for the five tread patterns are listed below:

The first tread pattern: Py = 33.252 kPa

The second tread pattern: Psv~  34.283 kPa 

The third tread pattern: Ptv~ 30.303 kPa 

The fourth tread pattern: Pfv -  20.661 kPa 

The fifth tread pattern: P m fv-36.232 kPa

From the list, the average vertical pressure of the third tread pattern is 8.9% smaller 

than that of the first tread pattern, 11.6% smaller than that of the second tread pattern 

and 16.4% smaller than that of the fifth tread pattern. It is obvious that the smaller 

average vertical pressure of load for the third tread pattern design will improve effect 

to reduce sinkage extent of the military boots in desert terrain as mentioned in section

6.5.1,
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The first tread pattern: Pat = 48.719 kPa

The second tread pattern: Psai-  37.254 kPa 

The third tread pattern: Prat -  82.547 kPa 

The fourth tread pattern: Pm  -  52.553 kPa 

The fifth tread pattern: P^/at = 65.299 kPa

Comparing to the first tread pattern, the average transverse pressure of the second 

tread pattern is 76.5% of it, 169.4% of it for the third tread pattern, 107.9% of it for 

the fourth tread pattern, and 134.0% of it for the fifth tread pattern. As shown in above 

list, the third tread pattern acts on the maximum average transverse pressure to the 

soil. It is, therefore, anticipated that much greater elastic and plastic strains of soil 

interactive with the third tread pattern will occur than that of the first tread pattern.

After vertical and transverse pressures are loaded, numerical modelling is successfully 

carried out for the second, third, fourth and fifth tread patterns, and convergent 

solutions are obtained respectively. These modelling results will be comparatively 

analysed in the following section.

6.6 Analysis of the FE Modelling Results for the Five Tread Patterns

6.6.1 Introduction

Having successfully conducted numerical modelling for the five tread patterns, it is 

available to comparably analyze the modelling results. Analyses are undertaken 

associated with the forepart of outsole of these five tread patterns. Traction effect,

The average transverse shear pressures for the five tread patterns are grouped below:
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sinkage effect, lateral stability, soil deformation, stress and strain distribution, etc. are, 

respectively, evaluated in detail in the following sub-sections. The five tread patterns 

in plane are grouped as shown in Fig. 6.29, so as to conveniently compare and refer 

them.

Fig. 6.29 The a) first, b) second, c) third, d) fourth, e) fifth tread patterns in plane
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6.6.2 Traction Effect

As mentioned in section 6.4.1.1, traction effect will be analyzed in this section for the 

five tread patterns. Traction effect is one of most important factors to judge how good 

a particular military boots is designed. In case of assumption that no friction exists or 

friction factor is neglected, the designed tread pattern dominatingly influence on the 

traction effect or function of resisting slip on soft ground due to plastic failure of soil 

resulting mainly from transverse shear loads initiated by cleats of tread pattern. 

Having obtained the numerical solutions of the five tread patterns, the traction effect 

of them can be evaluated by means of reaction forces in the X direction of soil FE 

model.

Reaction forces are sum of nodal reaction force at all constrained nodes. These 

reaction solutions consist of the X, Y and Z components, respectively, in global 

coordinates. The mechanism of using reaction force in the X direction to judge the 

traction effect of tread pattern is based upon consistency of between soil FE model 

construction and experiment scheme shown in Fig. 6.2 and/or Fig. 6.3. In these 

experimental validation studies, the pulling force applied to the soil mass tray is 

measured in the X direction (traction direction) when plastic failure of soil mass 

begins to occur. The soil mass tray is mounted on a nearly frictionless roller assembly. 

The pulling force is, therefore, equally transferred to constrained boundary surfaces of 

soil mass by the tray containing the soil mass. Equivalent in the FE modelling, all 

boundary surfaces of soil mass are constrained except the top surface which is left 

free of any constraints. Alt constrained nodes involved in these constrained surfaces 

generate reaction forces reacted to the loading conditions. Under the same certain 

loading conditions, the soil interacts with tread pattern of different designs and
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experiences different deformation processes from elastic deformation to perfectly 

plastic deformation (Drucker-Prager material model). Comparing to other tread 

patterns, a particular tread pattern design with best traction effect should have 

function o f producing plastic failure o f soil to the minimum extent when plastic 

failure o f soil occurs or produce the maximum reaction forces in the X direction, 

under the same loading conditions. In other words, the greater the reaction force 

generated in the X direction is, the better traction effect o f the tread pattern design is.

The traction effects represented by reaction forces in the X direction are displayed in 

Chart 6.1. As seen in Chart 6.1, it is obvious that reaction force in the X direction o f 

the first tread pattern is the greatest o f the five tread patterns. Therefore, the first tread 

pattern demonstrates the best traction effect of these five tread patterns, under the 

same loading conditions. The third and the fourth tread patterns also show relative 

better traction effect than the second and the fifth ones. The second tread pattern 

shows the poorest traction effect o f all five tread patterns.

Traction Effect of Total Five Tread Patterns

-0.2 -0.15 -0.1 -0.05 0

Reaction Forces in X-direction, kN

Chart 6.1 Traction effect evaluated by reaction forces in the X direction
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For soft surfaces ground, the sinkage effect o f tread pattern is also an important factor 

to judge how the particular tread pattern’s function is on the aspect o f slip resistance 

by means o f shear capacity o f soil. Generally, the more sinkage there is, the more area 

there is for all transverse surfaces o f cleats to sustain shear forces. So, the reaction 

force in the Y direction is employed to evaluate how the sinkage effect is for the five 

tread patterns. As shown in Chart 6.2, the fourth tread pattern demonstrates the 

smallest reaction force in the Y direction under the same loading conditions, and 

therefore the best sinkage effect. So the fourth tread pattern is the best one o f the five 

tread patterns to utilize shear capacity o f soil as well as to enable gripping and

6.6.3 Sinkage Effect

Sinkage Effect of Total Five Tread Patterns

Reaction 
Forces in Y- 
direction, kN

Tread Patterns Series No.

Chart 6.2 Sinkage effect evaluated by reaction forces in the Y direction

pivoting due to sinkage effect. The other four tread patterns’ reaction forces in the Y 

direction are very close at the same level around 0.5 kN comparing to the fourth tread 

pattern. Therefore, they have similar or the same sinkage effect under the same 

loading conditions.
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Good lateral stability o f tread pattern design is also an important factor to ensure that 

injuries caused by lateral slip are reduced to minimum degree. The lateral stability is 

evaluated by reaction forces in the Z direction. As the lateral slip may occur either in 

the positive Z direction or negative Z direction, it is obvious that a tread pattern 

design without lateral slip either in the positive Z direction or negative Z direction is 

the ideal design. Therefore, the less reaction force in either Z direction is, the better 

lateral stability is for this tread pattern design. Chart 6.3 shows the FE numerical 

modelling results o f reaction forces in the Z direction for the five tread patterns. As 

seen in Chart 6.3, the fourth tread pattern obviously demonstrates the best lateral 

stability o f the five tread patterns. The first tread pattern is more prone to lateral slip

6.6.4 Lateral Stability

Lateral Stability of The Five Tread Patterns

Reaction Forces in Z-direction, 10N

Chart 6.3 Lateral stability evaluated by reaction forces in the Z direction

in the positive Z direction that is outward lateral direction o f left foot. The third tread 

pattern is likely to generate greater lateral slip in the negative Z direction.
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6.6.5 Soil Deformation

The soil deformation in this study is complex in nature because o f the complex tread 

pattern geometry and transverse loading conditions. Detailed deformed shape and 

distribution o f the horizontal, vertical and lateral soil displacements have been 

reported and discussed in sub-sections 6.4.1.2 & 6.4.1.3 in this Chapter 6 for the first 

tread pattern. Generally, most o f greater soil displacements in vector point to the 

positive X direction, negative Y direction and either positive or negative Z direction 

for the five tread patterns. It can also be concluded that the maximum soil 

displacement o f them take place within regions contacted by or nearby cleats o f the 

tread pattern and zones straight under the tread pattern. The extreme values o f soil 

displacements for the five tread patterns are summarized in Chart 6.4 and Table 6.2.

Comprision of Peak Soil Dispalcements

Tread Patterns Series No.

D Sum of X Y and Z 
■ X component
□ Y component
□ Z component

Chart 6.4 The extreme values o f soil displacements for the five tread patterns

As seen in Chart 6.4 or Table 6.2, the fifth tread pattern experiences the maximum 

extreme soil displacement in absolute value o f vector o f the five tread patterns, as well 

as in absolute value for the X, Y and Z components. The fourth tread pattern 

undergoes the minimum extreme soil displacement in absolute value o f vector and in
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Table 6.2 The extreme values of soil displacement for the five tread patterns

'—&Qiljdisplacements 

Tread patterns

U, in, sum o f  
soil
displacement

Ux, m, soil 
displacement 
in  X  direction

Uy, m , soil 
displacement 
in  Y  direction

Uz, m, soil 
displacement 
in  Z direction

The first tread patterns 0.35631 E-03 0.25868 E-03 -0.24556 E-03 0.64678 E-04

The second tread patterns 0.31227 E-03 0 .22437 E-03 -0.24042 E-03 0.61954 E-04

The third tread patterns 0.32757 E-03 0.27960 E-03 -0.22156 E-03 -0 .73644 E-04

The fourth tread patterns 0.28547 E-03 0.25659 E-03 -0.17734 E-03 0.10699 E-03

The fifth tread patterns 0.46734 E-03 0.35093 E-03 -0.31456 E-03 -0 .17254 E-03

absolute value for the Y component of the five tread patterns. The second tread 

pattern encounters the minimum extreme soil displacement in absolute value for the X 

and Z component of the five tread patterns.

6.6.6 Soil Stresses

The finite element solutions of the maximum compressive stresses (negative) and the 

maximum tensile stresses (positive) for the five tread patterns in the X, Y and Z 

directions are presented in Chart 6.5 or Table 6.3 and Chart 6.6 or Table 6.4, 

respectively. As seen in Chart 6.5 or Table 6.3, the third tread patterns experiences the 

maximum compressive stress in the X direction. The fifth tread pattern causes the 

greatest compressive stress in the Y direction as well as in the Z direction; The third 

tread pattern undergoes the minimum compressive stresses for the Y component as 

well as the Z component. The second tread pattern shows the minimum compressive 

stress in the X direction. Chart 6.6 or Table 6.4 shows that the third tread pattern 

displays the maximum tensile stresses with the X component. The fifth tread pattern 

causes the greatest tensile stresses in the Y and Z directions; The minimum tensile
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stresses in the Y and Z directions emerges in the modelling result for the second tread 

pattern. The minimum tensile stress o f the X component appears in the modelling 

results for the fourth tread pattern.

The Maxmium Compressive Stresses

□  X stresses component 
BY stresses component
□  Z stresses component

Tread Patterns Series No.

Chart 6.5 The maximum compressive stresses for the five tread patterns

Table 6.3 The maximum compressive stresses for the five tread patterns

Stresses Sx, Stresses in X 
direction, kPa

Sy, Stresses in Y 
direction, kPa

Sz, Stresses in Z 
direction, kPa

Tread N's v  
Patterns N\

The maximum 
compressive stresses

The maximum 
compressive stresses

The maximum 
compressive stresses

The first tread 
patterns -90.385 -81.648 -80.848

The second tread 
patterns -64.939 -103.912 -79.813

The third tread 
patterns -151.21 -76.745 -72.646

The fourth tread 
patterns -101.50 -95.882 -116.43

The fifth tread 
patterns -117.26 -130.70 -153.95
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The Maxmium Tensile Stresses

Tread Patterns Series No.

□ X stresses component 
■ Y stresses component
□ Z stresses component

Chart 6.6 The maximum tensile stresses for the five tread patterns

Table 6.4 The maximum tensile stresses for the five tread patterns

Nv  Stresses Sx, Stresses in X 
direction, kPa

Sy, Stresses in Y 
direction, kPa

Sz, Stresses in Z 
direction, kPa

Tread N's v 
Patterns

The maximum tensile 
stresses

The maximum tensile 
stresses

The maximum tensile 
stresses

The first tread 
patterns 39.44 27.384 42.855

The second tread 
patterns

43.676 24.185 29.229

The third tread 
patterns 59.37 27.908 34.647

The fourth tread 
patterns

30.747 38.488 51.917

The fifth tread 
patterns

51.931 41.047 53.488

6.6.7 Soil Strains

The finite element solutions o f the maximum and minimum o f elastic strain, plastic 

strain for the five tread patterns in the X, Y and Z directions are presented in Chart 

6.7, Chart 6.8 and Chart 6.9 or Table 6.5, respectively. The extreme total strains
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(elastic strain + plastic strain) for the five tread patterns in the X, Y and Z directions 

are, respectively, presented in Chart 6.10, Chart 6.11, and Chart 6.12 or Table 6.6.

The X-components of Extreme Values of Strains
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-6.00E-03 /

-8.00E-03
-1.00E-02

X'

1 2 3 4 5
The Five Tread Patterns Series No.

□ Max. Elastic Strain 
■  Max. Plastic Strain
□  Min. Elastic Strain
□ Min. Plastic Strain

Chart 6.7 The extreme values o f elastic and plastic strains in the X direction

The Y-components of Extreme Values of Strains
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□ Max. Elastic Strain 
■ Max. Plastic Strain
□  Min. Elastic Strain
□  Min. Plastic Strain

The Five Tread Patterns Series No.

__________________________________________

Chart 6.8 The extreme values o f elastic and plastic strains in the Y direction
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The Z-components of Extreme Values of Strains

2.00E-02 

1.50E-02 
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W 0.00E+00 

-5.00E-03 

-1.00E-02
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□ Max. Elastic Strain 
■ Max. Plastic Strain
□ Min. Elastic Strain
□ Min. Plastic Strain

The Five Tread Patterns Series 
No.

Chart 6.9 The extreme values o f elastic and plastic strains in the Z direction

As shown in Chart 6.7 or Table 6.5, the second tread pattern experiences the greatest 

elastic strain, 0.004706, in the X direction o f the five tread patterns maximum elastic 

strains, and the lowest elastic strain, -0.0042872, o f the five tread patterns’ minimum 

elastic strains; The third tread pattern undergoes the lowest elastic strain, 0.0035147, 

o f the five tread patterns maximum elastic strains, and the least elastic strain, 

-0.0097453, o f the five tread pattern minimum elastic strains. O f the five tread pattern 

maximum plastic strains, the fifth tread pattern and the first tread pattern experiences 

the greatest plastic strain, 0.0064159, and lowest plastic strain, 0.001134, 

respectively. O f the five tread pattern minimum plastic strains, the fifth tread pattern 

experiences the lowest plastic strain, -0.003059, and the first and second tread pattern 

undergoes zero-level plastic strains.
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Table 6.5a The extreme values of elastic and plastic strains for the five tread patterns

Strains
Strains in X  direction Strains in Y  direction Strains in Z direction

The tread Ns'x  
patterns No. N\

Elastic
(EPELX)

Plastic
(EPPLX)

Elastic
(EPELY)

Plastic
(EPPLY)

Elastic
(EPELZ)

Plastic
(EPPLZ)

1
Max. values 0.0043366 0.001134 0.0072251 0.000029472 0.0060263 0.0010474

Min. values -0.0081891 0 -0.0086922 -0.00062631 -0.0054716 -0.0000022782

2
Max. values 0.004706 0.0028715 0.00216 0.0001535 0.0037768 0.0036893

Min. values -0.0042872 0 -0.0074872 -0.0017926 -0.0035914 -0.00012393

3
Max. values 0.0035147 0.0020727 0.0049359 0.0011179 0.002448 0.00066919

Min. values -0.0097453 -0.00027008 -0.0044132 -0.00029218 -0.0023169 -0.00033449

4
M ax values 0.0038836 0.0015345 0^0056494 0.0031738 0.0041581 0.0015926

Min. values -0.0088998 -0.000546 -0.0066332 -0.00021571 -0.0050351 -0.00045437

5
M ax values 0.0038586 0.0064159 0.0059586 0.0054567 0.0053151 0.016399

Min. values -0.0087047 -0.003095 -0.0081639 -0.0018999 -0.0053411 -0.00026121

Table 6.5b Corresponding nodes no. of items in Table 6.5a

The node No. 
corresponding to 

the extreme 
strains above

Strains in X  direction Strains in Y  direction Strains in Z direction

Elastic
(EPELX)

Plastic
(EPPLX)

Elastic
(EPELY)

Plastic
(EPPLY)

Elastic
(EPELZ)

Plastic
(EPPLZ)

1
To the m ax 2753 2686 2768 1098 2866 2686

To the min. 2893 1 2753 2686 2768 2758

2
To the m ax 2437 2390 788 768 2462 2396

To the min. 2410 1 2397 2390 2421 797

3
To the m ax 536 906 949 949 195 949

To the min. 949 949 921 947 999 999

4
To the m ax 707 1180 665 665 540 685

To the min. 671 769 656 815 665 1180

5
To the m ax 703 1821 1816 1814 1804 1814

To the min. 1876 1814 1836 1821 1826 2157
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Chart 6.10 The maximum and minimum of the total strain in the X direction

Y-component of the Extreme Total Strains and its Compositions

The Tread Patterns Series No.

Chart 6.11 The maximum and minimum of the total strain in the Y direct ion
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Z-component of the Extreme Total Strains and its Compositions
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□  Bastic Strains

The Tread Patterns Series No.

Chart 6.12 The maximum and minimum of the total strain in the Z direction

Table 6.6a The extreme values o f the total strains (elastic + plastic) 
and corresponding node no. for the five tread patterns

Total strains Total strains inX  
dircction(EPTOX)

Total strains in Y 
dircclion(EPTOY)

Total strains inZ 
dircction(EPTOZ)

The tread 
patterns No. x .

Elastic+
Plastic Node No. Elastic+

Plastic Node No. Elastic+
Plastic Node No.

1
Max. values 0.43366E-02 2753 0.7225 IE-02 2768 0.60263E-02 2866

Min. values -0.81891 E-02 2893 -0.86922E-02 2753 -0.54716E-02 2768

2
M ax values 0.60939E-02 2433 0.21600E-02 788 0.66684E-02 2396

Min. values -0.42872E-02 2410 -0.90468E-02 2390 -0.35914E-02 2421

3
Max. values 0.38629E-02 947 0.60537E-02 949 0.24480E-02 195

Min. values -0 .10015E-01 949 -0.44674E-02 947 -0.26514E-02 999

4
M ax values 0.38836E-02 707 0.88232E-02 665 0.42656E-02 540

Min. values -0.88998E-02 671 -0.6796 IE-02 656 -0.52908E-02 665

C M ax values 0.81415E-02 1821 0.64612E-02 1817 0.21305E-01 1814
j

Min. values -0 .1I020E-01 1814 -0.81639E-02 1836 -0.53411 E-02 1826
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Table 6.6b Elastic and plastic strains compositions of the extreme total strains
for the five tread patterns

X p ta l trains Compositions o f  EPTOX  
in  X  direction

Compositions o f  EPTOY  
in  Y  direction

Compositions o f  EPTOZ 
in  Z direction

T hetreack  
patterns N o \

Elastic
(EPELX)

Plastic
(EPPLX)

Elastic
(EPELY)

Plastic
(EPPLY)

Elastic
(EPELZ)

Plastic
(EPPLZ)

1
To the 
max.

0.43366E-02 0 0.72251 E-02 0 0.60263E-02 0

To the 
min.

-0.81891E-02 0 -0.86922E-02 0 -0.S4716E-02 0

2
To the 
max. 0.43538E-02 0.17401E-02 0.21600E-02 0 0.29791 E-02 0.36893E-02

To the 
min.

-0.42872E-02 0 -0.72543E-02 -0.17926E-02 -0.35914E-02 0

3
To the 
max.

0.29890E-02 0.87390E-03 0.49359E-02 0.11179E-02 0.24480E-02 0

To the 
min.

-0.97453E-02 -0.27008E-03 -0.41752E-02 -0 .29218E-03 -0.23169E-02 -0.33449E-03

4
To the 
max. 0.38836E-02 0 0.56494E-02 0.31738E-02 0.41581 E-02 0.10752E-03

To the 
min. -0.88998E-02 0 -0.66332E-02 -0.16288E-03 -0.50351E-02 -0.25571E-03

5
To the 
max. 0.17256E-02 0.64159E-02 0.56556E-02 0.80560E-03 0.49056E-02 0.16399E-01

To the 
min. -0.79250E-02 -0.30950E-02 -0.81639E-02 0 -0.5341 IE-02 0

For the Y-components shown in Chart 6.8 or Table 6.5, the first tread pattern 

experiences the greatest elastic strain, 0.0072251, of the five tread pattern maximum 

elastic strains, and the lowest elastic strain, -0.0086922, of the five tread pattern 

minimum elastic strains; In contrast, the second ‘tread pattern undergoes the lowest 

elastic strain, 0.00216, of the five tread pattern maximum elastic strains, and the third 

tread pattern has the least elastic strain, -0.0044132, of the five tread pattern 

minimum elastic strains. Of the five tread pattern maximum plastic strains, the fifth 

tread pattern dominates the greatest, 0.0054567, and the first tread pattern has the 

lowest, 0.00002229472. Of the five tread pattern minimum plastic strains, the fifth 

tread pattern experiences the lowest, -0.0018999, and the fourth tread pattern 

undergoes the smallest, -0.00021751.
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For the extreme elastic or plastic strains in the Z direction shown in Chart 6.9 or Table 

6.5, the first tread pattern experiences the greatest elastic strain, 0.0060263, of the five 

tread pattern maximum elastic strains, and the lowest elastic strain, -0.0054716, of 

the five tread pattern minimum elastic strains; On the contrary, the third tread pattern 

undergoes the lowest elastic strain, 0.002448 of the five tread pattern maximum 

elastic strains, as well as the least elastic strain, -0.0023169, of the five tread pattern 

minimum elastic strains. Of the five tread pattern maximum plastic strains, the fifth 

tread pattern experiences the greatest, 0.016399, and the third tread pattern has the 

lowest, 0.00066919. Of the five tread pattern minimum plastic strains, the fourth tread 

pattern experiences the lowest, -0.00045437, and the first tread pattern undergoes the 

least, -0.0000022782.

When soil is in a plastic state, the stress-strain relationship is non-linear and the total 

strain is composed of elastic and plastic strain as65

defJ = d e j  + dsjJp -  (6.19)

where dssj is the incremental total strain tensor, ds ‘u is the incremental elastic strain 

tensor, and ds "¿j is the incremental plastic strain tensor. The extreme total strains for 

the five tread patterns have been summarized in Table 6.6 and shown in Chart 6.10, 

chart 6.11 and Chart 6.12, respectively. As seen in Chart 6.10 or Table 6.6, the fifth 

tread pattern dominates both the greatest and lowest total strains, 0.0081415 and 

-0.011020, of the five tread pattern maximum and minimum total strains in the X 

direction; On the contrary, the fourth tread pattern experiences the smallest total
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strain, 0.0038629, in the X direction of the five tread pattern maximum total strains, 

and the second tread pattern undergoes the least total strain, -0.0042872, of the five 

tread pattern minimum total strains.

For the Y-component of the extreme total strains shown in Chart 6.11 or Table 6.6, 

the fourth tread pattern and the second tread pattern experience, respectively, the 

greatest and lowest total strains, 0.0088232 and -0.0090468, of the five tread patterns 

maximum and minimum total strains; In contrast, the second tread pattern experiences 

the smallest total strain, 0.0021600, of the five tread patterns maximum total strains, 

and the third tread pattern undergoes the least total strain, -0.0044674, of the five 

tread pattern minimum total strains.

Similarly, for the Z-component of the extreme total strains shown in Chart 6.12 or 

Table 6.6, the fifth tread pattern and the first tread pattern respectively experience the 

greatest and lowest total strains, 0.021305 and -0.0054716, of the five tread pattern 

maximum and minimum total strains; In contrast, the third tread pattern undergoes 

both the smallest total strains, 0.0024480 and -0.0026514, of the five tread pattern 

maximum total strains and minimum total strains.

As seen in Table 6.5b and Table 6.6a, four nodes reach both peak elastic strain and 

peak plastic strain as well as the peak total strain at the same time. These are node 949 

with the third tread pattern in the Y direction for positive peak values, node 949 with 

the third tread pattern in the X direction for the negative peak values, node 999 with 

the third tread pattern in the Z direction for the negative peak values, and node 665 

with the fourth tread pattern in the Y direction for the positive peak values. The
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corresponding peak values can be found in Table 6.5a and Table 6.6b. Seen also in 

Table 6.6a and Table 6.6b, the extreme total strains on node 2753, 2768, 2866, 2893 

with the first tread pattern consist of zero-level plastic strains, that is the extreme total 

strains on these nodes equals to the extreme elastic strains of corresponding nodes, as 

seen in Table 6.5a. The same situation exists on node 788, 2410 and 2421 with the 

second tread pattern; node 195 with the third tread pattern; node 707 and 671 with the 

fourth tread pattern; and node 1836 and 1826 with the fifth tread pattern. In a word, 

respect to the extreme elastic strain, plastic strain and the total strain, most of nodes 

existing extreme strain experience only either peak elastic strain or peak plastic 

strains. Some nodes undergo both peak elastic strains and the total strains. A few 

nodes encounter both peak elastic strains and peak plastic strains as well as the 

extreme total strains.

As seen in Table 6.5b and Table 6.6a, most of nodes show extreme strains only either 

in the X direction or Y direction or Z direction. Some nodes exists peak strains for 

both components of the X or Y or Z, such as node 2753, 2768 for the first tread 

pattern; node 2390 for the second tread pattern; node 947 for the third tread pattern; 

node 665, 1180 for the fourth tread pattern; and node 1821 for the fifth tread pattern. 

Three nodes experiences peak strains in three directions of the X, Y and Z 

coordinates, they are node 2686 for the first tread pattern, node 949 for third tread 

pattern and node 1814 for the fifth tread pattern.

6.6.8 Effects of the Mechanical Parameters of Soil Property

6.6.8.1 Effect of the dilatation angle
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In accordance with classical plasticity theory, soil deformation causes no further 

changes to the stresses in the soil for elastic-perfectly plastic soil material failure 

model, and the elastic strain increments is zero if limiting conditions being reached. 

(Seen also in Fig. 3.1 and Fig. 3.3) The stress direction is assumed to be coincident 

with plastic strain increment direction. The angle of soil dilatation, /?, allows the 

direction of principal plastic strain increments to be determined. A flow rule is applied 

to describe state of plastic flow. If the dilatation angle or flow angle, /?, is equal to the 

angle of internal friction (<f> ) of soil, the plastic flow is frilly associated. If the {3 is 

zero, then it is non-associated plastic flow. The plastic flow is associated for case of 

that the flow angle (/?) is in between zero and the <j>. In this study, analyses have been 

carried out using a series of values of ¡3 ranging from zero to <f). The effects of /3 to the 

extreme values of stresses are now examined for the selected first and fourth tread 

patterns.

The FE models and loading conditions used in the analyses of the effects of /3 are 

same as that reported in sections 6.2.3 & 6.3.1 for the first tread pattern and that for 

the fourth tread pattern. Modelling results of the effects of (3 to the extreme values of 

stresses are presented in Chart 6.13 and Table 6.7. Only the extreme stresses versus 

the dilatation angle or flow angle are evaluated. Chart 6.13 reflects same results as 

that of Table 6.7, but the former is focused on visualization of varying tendency, and 

the latter emphasizes readability of raw data. Chart 6.13 a, b and c gathers information 

of both the first and fourth tread patterns in the X, Y and Z direction, respectively.
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The X-components of Extreme Stress for the First & Fourth Tread 
Patterns Versus Flow Angle

-Max. stresses of the first 
tread patterns

-Max stresses of the 
fourth tread patterns
Min. stresses of the first 
tread patterns
Min. stresses of the 
fourth tread patterns

The Y-components of the Extreme Stress for the First & Fourth Tread 
Patterns Versus Flow Angle

-Max. stresses of the first 
tread patterns

- Max. stresses of the 
fourth tread patterns
Min. stresses of the first 
tread patterns
Min. stresses of the 
fourth tread patterns

The Z-components of Extreme Stress for the First & Fourth Tread 
Patterns Versus Flow Angle

-Max. stresses of the first 
tread patterns
Max. stresses of the 
fourth tread patterns
Min. stresses of the first 
tread patterns
Min. stresses of the 
fourth tread patterns
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d)

The Extreme Tensile Stress Versus Row Angle In X-
directlon-The Rrst Tread Patterns

e)

The Extreme Tensile Stress Versus Row Angle In X- 
direction-The Fourth Tread Patterns

The Extreme Compressive Stress Versus Row Angle in 
X-directlon-The Rrst Tread Patterns
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g)

The Extreme Compressive Stress Versus Row Angle in
X-direction-The Fourth Tread Patterns
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1)

The Extreme Tensile Stress Versus Flow Angle In Z-direction- 
The First Tread Patterns

1 2 3 4 5 6 7 8
Series of Dillattlon Angle
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The Extreme Tensile Stress Versus Flow Angle in Z-direction-
The Fourth Tread Patterns

m)

n)

The Extreme Compressive Stress Versus Flow Angle in Z- 
direction--The First Tread Patterns

o)

The Extreme Compressive Stress Versus Flow Angle in 
Z-directlon-The Fourth Tread Patterns

co01£
xni

Series of Dilitation Angle

Chart 6.13 Effects o f the extreme stresses versus flow angle
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Table 6.7 Summaiy of extreme stresses (kPa) versus flow angle (degree)

Flow A ngle, p

O
Items

1 2 3 4 5 6 7 8

0 1.8 6.8 11.8 16.8 21.8 26.8 31.8

T
he

 F
ir

st
 T

re
ad

 P
at

te
rn

s

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 20.736 20.736 20.736 20.735 20.735 20.735 20.734 20.734

Node No. 2962 2962 2962 2962 2962 2962 2962 2962

M ia
Stress, kPa -78.081 -78.112 -78.049 -78.081 -78.112 -78.138 -78.16 -78.177

Node No. 2682 2682 2682 2682 2682 2682 2682 2682

Y
-c

om
po

ne
nt

s

Max.
Stress, kPa 20.83 20.836 20.848 20.858 20.865 20.871 20.876 20.881

Node No. 2768 2768 2768 2768 2768 2768 2768 2768

M ia
Stress, kPa -68.703 -68.6 -68.372 -68.197 -68.054 -67.933 -68.431 -69.572

Node No. 2764 2764 2764 2764 2764 2764 2686 2686

Z
-c

om
po

ne
nt

s

Max.
Stress, kPa 21.6 21.6 21.599 21.599 21.599 21.598 21.598 21.598

Node No. 2866 2866 2866 2866 2866 2866 2866 2866

M ia
Stress, kPa -54.665 -54.641 -54.594 -54.563 -54.54 -54.521 -54.503 -54.487

Node No. 2768 2768 2768 2768 2768 2768 2768 2768

E

1
a,
•a

£
J3
t
S

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 23.104 22.978 20.736 20.735 20.735 21.076 20.734 21.11

Node No. 1180 1180 2962 2962 2962 1238 2962 1238

Min.
Stress, kPa -87.66 -87.653 -78.049 -78.081 -78.112 -87.595 -78.16 -87.578

Node No. 671 671 2682 2682 2682 671 2682 671

Y
-c

om
po

ne
nt

s

Max.
Stress, kPa 17.418 17.492 20.848 20.858 20.865 18.028 20.876 18.153

Node No. 804 804 2768 2768 2768 804 2768 804

u :N
Stress, kPa -61.119 -61.174 -68.372 -68.197 -68.054 -61.934 -68.431 -62.086

MlIL
Node No. 655 747 2764 2764 2764 747 2686 747

H
1
§

Stress, kPa 17.542 17.535 21.599 „ 2 1 .5 9 9 21.599 17.515 21.598 17.511
M ua<

Node No. 802 802 2866 2866 2866 802 2866 802
(X

i M ia
Stress, kPa -60.887 -61.277 -54.594 -54.563 -54.54 -59.239 -54.503 -59.237

Node No. 665 665 2768 2768 2768 544 2768 544

As seen in Chart 6.13a and Table 6.7, the effect of flow angle to the extreme stress in 

the X direction for the first tread pattern is different from that of the fourth tread 

pattern. The choice of flow angle will have small influence on both the maximum and 

the minimum stress or the extreme stresses for the first tread pattern for the X- 

component, that is, both curves in blue and yellow are nearly horizontally flat. The 

maximum and the minimum stresses are constantly located at node 2962 and 2682, 

respectively. However, the dilatation angle has a considerable effect on the extreme
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stresses for the fourth tread pattern in the X direction as showed by curves in pink and 

green. The minimum stress fluctuates more violently than the maximum stress as 

shown in Chart 6.13e and 6.13g. The locations of the extreme stresses have been 

shifted to-and-fro between node 1180, node 2962 and node 1238 for the maximum 

stress, and node 671, node 2682 for the minimum stress. Varying tendency of the 

extreme stresses for the first tread pattern is shown in Chart 6.13d and 6.13f with 

enlarged scale at coordinate axis of stress. The maximum tensile stress slightly 

discontinuously decreases from 20.736 kPa to 20.734 kPa along with the increasing of 

flow angle from zero to 31.8°, but absolute value of the extreme compressive stress 

continuously increases slightly from 78.081 kPa to 78.177 kPa when flow angle rises 

from zero to 31.8°.

The effect of flow angle versus the extreme stress in the Y direction for the first tread 

pattern is also different from that of the fourth tread pattern as shown in Chart 6.13b 

and Table 6.7. The flow angle has little influence on both the maximum and the 

minimum stress or the extreme stresses for the first Tread pattern for the Y-component, 

but the influence is a little stronger than that for the X-component. Both curves in blue 

and yellow are not nearly horizontally flat as seen in Chart 6.13b. The maximum 

stresses are still constantly located at node 2768, but the minimum stresses have been 

shifted between node 2764 and node 2686. However, the dilatation angle has a 

significant effect on the extreme stresses for the fourth tread pattern in the Y direction 

as showed in Chart 6.13b by curves in pink and green. The minimum stress fluctuates 

stronger than the maximum stress in amplitude as shown in Chart 6.13i and 6.13k. 

The locations of the extreme stresses existing have been shifted to-and-fro between 

node 804 and node 2768 for the maximum stress, and node 655, node 747, node 2686
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and node 2764 for the minimum stress. Varying tendency of the extreme stresses in Y 

the direction for the first tread pattern is shown in Chart 6.13h and 6.13j with enlarged 

scale at coordinate axis of stress. The maximum tensile stress slightly continuously 

increases from 20.83 kPa to 20.881 kPa along with the increasing of flow angle from 

zero to 31.8°, but the extreme compressive stress varies discontinuously. The 

maximum absolute value occurs at a flow angle of 31.8 and the minimum occurs with 

allow angle of 21.8°.

As seen in Chart 6.13c, fluctuation pattern of the extreme compressive stress versus 

the flow angle for the Z-component is similar to that of the X-component shown in 

Chart 6.13 a, and situation of the extreme tensile stress versus the flow angle in the Z 

direction is similar to that of the Y-component shown in Chart 6.13b. That is that, the 

choice of flow angle will have small influence on both the maximum and the 

minimum stress or the extreme stresses for the first tread pattern in the Z direction as 

seen in Chart 6.13c. Both curves in blue and yellow are nearly horizontally flat 

unaffected by the varying of flow angle. The maximum and the minimum stresses are 

constantly located at node 2866 and 2768, respectively. However, the flow angle has 

an obvious effect on the extreme stresses for the fourth tread pattern in the Z direction 

as shown by curves in pink and green. The extreme compressive stress fluctuates a 

little stronger than the extreme tensile stress in amplitude as shown in Chart 6.13o and 

6.13m. The locations of the extreme stresses have been shifted to-and-fro between 

node 544, node 665 and node 2768 for the extreme compressive stress, and node 802, 

node 2866 for the extreme tensile stress. Chart 6.131 and 6.13n shows the varying 

tendency of the extreme stresses for the first tread pattern with larger scale coordinate 

axis of stress. The maximum tensile stress slightly discontinuously drops from 21.6
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kPa to 21.598 kPa along with the increasing of flow angle from zero to 31.8°, but the 

extreme compressive stress continuously decreases slightly from 54.665 kPa to 

54.487 kPa in absolute value of them as flow angle varies from zero to 31.8°.

6.6.8.2 Effect of the Young’s modulus

To investigate whether the elastic stiffness might affect the extreme stresses, analyses 

have been carried out using a series of Young’s modulus, E, ranging from 8000 kPa to 

88000 kPa that were commonly used to simulate the soil behaviour. The first and 

fourth tread patterns are also selected to test the effects of E  to the extreme stresses. 

The soil FE models and loading conditions used in the analyses of the effects of E  are 

also same as that reported in sections 6.2.3 & 6.3.1 for the first tread pattern. The 

simulation results of the effects of E  to the extreme stresses are summarized in Table 

6.8.

As seen in Table 6.8, the extreme stresses for both the first and the fourth tread 

patterns are not affected by variation of the Young’S modulus as well as the locations 

of the extreme stresses occurring. Therefore, the effect of the Young’s modulus 

appears to be negligible.

6.6.8.3 Effect of cohesion

The effect of cohesion, c, to the extreme stresses is also studied for both the first and 

the fourth tread patterns. Cohesion value ranges from 2 kPa to 15.5 kPa, that is, the 

soil type is varying from nearly cohesion-less to sandy loam of the texture. The soil 

FE models and loading conditions used in the analyses of the effects o f c are still 

same as that reported in sections 6.2.3 & 6.3.1 for the first tread pattern. The effect of
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Table 6.8 Summary of extreme stresses (kPa) versus Young’s modulus (kPa)

Y oung’s M odulus ,  E 

(kPa)

Items

1 2 3 4 5 6 7

8000 8067 28000 48000 68000 83360 88000

T
he

 F
ir

st
 T

re
ad

 P
at

te
rn

s

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 20.734 20.734 20.734 20.734 20.734 20.734 20.734

Node No. 2962 2962 2962 2962 2962 2962 2962

Min.
Stress, kPa - 78.177 - 78.177 - 78.177 - 78.177 - 78.177 - 78.177 - 78.177

Node No. 2682 2682 2682 2682 2682 2682 2682

lc0

1

Max.
Stress, kPa 20.881 20.881 20.881 20.881 20.881 20.881 20.881

Node No. 2768 2768 2768 2768 2768 2768 2768

Min.
Stress, kPa - 69.572 - 69.572 - 69.572 - 69.572 - 69.572 - 69.572 - 69.572

Node No. 2686 2686 2686 2686 2686 2686 2686

Z
-c

om
po

ne
nt

s

M ax
Stress, kPa 21.598 21.598 21.598 21.598 21.598 21.598 21.598

Node No. 2866 2866 2866 2866 2866 2866 2866

Min.
Stress, kPa - 54.487 - 54.487 - 54.487 - 54.487 - 54.487 - 54.487 - 54.487

Node No. 2768 2768 2768 2768 2768 2768 2768

T
he

 F
ou

rt
h 

T
re

ad
 P

at
te

rn
s

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 21.110 21.110 21.110 21.110 21.110 21.110 21.110

Node No. 1238 1238 1238 1238 1238 1238 1238

M ia
Stress, kPa - 87.578 - 87.578 - 87.578 - 87.578 - 87.578 - 87.578 - 87.578

Node No. 671 671 671 671 671 671 671

Y
-c

om
po

ne
nt

s

M ax
Stress, kPa 18.153 18.153 18.153 18.153 18.153 18.153 18.153

Node No. 804 804 804 804 804 804 804

M ia
Stress, kPa - 62.086 - 62.086 - 62.086 - 62.086 - 62.086 - 62.086 - 62.086

Node No. 747 747 747 747 747 747 747

Z
-c

om
po

ne
nt

s

M ax
Stress, kPa 17.511 17.511 17.511 17.511m ■ 17.511 17.511 17.511

Node No. 802 802 802 802 802 802 802

M ia
Stress, kPa - 59.237 - 59.237 - 59.237 - 59.237 - 59.237 - 59.237 - 59.237

Node No. 544 544 544 544 544 544 544

cohesion to the extreme stresses is presented in Chart 6.14 and Table 6.9. Chart 6.14 

a), b) and c) gathers information of both the first and fourth tread patterns in the X, Y 

and Z direction, respectively. Table 6.9 summarizes all the raw data presented in 

Chart 6.14. No charts with enlarged scale of coordinate axis are made as it is clear to 

observe varying tendency of the extreme stress versus cohesion by Chart 6.14 a), b) 

and c).
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a)

The X-components of Extreme Stress for the First & Fourth
Tread Patterns Versus Cohesion

Series of Cohesion

Max.stresses of the 
first tread patterns
Max. stresses of the 
fourth tread patterns
Min. stresses of the 
first tread patterns
Min. stresses of the 
fourth tread patterns

b)

The Y-components of Extreme Stress for the First &  Fourth 
Tread Patterns Versus Cohesion

Max. stresses of the 
first tread patterns
Max. stresses of the 
fourth tread patterns
Min. stresses of the 
first tread patterns
Min. stresses of the 
fourth tread patterns

Series of Cohesion

c)

The Z-components of Extreme Stress for the First & Fourth 
Tread Patterns Versus Cohesion

oO)<D
(0>a>
Ea>h.><HI
CD■C

Series of Cohesion

-Max. stresses of the 
first tread patterns

-Max. stresses of the 
fourth tread patterns
Min. stresses of the 
first tread patterns
Min. stresses of the 
fourth tread patterns

Chart 6.14 Effects o f the extreme stress versus cohesion
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Table 6.9 Summary of extreme stresses (kPa) versus cohesion (kPa)

C o h e s io n , c  

(kPa)

Items

1 2 3 4 5 6 7 8

2 3 6 9 9.13 12 15 15.5

T
he

 F
ir

st
 T

re
ad

 P
at

te
rn

s

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 2.7295 4.3031 8.5289 12.836 13.018 18.147 20.734 20.734

Node No. 2960 2614 2962 2962 2962 2961 2962 2962

Min.
Stress, kPa -68.021 -65.240 -63.615 -71.612 -71.611 -71.585 -78.199 -78.177

Node No. 2865 2865 2738 2894 2894 2894 2682 2682

Y
-c

om
po

pe
nt

s

Max.
Stress, kPa 1.4545 1.1896 5.4905 7.0846 18.176 20.812 20.879 20.881

Node No. 3798 3774 2681 2681 2703 2768 2768 2768

Min.
Stress, kPa -71.227 -62.799 -63.085 -66.578 -66.771 -67.997 -69.613 -69.572

Node No. 2840 449 2733 2763 2763 2763 2686 2686

Z
-c

om
po

ne
nt

s

Max.
Stress, kPa 2.2915 3.4484 7.2134 13.912 17.808 21.588 21.597 21.598

Node No. 1856 1846 2619 2925 2913 2866 2866 2866

Min.
Stress, kPa -53.468 -48.281 -54.846 -49.301 -49.287 -54.745 -54.517 -54.487

Node No. 2935 2935 2919 2661 2661 2768 2768 2768

T
he

 F
ou

rt
h 

T
re

ad
 P

at
te

rn
s

X
-c

om
po

ne
nt

s

Max.
Stress, kPa 2.8449 4.3011 8.9116 13.182 13.798 17.263 21.110 21.110

Node No. 969 2146 1245 875 2152 873 1238 1238

Min.
Stress, kPa -106.75 -94.211 -67.083 -77.889 -77.874 -87.517 -87.575 -87.578

Node No. 540 540 482 671 671 671 671 671

Y
-c

om
po

ne
nt

s

Max.
Stress, kPa 2.4121 3.5563 6.0225 8.9649 9.0917 12.074 18.344 18.153

Node No. 2173 2173 2167 2167 2167 2165 804 804

Min.
Stress, kPa -60.986 -59.255 -51.514 -53.210 -53.171 -52.079 -62.294 -62.086

Node No. 623 655 656 656 656 656 747 747

Z
-c

om
po

ne
nt

s

Max.
Stress, kPa 2.5062 3.3189 6.5550 9.5844 9.6754 14.607 14.375 17.511

Node No. 2117 2117 688 953 953 1144 540 802

M ia
Stress, kPa -107.07 -92.084 -78.518 -68.187 -67.804 -61.755 -59.243 -59.237

Node No. 807 665 665 665 665 665 544 544

As seen in Chart 6.14a and Table 6.9, the effect of cohesion to the maximum tensile 

stress in the X direction for the first tread pattern is same as that of the fourth tread 

pattern. Both curves of varying tendency overlap to the most extent (see curves in 

blue and pink). However, the locations of the maximum tensile stresses existing have 

been shifted to-and-fro between node 2960, node 2614, node 2962 and node 2961 for 

the first tread pattern, and altered from node 1238 to node 671, 873, 2152, 875, 1245,
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2146 and node 2682 for the fourth tread pattern. The effect of cohesion to the extreme 

compressive stress in the X direction for the first tread pattern is different from that of 

the fourth tread pattern (see curves in yellow and green), but the peak values emerge 

at the same point of cohesion (No. 3, cohesion 6 kPa) for both tread patterns. The 

locations of the extreme compressive stresses existing have also been shifted to-and- 

ffo between node 2682, node 2894, node 2738 and node 2865 for the first tread 

pattern, and from node 671 to node 482 and node 540 for the fourth tread pattern. In 

general, the maximum tensile stresses increase for both tread patterns along with 

rising of cohesion. The extreme compressive stresses reduce in absolute values before 

reaching the peak point, and then increase in absolute value after passing the peak 

point for both tread patterns following increasing of cohesion.

In general, the varying tendency of the maximum tensile stress versus cohesion in the 

Y direction for both tread patterns is same as that of in the X direction, i. e. the 

maximum tensile stress gradually increase along with increasing of cohesion (see in 

Chart 6.14b and Table 6.9). However, the situation of the extreme compressive stress 

versus cohesion for the Y-component is complicated and no regularity. The locations 

of the extreme stresses occurring are also altered to-and-fro for both tread patterns 

(see node no. in Table 6.9 for the Y-components).

Similarly, the varying tendency of the maximum tensile stress versus cohesion in the 

Z direction for both tread patterns is same as that of in the X and Y directions, i.e. the 

maximum tensile stress gradually increase along with increasing of cohesion except 

one point at curve in pink where cohesion is 15 kPa (see in Chart 6.14c and Table 

6.9). The extreme compressive stress versus cohesion in the Z direction for the fourth
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tread pattern monotonously decreases in absolute value along with increasing of 

cohesion, but for the first tread pattern it fluctuates without regularity. The locations 

of the extreme stresses occurring are still shifted to-and-ffo for both tread patterns (see 

node no. in Table 6.9 for the Z-components).

6.7 Summary

The study of footwear and soft ground interaction has been successfully conducted for 

the five tread patterns by using Finite Element Method. A methodology of numerical 

modelling for footwear and soft ground interaction has been created with ANSYS FE 

package and can been applied to footwear industry on the aspect of tread pattern 

design and assessment. The Drucker-Prager elastic-perfect plastic material model is 

adopted in this study to simulate soil behaviour. The DP failure criterion is with an 

associated flow rule, i.e. flow angle of soil material is equal to its internal friction 

angle, 31.8°. A series of standard soil FE models interactive with forepart of various 

tread patterns has been constructed and the SOLID45 eight-nodal element type in 

ANSYS is selected for modeling three-dimensional soil structure. A general size, 

0.022m or around it, for successful meshing has been optimized for the five tread 

patterns. Boundary conditions are acted on all boundary surfaces of the soil FE model 

except the top surface being left free to any constraints. Loading conditions are 

applied to the soil model by average vertical and transverse pressures. The FE 

numerical solutions have been successfully carried out and a series of modeling 

results have achieved. The results demonstrate that, the first tread pattern has the best 

traction performance of the five tread patterns, but the fourth tread pattern is the best 

one having lateral stability and to utilize shear capacity of soil as well as to enable 

gripping and pivoting due to sinkage effect. Soil deformation, distribution of soil
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stresses and strains are complex due to complicated tread pattern geometry size, 

configuration and transverse loading conditions. In general, the significant 

deformation of soil occurs in the regions contacted by cleats of the tread pattern or 

nearby and under them. Analyses of the extreme stresses and strains are presented. All 

the comparisons for the five tread patterns are based upon the exact same soil 

properties and material model, geometry sizes of FE models and external loads 

initiated by left foot. A soil FE model interactive with heel of the first tread pattern is 

also constructed and solved by acting on transverse loading condition which is 

different from that of forepart. Effects of soil properties are also investigated and 

founded that flow angle and cohesion have influence on the extreme stresses with 

different regularity respect to the X or Y or Z components and particular tread 

patterns, but the Young’s modulus has no influence on them.
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Chapter 7

Study of Experimental Validation

7,1 Introduction

After having successfully conducted 2-dimensional and 3-dimensional case validation 

study, we are confident in that Drucker-Prager material model in ANSYS Finite 

Element package is suitable for simulating soil behaviour in similar problems 

regarding soil failure. Therefore, the Drucker-Prager material model is employed in 

our study by using ANSYS Finite Element package. By far, FE numerical modellings 

of footwear and soft ground (soil) interaction have been successfully carried out with 

the total five different tread patterns of military and hiking boots. In the meantime, we 

have been carrying out experimental validation study against the FE numerical 

modelling results.

Since complexity of the tread pattern geometry shape and cleats configuration, it is 

difficult and expensive in cost to make experimental model containing the whole tread 

pattern with all cleats by using natural rubber, as well as unrealistic to clearly observe 

and measure soil deformation and failure caused by the whole tread pattern. Finally, a 

particular star shape cleat located at central area of forepart of the first tread pattern 

(see Fig. 6.6) is selected as prototype that will be employed in the process of 

experimental validation. Ideally, the physical model in experimental validation with 

real size against those employed in FE numerical modelling is the best choice. 

However, we have to use the scaled up model for experimental validation as the real 

cleat of tread pattern is too small in size and it would not be possible to clearly 

observe and record soil deformation and failure with the normal scale. In order to best
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observe the soil deformation and failure, a standard scaled up physical model which is 

10 times greater as the prototype was adopted, by considering factors about as much 

as possible to utilize the maximum inner width of soil tray, and to reduce frequency of 

the soil tray preparation.

On the other hand, a same scaled up FE model which 10 times greater as the prototype 

is constructed in ANSYS software. Boundary condition in numerical modelling is 

applied based upon similar constraining condition existed in the experimental process. 

The loading condition of the numerical modelling is determined and calculated by 

similarity theory and dimensional analysis. Having successfully carried out the FE 

modelling, the results of it are, then, validated by the experimental results.

Comparing to the numerical modelling method, experimental method is expensive 

and time consuming to some extent. However, if the experimental results of validation 

agree well with that of the FE numerical modelling, it is no doubt that the 

methodology achieved in our study by using FEM will be able to be a promising 

efficient and economical solution to evaluate traction performance of various tread 

patterns design and further guide design studies in future.

7.2 Experimental Facility

Ahead of this project “Finite Element Analysis of Footwear and Ground Interaction”, 

an experimental device—soil slip rig had been designed, constructed and used for 

two-dimensional experimental test against two-dimensional analytical study at Salford 

University. Details of this experimental facility had been reported by Rachael Pisani1 

in her PhD thesis—“FOOTWEAR AND SOFT GROUND INTERACTION”.
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The soil slip rig has been improved in this study and re-illustrated by Fig. 7.1. As

1 - Main fiame
2 - Rotational crossbar
3 - Locking screw
4 - Cleat sample/shoe last
5 - Loading pole
6 - Anti-rotation device
7 - Loading platform
8 - Soil tray
9 - Roller assembly
10- Force meter
11 -Perspex viewing panel

Fig. 7.1 Experimental device for validation o f numerical modelling results

shown in Fig. 7.1, the rig consists o f a main frame (1) and rotational cross bar (2). The 

rotational cross bar can be moved from side to side to enable a number o f slip runs in 

one tray o f soil which is carefully prepared. It is held by locking screws (3) at both 

ends and is used to pre-set the angle o f contact o f the cleat o f tread pattern to the soil 

surfaces. A shoe last (4) to which footwear or scaled up cleat sample is attached is 

connected to a hardened steel pole (5) that slides through a bearing assembly located 

with in the rotational bar. An anti-rotation device (6) has been fitted to the pole to 

maintain a consistent direction o f the cleats during testing and also to assure no 

damage to the bearing assembly. The pole also has a loading platform (7) at its other 

end where the vertical load is applied using free weights. Having set the lateral 

position o f the rotational bar and the contact angle o f the tread, and having applied the 

vertical load using the weights, a soil tray (8) is pulled by weights and a pulley, a
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force meter (10) enables the horizontal force to be measured. The horizontal force 

direction has been changed as shown in this figure which is different from that carried 

out by Rachael Pisani1. The soil tray is mounted on a roller assembly (9) to simulate a 

state of no friction between the soil tray and supporting table. The tray has a Perspex 

viewing panel (11) on one of its sides so that observations may be made and recorded 

during a slip run.

7.3 Soil Selection and Its Properties

7.3.1 Soil Selection

It was decided in this research to begin testing with dry sand, since soil properties 

would remain constant as well as that wet and dry sand have similar shear strengths. 

Dry Leighton Buzzard sand is widely used in geotechnical laboratories and also found 

to be used in testing tyre traction. However, Leighton Buzzard sand was found to be 

unavailable in the laboratory within the engineering department at Salford University, 

Therefore, the kiln dried Congleton HST60 silica sand, that was purchased and used 

by Rachael Pisani1, is selected in this study for the experimental validation.

The silica sand was supplied by Hepworth Minerals and Chemicals Ltd and its source 

is from Bent Farm, Congleton, Cheshire, UK. Silica sand is odourless, insoluble in 

water and stable under normal conditions. Its physical state is granule and in buff 

colour. The product information supplied by the supplier is that: Average grain size is 

230 microns; Grain shape is well rounded; Loose bulk density is 1520 kg/m3; Clay 

content is 0.2% (Limits: 0.3% max.). The particle size is classified as a medium 

grained cohesionless soil.
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7.3.2 Soil Properties

The soil properties had been tested and determined as follows. These parameters are 

used as input dada for the FEM analyses.

7.3.2.1 Soil density

It was necessary to conduct the minimum and maximum density tests to find the full 

range of silica sand therefore the mid-density even though the supplier had supplied 

loose bulk density. The mid-density would then be reproduced during testing with the 

test rig and used as inputting density in numerical modelling.

The soil was prepared and tested according to BS 1377: part 1 (1990)124 and BS 1377: 

part 4 (1990)125. A 6 inch (one litre) California Bearing Ratio (CBR) mound was used 

for compaction testing to determine maximum dry density and a glass measuring 

cylinder was used to measure the minimum dry density of cohesionless soil.

Mound dimensions (without collar): Diameter (d): 152mm 

Height (h): 127mm

Volume of mould (without collar), V:
ml2h

4
-3 „ 3= 2.3 E m

Minimum density (pmin): Mass of sand (Mi): 3.564kg (loose)

Volume of mould (without collar), V: 2.3 E'3 m3

Density of sand (pmin): -^ -  = 1.55 E'3 kg/m3

176



Maximum density (pmax): Mass o f sand (Me): 3.971kg (compressed)

Volume o f mould (without collar), V: 2.3 E '3 m3

M  i  -x
Density o f sand (pmax): — -  = 1.72 E'3 kg/m3

The mid-density required for experimental validation is calculated by averaging the 

minimum and maximum densities.

Mid-density (pmid>: VS (Pmin + Pmax) = 1.635 E'3 kg/m3

7.3.2.2 Soil friction angle

Based upon laboratory test results, the friction angle o f soil ((f) ) is normally ranging

Fig. 7.2 Natural friction angle o f silica sand

from 23.8° (degree) to 31.8° (degree) reported by Araya & Gao1" and Mouazen & 

Nemenyi11, respectively. In this study, a simple method was employed to measure the
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natural friction angle of silica sand as shown in Fig. 7.2. Several repeated 

measurements have been conducted and the mean friction angle was finally 

determined as <f> = 30 (degree).

7.3.2.3 Soil flow angle

As we know, a flow rule is applied to describe state of plastic flow. The flow angle of 

soil dilatation, ß, allows the direction of principal plastic strain increments to be 

determined. If the flow angle, ß, is equal to the angle of internal friction {<f>) of soil, 

the plastic flow is fully associated. We assume the soil plastic flow is fully associated 

in this study of experimental validation, i.e. ß=  <f> =30° (degree).

7.3.2.4 Soil cohesion

Under fully drained conditions, the cohesive strength of sand, c, is being zero from 

the results of either drained tri-axial tests or direct shear tests. However, the soil 

cohesion in ANSYS with Drucker-Prager soil material model must not be zero. 

Otherwise, the numerical modelling can not be* proceeded further. Therefore, a 

relative small cohesion value, c = 0.1 kPa, closing to zero is selected to approximate 

the cohesive strength being zero for numerical modelling as well as experimental 

validation.

7 3 7 5 Vnnnp’s modulus and Poisson’s ratio

The Young’s modulus, E, and Poisson’s ratio, v, are two fundamental mechanical 

parameters to reflect elasticity behaviour of material respect to elastic stress and 

elastic strain. These properties of soil (sand) used in this experimental validation 

study are determined as E  = 75000 kPa and v=  0.3, by referring to that used in two­
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dimensional case validation study in Chapter 4 (see sub-section 4.3.1). The Young’s 

modulus could be decreased if clay content is raised. For instance, Mouazen & 

Nemenyi11 reported the Young’s modulus equals to 8067 kPa while clay content is 

13.4% and silt content is 18.4%. The clay content of silica sand in this experimental 

validation study is 0.2%.

7.4 FE Modelling of Interaction between Scaled Up Model and Soil

As introduced in section 7.1, the FE model scaled up 10 times of a star-shape cleat has 

been constructed by using ANSYS package and in the mean time a physical model 

with same geometry has been designed and produced in laboratory. The FE modelling 

process and results will be reported in this section in detail.

7.4.1 Star-shape Cleat

The scaled up 10 times FE model of a star-shape cleat has been built up in ANSYS. 

The scaled up model drawings is also illustrated in appendix II. The scaled up 10 

times physical model with star-shape is made of natural rubber as displayed in Fig. 

7.3. As shown in Fig. 7.3, the whole block of physical model is composed of five 

layers of natural rubber with star-shape. Each layer has identical thickness of 11mm 

and sticks together by a patented powerful multi-purpose adhesive. Between the 

physical model and the shoe last/cleat attachment, a wooden model with the same 

geometry as rubber model except thickness is designed and produced to connect with 

them. The adhesive used to stick each layer of rubber models is also effectively
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Fig. 7.3 Real model scaled up 10 times made o f natural rubber

engaged in sticking wooden model and top layer o f rubber model. Two bolts are fast 

embedded in the wooden model to be firmly fixed at the shoe last as shown in Fig. 

7.3. Only the whole block o f rubber models with a total o f thickness 55~56mm joins 

in the interaction between the silica sand and the scaled up model in this experiment 

for validation purpose.

7.4.2 FE Modelling of Soil Interactive with Star-Shape Cleat

The soil FE model interactive with the star-shape cleat scaled up 10 times is shown in 

Fig. 7.4. The origin o f coordinates is located at symmetrical center o f bottom surface 

o f the star-shape cleat scaled up 10 times.

7.4.2.1 Geometry size o f the model

The soil is folly compressed before loading in the experimental validation. Full
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Fig. 7.4 The soil FE model interactive with star-shape cleat scaled up 10 times

sinkage is applied to star-shape cleat scaled up 10 times o f forepart o f  outsole, that is, 

the depth o f full sinkage equals to the height o f  scaled up cleat ( = 0.056 m ). As seen 

in Fig. 7.4, overall depth, length and width o f the FE model are designed to be exactly 

same as that o f experiment device shown in Fig. 7.5. The basic element size is 

optimized as 0.05m.

7.4.2.2 Soil properties and material model

The soil material parameters in FE modelling are same as that having been tested and 

determined in section 7.3.2, and summarized in Table 7.1.

Same as the material model used in Chapter 6, the Drucker-Prager material model is
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Fig. 7.5 Pre-prepared experiment facilities before loading

Table 7.1 Soil properties for FE modelling in experiment

Soil Properties Value Unit

Dry bulk density, p 1.635 k»kg/m’

Cohesion value, c 0.1 kPa

Internal friction angle, </> 30 deg.

Dilatancy angle, (3 30 deg.

Poisson’s ratio, v 0.3 No dimension

Elastic modulus, E 75000 kPa

also employed to simulate the behaviour o f elastic perfectly-plastic soil material in 

this experimental validation study. As shown in table 7.1, the dilatancy angle or flow
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angle, fi, is equal to the internal friction angle, tf>, the flow rule is associative and there 

is a material volume increase.

7A2.3 The element and meshing scheme

SOLID45 element in ANSYS package is again selected to construct the three- 

dimensional soil FE model interactive with star-shape cleat scaled up 10 times. This 

type of element has been used for 3D cases validation studies as described in Chapter 

5 and FE numerical modelling of interaction between soil and various tread patterns in 

Chapter 6 in detail.

A basic element size, that is 0.050 m, is optimized to mesh the whole block of soil 

volumes surrounding and being adjacent to the star-shape cleat scaled up 10 times 

Total 61 key-points, 100 lines, 45 areas, 3 volumes, 1606 nodes, and 1144 eight-node 

SOLID45 elements are created. Fig. 7.4 shows the meshed volumes as well as 

elements.

9 *

7.4.3 Solution of the Soil FE Model Interactive with Star-Shape Cleat

7.4.3.1 Boundary conditions

Boundary conditions are applied to this three-dimensional model of soil problem As 

shown in Fig. 7.4, referring to Fig. 7.5, the top surface ABCD is left free of any 

constraints in any direction. The horizontal negative displacement (x) of the surface 

ADHE and the horizontal positive displacement (x) of the surface BCGF are 

constrained, respectively. The lateral surfaces ABFE and DCGH are constrained in 

positive and negative z  directions, respectively. The vertical y  displacement of the 

bottom surface EFGH is also constrained.
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7.4.3.2 Loading conditions

As described in section 6.3.1.2, vertical compressive and transverse shear forces are 

applied to the ground via the footwear during the process of gait. For this 

experimental validation study, a scaled up vertical load and a uniform horizontal 

displacement are acted on the model scaled up 10 times. The model, scaled up 10 

times, is assumed to be a rigid body as its Young’s modulus is more greater than that 

of the soil, that is, there is no deformation for the model assumed during the process 

of interaction between the model and soil. As the main interest of this study is to 

investigate soil plastic failure under transverse shear load and vertical load so as to 

evaluate traction performance of various tread patterns, the motion between the model 

and the soil is assumed to be frictionless, that is, interface friction between them is 

zero. Therefore, the loading conditions acted on the model are directly transferred to 

the soil through the model in the FE numerical modelling.

i) Transverse loads *"

As displayed in Fig. 7.6, the transverse loading condition is realised by applying a 

uniform horizontal displacement to all transverse surfaces of soil that are contacted 

with the model scaled up 10 times and sustained transverse shear forces.

Chi & Kushwaha3,4 and Mouazen & Nemenyi11 reported that the theoretical draught 

force increased with the agricultural tillage tool movement. After a number of 

increments, the draught force reached a maximum value at 0.050 m -  0.150 m of tool 

movement because of the failure of the soil structure. Consequently, a uniform 

horizontal displacement of 0.10 m is determined in this experimental validation study

184



Fig. 7.6 Transverse loading conditions for the FE numerical modelling

including the FE numerical modelling to simulate the scaled up 10 times model’s 

movement until the traction force reaches a maximum value when plastic flow occurs.

ii) Vertical loads

As reported in section 6.3.1.3 o f Chapter 6, the average vertical pressure (TV) acting 

on soil surfaces equals to 33.252 kPa for the first tread pattern (see formula 6.1). 

Therefore, the vertical load, F*, acting on by any one star-shape cleat of the first tread 

pattern (see Fig. 6.10) can be calculated as follows:

/7 =pyA, = 33.252£Pa* 0.00007788w2 = 2.583V (7.1)

where A* is the area o f horizontal surface o f the star shape cleat.

For star-shape model scaled up 10 times, how to decide vertical pressure acted by it 

on the soil surfaces is a key factor to carry out the experimental validation study.
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Similarity theory and dimensional analysis method in mechanics are employed to 

decide the vertical load for the scaled up 10 times model.

Similarity theory and dimensional analysis was encountered in the earliest study of 

physics in academies and in the initial stage of formulating new problems in research 

work. After entering 20 century, similarity theory and dimensional analysis have been 

widely studied and used in hydrodynamics, ship design, the many scaling effects that 

arise in wind tunnel or water tank testing, etc. The idea of similarity first gained a 

precise meaning in geometry. In Euclidean geometry two plane figures are similar 

when corresponding angles are equal and when corresponding sides are in a constant 

ratio. However, a physical body is more than an only geometric figure as it has mass 

and other physical attributes. Hence we regard two bodies or systems as similar only 

when their relevant physical properties are similarly distributed.

Physical Similarity and dimensional properties play a very important role in 

experiments and calculations in physics and engineering. Similarity theory and 

dimensional analysis determine the conditions the model experiments are to be carried 

out and the key parameters representing fundamental effects and processes. The 

modelling in experiments is to replace the study of the natural phenomenon by the 

study of an analogous phenomenon in a model of smaller or greater scale. It is 

obvious that the model in our experimental validation study is of a greater scale.

The concept of similarity in phenomena applies to both the static and dynamic 

behaviour of physical systems. Problems in static or dynamic reduce to the 

determination of certain functions and characteristic parameters. There are various
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ways of defining physical similarity of static or dynamical problems. We adopt a 

definition of physical similarity in a form required in practical application and which 

is ready for direct use. Two phenomena are similar, if the characteristics of one can be 

obtained from the assigned characteristics of the other by a simple conversion, which 

is analogous to the transformation from one system of units of measurement to 

another. The “scaling factor” must be decided in order to accomplish the conversion. 

In our experimental validation study, the “scaling factor” is considered as 10. An 

example reported by Sedov67 about analysing the problem of equilibrium of elastic 

structure is now re-introduced to make it clear how the vertical load is decided for the 

model scaled up 10 times in this study.

The elastic properties o f a bridge girder are determined by two constants, Young’s 

modulus (E, N/m2) and the non-dimensional Poisson’s ratio (v), for this isotropic and 

homogeneous material. Considering geometrically similar structures, a series of 

characteristic parameters are formed, a) To assign a certain characteristic dimension B 

in order to define all the model dimensions, b) To select the gravity y= pg  (N/m3) as a 

characteristic parameter if the weight of the structure is essential in the equilibrium 

state, c) External loads must be considered as a characteristic parameter in addition to 

the weight of the structure which is determined by the force F  (N). Then the system of 

characteristic parameters will be E, v, B, F, pg. For this case, three independent non- 

dimensional parameters will form the basis of mechanical similarity of elastic 

equilibrium state. These are:

E  F  
V'p g B ’EB2
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The similarity criteria demand that these three parameters are constant on the model 

and the prototype. If the model and the prototype are made from the same material, 

then the values of p, v  and E  are identical on the model and the prototype 

Consequently, the following conditions must be satisfied for mechanical similarity:

Under ordinary conditions, g  = const; therefore, B  must be a constant in order to 

conserve mechanical similarity.

structure under loading conditions of a weight and of a given load distribution, we can 

explain r  to be the maximum value of some stress component or, in general, to be a 

certain stress component acting on a specific element of the structure. The term t IE is 

non-dimensional. As a result, we can write:

If the model and the prototype are produced from the same material, then E  = const1 

consequently, the stress in corresponding points will be identical for mechanical 

similarity. If the magnitudes of the external loads are great but the intrinsic weight of 

the structure is small enough to be neglected, then the parameter / =  pg  and, therefore 

the parameter E/pgB is not essential. The preceding relation becomes:

gB = const. (7.2)

Considering the stress r  (N/m2) which develops in the deformation of an elastic

(7.3)

(7.4)

1 8 8



and the similarity conditions will reduce to the only two conditions:

v -co n st and -— ■ = const n
EB2

Therefore, it follows that the external loads must be proportional to the square of the 

linear dimension when modelling with the material properties conserved.

Applying formula (7.5) to our experimental validation study, we have:

F

E A
F,

E .B 2
= const (7.6)

Where, the footnote “w” represents model scaled uplO times; footnote represents 

real cleat with star-shape, i.e. prototype. F  is vertical load, E  is Young’s modulus and 

B  is characteristic dimension — linear dimension. As the model and the prototype are 

produced from the same material — natural rubber, Em = E *. Hence,

F = F .
( B  2) ( B  V= F.
{ B t  J J (7.7)

From formula (7.1), we have F* -  2.583 N, BJB* is the “scaling factor” and equals to 

10. So,

F  = 2.583 *102 = 258.3N (7.8)

Therefore, the average vertical pressure (/y”y) acting on the soil surfaces by the model 

scaled up 10 times is:
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258.3Np ,  _ F m _  258,3N  
A„ 0.009986w2

= 25866V/m2 =25M6kPa (7.9)

where Am is calculated from Fig. 7.4 and Appendix II.

After the transverse and vertical loading conditions are applied and the solution 

controls are determined, a nonlinear numerical modelling is successfully conducted. 

The FE modelling results and discussion will be presented in the latter section 7.6 in 

detail by comparing to the experimental results.

7.5 Procedure of Experimental Validation

7.5.1 Soil Preparation

The mass of sand was calculated and the depth of sand in the tray, 0.205m, was 

determined to achieve the mid-density value as required for the experimental 

validation and the FE modelling. This depth, as shown in Fig. 7.4 and Fig. 7.5, was 

considered to be deep enough to eliminate the ■effect of the sand sliding against 

bottom surface of the tray. The sand with a total depth 0.205m was prepared by 

compacting four layers with depth of approximate 0.050m for each layer. The first 

layer was paved by pouring the sand into the base and evenly distributing it. A 

wooden board is placed over the sand layer and vibrated evenly for a period of time 

using an electric sander. At first the board was vibrated for 3 minutes, and then it was 

continuously vibrated until the required density was achieved. The next layer was then 

created like the first and vibrated. The tray was marked at the required depth of each 

layer. On completion of the soil preparation, the depth of soil was checked to ensure
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the density was correct. The required density was achieved with an error of less than + 

5%.

7.5.2 Installation of Scaled up Model

As shown in Fig. 7.3 and Fig. 7.5, the star-shape cleat model scaled up 10 times was 

fitted to the loading pole. The attachment was then secured at the shoe last by 

tightening the two bolts they were already fast embedded in the wooden model.

7.5.3 Positioning of the Model

Firstly, the soil tray was aligned with the rollers and fixed in the required position by 

inserting two wooden blocks into the gap between two rollers at positions of either 

left end of the tray or right end of it. The blocks were further secured by inserting one 

bolt into holes pre-drilled at the block and roller track. The bearing shaft was then set 

at the required angle (vertical to ground for all tests) and the horizontal crossbar was 

then locked to maintain this position. The model to be tested was then gently lowered 

onto the sand surface, correctly aligned and facing the correct direction. In order to 

make sure only the whole block of rubber models with total thickness 55~56mm to be 

joined in the interaction, a sinkage of 50mm was preset so as to the total 56mm 

sinkage could be achieved after vertical load was acted on later. The alignment device 

was then be secured to make ensure that the bearing shaft does not rotate during the

experiment.

7.5.4 Application of Vertical Load

From calculated results in formula (7.8), the required weights, 258.3JV(58.11//>), were 

gently placed on to the loading platform so not to disturb the prepared soil
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unnecessarily. The locking device was then tightened thus securing the weights in 

position. Repeated tests had been done to ensure 50mm preset sinkage before the 

vertical loading can make the final sinkage equals to 56mm after the application of

vertical load.

7.5.5 Application of Horizontal Load

After the application of vertical load, horizontal load was carefully acted on to the rig. 

First, the rig was checked to ensure everything was secure and in the correct position. 

The weight hanger was then connected to the soil tray pulling cord. The cord was 

checked to make sure it is aligned within the pulley. The weight hanger was correctly 

positioned at a distance 0.100m vertically from the end of it to the ground to ensure 

the distance of relative movement between the model and the soil was same as that in 

the FE modelling. The soil tray movement relative to the model was stopped when the 

end of weight hanger touches the ground as the horizontal pulling force, i.e. gravity of 

the weights was offset by ground.

Weights were then gently added to the weight hanger until the total weight of the 

weights was equal to 177.8 N  (40 lb). Previous repeated tests had been done and 

found that the soil tray began to slide, that is plastic flow occurs, when the pulling 

force reached 177.8 AT (40 lb). And then, the wooden block at the left hand side of the 

soil tray was removed at the same time the soil tray was firmly hold by hands to 

ensure no disturbance resulting from the taking away of the block. The applied 

horizontal load and vertical load are shown in Fig. 7.7.
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Fig. 7.7 Loading conditions applied in the experimental validation

7.5.6 Observations and Measurements

Finally, the soil tray was moved under the horizontal load and vertical load as soon as 

after freeing the holding hands. The moving process o f the soil tray was observed and 

recorded. Slip distance, i.e. distance o f soil plastic flow as well as pattern o f shear 

failure were also measured and recorded. These experimental validation results will 

be presented in detail in the following section comparing to the FE numerical 

modelling results.
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7 .6  R e su lts  a n d  D isc u ss io n

The soil failure dimensions taken on the soil surfaces in the soil tray tests are reported 

in this section. The experimental data are compared with results o f the FE modelling 

in order to validate the FEM model developed in this study. The final experimental 

results are shown in Fig. 7.8 after the soil tray moved 0.10m under the vertical and 

horizontal load and stopped when the pulling force is offset by the ground.

Fig. 7.8 Experimental results o f soil failure in the soil tray test

It could be clearly observed that the soil was heaved up and moved forward in front o f 

the cleat model, which is scaled up 10 times, as it slid along the soil surfaces. The soil
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being heaved up by the model movement is the soil shear zone. The shape of the shear 

zone in front o f the cleat model was seen to be approximately pattern o f elliptical 

plateau, as illustrated by Fig. 7.8. These “elliptical plateaus” were considered as the 

amount o f soil volume dilatancy resulting from the fully associated plastic flow.

The maximum forward, vertical and lateral soil movements are measured as displayed 

in Fig. 7.9.

Fig. 7.9 The maximum soil failure distances measured in the experiment
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Fig. 7.10 The FE modelling results o f soil deformation
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The FE modelling results o f soil deformation are displayed in Fig. 7.10 and Fig. 7.11. 

Fig. 7.10a is a three-dimensional picture o f the soil deformation with undeformed 

edge; Fig. 7.10b is a projective picture from front view o f Fig. 7.10a; Fig. 7.10c is a 

from right view projective picture o f Fig. 7.10a. Fig. 7.11 shows vector plots o f soil 

deformation at different directions o f views.

Fig. 7.11 Vector plots o f soil deformation with the FEM

A comparison of the measured dimensions o f soil failure in the experiment and 

predicated results by the FE modelling is summarized in Table 7.2.

It can be seen from Fig. 7.9, Fig. 7.10 and Fig. 7.11 that the soil deformation in the FE 

modelling results follows a similar failure pattern in the experiment. From Table 7.2, 

the FE numerical modelling provided a reasonable approximation o f the forward soil 

failure distance (0, the maximum upward soil movement (v) as well as the lateral soil
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failure distance (1) to the experimental results. The error between the FE modelling 

and the soil tray test for the forward soil failure distance (f) is 1.37%, therefore, shows 

a reasonably good agreement. The difference of the maximum upward soil 

movements (v) is 6.67% and not bad an agreement between the FEM and 

experimental validation study. The lateral soil failure distance (1) of the FE modelling 

is 11.43% larger than in the soil tray test. The causes of these errors may mainly result 

from that the Druker-Prager material model over-predicting plastic dilatancy at 

failure. These over-predictions may also be due to that soil discontinuity is not 

considered in the FEM analysis whereas the soil in the soil bin test becomes 

discontinuous from soil outside the disturbed or ruptured zone.

Table 7.2 Comparison between FEM and soil tray test

Failure Forward soil failure Lateral soil failure Max. upward soil
^ X d i stances 

Items
distance (f), mm distance (1), mm movement(v), mm

Experiment 360 350 30

FE modelling 365 390 32

7.7 Summary

A star shape model scaled up 10 times adopted from the first tread pattern is designed 

to perform experimental validation. A soil FE model interactive with the same scaled 

up size model is also constructed in ANSYS FE package. Boundary condition and 

loading condition in FE modelling is applied based upon the same conditions existed 

in the experiment. The dry Congleton HST60 silica sand is employed in the 

experiment and its mechanical properties are used as input dada for the FE modelling.
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The Drucker-Prager material model is employed to simulate the behaviour of an 

elastic perfectly-plastic soil material. SOLID45 element is selected to construct the 

soil FE model. A basic element size, 0.050 m, is optimized to mesh the FE model. A 

uniform horizontal displacement of 0.100 m is determined in this experimental 

validation study to simulate the scaled up 10 times model movement until the traction 

force reaches a maximum value when plastic flow occurs. Vertical loading conditions 

are determined by similarity theory and dimensional analysis. The experimental 

validation study shows that the FE numerical modelling provided a good agreement 

with the experimental results about soil failure pattern and the maximum various 

failure distances.
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Chapter 8

Conclusions and Further Work

8.1 Introduction

This chapter is devoted to present general conclusions arisen from the overall outcomes 

of the project, and with some suggestions for future work that could continuously be 

carried out based upon this work. First, each chapter is conclusively reviewed and the 

main results from each are outlined; then general conclusions are remarked; finally, some 

proposals for further work are suggested.

8.2 Conclusive Review of Each Chapter of the Thesis

Chapter 1 introduced background and objective of this project, and outlined research 

contents addressed in chapters of this thesis.

Chapter 2 first specified what the problem of this project is, then presented the literature 

review focused on several relevant topics, such as soil-tillage tools interaction soil- 

wheel interaction, soil-structure interaction, limit analysis, etc. as well as the main topic 

of footwear and soft ground interaction.

It was concluded that, from the reviewed literature, little work existed on the topic of 

footwear and ground interaction with soft surfaces, especially on work by using finite 

element method. A great number of studies concerning soil-tillage tool interaction have 

been performed since 1970s including quite a few using FEM. Soil-wheel interaction
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study began from 1950’s and a number of researches used FEM and Drucker-Prager 

nonlinear material model. Finite element analysis of soil-structure interaction has been 

applied to a number of types of soil mechanics and soil engineering problems since 

1960s. Limit analysis method, a sort of analytical methods opposite to numerical 

methods, was widely applied in soil mechanics problems since it was established in 

1950s. Some research concerning footwear and ground interaction with soft surfaces 

were reported that mainly by means of experiment methods with respect to artificial 

surfaces, such as Astroturf, and natural surfaces, for instance, football field. One works 

was reported by using FEM and hyper-elastic material model to study footwear function. 

Some texts and reference books are identified to be rather useful to this project.

Chapter 3 reviewed plasticity theory in soil mechanics. Five typical perfectly plastic 

models, including the Drucker-Prager material model we adopted, are selectively 

presented as well as flow theory and some fundaments of solid mechanics. Each material 

failure model of them has both advantages and limitations. The well-known failure 

model—the Coulomb criterion is well established for many hydrostatic pressure sensitive 

soils, but is not mathematically convenient in three-dimensional modelling situation 

owing to the existence of comers. The Tresca and von Mises criteria are widely used for 

metals to determine the collapse or limiting state of a structure, but can not describe the 

shear strength of soils. The extended Tresca and the Drucker-Prager model (extended von 

Mises criteria) consider the effectiveness of mean normal stress, but the former still has 

the flaw of singularities. The Drucker-Prager model is available in computer codes and 

the simplest perfectly plasticity model approximating the Coulomb model. It may give
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reasonable results for progressive failure analysis of soil with adequate assumption of the 

material constants. Its main limitation is over-estimate plastic dilatancy at yielding.

Chapter 4 presented the two-dimensional case validation study. A case of typical earth 

pressure problem was selected to redo by using the Drucker-Prager material model in 

ANSYS package to simulate soil behaviour. The 2-D 8-node structural solid PLANE82 

element is selected to model soil structure. The earth pressure problem is simulated under 

plane strain conditions. Initial stress is considered in this case study and user routine is 

created to produce initial stress effect. Wall displacement is applied as a loading 

condition. A series of numerical modellings have successfully carried out and good 

agreement with published works has achieved. The 2-D case validation is successful and 

the ANSYS software with the Drucker-Prager material model is applicable to 2-D FE 

modelling for soil problems.

Chapter 5 reported three-dimensional cases validation study. Two cases of three- 

dimensional agricultural soil tillage problem were selected to be validation. The soil 

material properties are simulated by Drucker-Prager material model in ANSYS FE 

package. The SOLID45 8-node 3D structural solid element in ANSYS is chosen to 

construct soil structure. 0.15m and 0.10m wall displacements of subsoilers are applied to 

soil structures as loading conditions, respectively, in case 1 and case 2. For case 1 

validation, good agreement respect to the deformation contour with published works has 

reached but no draught forces comparison due to the geometry size of the FE model was 

estimated. Case 2 validation studies show reasonable agreement with the published works
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respect to the draught forces. Three-dimensional cases validation studies confirm ANSYS 

software is suitable to 3D FE modelling for the problems of soil and structure—tillage 

tool interaction.

Chapter 6 presented the study of finite element analysis of a total of five tread patterns 

and soft ground interaction in detail. Outdoor boots as well as military boots are firstly 

reviewed. Then, the methodology of constructing soil FE model interactive with the first 

tread pattern, meshing schemes, boundaiy conditions, and loading conditions is 

intensively presented step by step. Finally, numerical modellings are successfully 

conducted and the modelling results are presented. Traction performance of each tread 

pattern as well soil deformations, stresses, strains and influence of soil properties, etc. are 

analyzed and conclusive results are achieved.

The methodology of FE numerical modelling for footwear and soft ground interaction 

having created with ANSYS FE package in this study can be applied to footwear industry 

on the aspect of tread pattern design and assessment of it. The DP failure criterion with an 

associated flow rule was employed in this study, and a general size, 0.022m, of SOLID 

45 elements has been optimized for successful meshing for the soil FE models interactive 

with the five tread patterns. The FE numerical results demonstrate that, the first tread 

pattern has the best traction performance among the five tread patterns, the third and the 

fourth tread pattern also show relative better traction effect. The second tread pattern 

show the poorest traction effect. The fourth tread pattern is the best one having lateral 

stability and to utilize shear capacity of soil as well as to enable gripping and pivoting
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due to sinkage effect In general, the significant deformation of soil occurs in the regions 

contacted by cleats of the tread pattern or nearby and under them. Flow angle and 

cohesion have influence on the extreme stresses with different regularity respect to the X 

or Y or Z components and particular tread pattern, but Young’s modulus has no influence 

on them. A FEM analysis of a soil FE model interactive with heel of the first tread pattern 

is also conducted. The situation of soil deformation of it is different from that of with 

forepart as difference of loading conditions in magnitude.

Chapter 7 describes details of the experimental validation studies. A star-shape cleat 

model scaled up 10 times was designed, manufactured and used in the experimental work 

to enable soil movement observation and accurate measurement of the soil failure 

distances to be compared to the FE modelling results. Similarity theory and dimension 

analysis of mechanics was employed to decide the vertical loading conditions. The soil 

mechanical parameters in experiment were as the inputted data of the soil properties in 

the FE modelling. The FE modelling results were finally validated by the experimental 

results.

The Drucker-Prager material model is still employed to simulate the behaviour of elastic 

perfectly-plastic soil material. A basic size, 0.050 m, of SOLID45 element is optimized to 

successfully mesh the FE model. A uniform horizontal displacement of 0.100 m is 

determined by repeat tests in the experiment to simulate the scaled up model movement 

until when plastic flow of soil occurs. This prescribed displacement is adopted as the 

horizontal loading conditions for the FE modelling. The experimental validation study 

shows that the FE numerical modelling provided a good or reasonable agreement with the
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experimental results about soil failure pattern and the various maximum failure distances. 

The error for the forward soil failure distance is 1.37%. The maximum upward soil 

movement of the FEM predictions is 6.67% over-predicting the experimental result The 

lateral soil failure distance of the FE modelling is 11.43% larger than that in the soil bin 

test.

8.3 Conclusions

Through studies of the project “Finite Element Analysis of Footwear and Ground 

Interaction”, the following general concluding remarks arise from this investigation:

1. The finite element method has been successfully applied to the numerical 

modelling of footwear and soft ground interaction with different tread patterns.

2. The methodology created in this study can be commissioned to identify military 

boots’ performance about tread pattern design, and applied to footwear industry 

respect to outdoor sports and civilian recreation activity.

3. The FE analyses were successfully conducted with a series of non-linear, three- 

dimensional soil FE models based upon the elastic-perfectly plastic material 

characteristics, and the Drucker-Prager failure criterion of material models in 

ANSYS FE package has been employed to model the soil behaviour.

4. In total, five tread patterns of military and hiking boots interactive with soil have 

been simulated by FEM. The FE modelling results showed that the first tread 

pattern is the best design on the aspect of traction performance, and the fourth 

tread pattern design has the best performance of lateral stability and enabling 

gripping and pivoting due to sinkage effect.

205



5. Experimental validation for the FE modelling results has been successfully carried 

out using greater cleat model scaled uplO times in a laboratory soil bin. The FE 

numerical models shows a good agreement with the experimental results about 

soil failure pattern and the forward soil failure distance as well as the maximum 

upward soil movement.

6. Effects of soil mechanical parameters versus the extreme stresses for the first and 

fourth tread patterns are comparatively investigated. The FEM analyses showed 

that flow angle and cohesion have influence on the extreme stresses of both tread 

patterns, but Young’s modulus has no influence on them. The varying tendency of 

the extreme stresses versus flow angles for the first tread pattern is, generally, 

different from that of the fourth one, whereas the fluctuant regularity of stress 

peak value to cohesion are similar to each other for the both tread patterns.

7. Soil deformation and distribution of stresses and strains are complex for the five 

tread patterns due to complicated cleats configuration, geometry size, and 

transverse loading conditions. In general, significant soil displacements occur in 

the regions contacted by cleats at rear part of the tread pattern and zones under 

central part of the tread pattern.

8. Two and three-dimensional case validation studies have been successfully 

conducted and good agreements have achieved with results of published works. 

These validation studies have provided a reinforced foundation to continuously 

carry out this project and fulfill it successfully.

8.4 Future Work
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This research has created a methodology of using Finite Element Method to analyze 

footwear and soft ground interaction, and provided a useful platform from which to carry 

out further investigation with FE numerical modelling techniques and experimental 

validation scheme used in this study. Therefore, the following suggestions are drawn for 

future work.

8.4.1 Consideration of Interface Friction

As this research is focused on what limit condition is when shear failure of soil mass 

happens mainly under transverse shear loads, which is initiated by vertical surfaces of 

cleats, and vertical pressure loads, friction of interfaces between the soil and surfaces of 

cleats and sole was assumed to be zero, that is, the motion is frictionless. It is 

recommended that the FE modelling of footwear and soft ground interaction be further 

developed considering interface friction. It would be more close to reality, but no doubt 

that the FE modelling process will become more complicated and time costing. It is 

suggested that for its simplicity in connecting two materials with a complex geometric 

interface, two-node, gap elements can be inserted between each couple of nodes of the 

soil and contacting surfaces of cleats and sole.

8.4.2 Dynamics Analysis of Footwear and Soft Ground Interaction

The problem of footwear and soft ground interaction including slip is basically a dynamic 

process. It is suggested that dynamics analysis of footwear and soft ground interaction 

subjected to dynamic loads may carry out in future be means of either numerical 

modelling methods or experimental methods. The numerical modelling methods may

207



employ either Finite Element Method, or Finite Difference Method, or Boundary Element 

Method, or Distinct Element Method, etc. The experimental methods may include a 

method by employing some sensors embedded into the soil to measure soil disturbance, 

and recording data by a computer-controlled system during the process of gait.

8.43 Advancement of Experimental Facility

The experimental validation work to date has been carried out by manual operation based 

on simple mechanical mechanisms using weights and pulleys. Some suggestions are 

given for future improvements of the experimental device. Force transducers can be used 

to measure the pulling force so as to reduce measurement error. The soil bin movement 

can be driven by a motor system that is available to accurately control the moving speed 

and distance. Variety of soils can be ordered and prepared to validate the FE modelling 

results for use with different type of cohesive soils. However, frequent measurement of 

soil mechanical parameters would also be required as their variability.
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Appendix I

The FORTRAN programme—a user subroutine for producing initial stress with 2D
case validation study

PROGRAM AUTO
COMMON/BLOCKOl/NX,NY,AX,AY 
COMMON/BLOCK02/XF(300,300),YF(300,300)
COMMON/BLOCK03/X(8,200,200),Y(8,200,200)
COMMON/BLOCK04/FX(8,200,200),FY(8,200,200)

C
OPEN(7,FILE='istress.ist')
AX=35.0 

, AY=5.0 
NX=30 
NY=10 
DX=AX/NX 
DY=AY/NY 
AA=0.0
DO 100 1=1,NX 
DO 100 J=l,NY

XF(I, J)=DX/2.0+(1-1)*DX 
YF(I, J)=Ay-DY/2.0-(J-l)*DY 

100 CONTINUE
DO 200 1=1,NX 
DO 200 J=1,NY

X (1,I,J)=XF(I,J)-DX/2.0 
Y (1,I,J)=YF(I,J)-DY/2.0 
X (2,1,J)=XF(I,J)
Y (2,I,J)=YF(I,J)-DY/2.0 
X(3,I,J)=XF(I,J)+DX/2.0 
Y (3,I,J)=YF(I,J)-DY/2.0 
X (4,I,J)=XF(I,J)+DX/2.0 
Y (4,1, J)=YF(I,J)
X (5,I,J)=XF(I,J)+DX/2.0 
Y(5,I,J)=YF(I,J)+DY/2.0 
X (6,1, J)=XF(I,J)
Y (6,I,J)=YF(I,J)+DY/2.0 
X (7,I,J)=XF(I,J)-DX/2.0 
Y(7,1,J)=YF(I,J)+DY/2.0 
X (8,I,J)=XF(I,J)-DX/2.0 
Y (8,1, J)=YF(I,J)

200 CONTINUE
DO 300 J=1,NY 
DO 300 1=1,NX 
DO 300 K=l,8

FY(K,I,J)=18.0*(5.0-Y(K,I,J))
FX(K,I,J)=0.5*FY(K,I,J)

300 CONTINUE
WRITE(7,1600)

1600 FORMAT('! ************ STRESS INITIALIZATION FILE FOR ANSYS
r ★  ★  ★  ★  ★

£ * * * * * * IJ

WRITE(7,1700)
1700 FORMAT('!')

WRITE(7,1800)
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C
l

1800 FORMAT('! This 
data')

WRITE(7,1900)
1900 FORMAT('! FOR 300 

WRITE(7,1700)
DO 400 1=1,NX 

DO 400 J=1,NY 
K=J+(1-1)*NY 

WRITE(7,2000)K 
2000 FORMAT('! Stress 

WRITE(7,2100)
2100 FORMAT('! Sx
Sxz'

$)
WRITE(7,1500)K 

1500 FORMAT('eis, ',15)
WRITE(7,1000)FX(1,I,J),FY(1,I,J),AA,AA,AA,AA 
WRITE(7,1000)FX(3,I,J),FY(3,I,J),AA,AA,AA,AA 

, WRITE(7,1000)FX(5,I,J),FY(5,I,J),AA,AA,AA,AA 
WRITE(7,1000)FX(7,I,J),FY(7,I,J),AA,AA,AA,AA 
WRITE(7,1700)

400 CONTINUE
WRITE(7,2200)

2200 FORMAT('! End of initial stress file')
WRITE(7,2300)

2300
FORMAT(1 I*********************************************************

£*+*+*★ i )
1000 FORMAT(G15.6,' ,',G15.6,' , ',P3.1,', ',F3.1,', ',F3.1,

$', ',F3.1)
END

file, istress.ist, contains initial stress 

PLANE82 elements.')

for element',15)
Sy Sz Sxy Syz

2 1 0



Appendix I I

Dimensions of the Rubber Model Scaled up 10 Times

Sizes Unit: mm
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