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SYNOPSIS

The automated design of non-linear control systems has long eluded the control 
engineer, because of the lack of sufficient mathematical tools to solve the design 
problem. Indeed it is considered that if a design route is available it is unlikely to via 
the mathematical approach. This has inspired the concept of using Genetic Algorithms 
(GAs) to obtain a solution to the non-linear control system design problem. The GAs 
are search procedures based on the mechanics of natural genetics to guide themselves 
along paths to solutions in the search space. GAs provide a mean to search non-linear 
spaces.

This Thesis uses GAs to develops automated design techniques for the design of non
linear control systems. In this context the non-linear control system design problem 
has been sub-divided into the sub-problem of designing controllers for:

(i) non-linear controllers for linear plants. In this case the aim was to design high 
performance controllers, using non-linear PID gains. In this case the design methods 
employs three different techniques to map the non-linear gain functions. The research 
thus provides a comparison between Lagrangian Polynomial, Neural Networks, and 
Fuzzy Logic. The results shows that GAs are highly effective for the design of non
linear controllers for linear plants;

(ii) non-linear controllers for non-linear plants. In this case the aim was to design 
high performance and robust controllers using PID controllers. The problem can be 
considered as designing gain-scheduled PID controllers. In this case the gain 
scheduled functions were mapped methods using Lagrangian Polynomial. The results 
shows that GAs are highly effective for the design of gain scheduled PID controllers;

(iii) linear controllers for non-linear plant. In this case the aim was to design a fixed 
gain PID controller that would give similar performance through out the operating 
envelope of the non-linear plant. In this design method a max-min strategy was 
adopted to produce similar performance through out the operating envelope of the 
non-linear plant.

This research provides a profound insight into the different methodologies involved 
in implementing non-linear control systems. Furthermore, it clearly shows that the 
genetic design methods developed are powerful and flexible enough to be applied to 
design non-linear control systems for a broad spectrum of problems.
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Chapter l 
INTRODUCTION

INTRODUCTION

Automatic control has played a vital role in the advance of engineering and science. 

In addition to its extreme importance in missile guidance systems, robotic systems, 

and many others, automatic control has become an important and integral part of 

modem manufacturing and industrial processes. Thus, for example, automatic 

control is essential in the numerical control of machine tools, in the manufacturing 

industries. It is also essential in such industrial operations as controlling pressure, 

temperature, humidity, viscosity and flow in the process industries. The centrifugal 

speed governor developed by James Watt for the speed control of a steam engine 

can be considered as the first widely used feedback control system not involving a 

human being. Over the years, control systems have become more sophisticated in 

order to improve the quality of manufactured goods and to speed up the production 

process. Therefore, a systematic approach to control system design was needed for 

the development of modern engineering.

Control systems are in general classified into two categories: open-loop and closed- 

loop systems. This distinction is determined by the control action, which is that 

quantity responsible for activating the system to produce the output. In open-loop 

systems, unlike closed loop systems the control action is independent of the output. 

Open-loop systems ability to perform accurately depends very much on their
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Chapter 1

calibration, i.e. the procedure used to establish the input-output relation to obtain 

a desired system accuracy, also they are not generally troubled with the problem of 

instability. However, such open-loop control systems are frequently unsatisfactory 

because any unexpected disturbance to the system or changes in the system can 

cause deviation of the output from the desired value.

In closed-loop control, feedback is used to reduce the effects of both disturbances 

and changes in plant parameters. Feedback involves comparing the actual plant 

output with a desired value and using this difference to reduce the error between the 

two values.

The significance of feedback control was not understood clearly until the 

introduction of Laplace transform [1] and associated frequency-response techniques. 

Nyquist [2] who is the creator of the Nyquist frequency domain stability criteria, 

showed analytically the trade-off between stability and large loop gains in feedback 

control systems. The approach determines whether a closed-loop system is stable or 

unstable, and it also points the way to improving both the transient and steady-state 

response of the system. The Nyquist plot also carries information about the values 

of roots of the closed loop characteristic equation, and thus about the transient 

response characteristics. The stability characteristics are usually specified by two 

values called gain margin and the phase margin.
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Chapter I

The exact relationship between the gain and phase margin and the transient response 

are different for different plants. Therefore, there is no guarantee that designing 

to a specified gain and phase margin will result in a good transient response.

The work done by Nyquist was extended by Black [3] and Bode [4]. The extension 

involved plotting the magnitude of the transfer function versus frequency on a 

logarithmic scale. Both Black and Bode realised that both the magnitude and the 

phase of the open-loop frequency response are needed to analyze the performance 

of the system, and that a major disadvantage in working with polar coordinates (i.e. 

the Nyquist plot) is that the curve changes its original shape when a simple 

modification such as a change in integral gain is made.

Another advance in controller design occurred in 1948 when Evans [5] presented his 

root-locus theory. This is an analytical graphical method for the choice of controller 

gains or the plant parameters for satisfactory plant behaviour. An important 

advantage of the root-locus method is that the roots of the characteristic equation of 

the system can be obtained directly, which results in a complete and accurate 

solution of the transient and steady-state response of the controlled variable. 

However, although the root-locus method can give a good indication of the type of 

transient response provided, it is not exact and always requires fine tuning on real 

applications. In the late fifties, control system scientists and engineers accordingly 

sought a different approach to control theory.

In this, differential equations replaced transfer functions for describing the dynamics 

of processes; stability was approached via the theory of Liapunov instead of the

3



Chapter 1

frequency-domain methods of Bode and Nyquist; and optimization of the system 

performance was studied by Pontrygin et al [6].

The classical ideas of Bode and Nyquist, and the design techniques based on them 

which were originally developed for the study of SISO systems, were generalised 

to deal with the multi-variable feedback control problem. The design of a succession 

of feedback loops one at a time using well established SISO feedback theory could 

not be used because the interactive effects between different loops can lead to 

instability in certain situations and may also cause a reduction of stability margins. 

Therefore, it was essential to design a multi-variable control systems in such a way 

as to deal with the interactive effects which would otherwise be prejudicial to system 

stability.

In the 1970’s, Rosenbrock [7][8][9] and McMorran [10] accordingly extended the 

frequency-domain ideas to multi-variable systems and developed the Inverse Nyquist 

Array, Whilst Macfarlane and Belletrutti [11] developed the multi-variable theory 

of characteristic Loci. There have been various modifications, extensions and 

possible applications of these methods (Cook [12], Mumo [13], Rosenbrock [14], 

and Yeung etal [15]). However, one disadvantage of these techniques is they rely 

heavily on the on the interpolation of graphs in the frequency domain, which can 

soon become very complex-even for experts in the use of these methods. The 

robustness of the resulting controllers is another problem with these techniques as 

they are generally un-robust because plant variation was not explicitly taken into 

account.

4



1.2 LINEAR CONTROL

i.........."... .........................

Feedback control is a method to force some physical process, or plant to conform 

to a desired behaviour. Through feedback, one can obtain the desired behaviour 

with only partial and imprecise knowledge of the plant. However, the complexity 

of most plants forces one to construct oversimplified and approximate models for 

the purpose of analysis and design of a feedback control system. One class of 

models for which both analysis and design are well understood is the class of linear 

time-invariant plant. Unfortunately, in some cases a linear time invariant description 

of a plants dynamics is inadequate. Hence there was a need to seek alternate 

methods for the design of controllers for systems with widely varying non-linear 

and/or time-varying parameter dependent dynamics.

1.3 NON-LINEAR CONTROL

Non-linear systems with either inherent nonlinear characteristics or non-linearities 

deliberately introduced into the system to improve their dynamic characteristics have 

found wide application in the most diverse fields of engineering. The principal task 

of nonlinear system analysis is to obtain a comprehensive picture of what happens 

in the system if the variables are allowed, or forced, to move far away from the 

operating points. This is called the Global behaviour. Local behaviour of the system

5



can in most cases be analyzed on a linearized model of the system. Therefore, the 

local behaviour can be investigated by linear methods that are based upon the 

powerful superposition and homogeneity principles. If linear methods are extended 

to the investigation of the global behaviour of a nonlinear system, the results can be 

erroneous both quantitatively and qualitatively since the nonlinear characteristics 

may be not be revealed by the linear methods. Therefore, there is a strong emphasis 

on the development of methods and techniques for the analysis and design of 

nonlinear systems.

The development of nonlinear methods faces real difficulties for various reasons. 

There is no universal mathematical method for the solution of nonlinear differential 

equations which are the mathematical models for nonlinear systems. The methods 

deal with specific classes of nonlinear equations and therefore have only limited 

applicability to system analysis. The classification of a given system and the choice 

of an appropriate method of analysis are not at all an easy task. Furthermore, even 

in simple nonlinear problems, there are numerous new phenomena qualitatively 

different from those expected in linear system behaviour, and it is impossible to 

encompass all these phenomena in a single and unique method of analysis. 

Although there is no universal approach-to the analysis of nonlinear systems, one 

can conclude that all the methods available fall under the category of stability 

analysis methods. Such as, the phase-space topological techniques,(i.e. stability 

analysis method, and the approximate methods of nonlinear analysis).

Unlike the situation for linear systems most analytical techniques for nonlinear 

systems are directed at trying to obtain solutions to specific questions, involving
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system stability, and may have limited or no use for answering other questions 

which might be of concern, such as the response to a particular form of input. In 

addition, in several methods assumptions are required to start the analysis and these 

are usually based on the anticipated behaviour of the system.

1.3.1 EARLY WORK IN NON-LINEAR CONTROL

Although many scientists and engineers who studied some forms of control systems 

in the nineteenth century, for example Maxwell and Airy, were aware that the 

systems were not linear, it was in most instances a common procedure to linearize 

the differential equations involved. The only serious attempts at trying to analyze 

nonlinear feedback systems prior to the 1940’s appear to be some varied and 

infrequent efforts to examine the behaviour of relay systems beginning with the 

work of Leaute in 1885 and ending with that of Hazen in 1934. Significant 

developments only started to take place in the early 1940’s using methods developed 

for second order nonlinear differential equations and slightly later in the decade 

using methods based on the pioneering frequency response work of Bode and 

Nyquist.

The Phase-Space, or more specifically the Phase-Plane, approach has been used for 

solving problems in mathematics and physics at least since Poincare. The approach 

gives both the local and the global behaviour of the nonlinear system and provides 

an exact topological account of all possible system motion under various operating
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conditions. It is convenient, however, only in the case of second-order equations, 

and for high-order cases the phase-space approach is cumbersome to use. It can be 

extended to the study of high-order differential equations in those cases where a 

reasonable approximation can be made to find an equivalent second-order equation. 

However, this may lead to either erroneous conclusions about the essential system 

behaviour, such as stability and instability, or various practical difficulties as time 

scaling.

The Stability Analysis of nonlinear systems, is heavily based on the work of 

Liapunov, this is a powerful approach to the qualitative study of the system global 

behaviour. By this approach, the global behaviour of the system is investigated 

utilizing the given form of the nonlinear differential equations but without explicit 

knowledge of their solutions. Stability is an inherent feature of wide classes of 

systems, thus system theory is largely devoted to the stability concept and related 

methods of analysis. Among the methods used for stability analysis and investigation 

of sustained nonlinear oscillations, sometimes called a limit cycle, is the describing 

function. The theoretical basis of the describing function analysis lies in the Van 

Derpol [16] method of slowly varying coefficients as well as in the methods of 

harmonic balance and equivalent linearization proposed by Krylov and Bogoliubov 

[17] for solving certain problems of nonlinear mechanics.

Numerous ideas connected with stability analysis were founded by Liapunov. 

Liapunov proposed two methods for stability analysis. The first method did not find 

wide application to stability problems, the second method of Liapunov offered much
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promise for further advance in stability theory of nonlinear systems. A significant 

problem in Liapunov stability theory for a wide class of nonlinear systems was 

proposed by and partially solved by Lur’e. Popov expressed a different form of 

solution to the Lur’e Problem known as absolute stability. The relationship between 

the Popov absolute stability criterion and Liapunov function was first established by 

Yakubovich, and later refined by Kalman and Meyer.

Stability analysis, however, does not constitute the complete picture. A satisfactory 

method for the design of nonlinear control systems is also required. It is evident 

therefore that the area of non-linear control systems design is a fruitful area for 

research. In this thesis genetic algorithms are proposed as a mean of providing a 

solution to designing non-linear control systems. It will be shown and illustrated 

by examples that the use of genetic algorithms is highly effective in designing a 

nonlinear control system such that a time-domain cost function involving 

performance and /or robustness can be optimised. It is believed that the use of 

evolutionary processes in the design of non-linear control systems as described in 

this thesis will constitutes a significant contribution to the design of non-linear 

control systems, with wider application than any other previous design method.

9



1.4 AN EVOLUTIONARY APPROACH TO CONTROL SYSTEM

DESIGN

Over the years, many methods have been developed for optimizing the design and 

operation of engineering systems. In general, optimization consists of searching the 

space of design parameters as a function of some performance index to determine 

where the performance index is maximised or minimised. Optimization has been 

studied for a great many years, both as an abstract mathematical problem and also 

from the view point of engineering design. A great many methods have evolved 

which are detailed in a sizeable literature with each method having its champions 

and detractors. Some methods, such as calculus-based gradient search or zero- 

finding procedures, converge nicely for their intended problem class, but one of the 

difficulties of these methods is that the results are best in the neighbourhood of the 

current point. In addition, calculus-based methods depend upon the existence of 

derivatives of the objective function. Even if numerical approximations of 

derivatives are considered, this is a severe shortcoming since many practical 

parameter spaces have little respect for the notion of derivative and smoothness this 

implies (Goldberg [18]). Enumerative schemes start looking at objective function 

values at every point in space one at a time. Such search techniques are not 

efficient and fail in many practical problems in which the search space is too large 

to search one at a time even if an enumerative scheme such as dynamic 

programming is employed. Random search algorithms are another search technique, 

but random walks and random schemes that search and save the best must also be 

discounted because of the efficiency requirement.

10
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A common feature of these methods is that they date from before the time of 

powerful computers. They have thus tended to be developed with low order 

problems in mind since the computational power to test them on high-dimensional 

problems was not available at their inception, clearly, there is a need for methods 

which are both global and efficient, and which are also more robust over the broad 

spectrum of the problems. In recent years, a new search technique called Genetic 

Algorithms (GAs for short) has accordingly been developed by Holland [19]. GAs 

are search algorithms based on the mechanics of natural selection and natural 

genetics, and starts with a population of structures that are coded into binary strings. 

These structures are evaluated within some environment and a measure of the fitness 

of a structure is defined. The fitness of each structure is calculated and a new 

population of structures is then obtained by a process of selection. Each structure 

is selected with a probability determined by its fitness, so that those best-fitted for 

the environment will survive and those not fitted will become extinct. The selected 

population of structures then undergoes the genetic operations of crossover and 

mutation, which provide a structured yet randomised information exchange among 

the structures. GAs are different from more normal optimization and search 

procedures in the following respects;

1. GAs work with a coding of the parameter set, not the parameters 

themselves.

2. GAs search from a population of points, not a single point.

11
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3. GAs use objective function information, not derivatives or other 

auxiliary knowledge.

4. GAs use probabilistic transition, not deterministic rules.

In the period of 1980-1987, Goldberg examined and demonstrated the power of GAs 

to solve a variety of problems such as computer aided pipeline operation [20 ]. The 

application of genetic algorithms to the self-learning of diagnostic rules for a pilot- 

scale mixing process was studied by Zhang and Roberts [21]. Indeed, despite the 

simplicity of their operators, genetic algorithms have quickly found near optimal 

solutions in a variety of problem domains including mathematical optimization 

(Dejong [22]), engineering optimization (Goldberg [19]). The demand for GAs with 

fast response time has led to the investigation of parallel implementation, and two 

level GAs were investigated by Grefenstette [23]. Furthermore, Roa [24], and 

Onoda and Hanawa [25], used GAs to find optimal locations of the actuators in 

large space structure.

In addition most control engineering problems can be considered as constrained 

optimization problems. In order to convert constrained problems to unconstrained 

problems different algorithms have been.-developed, such as external penalty 

function methods, moving parameter penalty function method, and multiplier 

methods. (Ariel [26], Luenberger [27], Polak [28], and Davison [29]). It is of 

considerable interest to find a reliable algorithm to minimize on objective function 

algorithms, the difficulty arises when the designer does not know how large to 

choose the penalty function weighting parameters so as to achieve a given degree

f  • •
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of accuracy in the solution of the problem. In general, standard penalty function 

algorithms require considerable manipulation of their penalty parameters in order 

to obtain a solution. However, Porter and Borairi [30] showed that constraints can 

be handled directly by GAs. Porter and Jones [31] used GAs to obtain the optimal 

PID controller gains. Also Mingwu and Zalzala presented a genetic-based 

approach to mobile robot motion planing with a distance-safety criterion [91]. 

Weller, Summers, and Thompson, investigated the use of genetic algorithms to 

evolve the optimum set of inputs for neural networks [36]. Porter, Mohamed, and 

Jones [33] demonstrated that GAs provide a much simpler approach to the tuning 

of multi-variable controllers. All of these techniques represents an evolutionary 

approach to control system design using genetic algorithms to effect the design .

1.5 OBJECTIVE OF THE THESIS

This thesis develops the concept of using GAs as a design technique for the design 

of non-linear control systems. In this context the non-linear control system design 

problem will be sub-divided into the sub-problems of designing controllers for:

(i) non-linear controllers for linear plants-,

(ii) non-linear controllers for non-linear plants-,

(iii) linear controllers for non-linear plants.

The efficient design of non-linear control systems has long eluded the control 

engineer, because of the lack of tools to solve the design problem. Indeed, it is 

considered that if a design route is available it is unlikely to be via a mathematical

13
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approach. This has inspired the concept of investigating whether Genetic Algorithms 

(GAs) can be used to obtain a solution to the non-linear control system design 

problem. This new approach is made possible by the advent of powerful computing 

facilities and may revolutionise the way control systems are designed in the future.

1.6 OUTLINE OF THE THESIS

This thesis consists of five major sections, which have been structured so as that 

three non-linear control system cases are considered and design techniques for each 

case are developed, the sections are:

Section i) an introduction to control system theory and genetic algorithms; 

Section ii) genetic design of non-linear PID controllers for linear plants;

Section iii) genetic design of non-linear controllers for non-linear plants;

Section iv) genetic design of a linear robust PID controllers for non-linear plants; 

Section v) conclusions and recommendations.

SECTION I INTRODUCTION

Chapter 1: Introduces the control problem, provides some historical background 

to control systems and gives a brief survey of engineering optimization, and 

provides an outline of the objectives of the thesis.

14
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Chapter 2 describes the genetic algorithms, what they are ,and where they come 

from, how they work and describes the way the GAs can be applied in the field of 

control systems design.

SECTION II DESIGN OF NON-LINEAR CONTROLLERS 

FOR LINEAR PLANTS

Chapter 3 introduces the concept of a dual-zone PID controllers, it also shows 

how GAs can be applied to the design of high performance dual-zone PID 

controllers. Furthermore it demonstrates the ease of application of the GA, by 

genetically designing linear and non-linear PID controllers for linear plants using 

straight line interpolation methods.

Chapter 4 shows how GAs can be applied to the design of high performance non

linear PID controllers using a polynomial interpolation function.

Chapter 5 shows how GAs can be used to design high performance fuzzy 

controllers. In this case the fuzzy logic is used to map the non- linear gain 

functions of an incremental dual-zoned PID controller.

Chapter 6 shows GAs can be used to design high performance neural controllers. 

In this case three neural networks are used to map the non-linear gain functions of 

an incremental dual-zoned PID controller.
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SECTION III DESIGN OF NON-LINEAR CONTROLLERS 

FOR NON-LINEAR PLANTS

Chapter 7 the concept of non-linear controllers for non-linear plants is 

introduced and explained. In this case a design method for high performance 

controllers using gain-scheduled PID control is introduced, and the Lagrangian 

polynomial interpolation is used to map the gains of the gain-scheduled controllers.

SECTION TV DESIGN OF LINEAR CONTROLLERS FOR 

NON-LINEAR PLANTS

Chapter 8 in this chapter the concepts of using genetic algorithms to design linear 

PID controllers for non-linear plants is introduced. In this case the aim is to design 

a linear controller that would guarantee good performance through out the operating 

envelope of the non-linear plant.

SECTION V CONCLUSIONS & RECOMMENDATIONS

Chapter 9 in this section the use of genetic algorithms for non-linear control systems 

design are reviewed and discussed. The important results of the thesis are 

summarised, and recommendations for future work in this field are suggested.
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Chapter 2

GENETIC ALGORITHMS

2.1 INTRODUCTION

The genetic algorithm (GA), was first suggested by John Holland [19] in his book 

Adaptation in Natural and Artificial Systems. The goals of his research have been 

twofold: (1) to abstract and rigorously explain the adaptive processes of natural 

systems, and (2) to design artificial systems software that retains the important 

mechanisms of natural systems. This approach has led to important discoveries in 

both natural and artificial systems science.

Over the last 20 years, the GA’s have been used to solve a wide range of search, 

optimisation, and machine learning problems [18]. P J Angeline, Sanders, and 

Pollac [35], used GAs to constructs recurrent neural networks. Weller [36], used 

GAs to evolve an optimum input set for a predictive neural network. Kelemen [37] 

produced a design for a robot controller based on machine learning control system 

using GAs. Jones [38 ] produced a genetic tuning algorithm for PID controllers. 

Jones and Ajlouni [39] [40] produced a genetic design method for gain-scheduled 

controllers for non-linear plants. Kim [41], designed fuzzy Neural controllers using 

GAs. Jones and Olivera [38], produced an auto-tuner for PID controllers. Gensing 

[43], produced a penalty algorithm for solving general constrained parameter 

optimisation problems. Jones [45], produced a genetic algorithm for tuning neural 

non-linear PID controllers, and numerous others [46 - 59], all used GAs in control 

systems design.
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As the name implies genetic algorithms attempt to solve problems in a fashion 

similar to the way in which biological evolutionary process seem to operate. 

Random search algorithms have achieved increasing popularity as researchers have 

recognised the shortcoming of calculus-based and enumerative schemes. Yet, 

random walks and random schemes that search and save the best have been 

discounted because of the efficiency requirement. Random searches in the long run, 

can be expected to do no better than numerative schemes. Even though random 

search methods have been discounted, they must be carefully separated from 

randomised techniques. The GA is an example of a search procedure that uses 

random choice as a tool to guide a highly exploitative search through a coding of 

parameter space. At this stage it is useful to ask "How are GAs diferent from 

traditional methods?", in order for GAs to surpass their more traditional cousins, 

GAs must differ in some very fundamental ways. GAs are different from more 

normal optimization and search procedures in four ways:

i) GAs work with coding of the parameter sets, not the parameters

themselves;

ii) GAs search from a population of points, not a single point;

iii) GAs use pay-off (objective function) information, not derivatives or 

other auxiliary knowledge;

iv) GAs use probabilistic transition rules, not deterministic rules.
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The GAs basically maintain a population of knowledge structures that represents 

candidate solutions for the problem. The population evolves over time through 

competition (survival of the fittest) and controlled variation (recombination and 

mutation). In this way the best elements of the current population are used to form 

the new population. If this is done correctly then the new population will, on 

average be better than the old population.

2.2 BASIC IDEA OF GAs

GAs are a search algorithms based on the mechanics of natural selection and natural 

genetics. They combine survival of the fittest among string structure with a 

structured yet randomized information exchange to form a search algorithm. The 

algorithms starts with a population of structures that has been coded into binary 

strings. These strings are evaluated within some environment and a measure of the 

fitness of a string is defined, then a new population of strings is obtained by a 

process of selection and replication.

Genetic algorithms involve three operations by which to abstract and rigorously 

represent the adaptive processes of natural systems:

(I) Reproduction operation,

(II) Crossover operation,

(III) Mutation operation.
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Reproduction is a process where an old string is carried through into a new 

population depending on the performance index values. In this process, the fitness 

values are calculated for each candidate string using a fitness function, which 

depends on a goal for optimization problems. According to the fitness values, string 

with larger fitness values give rise to a larger number of copies in the next 

generation. Following reproduction, the strings are randomly mated using the 

crossover operation. Each pair of candidate strings will undergo crossover with the 

probability pcross(Pc). This operation provides randomised information exchange 

among the strings. Mutation is simply an occasional random alteration of the value 

of a string position (based on the probability of mutation). In a binary code, this 

involves changing a 1 to 0 and vice versa. The mutation process helps to escape 

local minima in the search space. The sequence of successive stages of genetic 

algorithms is shown in figure(2.1). In this chapter a full description of how such 

algorithms can be used to design digital PID controllers is presented.
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Initialization

T

Figure (2.1) sequence of genetic algorithms.

2.3 INITIALIZATION

Genetic algorithms require the natural parameter set of the optimization problem to 

be coded as a string of binary digits. Thus, in the genetic design of digital PID 

controllers, each element of the set (Kp, Kp Kd) of the controller gains are 

represented by a string of binary digits. Therefore, if the sub-string length is equal 

to an integer L, then each of the tuning parameters is in the set (Kp, Ki5 Kd) E 

[0,2L]. However, this apparent limitation can be circumvented by mapping the 

decoded unsigned integer linearly from [0,2L] to a specified interval [PARmi„, 

PAR^J where PAR is any element of the tuning parameters in the set (Kp, Ki( Kd). 

In this way,
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the range and precision of the decision variables can be controlled. It should be 

realised that each encoded parameter may have its own-string length, and its own 

maximum and minimum values. Furthermore, the scaling factor can be calculated 

as

scale ( i )
2L- l

(i= l,2 ,....j) , 2.1

where j is the number of variables to be optimized.

i
X I X X X

. Par. 

.range/ 4 .

par m m .

figure(2.2) Typical string representation.

Par max.

Random initialisation is the most commonly used approach to form the initial 

population(Goldberg [19]). This approach requires the least knowledge acquisition 

effort and provides a lot of diversity for GAs to work with. The process of 

interview [19] is introduced to make sure the randomly generated variables do not 

violate any constraints on the function to be optimized. By using the process of 

interview, there will be more "fit" strings in the initial population in comparison 

with the case of generating initial population without the process of interview.
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It is important to note that relaxing maximum and minimum values of the variables 

without the process of interview may result in an initial population in which some, 

or even all, candidate strings will violate the constraints on the objective function. 

On the other hand, considering too small a variable space interval may confine the 

solution to an undesirable local minimum.

2.4 Rjy*RODUCTION

Reproduction is a process in which individual strings are copied according to their 

objective function values, /  (fitness function). Intuitively, one can think of the 

function /  as some measure of profit, utility, or goodness that we want to 

maximize. Copying strings according to their fitness values means that strings with 

higher value have higher probability of contributing one or more offspring in the 

next generation. This operator, of course, is an artificial version of natural 

selection, a Darwinian survival of the fittest among string creatures. In natural 

populations fitness is determined by a creatures ability to survive predators, 

pestilence, and the other obstacles to adulthood and subsequent reproduction. The 

reproduction operator may be implemented in algorithmic form in a number of 

ways. One method is to create a biased roulette wheel where each current string in 

the population has a roulette wheel slot sized in proportion to its fitness. Suppose 

the sample of four strings in table(2.1) has objective fitness function values f(the 

values in the table are chosen randomly). Summing the fitness over all four
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strings, we obtain a total of 1170. The percentage of population total fitness is also 

shown in the table. To reproduce one simply spin the weighted roulette wheel thus 

defined four times.

NO String Fitness % of Total

1 01101 400 20

2 11000 100 5

3 01000 500 25

4 10011 1000 50

Total 2000 100
able (2.1) Sample Problem String and Fitness Values

For the example problem, string number 1 has a fitness value of 400, which 

represents 20 percent of the total fitness. As a result, string 1 is given 20 percent 

of the biased roulette wheel, and each spin turns up string 1 with probability 0.20. 

Each time one requires another offspring, a simple spin of the weighted roulette 

wheel yields the reproduction candidate. In this way, more highly fit strings have 

a higher number of offspring in the succeeding generation. Once the string has been 

selected for reproduction it is entered into a mating pool, a tentative new population, 

for further genetic operator action. From the above it can be seen that the 

reproduction process comprises of a number of steps. The first being the testing of 

each parameter against the fitness function, so as to allocate a fitness against the 

parameter. The second is the mapping of the objective function to the fitness 

function.

24



Chapter 2

2.4.1 FITNESS FUNCTION

After the initialisation of the elements of the tuning parameters, the objective 

function is introduced and the value of the objective function is calculated using 

decoded values of the parameters in each string. Thus, for example if minimum 

ISE (integral square of the error) is regarded as the ultimate design requirement, 

GAs can be readily used to select the set { Kp, Kj, K,, } for tuning parameters such 

that the generalised ISE is minimised. This performance index is computed by 

subjecting the plant concerned to a set-point change. In each case, the function

J*n

I S E = Y ^ e 2j 2.10
j =i

is evaluated, where 

ej=v -yj

and ej e 9f , is the error signal, yj e 9? ,is the output signal, T is sampling time,

and N - — x

where r  is an appropriately chosen settling time.
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This criteria requires that the ISE of the dynamic response be minimum, i.e. the 

area between the integral of the response curve and the set-point be a minimum. The 

ISE is only one criterion IAE ( Integral Absolute Error) or ITAE (Integral Time 

Absolute Error) or any other could equally be used. Indeed, actuator limits, or rate 

limits can also be easily included in the cost function.

y(t)

y*

t

Figure (2.3) Integral of Square of error criteria.

2 .4 .2  M A P P IN G  O B J E C T IV E  F U N C T IO N  T O  F IT N E S S  F U N C T IO N

In general a genetic algorithm maximises its cost function. However in designing 

digital P1D controllers (as in many other optimization problems) the objective is 

more naturally stated as the minimization of some cost function, g(x), rather than
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it’s maximization. It is therefore often necessary to map the underlying natural 

objective function to a fitness function through one or more mapping. In normal 

operations, to transform a maximization problem to a minimization problem the 

objective function can simply be multiplied by a minus one. However, this 

operation alone is insufficient because the objective function is not guaranteed to be 

non-negative in all instances. In the case of GAs, the most common objective 

function-to-fitness transformation is therefore of the form

fitness(x) = W ^ -g fx )  when g(x) < Wmax 2.12

fitness(x) = 0 when g ix j^ W ^

where is design parameter. There are a variety of ways to choose the

coefficient Wmi . may be taken as an input coefficient, as the largest g(x) 

value observed so far, as the largest g(x) value in the current population, or the 

largest of the last k generation. For the purpose of this thesis there are two fitness 

functions available, one far more selective than the other, and is only available after 

a set number of generations within the GAs (i.e. when the change fitness variable 

is set to one ). Otherwise the less selective function is used to allocate chromosome 

fitness. The functions are designed for cost function minimisation and allocation of 

fitness to scaled cost as yielded by the formula given by

scaled chrome cost = 1 + chrome cost - population minimum cost 2.13
population max cost - population min cost
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The above scaled cost is used by the least selective fitness function. The mapping 

of the least selective fitness function is as shown by figure (2.4), it can be seen that 

each member has a finite chance of fitness.

The most selective fitness function uses the following scaled cost:

most selective chrome cost =  3.6125 - 2.375 X scaled chrome cost 2.14

The mapping of the most selective fitness function is shown in figure(2.4), it can 

be seen that only the members close to the optimal solution has a chance of being 

selected. Hence, this fitness function can only be used after the GA has been 

running for a few generations, which gives the GA a chance to reject bad members 

before

the most selective function is applied.

Fitness

t
Population min

t
population max

Scaled Cost

Figure 2.4 Least selective Fitness Function
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Fitness

Scaled Cost

Figure 2.5 Most Selective Fitness Function

2 .4 .3  C O N S T R A IN T S

Many practical problems contain one or more constraints that must also be satisfied. 

Constraints are usually classified as equality or inequality relations. Inequality 

constraints may be subsumed into a system model. A GA generates a sequence of 

parameters to be tested using the system model, and the constraints. It runs the 

model, evaluates the fitness function, and checks to see if any constraints are 

violated. If not, the parameter set is assigned the fitness value corresponding to its 

evaluation during simulation. If constraints are violated, the solution is infeasible 

and thus has no fitness. This procedure is fine except that many practical problems 

are highly constrained; finding a feasible point is almost as difficult as finding the 

best. As a result, it is usual to get some information out about some infeasible 

solutions, per results by degrading their fitness ranking in relation to the degree of
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constraint violation. This is what is done in a penalty method. For example if the 

minimum ISE for a controller being designed is higher than the maximum ISE value 

set for this design, this controller will be assigned a low cost function.

2.4.4 SELECTION

After the fitness of each candidate string has been calculated, a new population of 

strings with the same size as the current population is produced by the process of 

selection. In this process, each string is selected with a probability determined by 

its fitness, so that those best-fitted for the environment will survive and those not 

fitted will become extinct. The probability of a string being selected is

P( i ) = F( 1 ) 2.15<7
E  n j  )
j ->

where P(i) is the probability that the ith candidate string will be selected, F(i), is the 

fitness of the ith string, and q is the total number of strings in the current 

population. There may exist situations in which the best set of parameters in the 

current generation is inferior to the best set in the previous generation. This could
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be caused by crossover disruptions. Therefore, to preserve the best discovered set 

of tuning parameters, it is proposed to replace the worst fitted candidate string in 

the current generation by the best found so far.

2.5 CROSSOVER

Each pair of the selected strings is subjected to the probability of the crossover 

operation. A simple crossover may proceed in two steps. First, members of the 

newly reproduced strings in the mating pool are mated at random. Second each pair 

of strings undergoes crossing over as follows: an integer position K along the string 

is selected uniformly at random between 1 and the string length less than one [1, 

L-l]. Two new strings are created by swapping all characters between position 

(k+1) and 1 inclusively. For example, consider strings Aj and A2 from table (2.1) 

shown earlier:

A, = 0110 | 101 

A2 = 1100 | 001

Suppose in choosing a random number between 1 and 4, a (k = 4) can be obtained 

(as indicated by the separator symbol | ). The resulting crossover yields two new 

strings where the prime(’) means the strings are part of the new generation:

A’, = 0110001 

A’2 = 1100101
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2.6 MUTATION

In a simple GA, mutation is the occasional (with small probability) random 

alteration of the value of a string position. In the binary coding of the example 

given above, this simply means changing a 1 to a 0 and vice versa. By itself, 

mutation is a random walk through the string space. When used sparingly with 

reproduction and crossover, it is an insurance policy against premature loss of 

important notations. Mutation operators plays a secondary role in the simple GA, 

to obtain good results in a genetic algorithm the frequency of mutation is in the 

order of one mutation per thousand bit.

2.7 EVOLUTIONARY ALGORITHMS

The use of evolutionary algorithms (EA) has increased considerably in recent years 

largely because computer science has encouraged researchers to study the potential 

and ability of EA to solve real problems, and to assess their ability to 

produce effective results.

Recent results in simulated evolutions [92] [93] [94] have demonstrated that search 

processes based on natural evolution are robust and can address difficult 

optimization problems across a variety of domains. Simulated evolution is based on 

the collective learning processes within a population of individuals, each of which 

represents a search point in the space of possible solutions to a given problem. 

There are currently three main lines of research in simulated evolution: genetic 

algorithms (GA), evolution strategies (ES), and evolutionary Programming (EP)[95].
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In each of these methods, a population of individuals is initialized, and evolves 

toward successively better regions of the search space by means of a stochastic 

process of selection, mutation and if appropriate crossover. The methods differ with 

respect to the specific representation, mutation operations and selection procedures.

2.8 WHY USE GAs FOR EVOLUTIONARY DESIGN 

One of the primary reasons to use GAs is that they are broadly competent 

algorithms [19] [95]. Empirical work has long suggested this [95], it appears that 

GAs can solve problems that have many difficult-to-find optima. Because GAs use 

very little problem-specific information, they are remarkably easy to connect to 

existent application code. Moreover, because of a GAs noise tolerance, discrete- 

event simulations and other noisy evaluators can be used directly as long as 

population sizing is performed to account for the stochastic variations in the 

evaluation process [95]. With practical successes growing in number and the 

application results paving the way for practical, will increasingly be used by 

industrialist to solve their problems. With increasing number of practical 

applications in existence, the future of GAs seems fairly bright. By having a look 

at the applications it reveals a surprising breadth of application area as well as the 

use of different coding, operators, and objective functions. On the other hand, the 

applications are surprisingly similar in their underlying motivation and approach. 

Many of the applications demonstrated a fairly rigid separation between model and
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searcher, and this is likely to be the case in any other application as well. Also 

many of the applications had useful heuristics and local search techniques and found 

it was useful to bring those on board to improve convergence times. Perhaps most 

importantly, each of the applications come to GAs for performance. It is becoming 

clear that GAs and EAs are changing the vision of what is possible to design and 

operate.

Finally it is evident that the evolutionary algorithms are becoming even more 

powerful design tools. It is believed that in the future all Computer Aided Control 

System Design systems will incorporate such evolutionary algorithms in their design 

tools. With this tool the emphasis of the design changes to selecting the most 

appropriate cost function to solve the control problem at hand.
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Chapter 3
GENETIC DESIGN OF ZONED NON-LINEAR 
FID CONTROLLERS FOR LINEAR PLANTS

3.1 INTRODUCTION

The potential of computers to address the problem of intelligent control was realised 

as early as 1958, when Kalman [44] examined the problem of building a machine 

which adjusts itself automatically to control an arbitrary dynamical system. Whilst 

it must be acknowledged that in the intervening years computer technology has made 

the implementation easier and more efficient, it must also be acknowledged that this 

technology has not made the practice of control any easier. Recently, considerable 

effort has been deployed in the field of intelligent control systems to develop 

techniques for designing better and more robust controllers, and to achieve that, 

different algorithms have been used, ( GA’s, fuzzy, and neural techniques [41 - 

50]). The genetic tuners for digital PID controllers developed by Porter and Jones 

[42] offer an alternative solution to the tuning problem, which can overcome many 

of the limitations of other techniques. Controller tuning is a parameter optimisation 

problem subject to plant-dependent constraints, and hence, amenable to the genetic 

algorithm approach, since the genetic algorithm approach can be seen as a natural 

evolutionary tuning mechanism which has all the features of a good adaptive 

controller. The genetic approach to fixed gain PID controller tuning has been
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previously presented [31][33] for both single-input/single-output (SISO) plants, and 

linear multi-input/multi-output (MIMO) plants. However, it is well-known that if 

non-linear gains are used in the PID controller then superior performance can be 

achieved. The major problem with such a technique is how to define and tune the 

non-linear gain functions. The problem of defining the function can be solved in a 

number of ways by using peicewise and homogeneous interpolation, fuzzy logic, or 

neural networks. In this chapter interpolation is proposed as the means of defining 

the non-linear gain functions.

Optimal tuning of the functions can also be achieved using GA’s. Indeed it is 

shown that the genetic algorithms greatly facilitates the design of such control 

systems. The enhanced performance obtained from interpolated non-linear PID 

controllers is illustrated by contrasting the performance of GA optimised controller 

with that of GA optimised linear PID controller when controlling the same plant 

through the same task.
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3.2 SYNTHESIS

The linear SISO plants under consideration are governed on the continuous time set 

X = [0,oo) by state and output equation of respective forms

i (  t ) =Ax( t ) +bu ( t ) 3.1

and

y ( 0 = « ( 0  3-2

where

x(t) e 9i" is the state vector,

y(t) e 9? is the scalar output from the plant,

u(t) e 9? is the scalar input to the plant,

A e 91nxn is the plant matrix, 

b e Si“ 1 is the input matrix, 

c e 5Rlxn is the output matrix.

It is assumed that the plant is functionally controllable, so that none of the 

transmission zeros of the plant lies at the origin in the complex plane and therefore 

that any and all solutions for s in
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s I n - A ,  - b  
c ,  0 0 3 . 3

are non-zero [Rosenbrock (1974)]. This assumption ensures that rank M = n +  1 

[Porter and Power (1970)], where M is the system matrix given by

M
A ,  b

C, 0
3 . 4

In order to design non-linear PID controllers for SISO linear plants governed by 

equations (3.1) and (3.2), it is convenient to consider the behaviour of such plants 

on the discrete-time set Tt = {0, T, 2T,....}.

The behaviour is governed by state and output equations of the respective forms 

[Kwakemaak and Sivan (1972)]

Xk*i=&k+xilik 3-5
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and

y k =rxk 3.6

where

®=eAT 3.7

T

^ j e ^ b d r  3.8
o

and

T = c 3.9

In these equations, xkX e SR", ukT eSR, ykT e 3t, $  e 9fnxn, *  e SRnxl, T e SRlx, and T 

e SR+ is the sampling period.

The system to be controlled under the action of error-actuated PID controllers is 

governed on the discrete-time set Tx =  {0,T,2T,...,kT,..} by control law equations 

of the form

« * = ^ ( V * +7V * +A:d(e *-e *-i)) 3.10
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where e,. is the tracking error and is defined by

e k=vk~yk

and zk is the integral error, and given by

3.11

 ̂k +1  ̂it + ̂  k 3.12

where

vk is the set-point command input,

Kp is the value of the proportional gain,

Kj is the value of the integral gain,

Kd is the value of the derivative gain, 

zk is the integral state,

T is sampling time.

This structure for the PID controller is different from the conventional PID 

controller in two respect:

i) the sampling time "T” is included in the controller equations so that the 

controller can be "de-tuned " to ensure close loop stability [42];
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ii) the sampling time "T ” has been removed from the derivative action to reflect the 

fact that the inclusion o f the sampling time in the derivative gain as K JT  could 

result in the derivative action dominating the controller response in the limits 

as T —> 0; {KJT}— > oo.

The resulting controller has not been proposed before, but it is believed that this 

controller structure is more appropriate for analysing PID controllers.

It is evident that if equations (3.10), is incremented back in time by one sample, the 

equation become

“ i t - 1 =T( kpek- i  +Tkizk- l  +M  ekJ«k-i) ) 3.13

It therefore follows from equation (3.10), and (3.13) that the incremental controller 

can be described by equation of the form

+Tkie k-i+kd(e k~2e kj e  k_2) )  3.14
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However it is more convenient to describe equation (3.14) as 

Auk =7( kpAe k +Tki e k +kdt fe  k) 3.15

where

Auk is the incremental change in input,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error.

It can be seen from the comparison of equations (3.14), and (3.15) that the 

incremental change in input can be expressed as

A uk =uk-ukA 3.16

and the first order backward difference in error can be written as

^  e k< e k-e k_x) 3.17

It follows that the second order backward difference of error can be expressed as 

^ k = ( e k -2ek^ e k.2) 3.18

It is evident by looking at equations (3.15),(3.17), and (3.18) that they can be used 

at each sampling instant to compute the next value of the controller output.

It is interesting to consider the behaviour of the controller to a set point change from
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an initially quiescent conditions (i.e. y0 =  x0 = e., =  e.2 = 0, and the set-point 

change is v).

However, if the behaviour of the controller is considered at the initial sampling 

instant following a set-point change, then from equation (3.11) the error equation 

of an initially plant condition is given by

e 0=v-yQ

and by substituting in the above equation for y0 the above equation becomes

e 0=v 3.19

the first order backward difference in error given by equation (3.17) at the initial 

sampling instant can be represented by

By back substituting for eo, and e.,, in the above equation it follows that 

Ae0=v-0
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which can be written as

Ae0=v 3.20

More over the second order backward difference of error given by equation (3.18) 

at the initial sampling instant can be represented as

A2e 0 =e0 - 2 e  _x +e _2

By back substituting for e0, e_!, and e.2 from equations (3.19, and 3.20)in the above 

equation, it follows that

A2e o =v 3.21

However the input to the system given by equation (3.14) assuming initial 

quiescent conditions can be described by

« o =u  - l  + T (  k p t e  o + T k i e o + k d k 2e o )

and

u_! = 0.
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then

m0 =0 +7( kpbe 0 +7fc, e 0 +kd A2e 0)

By back substituting for the parameters (Ae0, e0, and A2e0), as given by equations 

(3.19, 3.20, and 3.21), the above equation can be represented as

u0 =Tkpv +T2k i v +Tkdv

If the controller tuning parameter T is chosen to be very small (which corresponds 

to fast sampling) then the above equation can be written as

uo=Tv (k p+kd) +0(T2) 3.22

Furthermore the change in input to the system given by equation (3.15) assuming 

initial quiescent conditions can be described by

Am0 =T( kp Ae 0 +Tki e 0 +fcdA2e 0)

By back substituting for the parameters (Ae0, e0, and A2e0), as given by equations
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(3.19, 3.20, and 3.21), the above equation can be represented as

Auq =Tkpv +T2ki v +Tkdv

and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

Au0=Tv(kp+k d) +0(T2) 3.23

This equation clearly demonstrate that the initial change in controller output 

following a set-point change is a function of the proportional ,and derivative gain 

functions, and the set point v.

If the system behaviour is now considered at the first sampling instant then the 

control equation given by equation (3.5) can be described as

r p i r o + f M o
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and since the values of Xq = 0, then the above equation can be written as

By substituting in the above equation the value of 1% from equation (3.22), the above 

equation can be written as

x t =T ' ¥ v ( k p +kd) 3.24

Moreover the output equation given by equation (3.6), at the first sampling instant 

can be written as

y i =cx 1

Hence, by substituting in the above equation the value of x4 from equation (3.23), 

then the above equation can be written as

y ^ T c V v ( k p *kd) 3.25

Moreover the error given by equation (3.11) at the first sampling instant is given 

by

e 1=v-y l
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By back substituting in the above equation the of yt from equation (3.24), the above 

equation can be written as

e l =v - T  c ' ¥ v ( k p +kd) 3.26

Moreover the first order backward difference in error at the first sampling instant 

is given by

&  i=e1~e0

By back substituting in the above equation the values of e,, and e0 from equations 

(3.26, 3.19), the above equation can be written as

Aet =v-T c ' ¥ v ( k p +kd) -v

Moreover it is evident that the above equation now becomes

Ae1 = - T  c }¥ v ( k p +kd) 3.27

Moreover it is evident that the second order backward difference in error given by 

equation (3.18), at the first sampling instant would be

A2e 1=e1-2 e0+e A
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Hence, by back substituting in the above equation the values of ej, and e0, from 

equations (3.26, 3.19), the above equation can be written as

A2e j =v - T  c T  v ( kp +kd) -2v +0

given that e.t = 0, the above equation now becomes

A2e j = -v - T  c xS v ( k p +kd) 3.28

However, it is evident that the control input to the system at the first sampling 

instant can be found by

Mi =m0 +T( kpAe j +Tkt e x +kdA2e ,)

By back substituting in the above equation the values for (u0, Ae^ eu and A ^ ), 

from equations (3.22, 3.27, 3.26, and 3.28), the above equation can be written as

m, =Tv ( kp +kd) +T2 kp( - cHv(kp +kd) ) +T2kt ( v - T c V v { k p +kd) ) 

+Tkd( - v - T c ’Fv(fc/ y )
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Moreover it can be seen that the above equation can be written as

u j =Tv( kp +kd) +Tvkd+T2 fcp( - c T v ( ^  +ké) ) + 7 % ( v - T  c x¥ v ( k p +kd) )

+T2 kd( -cV v (kp+kd))

and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

u , . T v ( k p *kd) -Tvkd+0(T*) +0(T3)

Moreover it can be seen that the above equation can be written as

u l =Tvkp +0( T 2) 3.29

It can also be seen that the change in the control input at the first sampling instant, 

as given by equation 3.15 can be expressed as

âu l =T( k pàe Y +Tki e j +kd A2e t )
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by back substituting in the above equation the value of Ael5 e^ and A2e,, from 

equations (3.27, 3.26, and 3.28), the above equation can be written as

A«! =T2 kp{ -Tbv ( kp +kd) ) +T2ki ( v - T ^ v ( k p +kd) ) +Tkd( -v -T Ibv ( kp +kd) )

and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

Au^-Tvk d+0 ( T 2) 3.30

This equation clearly shows that the first change in controller output following a set- 

point change is a function of the derivative gain function.

If the behaviour of the system is now considered at the second sampling instant then 

the control equations can be as

x 2=<bx 1+xf!ul
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By substituting for xlt and ub as given by equations (3.24, and 3.29), the above 

equation becomes

x 2=T&E>{kp+kd) + r  Wkp 3.31

The out-put equation of the controller at the second sampling instant is given by

y 2=cx2

By substituting the value of x2, from equation (3.31), the above equation becomes

y 2=T c m > ( k p+kd) +T c 'B ’fcp 3.32

Hence, it is evident that the tracking error given by equation (3.11), at the second 

sampling instant is given by

e 2=v-y2
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By substituting in the above equation for y2, from equation (3.32), the above 

equation becomes

e ^ v - T  c { m > { k p^kd) + ^ k p) 3.33

Also, the first order backward difference in error at the second sampling instant can 

be given by

b e 2 = e 2- e x

By substituting in the above equation for e2, and from equations (3.33, and 

3.26), the above equation becomes

t e 2= ( v - T c { W ( k p+kd) + ' m k p) ) - { v - T c ' B > ( k p+k4) )

Therefore it is evident that the above equation can be written as

&e2=Tc{-VB>{kp +kd)-'B>kp+'Br{k,+ki ) ) )  3.34

Further more it can be seen that the second order backward difference of error at 

the second sampling instant would be

&2e 2=e2- 2 e 1+e0
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By back substituting in the above equation for (e2, eb and e0), form equations 

(3.33, 3.26, and 3.19), the above equation can be written as

A2e 2 =v - T  c ( ( kp +kd) kp) -2 ( V -T  c W ( kp +kd) ) +v

Therefore it is evident that the above equation can be written as

c { - m > ( k p+kd) - y&kp+2y& ( k p +kd) )  3.35

However, it is evident that the control input to the system from equation (3.14), at 

the second sampling time can be written as

m2 =m ! +T( kpt e  2 +Tkt e 2 +kdt f e  2)

By back substituting in the above equation for Uj from equation (3.29), the above 

equation can be written as

u 2 =Tvkp +T( kphe 2 +Tki e 2 +kd A2e 2)
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By back substituting in the above equation for (Ae2, e2, and A2e2), from equations 

(3.34, 3.33, and 3.35), the above equation can be written as

u 2=Tvkp+T2k p c(<m>(kp+kd) - W c p+'B>(kp+k4) )  +T2k t c (v

- T c ( m > { k p+k d) +m p) ) + T 2k d C( (  - < r o +2 *&)(*,+*<) - m p)

and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

u2=Tvkp +0(T2+T3) 3.36

Also it is evident that the change in the input to the controller given by equation 

(3.15), at the second sampling instant is given by

Au2 =T( kphe 2 +Tk{ e 2 +kd A2e 2)

By back substituting for the parameters (Ae2, e2, and A2e2), as given by equations 

(3.34, 3.33, and 3.35), the above equation can be represented as

Au2 =T2kp c ( ( T O  +¥Tv) ( kp +kd) p) +T2k i ( v - ( T c < m ( k p +kd)

+T ^ k  p) +T 2k d c ( ( +2 ̂  ) ( kp +kd) - W k  p)
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and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

Au2=T2 c a m > ^ ) ( k p2*kpk d) ^ k p2) +T2 v k t

T2 c ( ( - < M k d+2'&kd) ( k p+kd) - ' & k pk d) + 0 ( T 2) 3.37

This equation clearly demonstrate that the change in controller output at the second 

sampling time is of the order T2, as apposed to that at the initial and first which 

were of order T. It can also be seen that it is a function of proportional, integral, 

and derivative gain functions.

However if the behaviour of the system is now considered at the third sampling 

instant then the control equations can be as

x 3=<X>A;2 + 'i’ u 2
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By substituting in the above equation for x2, from equation (3.31) ,the above 

equation can be written as

x 3= T ^ ( k p+k d) + m p) +n u 2

By back substituting in the above equation for u2 , from equation (3.36), the above 

equation can be written as

x,=T(.<S('iv(kp*kJ)+ '!v k p) *Hvkp) 3.38

Also the out-put equation of the controller at the third sampling instant is as

y 3=cx 3

By substituting in the above equation for x3, from equation (3.38), the above 

equation then becomes

y , - T ( c 9 (  V v ( k p *kd)  + V v k p) + V v k p) 3.39
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Hence, it is evident that the tracking error equation (3.11), at the third sampling 

instant is given by

«3=v-;y3

and by substituting in the above equation for y3, from equation (3.39), the above 

equation can be written as

e 3= v - T ( c ^ ( k p+k d) + * * , ) + * * , )

Moreover it is evident that the above equation can be written as

e 3=v-T c ^ v k ^ v k p )  3.40

Also the first order backward deference in error at the third sampling instant can be 

written as

t e 3=e3- e 2

By substituting in the above equation for e3 , and e2 from equations (3.40, and 

3.33), the above equation can be written as

t e 3= (v -T  c(<P¥v(kp+kd) -<SWvkp-'l’ vk p) ) -

( v - r c ( « » ( J t , ^ + T i * , ) )
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Therefore it is evident that the above equation can be written as

As3 =T c ( -O'¥vkd-2Wvkp) 3.41

And the second order backward deference in error at the third sampling instant can 

be written as

A2e 3 =e 3 -2e 2 +e 3

By back substituting in the above equation for the (e3, e2, and e^, from equations

(3.40, 3.33, and 3.26), the above equation can be represented as

A2e 3 =( v - T  c ( OY v ( k p +kd) -O'Fvfcp-YvA:,)) - 2 ( v - ( T  c ( m > ( k p +kd)

+TvA:p) ) +v - T c ' P v ( k p+k d)
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Therefore it is evident that the above equation becomes

A2e 3=T c(<P¥vkd- W k d) 3.42

However it is evident that the change in the control input from equation (3.14), at 

the third sampling instant is written as

u3 =u2+T( kpAe 3 +Tkt e 3 +kd A2e 3)

By substituting in the above equation for u2 , from equation (3.36), the above 

equation becomes

w3=( Tvkp) +T(k Ae3+ 7 V 3+fcdA2e 3)

By back substituting in the above equation for the (Ae3, e3, and A2e3), from 

equations (3.41, 3.40, and 3.42), the above equation can be represented as

m3=( Tvk p) +T( Tkp ( - c ( - V ¥ v k d-2'ibk p) )  -T k ^ v -T  c ( m > k d- m p))

+T2kd c i^Pkj-W vkj))
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and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

u3=Tvkp +0(T2+T3) 3.42

However, it can also be seen that the change in the control input from equation 

(3.15), at the third sampling instant is given by

Am3 =7( k pàe 3 +71, e 3 +kd A2<? 3)

By back substituting in the above equation for the (Ae3, e3, and A2e3), from 

equations (3.41, 3.40, and 3.42), the above equation can be represented as

u3=T( Tkp ( -  c ( - ® i ! v k d- 2 xR>kp) ) - T k i ( v - T c ( m > k d-'&kp) )  

+Tkd c ( W ! k d- V v k d) )

and if the controller tuning parameter T is chosen to be very small (which 

corresponds to fast sampling) then the above equation can be written as

u3=T2 c ( ® ¥ v k pk d+2x& k 2p) -71,v+7’3 c (< im k lk i - x&k f i , )

+T2k 2d c ( a > T v - T v ) )  3.43
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It is evident from the analysis done above during the first four sampling instances 

following a set-point change, the controller operates in two distinct regions within 

its operating envelope. The first region is at a single point at v during the initial and 

subsequent sampling instances, when the change in controller input is of the order 

"T" as was shown by equations (3.23, and 3.30. The second region is a small 

region of the order "T2" close to and including zero. The system remains in the 

second region during all subsequent sampling instances, due to the control equations 

being of order of T2 as shown by equations (3.37, and 3.43).

Hence it can be concluded that the controller operates in two distinct regions within 

its operating envelope. The first region is at the set-point change, and the second is 

for the rest of the transient response. It is therefore, evident that since there are 

distinct regions, any non-linear design should make use of this fact, to define the 

regions over which the non-linear controller operates.

3.2.1 NON-LINEAR INCREMENTAL CONTROLLERS 

The incremental PID controller given by equation (3.15), can take one of two 

forms, one is linear, and the other is non-linear. In the linear form the gains kp, k,, 

and kd are scalars, representing the values of proportional, integral, and derivative 

gains respectively.
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The other form however, is a non-linear PID controller. In both the linear and non

linear controllers, the objective is to design a PID controller such that a good 

tracking behaviour is achieved.

One way of designing non-linear controllers, where the non-linearities are a function 

of the plant error e*, is to choose the controller gains kp, lq, and kj as functions of 

the first order backward difference in error, error, and second order backward 

difference in error respectively. It follows from equation (3.15), that the incremental 

non-linear PID controller can be described by an equation of the form

fpCAe*) is a function representing proportional gain, 

fife ) is a function representing integral gain, 

f /A ^ )  is a function representing derivative gain,

Moreover, it follows from equation (3.44), that the gain functions can be described 

by equations of the form

Auk =  fpCAeJAe, + f,(e,X +  fd(A2ek)A2ek 3.44

where

= fd(AeJ 3.45

•*i = fi(ek ) 3.46

3.47
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Hence it follows from equation (3.44), that the incremental non-linear PID 

controller can be conveniently described by an equation of the form

Auk =JfpAek +<#& +«?i/dA2ev 3.48

It is important to note that equation (3.48) is implemented in the incremental form. 

By deploying the PID controller in incremental form avoids any bumpless transfer 

techniques associated with the integral state is avoided. This is particularly important 

in the case of non-linear controllers incorporating integral control, because the 

integral state will requires bumpless transfer every time the integral gain is changed. 

The non-linear controller involves defining non-linear gain functions for the 

controller, instead of linear gains, for the linear controller .

In general it can be seen that the complexity of the above problem has made it 

difficult to design such controllers. Hence, in order to overcome the difficulty, the 

techniques of genetic algorithms is therefore proposed as a mean of designing and 

tuning such non-linear controllers. Moreover the design criteria of dual-zone PID 

controllers previously developed in this chapter can be deployed to define the 

effective work-space of the non-linear controller. Figure (3.1), shows a block 

diagram of the non-linear control system.
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Figure 3.1 System Block Diagram



3.2.2 DUAL ZONE CONTROLLER

The dual-zone controller is split into two major zones. The first zone is used by the 

controller for the first two sampling periods following any set point change, and is 

thus called the set-point change zone. The gains needed for this zone can be 

considered as a form of feed forward, since, the gains are in the form of a single 

point at the start of the set-point change. The second zone is a small region close 

to the origin entered into after the second sampling period after a set-point change. 

The controller operates within this region for the reminder of the transient time. 

Hence, this zone is called the tracking zone.

It is evident from the dual-zone control theory introduced previously that it can only 

be implemented in the incremental form. From the analysis done involving dual 

zone control it can be seen that the gains of the dual zone controller have to be 

chosen to operate in the two zones. Therefore the new incremental proportional gain 

Kp operates in two distinct regions. Initially at a the set-point v, then for the rest of 

the transient time it operate in a small region close to and include zero. It was also 

noticed that the derivative gain function behaves in the same manner with one 

exception, it operates in two distinct points during the set-point change, as shown 

by figure (3.2c)."Hence, the derivative gain operates in three distinct areas as 

shown by figure (3.2c). The derivative gain operates initially at two points, the first 

at the set-point v, the second at the set-point -v, and for the rest of the transient 

time it operate in a small region close to and include zero, as A ^  < < v in the 

tracking zone.
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3.2.3 GENETIC DESIGN OF LINEAR DUAL ZONED PIP

CONTROLLERS

In order to use Genetic Algorithms to design dual-zoned PID controllers, the 

parameters associated with the dual-zoned controller have to be precisely defined. 

It is evident from the previous discussion of dual-zoned controllers that the 

controller behaviour can be split into two distinct zones. The zones are defined as 

the

1) set-point zone;

2) tracking zone.

The parameters for the controller in the two zones are thus considered separately. 

The performance of the dual-zoned controller will be contrasted by considering a 

number of plants controlled by both the genetically designed dual-zoned controller, 

and the genetically designed linear PID controller.

3.2.3.1 PARAMETERS FOR THE SET POINT ZONE 

From the analysis done for the dual-zone control , the controller output parameters 

for the initial two sampling instances are given by equations ( 3.23, and 3.30), the 

parameters are

Auo = T(KpV +K.V) +  0(T2),

69



Chapter 3

It is evident from the equation describing Auo that the GA will be searching for a 

sum of proportional, and derivative gain to produce the best results, and since it is 

a sum of gains, the exact proportion of each of the two gains is not important. 

Therefore the sum of the two gains can be represented by a single value F0, this 

would results in equation (3.23) being rewritten as 

Ail« = F0Tv,

where F0= (K„ +K J.

Therefore it is evident that only F0 needs to be coded into the GA to represent the 

sum of the two gain above.

Also from equation (3.30) it can be seen that controller input parameters describing 

Au! is given by

Au! = -TKdv,

where Ft = -Kd.

Hence Ft need to be coded in the GA to represent the derivative gain during the 

second sampling instance.

From the above it can be seen that during the set-point zone only two parameters 

are searched for by the GA.
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3.2.3.2 PARAMETERS FOR THE TRACKING-ZONE

In the tracking zone it was found that the proportional and derivative gains that the 

controller operate in a very small region close to zero, and from the equations of 

the input parameters for the tracking zone it can be seen that the controller must 

have individual gain values for the proportional, integral, and derivative gains. The 

gains used in this zone are mapped as shown in figure (3.3). By utilizing the frame 

work illustrated in figure (3.3), the equations representing the desired gains can be 

defined. From figure (3.3a), if

<5Ep represent the zone length,

6Up represent the incremental change in the input value Auk over the zone 

length.

Kp is the resulting gain given by

Kp = AUp/5Ep 3.49

This gain is used to evaluate Aupk within that tracking zone for any value of Aek. 

Also from figure(3.3b), if

6Ej represent the zone length of ek,

¿Ui represent the incremental change in the input value Auk over the zone 

length.

Kj is the resulting gain given by

Ki = AU/5Ei 3.50



Figure 3 .3 .a Single Z oned Proportional Gain Function Profile Using 
Dual Z one M ethod.

Figure 3.3.b Single Zoned Integral Gain Function Profile Using 
Dual Z one M ethod.
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Figure 3.3.c Single Zoned Derivative Gain Function Profile Using 
Dual Z one M ethod.

This gain  is used to  evaluate Au'k w ithin that tracking zone fo r any value o f  Aek. 

A nd from  figure(3 .3c), if

<5Ed represent the zone length o f  A2ek access,

AUd represent the increm ental change in the input value Auk over the zone 

length

Kd is the gain g iven by

Kd =  A U d/6Ed 3.51

This gain  is used to evaluate Audk w ith in  tha t tracking zone fo r any value o f  Aek.
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population. This type of initialization is important in this type of design, since 

otherwise there would be a danger of creating an initial population in which many 

of its members violate the constraints on the controllers being designed, Figure 3.5 

shows the sequence of genetic algorithms. Following the initialization, the objective 

function is introduced and its value is calculated using decoded values of the 

parameters in each string. Thus for example, if minimum ISE is regarded as the 

ultimate design requirement, genetic algorithms can be readily used to select the best 

set of tracking gains, and the feed forward gains such that the ISE is minimised. 

In the genetic design of non-linear PID controllers the plant under consideration is 

subjected to a command input ( i.e. unit step), then the performance index is 

computed for the plant, therefore, for each member in the population the function

J ‘N
J S E = ' £ e 2j 3.53

y-»

where ej =v -y j N= y

and ej G 9?, is the error signal, y G Si, is the output signal, T is sampling, and r 

is an appropriate chosen settling time.

Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation.
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It is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of violation of the 

constraints the corresponding set of tracking gains, and the feed forward gains 

produces large ISE and the result will be zero or low fitness, and by the action of 

the selection operator it would not be chosen for the next generation.

Figure 3.5 Sequence of Genetic Algorithms
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The parameters for the controller in the two zones are thus considered separately. 

The performance of the multiple zoned controller will be contrasted by considering 

a number of plants controlled by both the genetically designed multiple zoned 

controller, and the genetically designed linear PID controller.

3.2.1.2.1 PARAMETERS FOR THE SET POINT ZONE

The parameters in this zone are exactly the same as was introduced in section

3.2.3.1 i.e. the GA will search the space for two feed forward gains for the set- 

point zone.

3.2.1.2.2 PARAMETERS FOR THE TRACKING ZONE 

In the tracking zone it was found that the proportional and derivative gains that the 

controller operates in a very small region close to zero, and from the equations of 

the input parameters for the tracking zone it can be seen that the controller must 

have individual gain values for the proportional, integral, and derivative gains. The 

gains used in this zone are mapped as shown in figure (3.6). By utilizing the 

framework illustrated in figure (3.6), the equations representing the desired gain 

functions can be defined. Assuming equal sub-zone lengths it is evident from figure 

(3.6a) that the equation representing the sub-zone length for the proportional gain 

can be represented as

5Ep = AEp / n 3.54

where AEp is the over all zone length, and n is the number of sub-zones.
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Figure (3.6.a) Multipule-Zoned Interpolated Gain Functions For Proportional Gain
(Implemented using dual-zone method)
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Figure (3.6.b) Multipule-Zoned Interpolated Gain Functions For Integral Gain
(Implemented using dual-zone method)
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Figure (3.6.c) Multipule-Zoned Interpolated Gain Functions For Derivative Gain
(Implemented using dual-zone method)
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The current sub-zone for any proportional gain can be found by using an equation 

of the form

i =  Ae  ̂ * 5E„ 3.55

where

* is integer division, e* € R, Auk e R, n e U, i is current sub-zone number,

The equation representing the proportional gain within any sub-zone is of the form

Kp =KMp +(Kip-Ki ,p) (Ae, -AE1'1) / 8E„

3.56

where K'p is the value of the proportional gain in the ith sub-zone.

Figure (3.6b) represents the profile of the integral gain function. By considering 

figure(3.3b), and assuming equal sub-zone lengths, the equation representing the 

sub-zone length for the integral gain can be represented as

8Ej = AEj / n 3.57

where AEf is the over all zone length, and n is the number of sub-zones.
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The current sub-zone for any integral gain can be found by using equation of the 

form

i =  ek * 5Ei 3.58

where

* is integer division, ek e R, Auk e R, n e U, i is current sub-zone number,

The equation representing the integral gain within any sub-zone is of the form

CfC-x = 0 ( v\  + ( (ek -AEi_1) / SE; 3.59

where Cf£x is the value of the integral gain in the ith sub-zone.

Figure (3.6c) represents the profile of the derivative gain function. By considering 

figure(3.6c), and assuming equal sub-zone lengths, the equation representing the 

sub-zone length for the derivative gain can be represented as

6Ed = AEd / n 3.60

where AEd is the over all zone length, and n is the number of sub-zones.
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The current sub-zone for any derivative gain can be found by using equation of the 

form

i =  A2ek * 5Ep 3.60

where

* is integer division, A2ek e R, Auk c R, n e U, i is current sub-zone number, 

The equation representing the derivative gain within any sub-zone is of the form 

-X, +(«#d- rf~\) (A2ek -AE-1 ) / 5Ed 3.61

where CK'd is the value of the derivative gain in the ith sub-zone

The zoning method is a method used currently by most designers. But the above 

implementation of the zone method has not been used before by any designers. This 

is because of the complexity of the implementation, as the design method is 

impossible to implement without the use of GAs. The GA is used to search the 

operating envelope for the best values of the non-linear controller gains for the 

controllers being designed. The GA is then used for the tuning of the controllers, 

as illustrated in figure(3.5).

In order to use GA’s to select the tuning parameters in such a way as to produce 

satisfactory response in the case of a step input response, it is only necessary to
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encode the elements of the tracking zone gain functions , plus the feed forward 

gains needed for the set point change zone, as binary strings.

The binary string would be represented as

{ (  ....... .................................. j p , ) V P* ........... ) ( F0 F, ) }

proportional integral derivative set point change points

Where the whole string contains elements of the tracking zone for the three gain 

functions plus the feed forward gains.

Random initialization is the approach used to initialize the initial population, in this 

case as well, Since this approach requires the least knowledge-acquisition effort and 

provides a lot of diversity for the GA’s to work with. The process of interviewing 

is also used to insure that the randomly generated variables do not initially violate 

any constraints on the function to be tuned. The system incorporates both the linear 

plant and the non-linear digital PID controllers, the controllers are designed by 

randomly generated sets of tracking and feed forward gains by the GA’s. A stability 

test is then carried on all the controllers. Incase of violation of stability in any of 

the cases, the randomly generated set of Aukn’s, and the feed forward parameters 

will not be included in the initial population. This type of initialization is essential 

in this type of design, since otherwise their would be a danger of creating an initial 

population which so many of its members violate the constraints on the controllers
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being designed, Figure 3.9 shows the sequence of genetic algorithms.

Following the initialization, the objective function is introduced and its value is 

calculated using decoded values of the parameters in each string. Thus for example, 

if minimum ISE is regarded as the ultimate design requirement, genetic algorithms 

can be readily used to select the best set of tracking and the feed forward gains such 

that the ISE is minimised.

In the genetic design of non-linear PID controllers the plant under consideration is 

subjected to a command input ( i.e. unit step), then the performance index is 

computed for the plant. Therefore, for each member in the population the function 

for ISE given by equation (3.58) is valid.

Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation. 

It is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of a violation of the 

constrained the corresponding set of tracking and feed forward gains produces large 

ISE and the result will be zero or low fitness, and by the action of the selection 

operator it would not be chosen for the next generation.
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3.4 ILLUSTRATIVE EXAMPLES

3.4.1 PLANT 1

The procedure for the tuning of genetic control systems can be conveniently 

illustrated by designing a genetic non-linear PID control system for the open loop 

SISO plant with transfer function of the form

S(z)
0. 8

z \ z - 0. 9)
3.77

the sampling period is 0.1 sec.

The Arma model for the plant is of the form

yk=*& k-\+b0uk_5 

The plant variables are given by

3.78

a0 = 0.9 

b0 = 0.8

where the incremental PID controller is given by equation (3.48). The controller is 

implemented in the incremental form so as, to avoid any bumpless transfer 

techniques associated with the integral state, because the integral state would require 

bumpless transfer every time the integral gain is changed. The controller is designed 

using the dual zone method introduced earlier.
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3.3.1.1 DUAL-ZONED CONTROLLER

Initially the gains Kp, Kj and Kj are chosen as a function of the plant error such as 

that given by equations (3.51, 3.54, 3.57), i.e. dual zoned interpolated PID 

controller. Then the controller was designed by means of genetic algorithms, so as 

that the Integral square error is minimised for the plant. In this case, a population 

of 100, a crossover probability, Pc=0.65, and a mutation probability, Pm =  0.01, 

was used, also for this case also the maximum value for both the first and second 

order backward difference in error ( A e ,^  and A2ekmax ), were chosen for this 

design. Figure 3.10 shows the transient response of the genetically designed 

controller.

3.3.1.2 MULTI-ZONED CONTROLLER

The gains Kp, Kj and Kd are chosen as a function of the plant error such as that 

given by equations (3.62, 3.68, 3.74), i.e. multi-zoned interpolated PID controller, 

the tracking zone is split into 4 sub-zones. Then the controller was designed by 

means of genetic algorithms, so as that the integral square error is minimised for 

the plant. In this case, a population of 100, a crossover probability, Pc=0.65, and 

a mutation probability, Pm = 0.01, was used, also for this case also the maximum 

value for both the first and second order backward deference in error ( Aej.max and 

A2ekmiX), were chosen for this design. Figure 3.11 shows the transient response of 

the genetically designed controller, figure 3.11a, 3.11b, and 3.11c shows the 

resulting profiles for the proportional, integral, and derivative gains respectively.

90



Chapter ? ;
;

3.3.1.3 LINEAR CONTROLLER

To contrast the difference between linear and non-linear PID controllers, a 

genetically designed linear PID controllers was also considered, the genetic 

algorithms was used to design a fixed gain controller where the values of Kp, Kj, 

and Kd chosen by the GAs to minimise the ISE for the fixed controller. In this 

case, a population of 100, a crossover probability, pc = 0.65, and a mutation 

probability, Pm = 0.01 was used. Figure 3.12 shows the transient response of the 

genetically designed controller. Table (3.1) shows the ISEs for the three controllers.

CONTROLLER DUAL PID MULTI ZONED LINEAR

ISE 7.03 5.72 9.16

Table (3.1).

Table (3.2) shows the gains for the two linear controllers.

CONTROLLER Kp K, Kd

LINEAR 3.53 2.71 0.45

DUAL-ZONED 0.65 1.363 0.6

Table (3.2).

Table (3.3) shows the feed forward gains for the linear dual-zoned PID controller.

Feed Forward Gains 2.818 7.848
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Table (3.4) shows the gains for the multi-zoned non-linear PID controller.

Gains Zonel Zone2 Zone3 Zone4

0.696 0.678 0.315 0.434

X x 3.383 6.340 9.614 6.044

0.958 0.877 0.669 0.009

Table (3.4).

Table (3.5) shows the feed forward gains for the multi-zoned non-linear PID 

controller.

Gains 2.458 6.753

3.3.2 PLANT 2

A second plant was considered, to investigate the effectiveness of the genetic 

algorithms in designing linear, and non-linear controller. The plant considered has 

a transfer function of the form:

S{ 2) 0. 03573 +0. 044625 z 
z \ 0 . 0513423 -1.4331 z 2)

3.79

the sampling period is 0.1 sec.

The Arma model for the plant is of the form as

y k =aoy k - i +a iy * - 2 + V *  - 5 +b 1 -6 3.80
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The plant variables are given by,

ao = 1.4331,

^  =-0.51342, 

b0 = 0.044625, 

bj = 0.03573,

and the incremental PID controller is governed by equation (3.48). The plant was 

tested under different operating conditions as shown in the examples bellow:

3.3.2.1 DUAL-ZONED CONTROLLER

Initially the gains Kp, Kh and Kd, where chosen as in equations (3.51, 3.54, 3.57), 

i.e. dual-zoned PID controller with linear plant. The controller was designed by 

means of genetic algorithms, such that the Integral Square Error ISE is minimised 

for the plant. In this case, a population of 100, a crossover probability, Pc = 0.65, 

and mutation probability, Pm = 0.01 was used, also for this case also the maximum 

value for both the first and second order backward deference in error ( Aekmax and 

A2ekmax), were chosen for this design. Figure 3.13, shows the transient response of 

the genetically designed non-linear controller for the above plant.
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3.3.2.2 MULTI-ZONED CONTROLLER

The gains <5fp, X x and are chosen as a function of the plant error such as that 

given by equations (3.62, 3.68, 3.74), i.e. multi-zoned interpolated PID controller, 

the tracking zone is split into 4 sub-zones. Then the controller was designed by 

means of genetic algorithms, so as that the Integral square error is minimised for 

the plant. In this case, a population of 100, a crossover probability, Pc=0.65, and 

a mutation probability, Pm = 0.01, was used, also for this case also the maximum 

value for both the first and second order backward deference in error ( Aekmax and 

A2ekmax), were chosen for this design. Figure 3.14 shows the transient response of 

the genetically designed controller, figure 3.14a, 3.14b, and 3.14c shows the 

resulting profiles for the proportional, integral, and derivative gains respectively.

3.3.2.3 LINEAR CONTROLLER

Finally to contrast the deference between linear and non-linear PID controllers, a 

genetically designed linear PID controller was also considered, the genetic 

algorithms was used to design a fixed gain controller where the values of Kp, Kj, Kd, 

are chosen by the GA to minimise the ISE for the fixed controller. In this case, 

a population of 100, a crossover probability, pc = 0.65, and a mutation probability, 

Pm = 0.01 was used. Figure 3.15 shows the transient response of the genetically 

designed controller. Table (3.6) shows the ISEs for the three controllers.
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CONTROLLER DUAL-ZONED MULTI ZONED LINEAR

ISE _ 7.15 6.153 10.57
Table(3.6)

Table (3.7) shows the gains for the two linear controllers.

CONTROLLER Kp K, K.,

LINEAR 4.353 7.711 0.647

DUAL-ZONED 0.167 18.926 0.014
Table (3.7).

Table (3.8) shows the feed forward gains for the linear dual-zoned PID controller.

Feed Forward Gains 3.704 5.161

Table (3.9) shows the gains for the multi-zoned non-linear PID controller.

Gains Zonel Zone2 Zone3 Zone4

0.534 0.295 0.141 0.019

1.632 1.188 1.533 1.266

¿X,i 0.165 0.054 0.086 0.004

Table (3.9).

Table (3.10) shows the feed forward gains for the multi-zoned non-linear PID 

controller.

Gains 3.294 3.323

Table(3.10).
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3.3.3 ROBUSTNESS TEST

This test is aimed at finding out how robust are the genetically designed dual zone 

PID controllers are for changes in the plant. In this case the plants used in the 

illustrative example were modified to produce different plants . To do this test 

consider plant 1 with transfer function of the form

g (z ) 0. 8 _ P
z 4(z-0.  9) z Y(z-a)

To produce the new plants the value of a, fi, and y  are changed. Tables (3.11) 

shows the range of plants considered in this robustness test, and the respective ISEs 

obtained,

Plant Lin ISE D-Z ISE M-Z ISE 0 a 7

1 9.16 7.15 6.153 0.8 0.90 5

2 11.764 8.442 6.637 0.8 0.90 6

3 13.07 16.677 8.109 1.2 0.90 6

4 14.867 83.01 52.05 1.2 0.94 6

5 9.976 27.887 35.52 1.2 0.94 4

6 13.967 -  14.855 X 1.2 0.60 4

7 22.652 42.486 X 0.5 0.60 4
Table (3.11)

Figure (3.16 to 3.21) show the response of the plants for the linear dual-zoned 

controller designed using the original plantl. Figure (3.22 to 3.25) show the 

response of the plants for the non-linear dual-zoned controller designed using plant.
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Figure (3.26 to 3.31) show the response of the plants for the linear controller 

designed using the plant.

3 .3 .4  C O N T R O L L E R  E R R O R  C L IP P IN G

From the results obtained during the robustness test carried out in the previous 

section, it is evident that in some cases the change in plant has forced the values of 

Aek and A2ek out of the working region of the controller. Once this has occurred the 

gains are extrapolated rather than interpolated. In general extrapolation can be 

unsatisfactory. Therefore it has been decided to introduce the concept of controller 

clipping. This would mean that if during the transient the first or the second order 

backward difference in error is greater that the maximum design value it would 

make the values equal to zone length (i.e. If Aek>A ekma, Aek =  Aekinai ). The 

diagram shown in figure ( 3.16) shows how the clipping concept would be used in 

practice.

Figure 3.16 Controller Error clipping
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This technique is often used in fuzzy logic controllers and frequently improves 

robustness. The results obtained using the clipped controller for the robustness test 

is given in table (3.12). The clipping process will reduce the amount of gain used 

at higher values of Aek and A2ek and makes the controller more robust.

Plant Lin ISE C-DZ ISE C-MZ ISE & Of 7

1 9.16 7.15 6.153 0.8 0.90 5

2 11.76 8.442 6.637 0.8 0.90 6

3 13.07 8.879 8.109 1.2 0.90 6

4 14.867 12.987. 23.693 1.2 0.94 6

5 9.976 5.6324 21.641 1.2 0.94 4

6 13.967 10.142 23.908 1.2 0.60 4

7 22.652 20.794 34.782 0.5 0.60 4
Table (3.12)

where C-DZ ISE is clipped dual zone ISE,

C-MZ ISE is clipped muli-zone ISE.

Figure (3.32 to 3.37) show the response of the plants for the linear dual-zoned 

controller designed using the original plantl. Figure (3.38 to 3.43) show the 

response of the plants for the non-linear dual-zoned clipped controller using plant 

in table (3.12).
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3.4 CONCLUSIONS

The technique of genetic algorithms has been proposed as a mean of designing non

linear PID controllers for linear plants. It has been shown that the use of genetic 

algorithms for this purpose greatly facilitates the design of such controllers so that 

the ISE is minimised. It has also been shown that the use of dual zone control 

theory to design the non-linear controller improves the effectiveness of the controller 

performance. The straight line interpolation technique was used in this chapter to 

map the non-linear controller gains. The results have been illustrated by genetically 

designing digital PID controllers for linear plants. It has thus been shown in this 

chapter that genetic algorithms are a powerful, reliable, and simple means of 

handling constrained optimization problems. Indeed, comparing the results for the 

linear and dual-zoned linear controller indicates that the dual-zoned design is a more 

effective design method to employ in this thesis. Also from the results obtained it 

is evident that the GA is the only method available which can be used to design such 

controllers. The robustness test indicates that the non-linear PID controllers are not 

as robust compared to the linear controllers. Furthermore the clipped non-linear PID 

controllers exhibits far better robustness properties than the un-clipped non-linear 

controllers. This is because the clipping forces the controller to be rate limited.
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Figure (3.10) Transient response of the genetically designed dual-zoned P1D
controller for plant (1)
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figure (3.11) Transient response of the genetically designed multi-zoned PID
controller for plant (1)
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Figure (3.12) Transient response of the genetically designed linear P1D
controller for plant (1)
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Figure (3.13) Transient response of the genetically designed dual-zoned PID
controller for plant (2)
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Figure (3.14) Transient response of the genetically designed multi-zoned P1D
controller for plant (1)
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Figure (3.15) Transient response of the genetically designed linear FID
controller for plant (2)
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Figure (3.16) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (2), table (3.11).
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Figure (3.17) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (3), table (3.11). Figure (3.10)

108



Ge
ne

ti
c 

No
n-

Li
ne

ar
 P

ID
 C

on
tr

ol
 

(3.
 i3
")

)

o o o o o
-----,---------- ,------

o
o in o in o o o oo r- 10 CO c in o inCJ »4 «H r- in CO o

Figure (3.18) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (4), table (3.11).
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Figure (3.19) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (5), table (3.11).
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Figure (3.20) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (6), table (3.11).
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Figure (3.21) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (7), table (3.11).
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Figure (3.22) Transient response of robustness test using genetically designed
non-linear dual-zoned PID controller for plant (2), table (3.11).
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Figure (3.23) Transient response of robustness test using genetically designed
non-linear dual-zoned PID controller for plant (3), table (3.11).
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Figure (3.24) Transient response of robustness test using genetically designed
non-linear dual-zoned PID controller for plant (4), table (3.11).
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Figure (3.25) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (5), table (3.11).
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Figure (3.26) Transient response of robustness test using genetically designed
linear PID controller for plant (2), table (3.11).
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Figure (3.27) Transient response of robustness test using genetically designed
linear PID controller for plant (3), table (3.11).
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Figure (3.28) Transient response of robustness test using genetically designed
linear PID controller for plant (4), table (3.11).
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Figure (3.29) Transient response of robustness test using genetically designed
linear dual-zoned PID controller for plant (5), table (3.11).
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Figure (3.30) Transient response of robustness test using genetically designed 
linear PID controller for plant (6), table (3.11).

121



Ge
ne

ti
c 

Li
ne

ar
 P

ID
 C

on
tr

ol
 f

ig
ur

e 
<3
3\
 >

Figure (3.31) Transient response of robustness test using genetically designed
linear PID controller for plant (7), table (3.11).
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Figure (3.32) Transient response of robustness test using clipped genetically
designed linear dual-zoned PID controller for plant (2), table (3.11).
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Figure (3.33) Transient response of robustness test using clipped genetically designed
linear dual-zoned PID controller for plant (3), table (3.11).
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Figure (3.34) Transient response o f robustness test using clipped
linear dual-zoned P1D controller for plant

genetically designed 
(4), table (3.11).
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Figure (3.35) Transient response of robustness test using clipped genetically designed
linear dual-zoned P1D controller for plant (5), table (3.11).
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Figure (3.36) Transient response of robustness test using clipped genetically designed
linear dual-zoned PID controller for plant (6), table (3.11).
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Figure (3.37) Transient response of robustness test using clipped genetically designed
linear dual-zoned P1D controller for plant (7), table (3.11).
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Figure (3.38) Transient response of robustness test using clipped genetically designed
non-linear dual-zoned P1D controller for plant (2), table (3.11).
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Figure (3.39) Transient response of robustness test using clipped genetically designed
non-linear dual-zoned PID controller for plant (3), table (3.11).
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Figure (3.40) Transient response of robustness test using clipped genetically designed
non-linear dual-zoned PID controller for plant (4), table (3.11).
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Figure (3.41) Transient response of robustness test using clipped genetically designed
non-linear dual-zoned P1D controller for plant (5), table (3.11).
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Figure (3.42) Transient response of robustness test using clipped genetically designed
non-linear PID controller for plant (2), table (3.11).
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Figure (3.43) Transient response of robustness test using clipped genetically designed
non- linear PID controller for plant (3), table (3.11).
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Design of Zoned Polynomial Interpolated Non-Linear 

Controllers for Linear Plants



Chapter 4
GENETIC DESIGN OF POLYNOMIAL NON-LINEAR 

FID CONTROLLERS FOR UNEAR PLANTS

4.1 INTRODUCTION

In the previous chapter linear interpolation routines were used to represent the non

linear PID controller gains of a PID controller. In this chapter it is proposed to replace 

the linear interpolation by a non-linear interpolation technique based on polynomial 

interpolation to represent the PID controller gains of a non-linear PID controllers. 

The linear interpolation routine used in the previous chapter possess sharp edges at the 

point of change between sub-zones. This non-continuous derivative could cause some 

degradation in the performance of the controller. Hence, in this chapter a non-linear 

interpolation technique is to be used to provide a continuous derivative through all 

zones by removing the sharp edges. It is also hoped that the smoothness of the non

linear interpolation technique will further improve the performance of the non-linear 

controller.

Thus the task is to find an interpolation function that can provide the smoothness, and 

the computational efficiency required. Moreover, the technique should also be 

sufficiently general so as to be able to approximate large classes of functions which 

might arise in practice. Polynomials are the bases for most interpolation functions are 

the most commonly used functions, and they would provide most if not all the 

requirements for this task. They are also well documented, and all the different forms 

have been already used and tested for their ability to give a good and accurate results.
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4.2 SYNTHESIS

In order to design an efficient non-linear controller using the Polynomial Interpolated 

Non-linear ( PIN ) method, it is proposed to use the dual zoned method introduced in 

chapter 3. The SISO plants under consideration, are governed on the continuous time 

set T = (0,oo] by state and output equation of respective forms

x ( t )  =Ax(t )  +bu( t )  4.1

and

y ( t )  -ex ( t )  4.2

where

x(t) e 9i" is the state vector,

y(t) e 9i is the scalar output from the plant,

u(t) e is the scalar input to the plant,

A e 9?nM1 is the plant matrix, 

b e 9t"xl is the input matrix, 

c e 9?lxn is the output matrix.

It is assumed that the plant is functionally controllable, so that none of the
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transmission zero of the plant lies at the origin in the complex plane and therefore that 

any and all solutions of s in

s I „ - A ,  - b  
c ,  0 0 4.3

are non-zero [Rosenbrock (1974)]. This assumption ensures that rank M =  n +  1 

[porter and power (1970)] where the system matrix is given by

M
A ,  b  

c ,  0
4.4

In order to design non-linear PID controllers for SISO linear plants governed by 

equations (4.1) and (4.2), it is convenient to consider the behaviour of such plants on 

the discrete-time set Tt = {0, T, 2T,....}.

This behaviour is governed by state and output equations of the respective forms 

[Kwakemaak and Sivan (1972)]

x k.l =<bck +xm k 4.5
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and

y * =r** 4.6

where

$=e AT 4.7

T

^ f e ^ b d T
o

4.8

and

r  = c 4.9

In these equations, xkT e 9?", ukTe9t, ykT e 9t, 4» e 9inxn, ¥  e St"*1, T e 9?u , and T c 

9i+ is the sampling period.

It is evident from chapter 3 that the incremental controller can be described as

Auk=T( k pAe k +Tki e k +kd &2e k) 4.10
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where

Auk is the incremental change in input,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error.

Kp is the current effective value of the proportional gain,

Ki is the current effective value of the integral gain,

Kd is the current effective value of the derivative gain,

T is sampling time.

It is evident from chapter 3 that the error can be written as

e k=Vk-yk 4 -n

Also from chapter 3 that the first order backward difference in error can be written as

t e k=ek-e k-i 4-12

Further more from chapter 3 the second order backward difference in error can be 

expressed as

k =e k - 2 e  k _2 4.13
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4.2.1 NON-LINEAR INCREMENTAL PIP CONTROLLER

The incremental PID controller given by equation (4.10), can take one of two forms, 

one is linear, and the other is non-linear. In this chapter the non-linear form is to be 

investigated. The non-linearities are a function of the plant error.

It follows from equation (4.10), that the incremental non-linear PID controller can be 

described by an equation of the form

t o k*Pp( i e l ) i * k+ipl ( e t ) e ll A2e„) A2e „ 4.14

where

|3p(Aek) is a function representing the proportional gain,

&(ek) is a function representing the integral gain, 

j3d(A2ek) is a function representing the derivative gain.

It is evident from equation (4.14), that the gain functions can be represented by 

equation of the form

= /3p(Aek) 4.15

= fifa ) 4.16

=  fri(A2ek) 4.16
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The above gain functions are to be based on the polynomial interpolation function, as 

will be illustrated later in this chapter.

It follows from equation (4.14) that the incremental non-linear PID controller can be 

conveniently described by equation of the form

Auk = jTpAek + TJifo + JfdA2ek 4.17

It is important to note that the PID controller has been implemented in the incremental 

form to make use of the dual zone tuning technique, and to avoid any bumpless transfer 

techniques associated with the integral state.

Figure 4.1 shows a black diagram representing the control system using polynomial 

interpolation routine to represent the gain functions.

2.2.2 INTERPOLATION ROUTINES

There are a number of interpolation routines available that can be implemented which 

could give a solution to the non-linear control system design problem, such routines 

are:

i) polynomial (Lagrange);

ii) cubic spline;

iii) polynomial coefficients.
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Figure 4.1 System Block Diagram
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All three routines are polynomial interpolation routines. A choice has to be made, on 

which of the above would best suit the design requirement. Such a choice can be made 

on the bases that the gains in the problem have to be coded as a two dimensional non

linear function. The function also needs to be easy to implement, and fast to compute. 

From consideration of the above and on the basis of the constraints imposed it was 

decided to use the Lagranges polynomial interpolation routine. The principle reasons 

behind this design are:

i) initialising the coefficients of the Lagrangian routine is similar to choosing 

gains,and reasonabley easy to achieve;

ii) initialising the coefficients of the polynomial interpolation routine can be 

difficult to achieve;

iii) the cubic spline interpolation routine is a further extension of the Lagrange 

interpolation routine, and hence, it requires longer computational time to 

achieve what a basic Lagrange routine can achieve;

iv) also the cubic splines requires careful matching of the first and second 

derivatives at the start and end which can be difficult to achieve.

4.2.2.1 POLYNOMIAL INTERPOLATION

There is a unique line through any two points. Through any three points, a unique 

quadratic. The interpolating polynomial of degree N-l through the N points y, =

142



f(X j)......,yN = f(xN) is given explicitly by Lagrange’s Formula,

N N 

r  =1 * '1

(* -** ) 
( x r - x k) 4.18

where ]"J is the product of terms, r= ( l ,2 ,......,N), k = (l,2 ,...... N), and k ^  r.

The best way to explain how the above formula can be used to map a required function 

is by considering an example for a two point function.

For two points the above equation can be represented as

P (x) ( x - x 2) t (X-Xi) 
( x 1- x 2) J l  (x 2- x xy 2

4.19

By substituting the values into the above function a value for P(x) can be found.

K

Figure (4.2) General Gain Function Mapping Using Polynomial 
Interpolation to Represents Proportional Gain
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4.2.3 NON-LINEAR GAIN FUNCTION MAPPING

By utilizing equation 4.18 a non-linear gain function representing the gains needed for 

the non-linear PID controller can be obtain as

N

iTi w  - m
4.20

where

ek is the tracking error;

ENk is the over all zone length.

As it can be seen from the above equation, the polynomial interpolation equation can 

be used as a non-linear gain function. This gain function can then be used in the PID 

controller to produce a non-linear incremental PID controller. Figure (4.2) shows how 

the above gain function can be mapped for a gain using the equation (4.20) for a dual

zone , or a multiple-zone.

Moreover from equation (4.20), it is evident that a gain function can be produced for 

each of the non-linear gains needed for the non-linear controller. The three gain 

functions are thus given by

"  n (A ek-Ek i )
K,=Y,fi n  - — ,— tdL
^  i=i *y =o > y ( E k ‘ - Ek n

4.21
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where

Aek is the first order backward difference in error; 

E Nk is the over all proportional gain zone length.

This equation represents the proportional gain function for an N number of parameters, 

using the Lagranges smooth interpolation routine.

Thus the integral non-linear gain function is given by

A T . - f f  f t 4.22

where

ek is the tracking error;

E Nk, is the over all proportional gain zone length.

This is an integral gain function for an N number of parameters, using the Lagranges 

smooth interpolation routine.
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It is therefore evident that the derivative gain function can be represented as

N

f . .  n
ft (A le t -E tj )

4.23

where

A2ek is the second order backward difference in error;

E Nki is the over all proportional gain zone length.

This is a derivative gain function for N parameter, using the Lagranges smooth 

interpolation routine.

4.3 GENETIC DESIGN OF ZONED NON-LINEAR PIP CONTROLLERS

In order to use genetic algorithm to design dual zoned non-linear PID controllers, the 

parameters associated with the dual-zoned controller have to be precisely defined. It 

is evident from the previous chapter that the behaviour of dual controller can be split 

into two distinct zones, the set-point zone, and the tracking zone.

The parameters for the controllers in the two zones are designed together. The 

performance of the dual-zoned controller will be contrasted by considering a number
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of plants controlled by both the genetically designed dual-zoned non-linear controller, 

and the genetically designed linear PID controller.

In representing the gain functions using this method, any future changes in the design 

can easily be achieved. For example the gain function Kd can be interpolated using 

Aek instead of A2ek, and this is easily achieved by changing interpolating variable.

Figure (4.4) shows the function mapping for the three gains as they would be presented 

by the GAs.

4.3.1 PARAMETERS FOR THE SET POINT ZONE

The parameters in this zone are exactly the same as was introduced in section 3.2.3.1 

of the previous chapter i.e. the GA will search the space for two feed forward gains 

for the set-point zone.

4.3.2 PARAMETERS FOR THE TRACKING ZONE

In the tracking zone it was found that the proportional and derivative gains that the 

controller operate in a very small region close to zero, and from the equations of the 

input parameters for the tracking zone it can be seen that the controller must have 

individual gain values for the proportional, integral, and derivative gains. The gains 

used in this zone are mapped as shown in figure (4.3). ,
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In order to use GAs to select the tuning parameters in such a way that as to produce 

satisfactory response in the case of a step input, it is only necessary to encode the 

elements of the tracking zone gain functions, plus the feed forward gains needed for 

the set point change zone, as binary strings. The binary string would be represented 

as

{  f y  o  ( f a . . . .  o  ( f „ f , ) }

proportional integral derivative set point change

where the whole string contains the three gain functions elements, plus the feed 

forward gains. The mapping of the string is shown in figure (4.5).

Random initialization is the approach used to initialize the initial population, Since this 

approach requires the least knowledge-acquisition effort and provides a lot of diversity 

for the GAs to work with. The process of interviewing introduced in chapter 2 is used 

to insure that the randomly generated variables do not initially violate any constraints 

on the function to be tuned. The system incorporates both the linear plant, and the PIN 

controllers, the controllers are designed by randomly generated sets of: tracking zone 

gains elements; and feed forward gains by the GA’s. A stability test is then carried 

out on all the controllers. In the case of a violation of stability in any of the cases, the 

randomly generated set of tracking zone gains elements, and feed forward gains will 

not be included in the initial population. This type of initialization is essential in this 

type of design, since otherwise their would be a danger of creating an initial population 

in which many of its members violate the constraints on the controllers being designed, 

figure (4.4) shows the sequence of genetic algorithms. Following the initialization, the
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Figure 4.3 G ain Functions Mapping for PIN 
PID Controller
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objective function is introduced and its value is calculated using decoded values of the 

parameters in each string. Thus for example, if minimum ISE is regarded as the 

ultimate design requirement, genetic algorithms can be readily used to select the best 

set of tracking gains elements, and the feed forward gains such that the ISE is 

minimised. In the genetic design of non-linear PID controllers the plant under 

consideration is subjected to a command input ( i.e. unit step), then the performance 

index is computed for the plant, therefore, for each member in the population the 

function

i~N
IS E  = £  e 

i -i
4.24

is evaluated, where

Te i =v -y N  = —
1 T

and ej e 9i , is the error signal, yj e 9t ,is the output signal, T is sampling time, and 

r  is an appropriately chosen settling time.

Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation. It 

is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of violation of the constrained
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the corresponding set of tracking zones gains elements and the feed forward gains 

produces large ISE and the result will be zero or low fitness, and by the action of the 

selection operator it would not be chosen for the next generation.

4.3 ILLUSTRATIVE EXAMPLES

To design the dual zone non-linear PID controller the analysis done earlier in this 

chapter to produce gain functions using the method as in equation (4.20), will now be 

extended to produce a 5 points gain function for the gains required to produce a non

linear incremental PID controller. The five points gain function produced will map the 

whole tracking zone for each of the gains (i.e. proportional, integral, and derivative). 

The function given in equation (4.21), which represents a proportional gain function 

for an N parameters can hence, be used to produce a 5 points function as required 

for the proportional gain, then equation (4.21) can be written as

X
(24 H*)

(6H 4)

. ( * e k) ( t e k- H ) ( t e k- 3 H ) ( t e k- 4 H ) ^  
(4 H*)

(6  H*)

. ( ^ ( ^ - ^ ( A g , - 2 7 3 ( ^ - 3 7 ^  
(24T/4)

4.24

This equation, represents proportional gain function for all five points in one function.
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Figure 4.4 Sequence o f  G enetic Tunig Process
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The analyses done for the proportional gain function can be used to produce the 

remaining two gains. By adopting the analysis of equation (4.22), a 5 points integral 

gain function can be produced as

#  _ , ( e k- ^ ( e k- 2 ^ ( e k-3H^(ek-4H^Kl0 
1 (24 f l4)

( gfe) ( gfe-2 / j ) ( gfc-3 / j) ( gfc-4/j)i(;7

( * # )

. ( e k) ( e k - H ) ( e k -3 H ) (e k - 4 H ) ^
( 4 / f )

(6  # )

. ( e k) ( e k - H ) ( e k-2 H ) (e k- 3 H ) ^  
(2 4 /f4)

This equation, represents integral gain function for all five points in one smooth 

function. Figure (4.3b) shows the mapping of the integral gain function.
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Finally a 5 points function based on the analysis done in equation (4.21, and 4.22), can 

be used to produce a derivative gain function as

^  . (A2e t -H)<.A2e t -2 H )(£ te l -3H)(,A‘"-4H)KM
(24 H4)

( A2e k) ( A2e k-2H) ( A2e t -3 H) ( t f e k-4H) KdI 
( 6H4)

( A2g ( A2e t -H) ( A2e t -3fl) ( hl'ek-AH) Kd2 
(4  H*)

( A2e k) ( t f e k-H) ( t f e k-2H) ( A2e k-4H) Kd3 
( 6 / /4)

, ( t f e k) ( A 2e k-H)(A2e k- 2 H ) ( t f e k-3H)Kd4 4 ^
( 24 H4)

This equation, represents the derivative gain function for all five points in one smooth 

function. Figure (4.3c), shows the mapping of the derivative gain function.

It should also be pointed out that (Kp0, Ki0, and Kd0) all are equal to zero in the above 

equations, which forces the functions to go through the origin.

Also if the tracking zone length is equal to EN , then

E4H=-=r- 4.274

where E4 is used since the fifth point is a zero to allow the function to go through the 

origin.
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K

Figure 4.5 Genetic polynomial interpolation 
mapping of gains
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The mapping of the gain functions given by equations( 4.24, 4.25, and 4.26), are 

show in figure (4.3), where

ek is the error,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error.

In order to use GAs to select the tuning parameters in such a way that as to produce 

satisfactory response in the case of a step input, it is only necessary to encode the 

elements of the tracking zone gain functions, plus the feed forward gains needed for 

the set point change zone, as binary strings. The binary string would be represented 

as

4.3.1 PLANT 1

The procedure for the tuning of genetic control systems can be conveniently illustrated 

by designing a genetic non-linear PID control system for the open loop single-input r 

single-output plant with transfer function given in

{ ( K‘p .... K‘„) ( K'i .... K4i) (K‘„ .... K44) (F„ F,)}
proportional integral derivative set point change

4.28
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The sampling period is 0.1 sec. The arma model for the plant is of the form

yk=“oyk+i>ouk-5 4.29

the plant variables are given by

ao = 0.9 

b0 = 0.8

Where the incremental PID controller is given by equation (4.17), and is governed by 

equations (4.21, 4.22, 4.23).

4.3.1.1 MULTI-ZONED PIN INCREMENTAL PID CONTROLLER

Initially the gain functions and «#d are chosen as functions of first order

backward deference in error, error, and second order backward deference in error 

respectively, as given by equations, (4.21, 4.22, 4.23), i.e. multiple zoned non-linear 

PID controller was designed by means of genetic algorithms, such that the Integral 

square error (ISE)is minimised for the plant. In this case, a population of 100, a 

crossover probability, Pc = 0.65, and a mutation probability, Pm = 0.01, was used,

1 5 7



the first and second order backward difference in error (i.e. Aekmax and A2ekmax), were 

chosen as the tracking maximum values for the design, the diagram in Figure (4.6) 

shows the transient response of the genetically designed controller, figure 4.6a, 4.6b, 

and 4.6c shows the resulting profiles for the proportional, integral, and derivative gains 

respectively.

4.3.1.2 LINEAR PIP CONTROLLER

Finally to contrast the deference between linear and non-linear PID controllers, a 

genetically designed linear PID controller was also considered, the genetic algorithms 

was used to design a fixed gain controller where the values of Kp, Kj, Kd, are chosen 

by the GA to minimise the ISE for the fixed controller. In this case, a population of 

100, a crossover probability, pc = 0.65, and a mutation probability, Pm = 0.01 was 

used. Figure 4.7 shows the transient response of the genetically designed controller.

CONTROLLER MULTI-ZONED PIN LINEAR

ISE 5.005 9.16

Table (4.1)



Table (4.2) shows the gains for the multi-zoned non-linear PID controller.

Gains Zonel Zone2 Zone3 Zone4

0.005 0.076 0.0.3 0.031

X 1.466 1.945 0.5 0.016

Cf{& 0.007 0.009 0.003 0.001
Table (4.2).

Table (4.3) shows the feed forward gains for the non-linear multi-zoned PID controller.

Feed Forward Gains 3.373 3.798

4.3.2 PLANT 2

A second plant was considered, to investigate the effectiveness of the genetic 

algorithms in designing PIN controllers. The plant considered has a transfer function 

of the form:

, v 0. 03573 +0. 044625 z 
81 J z 4(0  . 0513423 -1.4331 z 2)

4.30
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the sampling period is 0.1 sec.

The Arma model for the plant is of the form

y k ~a oV k -1 +a \y k -2 +b 0Uk -5 lUk -6 4.31

The plant variables are given bellow: 

ao = 1.4331,

a, =-0.51342, 

b0 = 0.044625,

b, = 0.03573,

Where the incremental PID controller is given by equation (4.17), and is governed by 

equations (4.21, 4.22, 4.23), i.e. multiple zoned PIN controller was designed by means 

of genetic algorithms, such that the integral square error (ISE), is minimised for the 

plant.

4.3.2.1 MULTI-ZONED PIN INCREMENTAL PID CONTROLLER

Once again the gain functions <7ifp, Cfix, and are chosen as functions of first order 

backward deference in error, error, and second order backward deference in error 

respectively, as given by equations, (4.21, 4.22, 4.23). Then the non-linear PID
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controller was designed by means of genetic algorithms, such that the Integral square 

error (ISE) is minimised for the plant. In this case, a population of 100, a crossover 

probability, Pc=0.65, and mutation probability, Pm = 0.01 was used, the first and 

second order backward deference in error (i.e. Aekmax and A2ekmax ), were chosen as 

the tracking maximum values for the design. Figure 4.8, shows the transient response 

of the genetically designed non-linear controller for the above plant, Figure 4.8a, 4.8b, 

and 4.8c shows the resulting profiles for the proportional, integral, and derivative gains 

respectively.

4.3.2.3 LINEAR PIP CONTROLLER

Finally to contrast the difference between linear and non-linear PID controllers, a 

genetically designed linear PID controller was also considered, the genetic algorithms 

was used to design a fixed gain controller where the values of Kp, Kj, Kj, are chosen 

by the GA to minimise the ISE for the fixed controller. In this case, a population of 

100, a crossover probability, pc = 0.65, and a mutation probability, Pm = 0.01 was 

used. Figure 4.9 shows the transient response of the genetically designed controller.

CONTROLLER MULTI-ZONED PIN LINEAR

ISE 6.003 10.57

Table (4.4)



Table (4.5) shows the gains for the multi-zoned non-linear PID controller.

Gains Zonel Zone2 Zone3 Zone4

Mp 0.013 0.011 0.032 0.257

7.399 6.291 1.048 0.495

0.003 0.002 0.021 0.033

Table (4.5).

Table (4.3) shows the feed forward gains for the non-linear multi-zoned PID controller.

Feed Forward Gains 6.152 2.512

4.3.3 ROBUSTNESS TEST

This test is aimed at finding out how robust are the genetically designed dual zone PID 

controllers are for changes in the plant operating conditions. In this case one of the 

plants used in the illustrative example was modified to produce different plants . To 

do these tests consider plant 1 with transfer function of the form

g(z)  - ___ ^ ___ =____L _
z 4( z -0. 9) z Uz - a )

To produce the new plants the values of a, and T are changed. The tables (4.7) 

show the range of plants considered in this robustness test, and the respective ISEs 

obtained,
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Plant Lin ISE MZ-ISE 0 Of y
1 9.16 5.001 0.80 0.90 5

2 11.764 6.282 0.80 0.90 6

3 13.07 7.437 1.2 0.90 6

4 14.867 12.250 1.2 0.94 6

5 9.976 7.043 1.2 0.94 4

6 13.967 12.286 1.2 0.60 4

7 22.652 17.997 0.50 0.60 4
Table (4.7)

Figure (4.10 to 4.15) show the response of the plants for the non-linear multi-zoned 

PID controller designed using plant 1.

Table (4.8) shows the results of the robustness test using a clipped controller as 

described in chapter 3.

Plant Lin ISE CLFISE 0 a 7

1 9.16 5.001 0.80 0.90 5

2 11.764 6.282 0.80 0.90 6

3 13.07 6.838 1.2 0.90 6

4 14.867 8.168 1.2 0.94 6

5 9.976 5.263 1.2 0.94 4

6 13.967 6.517 1.2 0.60 4

7 22.652 11.993 0.50 0.60 4
Table (4.7)

Figure (4.16 to 4.21) show the response of the plants for the non-linear multi-zoned

clipped PID controller designed using plant 1
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Chapter 4

4.4 CONCLUSIONS

This chapter has emphasized the fact that the use of dual zone technique employed in 

chapter 3, can be employed in the design any incremental PID controller. Also in this 

chapter the Lagrangian Polynomial interpolation technique was used to map the non

linear gain functions for the multi-zoned non-linear controller. The genetic algorithm 

was used to design the controllers. The results have been illustrated by genetically 

designing PID controllers for the linear plants. It has thus been shown that the use of 

Lagrangian polynomial interpolation to map the non-linear gain has improved the 

effectiveness of the controllers compared to the controllers designed using the straight 

line interpolation produced in chapter 3. The robustness test indicate that the non

linear PID controllers are more robust than the linear controllers. Furthermore the 

clipped non-linear PID controllers exhibits far better robust properties than the un

dipped non-linear controllers. This is because the clipping forces the controller to be 

rate limited.
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Hgure (4.6) Transient response of the genetically designed multi-zoned P1D
controller for plant (1)
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Figure (4.7) Transient response of the genetically designed linear PID
controller for plant (1)
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Figure (4.8) Transient response of the genetically designed multi-zoned PID
controller for plant (2)

169



Figure (4.9) Transient response of the genetically designed linear PID
controller for plant (2)

170



Ge
ne

ti
c 

nu
lt

i-
zo

ne
d 

No
n-

Li
ne

ar
 P

ID
 C

on
tr

ol
 f

ig
ur

e 
<4

.1
0)

1 S M 1 P  ] -
WX<w W )a w a v I

vO

CO

oN inH inr* otn in

Figure (4.10) Transient response of robustness test using genetically designed linear
PID controller for plant (2), table (4.7).
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Figure (4.11) Transient response of robustness test using genetically designed
linear PID controller for plant (3), table (4.7).
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Figure (4.12) Transient response of robustness test using genetically designed
linear PID controller for plant (4), table (4.7).
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Figure (4.13) Transient response of robustness test using genetically designed
linear PID controller for plant (5), table (4.7).
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Figure (4.14) Transient response of robustness test using genetically designed
linear PID controller for plant (6), table (4.7).

175

3
2



Figure (4.15) Transient response of robustness test using genetically designed
linear P1D controller for plant (7), table (4.7).
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Figure (4.16) Transient response of robustness test using genetically designed
non-linear multi-zoned PID controller for plant (2), table (4.8).
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Figure (4.17) Transient response of robustness test using genetically designed
non-linear multi-zoned P1D controller for plant (3), table (4.8).
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Figure (4.18) Transient response of robustness test using genetically designed
non-linear multi-zoned PID controller for plant (4), table (4.8).
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Figure (4.19) Transient response of robustness test using genetically designed
non-linear multi-zoned PID controller for plant (5), table (4.8).
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Figure (4.20) Transient response of robustness test using genetically designed
non-linear multi-zoned PID controller for plant (6), table (4.8).
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Figure (4.21) Transient response of robustness test using genetically designed
non-linear multi-zoned PID controller for plant (7), table (4.8).
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Chapter 5
DESIGN OF NON-LINEAR PID CONTROLLERS 

INCORPORATING "FUZZY GAINS" FOR LINEAR PLANTS

5.1 INTRODUCTION

Fuzzy logic was developed by Lotfi A. Zadeh [60], of the University of California 

at Berkeley, it is firmly grounded in mathematical theory. The development of fuzzy 

theory came from the inability to describe some physical phenomena with the exact 

mathematical models dictated by more conventional Boolean models. Fuzziness 

describes event ambiguity. It measures the degree to which an event occurs, not 

whether it occurs. The fact that fuzziness is lacking in precision has led to its 

dismissal by some researchers. Others, however, see fuzzy theory as a powerful tool 

in the exploration of complex problems because of its ability to determine outputs for 

a given set of inputs without using a conventional, mathematical model. Fuzzy theory 

owes a great deal to human language, when people speak of temperature in terms 

such as "hot" or "cold" instead of in physical units such as degrees Fahrenheit or 

Celsius, one can see language becomes a fuzzy variable whose spatial denotation is 

imprecise. In this sense, fuzzy theory becomes easily understood because it can be 

made to resemble a high level language instead of a mathematical language. Fuzzy 

sets with names such as "hot" and "cold" are used to create a membership function. 

What determines the ranges for these fuzzy-sets values or the shape of these 

membership functions. In most cases, membership functions are designed by experts 

with a knowledge of the system being analyzed. However, human experts cannot be 

expected to provide optimal membership functions for a given system. Often, these 

are modified iteratively while trying to obtain optimality. How are these membership
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functions used in fuzzy controllers. In its simplest form a fuzzy logic controller is 

simply a set of rules describing a set of actions to be taken for a given set of inputs. 

It is easiest to think of these rules as if-then statements of the form IF{set of inputs} 

THEN{outputs}.

During the last few years researchers have concentrated on the problem of extracting 

control rules for fuzzy logic control (FLC). Manual extraction of rules has two major 

difficulties. First, experienced operators are not readily available. Second, human 

operators can not represents their control knowledge accurately. Thus efforts have 

been devoted to finding methods to extract rules automatically. For example, Procyk 

and Mamdani [61], have described a self-organizing FLC. Lee and Berenji [62], 

have reported a self-learning FLC employing reinforcement techniques to learn the 

required rules. Pham and Karaboga [47], produced a method for producing relation 

matrix for FLC this method is based on using a GA to optimise relation matrices. 

Jones, Kenway, and Ajlouni [39], presented a genetic design of fuzzy gain scheduled 

controllers for non-linear plants. Homaifar and MacCmick [49], produced a 

simulation design of a membership function and rule sets for fuzzy controllers using 

a GA. Many more researchers have worked in this field [63-67].

In chapter 3, and 4, it was shown that the GA can be used to design non-linear 

controllers for linear plants, by mapping the gains as non-linear functions. In this 

chapter, the technique of fuzzy logic is proposed to map the non-linear gains. Hence, 

the results of chapter 3 and 4, are extended to embrace the tuning of fuzzy non-linear 

PID controllers for linear plants. This technique is totally autonomous, other than
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choosing the number of fuzzy sets to be used in the fuzzy non-linear PID controllers. 

Furthermore, the resulting fuzzy controllers can be tuned to any performance 

measure, such as minimum rise time or minimum integral square error.

5.2 FUZZY LOGIC CONTROL

In conventional PID control, what is modeled is the system or process being 

controlled, whereas in fuzzy logic control the focus is on the human operator’s 

behaviour. In general, fuzzy logic is best applied to non-linear, ill defined systems. 

The basic structure of a fuzzy logic controller (FLC), is conceptually shown in figure 

(5.1). The knowledge base of the FLC is represented by its rules for controlling the 

plant, using the fuzzy rules in the fuzzy inference produces a fuzzy output set B’ from 

a fuzzy input set A’. The fuzzy output,set B’ is defuzzified by the defuzification unit 

to give the crisp output u to control the plant. The input fuzzy set A’ is obtained from 

the fuzzification unit. The input to the later can be variables such as rate of change 

of error or any other variable for which fuzzy rules can be obtained.

Feure f5.1) A block diagram showing cnventional fiizzv controller
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5.3 SYNTHESIS OF FUZZY PIP CONTROLLERS

In conventional fuzzy logic control the focus of design is to:

1) define reference fuzzy sets for the inputs and outputs involved;

2) define a set o f control rules relates the input sets to the output sets;

3) design the membership function to obtain satisfactory control.

In this design method for a simple fuzzy control scheme is proposed, the focus of the 

design is shifted to choosing fuzzy membership function for the PID gains 

incorporated in a conventional PID controller. In this way the problems of 1, 2, and 

3, are all avoided.

The linear SISO plants under consideration are governed on the continuous time set 

T = [0,oo) by state and output equation of respective forms

x ( t ) = A x(t) +bu ( /  ) 5.1

and

y ( t ) = c x  ( f ) 5.2
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where

x(t) € ST is the state vector,

y(t) c 9? is the scalar output from the plant,

u(t) c Si is the scalar input to the plant,

A e S?"*” is the plant matrix, 

b e ST11 is the input matrix, 

c e 9i,x” is the output matrix.

It is assumed that the plant is functionally controllable, so that none of the 

transmission zero of the plant lies at the origin in the complex plane and therefore any 

and all solutions of s in

sin-A, -b
c, o o 5.3

are non-zero [Rosenbrock (1974)]. This assumption ensures that rank M = n +  1 

[Porter and Power (1970)] where the system matrix is given by

M
A, b 
C, 0

5.4
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In order to design a non-linear PID controllers for SISO linear plants governed by 

equations (5.1) and (5.2), it is convenient to consider the behaviour of such plants on 

the discrete-time set Tt = {0, T, 2T,....}.

This behaviour is governed by state and output equations of the respective forms 

[Kwakemaak and Sivan (1972)]

T x k+i = <& T x k + xE T u k 5.5

and

5.6

where

® = e A T 5.7

5.8
o

and

r  = c 5.9

In these equations, xkT e 9T, ukTe9Ì, ykT e 9Ì,, $  e 9inxn, 'k e 9Ìnxl, T e 9Ìlx, and T

e 9i+ is the sampling period.

It is evident from chapter 3 that the linear incremental PID controller can be
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described as

Auk =T( k pbek+Tkjek+kd& e k) 5.10

where

Auk is the incremental change in input,

Ae* is the first order backward difference in error,

A2ek is the second order backward difference in error.

Kp is the current effective value of the proportional gain,

Kj is the current effective value of the integral gain,

Kd is the current effective value of the derivative gain,

T is sampling time.

It is evident from chapter 3 that the error can be written as

t k=vk- y k 5.11

It is also evident from chapter 3 that the first order backward difference in error can 

be written as

6ek =ek-e k. x 5.12

Further more from chapter 3 the second order backward difference in error can be 

expressed as

k =ek +ek-2 5.13
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The incremental controller given by equation (5.10), can take one of two forms, one 

is linear, and the other is non-linear. In this chapter the non-linear form is to be 

investigated. The non-linearities are a function of the plant error.

It follows from equation (5.10), that the incremental non-linear fuzzy PID controller 

can be described by equation of the form

=aP( t e k) t e k +«,- e * +ad( t fe  k) A2e * 5.14

where

G!p(Aek) is a fuzzy function representing non-linear proportional gain, 

ai(ek) is a fuzzy function representing non-linear integral gain, 

ap(A2ek) is a fuzzy function representing non-linear derivative gain.

It is evident from equation (5.14), that the gain functions can be represented by fuzzy 

sets of the form

JTP = a p(Aek) 5.15

Cf(\ — Q!i(ek) 5.16

a = a d(A2ek) 5.17

It follows from equation (5.14) that the incremental non-linear fuzzy PID
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controller can be conveniently be described by equation of the form

Auk = <#pAek + CfCpt + JfdA2ek 5.18

It is important to note that the fuzzy PID controller has been implemented in the 

incremental form to make use of the dual zone tuning technique, and to avoid any 

bumpless transfer techniques associated with the integral state. The diagram in figure 

(5.2) shows a block diagram representing the control system using the fuzzy logic to 

represent the gain functions for the non-linear incremental PID controller.

The new proposed fuzzy controller in this chapter has the following feature:

1) lower number o f parameters than conventional FLC;

2) higher performance than conventional PID;

3) easier to tune than conventional FLC.

This controller will also benefit from the dual zone design methodology introduced 

in chapter 3. To be able to achieve the above requirements, it proposed to use the 

fuzzy logic to map the non-linear gain functions, in the same manner as has already 

been introduced in the previous chapters i.e. using the fuzzy logic to map a non

linear gain functions for non-linear controllers.

In the case of non-linear controllers, where the non-linearity is a function of
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Figure 5.2 System Block Diagram
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the first order backward difference in error, error, and second order backward 

difference in error, one strategy for achieving this goal is to choose the gains «#p, 

and <#d as a function of the first order backward difference in error, error, and second 

order backward difference in error respectively. In this chapter the gains Cf{„ and 

<#d are designed as fuzzy gain profiles for the proportional, integral, and derivative 

gains respectively. Therefore the gain functions of the controller given by equation 

(5.18), are to be mapped as fuzzy logic functions representing the proportional, 

integral, and derivative gains respectively.

The proposed fuzzy controller use the fuzzy methodology to map the non-linear PID 

controller gains. In this controller the fuzzy sets are used to represents the non-linear 

PID gains, each gain is considered separate in the {fuzzification} process 

Also the output of each of the PID gains are also found separately by the 

{(defuzzification} process. Once the fuzzy gain functions are found they are introduced 

into the incremental PID controller to produce a fuzzy non-linear PID controller.

5.3.1 FUZZIFICATION IN THE FUZZY PID CONTROLLER

In the case of non-linear controllers, where the non-linearity is a function of the 

error, first order backward difference in error, and second order backward difference 

in error, one strategy of achieving the fuzzification process is by designing three sets 

of fuzzy rules which map the proportional, integral, and derivative gains against first 

order backward difference in error, error, and second order backward deference
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in error respectively. The fuzzy rules would comprise of fuzzy sets relating the first 

order backward difference in error, error, and second order backward difference in 

error to the proportional integral, and derivative gains respectively. In this case, it is 

necessary to map the first order backward difference in error, error, and second order 

backward difference in error into a collection of fuzzy sets of the form

Degree of 
Membership

Figure 5.3 Fuzzification of gain function

5.3.2 INFERENCE ENGINE

Because of the structure of the proposed fuzzy PID controller, the inference 

mechanism is essentially an interpolation routine, and as such it dose not require the 

use of the Max[Min[function]] operator.
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5.3.3 DEFUZZIFICATION

The purpose of the defuzzification process is to extract quantitative value from the 

fuzzy output set which is then used as control signal. The centroid method has been 

deployed in this research, This method selects the element corresponding to the centre 

of the area under the curve described by the fuzzy set membership function. 

Mathematically this is expressed as

5.19

where m; is the centre of the area of the ith reference set.

where A. B. and C are equal distances 

Figure 5.4 Defuzzification of fuzzy sets
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5.4 GENETIC DESIGN OF A MULTIPLE ZONED FUZZY LOGIC

CONTROLLER

In order to use genetic algorithms to design a dual-zoned fuzzy PID controllers, the 

Parameters associated with the dual-zoned fuzzy controller have to be precisely 

defined. It is evident from previous chapters that the behaviour of dual controller can 

be split into two distinct zones.

The zones are defined as the set-point zone, and the tracking zone. The parameters 

for the controller in the two zones are thus designed together. The performance of the 

dual-zoned controller will be contrasted by considering a number of plants controlled 

by both the genetically designed dual-zoned neural controller, and the genetically 

designed linear PID controller.

5.4.1 PARAMETERS FOR THE SET POINT ZONE

The parameters in this zone are chosen in exactly the same as was introduced in 

chapter 3 section 3.2.3.1 i.e. the GA will search the space for two feed forward 

gains for the set-point zone.
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5.4.2 PARAMETERS FOR THE TRACKING ZONE

In the tracking zone it was found that for the proportional and derivative gains the 

controller operate in a very small region close to zero, and from the equations of the 

input parameters for the tracking zone it can be seen that the controller must have 

individual gain values for the proportional, integral, and derivative gains.

To design the dual zone fuzzy controller the fuzzy gain function introduced earlier 

in this chapter as in equation (5.19), will be used to produce gain function for the 

gains required to produce a non-linear incremental non-linear fuzzy PID controller. 

The gain functions produced will map the whole tracking zone for each of the gains 

(i.e. proportional, integral, and derivative). In order to use GAs to select the tuning 

parameters in such a way that as to produce satisfactory response in the case of a step 

input, it is only necessary to encode the elements of the tracking zone gain functions, 

plus the feed forward gains needed for the set point change zone, as binary strings. 

The GA will be used to generate the location of the centroid of the gain function 

membership functions (c¡). The binary string would be represented as

{ (cP, .... c'N) ( c', .... c'„) ( c a, .... caN) ( F0 F.) >

proportional integral derivative set point change

where the whole string contains the three gain functions elements, plus the feed 

forward gains.

1 9 7



Chapter 5

Figure 5.5 Sequence of GA’s using fuzzy logic to map gain functions
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Random initialization is the approach used to initialize the initial population. The 

system incorporates both the linear plant, and the non-linear fuzzy PID controller, 

the controller is designed by randomly generated sets of tracking zone gain elements, 

and feed forward gains by the GA’s. A simulation test is then carried out on all the 

controllers to test the local stability. In the case of a violation of stability in any of 

the cases, the randomly generated set of tracking zone gains elements, and feed 

forward gains will not be included in the initial population. This type of initialization 

is essential in this type of design, since otherwise their would be a danger of creating 

an initial population which many of its members violate the constraints on the 

controllers being designed, figure (5.5) shows the sequence of genetic algorithms. 

Following the initialization, the objective function is introduced and its value is 

calculated using decoded values of the parameters in each string. Thus for example, 

if minimum ISE is regarded as the ultimate design requirement, genetic algorithms 

can be readily used to select the best set of tracking gains elements, and the feed 

forward gains such that the ISE is minimised.

In the genetic design of non-linear PID controllers the plant under consideration is 

subjected to a command input ( i.e. unit step), then the performance index is 

computed for the plant, therefore, for each member in the population the function

J - N
ISE

i~ 1
6 .2 0

199



Chapter 5

is evaluated, where

ej=v -yj  and N = j ,

and ej e Si , is the error signal, yj e 9i ,is the output signal, T is sampling time, and 

r  is an appropriately chosen settling time.

Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation. It 

is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of violation of the constrained 

the corresponding set of tracking zones gains elements and the feed forward gains 

produces large ISE and the result will be zero or low fitness, and by the action of the 

selection operator it would not be chosen for the next generation.

5.5 ILLUSTRATIVE EXAMPLES

In order to use the fuzzy logic to map the non-linear gain functions for the non-linear 

incremental PID controller, the number of fuzzy rules used in each gain function has 

to be defined. In this chapter it is proposed to use 4 rules for each of the gain 

functions. Hence it can be seen from the above analysis that the proportional gain 

function can be found by mapping the change in tracking error Ae^ into Cf(r
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The gain functions will be used in the incremental controller given in equation (5.18) 

to produce a fuzzy PID controller. The centroid in the gain functions are encoded 

in the GA as binary strings, The GA will search and produce centroid that give the 

best ISE for the controller. The GA binary string is given by:

{ ( cp, ...... cp4) ( c‘, ......c!4) ( cd, .......  cd4) ( F0 F.) }

proportional integral derivative aet point change

As it can be from the string their are 4 centroid (parameters) needed for each of the 

gain functions, which means that the GA will be searching for 14 Parameters in total. 

The parameters are 12 centroid for the three gain functions in the tracking zone, plus 

the two feed forward gains needed for the set-point zone.

5.5.1 PLANT 1

The procedure for the tuning of genetic control systems can be conveniently 

illustrated by designing a genetic non-linear PID control (GNC) system for the open 

loop SISO plant with transfer function of the form

g(z ) 0 . 8
z 4(z  -0 . 9)

5.21

the sampling period is 0.1 sec.
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The Anna model for the plant is of the form

yk=a <yk-i+bouk-5 5.22

The plant variables are given by 

ao = 0.9 

b0 = 0.8

where the incremental PID controller is given by equation (5.18). The controller is 

implemented in the incremental form so as, to avoid any bumpless transfer 

techniques associated with the integral state, because the integral state would require 

bumpless transfer every time the integral gain is changed. The controller is designed 

using the dual zone method introduced earlier.

5.5.1.1 DUAL-ZONED FUZZY CONTROLLER

Initially the gains and are chosen as a function of the plant error such as

that given by equations (5.15, 5.16, 5.17), i.e. dual zoned fuzzy PID controller. 

Then the controller was designed by means of genetic algorithms, so as that the 

Integral square error is minimised for the plant.

In this case, a population of 100, a crossover probability, Pc=0.65, and a mutation
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probability, Pm = 0.01, was used, also this case the maximum value for both the first 

and second order backward diference in error ( Aekmax and A2ekmax ), were chosen for 

this design. Figure 5.6 shows the transient response of the genetically designed 

controller.

5.5.1.2 LINEAR CONTROLLER

To contrast the deference between linear and non-linear PID controllers, a 

genetically designed linear PID controllers was constructed, the genetic algorithms 

was used to design a fixed gain controller where the values of Kp, Kif and Kj are 

integer values chosen by the GAs to minimise the ISE for the fixed controller.

In this case, a population of 100, a crossover probability, pc = 0.65, and a mutation 

probability, Pm = 0.01 was used. Figure 5.7 shows the transient response of the 

genetically designed controller.

CONTROLLER Multi-Zoned Fuzzy LINEAR PID

ISE 5.14 <?J6
table (5.1)

Table (5.2) shows the gains for the multi-zoned non-linear PID controller.

Gains Zonel Zone2 Zone3 Zone4

p 0.561 1.139 0.682 0.469

5.033 3.407 3.929 0.000

0.374 0.243 1.145 0.7

Table (5.2).
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Table (5.3) shows the feed forward gains for the 

controller.

non-linear multi-zoned PID

Feed Forwad Gains 4.021 6.157

Table (3.3).

5.5.2 PLANT 2

A second plant was considered, to investigate the effectiveness of the genetic 

algorithms in designing linear, and non-linear controller. The plant considered has a 

transfer function of the form:

g ( z )
0. 03573 +0. 044625 z 

z \ 0.0513423 -1.4331 z 2)

the sampling period is 0.1 sec.

The Arma model for the plant is of the form as

5.23

y k=a<y k-\+a xy k-2 +bQuk_s+bxuk _6 5.24

204



Chapter 5

The plant variables are given by, 

ao = 1.4331, 

a! =-0.51342, 

b0 = 0.044625, 

bj = 0.03573,

and the incremental PID controller is governed by equation (5.18). The plant was 

tested under different operating conditions as shown in the examples bellow:

5.5.2.1 DUAL-ZONED FUZZY CONTROLLER

Initially the gains CKV, and Jifd, where chosen as in equations (5.15, 5.16, 5.17), 

i.e. dual-zoned PID controller with linear plant. The controller was designed by 

means of genetic algorithms, such that the Integral Square Error ISE is minimised for 

the plant.

In this case, a population of 100, a crossover probability, Pc = 0.65, and mutation 

probability, Pm = 0.01 was used, also this case the maximum value for both the first 

and second order backward diference in error ( Aekmax and A2ekmax), were chosen for 

this design. Figure (5.8), shows the transient response of the genetically designed 

non-linear controller for the above plant.
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5.S.2.2 LINEAR CONTROLLER

Finally to contrast the deference between linear and non-linear PID controllers, a 

genetically designed linear PID controller constructed, the genetic algorithms was 

used to design a fixed gain controller where the values of Kp, Kj, Kd , are integer 

values chosen by the GA’s to minimise the ISE for the fixed controller. In this case, 

a population of 100, a crossover probability, pc = 0.65, and a mutation probability, 

Pm= 0.01 was used. Figure 5.9 shows the transient response of the genetically 

designed controller response.Table (5.4) shows the ISEs for both the multi-zoned 

nueral and the linear PID controllers.

CONTROLLER FUZZY PID LINEAR PID

ISE 6.186 10.57

Table (5.4)

Table (5.5) shows the gains for the multi-zoned nueral PID controller.

Gains Zonel Zone2 Zone3 Zone4

<#P 0.297 0.722 0.432 0.848

ct(x 5.852 2.837 2.374 1.175

Xi 2.661 3.947 3.007 3.492

Table (5.5).

Table (5.6) shows the feed forward gains for the multi-zoned nueral PID controller.

Feed Forwad Gains 2.122 5.682

Table (5.6).
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5.5.3 ROBUSTNESS TEST

This test is aimed at finding how robust are the genetically designed dual zone PID 

controllers are for changes in the plant operating conditions. In this case the plants 

used in the illustrative example were modified to produce different plants . To do this 

test consider plant 1 with transfer function of the form

p (z ) = -----QJ*___ =____0___
z 4(z-0 . 9) z i ( z - a)

To produce the new plants the value of a, 0, and y  are changed. The tables (5.7) 

show the range of plants considered in this robustnes test, and the respective ISEs 

obtained,

Plant ISE P a 7

1 5.242 0.8 0.90 5

2 6.363 0.8 0.90 6

3 12.615 1.2 0.90 6

4 30.412 12 0.94 6

5 4.741 1.2 0.94 4

6 10.547 1.2 0.60 4

7 24.429 0.5 0.60 4
We~(5.7)

Figure (5.10 to 5.15) show the response of the plants for the non-linear multi-zoned

PID controller designed using plant 1.
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Table (5.8) shows the results of the rubstness test using a cliped controller as 

introduced in chapter 3.

Plant Lin ISE CLHSE 0 oc y
1 9.16 5.242 0.80 0.90 5

2 11.76 6.363 0.80 0.90 6

3 13.07 7.555 1.2 0.90 6

4 14.867 9.365 1.2 0.94 6

5 9.976 4.378 1.2 0.94 4

6 13.967 6.440 1.2 0.60 4

7 22.652 17.151 0.50 0.60 4
table (5.8)

The transient response of the clipped controller robustness tests are shown in figure 

(5.16-5.21) respectively.

During this research an alternative strategy was also investigated for the fuzzy logic 

control. This strategy was more in-line with conventional fuzzy logic control. In this 

case the fuzzy sets were used to produce control outputs directly, i.e. Au’s. These 

results were in all cases significantly worse than the ones obtained by using the fuzzy 

sets to map the PID gains
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5.6 CONCLUSIONS

In this chapter the dual zone technique was used to design a simple fuzzy PID 

controller. The fuzzy sets were used to map the non-linear PID gains to produce a 

genetically designed fuzzy PID controller. It has thus been shown in this chapter that 

a simple Fuzzy PID controller can produce very effective results. This design shows 

that the use of fuzzy sets to map the gain functions combined with the use of dual 

zone technique in a genetically designed controller can benefit from the fuzzy logic 

ability at a reduced number of parameters for the GA to find compared to a full fuzzy 

logic controller. Indeed comparing the results obtained by genetically designed dual- 

zoned fuzzy controller with the results obtained for the genetically designed fuzzy 

controller [47], it shows that the dual-zoned fuzzy controller designed in this thesis 

has higher performance, which indicates that the dual zoned fuzzy controller designed 

in this chapter produce faster tracking and smaller ISE for the plant. The robustness 

test indicate that the non-linear PID controllers are more robust than the linear 

controllers. Furthermore the clipped non-linear PID controllers exhibits far better 

robust properties than the un-clipped non-linear controllers. This is because the 

clipping forces the controller to be rate limited.

2 0 9
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Figure (5.6) Transient response of the genetically designed dual-zoned fuzzy FID
controller for plant (1)
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Figure (5.7) Transient response of the genetically designed linear PID
controller for plant (1)
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Figure (5.8) Transient response of the genetically designed dual-zoned fuzzy FID
controller for plant (2)
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Figure (5.9) Transient response of the genetically designed linear PID
controller for plant (2)
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Figure (5.10) Transient response of robustness test using genetically designed non-linear
P1D controller for plant (2), table (5.7).
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Figure (5.11) Transient response of robustness test using genetically designed
non-linear PID controller for plant (3), table (5.7).
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Figure (5.12) Transient response of robustness test using genetically designed
non-linear PID controller for plant (4), table (5.7).
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Figure (5.13) Transient response of robustness test using genetically designed
non-linear PID controller for plant (5), table (5.7).
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Figure (5.14) Transient response of robustness test using genetically designed
non-linear PID controller for plant (6), table (5.7).
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Figure (5.15) Transient response of robustness test using genetically designed
non-linear P1D controller for plant (7), table (5.7).
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Figure (5.16) Transient response of robustness test using genetically designed
non-linear clipped P1D controller for plant (2), table (5.8).

220

3
2



Figure (5.17) Transient response of robustness test using genetically designed
non-linear clipped P1D controller for plant (3), table (5.8).
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Figure (5.18) Transient response of robustness test using genetically designed
non-linear clipped P1D controller for plant (4), table (5.8).
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Figure (5.19) Transient response of robustness test using genetically designed
non-linear clipped PID controller for plant (5), table (5.8).

223



Figure (5.20) Transient response of robustness test using genetically designed
non-linear clipped PID controller for plant (6), table (5.8).
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Figure (5.21) Transient response of robustness test using genetically designed
non-linear clipped PID controller for plant (7), table (5.8).
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Chapter 6
DESIGN OF NON-LINEAR FID CONTROLLERS 

INCORI*ORATlNG ’’NEURAL GAINS” FOR LINEAR PLANTS

6.1 INTRODUCTION

The study of neural networks is an attempt to understand the functionality of the 

brain. In particular it is of interest to define an alternative ’artificial’ computational 

form that attempts to mimic the brain’s operation in one or a number of ways. In 

the last few years interest in the field of neural networks has increased considerably, 

due partly to a number of significant break-through in research on network types 

and operational characteristics, but also because of some distinct advances in the 

power of computer hardware which is readily available for net implementation. It 

is worth adding that much of the recent drive has, however, arisen because of 

numerous successes achieved in demonstrating the ability of neural networks to 

deliver simple and powerful problem solutions, particularly in the field of learning 

and pattern recognition, both of which have proved to be difficult areas for 

conventional computing.

Digital computers provide a media for well defined, numerical algorithm processing 

in a high performance environment. This is in direct contrast to many of the 

properties exhibited by biological neural systems, such as creativity, generalisation 

and understanding. However computer-based neural networks, both of hardware and 

software forms, at the present time provide a considerable move forward from 

digital computing in the direction of biological systems, indeed several biological
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neural system properties can be found in certain neural network types. This move 

is supported by a number of novel practical examples, even though these tend to be 

in fairly scientific areas, e.g. communication processing and pattern recognition. 

Because of its inter-displenaery bases encompassing computing, electronics, biology, 

neuropsychology etc, the field of neural networks attracts a variety of interested 

researchers and implemented from a broad range of backgrounds 

[41] [45] [46] [68] [69] [70]. In this chapter the neural networks is used to map PID 

gains as non-linear function, the gains are mapped separately for each function then 

they are introduced into the Dual zoned incremental PID controllers.

6.1.1 NEURAL NETWOKS AND CONTROL

The use of neural network for system control and signal processing has been well 

accepted. The most noticeable applications are in the area of telecommunication, 

active noise control, pattern recognition, prediction and financial analysis, process 

control, speech recognition [96][97]. Such wide spread use of neural network is 

mainly due to its behavioral emulation to the nature of human brain and its 

mathematically formulated structure.

6.2 SYNTHESIS

In order to design the digital neural PID controller, it is proposed to use the dual 

zoned method introduced in chapter 3.

The SISO plants under consideration, are governed on the continuous time set
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T=(0,oo], by state and output equation of respective forms 

x ( t )  =Ax(t ) +bu(t )

and

y( 0 =c*(0

6.1

6.2

where

x(t) e 9T is the state vector,

y(t) e 9? is the scalar output from the plant,

u(t) e 9Î is the scalar input to the plant,

A e 9Î1"" is the plant matrix, 

b e 3Txl is the input matrix, 

c e 9îlxn is the output matrix.

It is assumed that the plant is functionally controllable, so that none of the 

transmission zero of the plant lies at the origin in the complex plane and therefore 

that any and all solutions of s in

sIn-A, -b 
C, 0 0 6.3

are non-zero [Rosenbrock (1974)]. This assumption ensures that rank M = n + 1
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[Porter, and Power (1970)] where the system matrix is given by

A, b
M 6.4

C, 0

In order to design non-linear PID controllers for SISO linear plants governed by 

equations (6.1) and (6.2), it is convenient to consider the behaviour of such plants 

on the discrete-time set Tt = {0, T, 2T,....}.

This behaviour is governed by state and output equations of the respective forms 

[Kwakemaak and Sivan (1972)]

Txk+i =®r x k+x¥Tuk 6.5

and

6.6

where

$=eAT 6.7

T
6.8

o
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and

r  = c 6.9

In these equations, xkT e 9in, ukTe9?, ykT € 9t,, $  c St“ ", ¥  e Si1“1, T e Si1*, and T 

e 9t+ is the sampling period.

It is evident from the previous chapters that the linear incremental PID controller 

can be described as

^uk=T( kp^e k+Tkie k+kd^2ek) 6.10

where

Auk is the incremental change in input,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error.

Kp is the current effective value of the proportional gain,

K; is the current effective value of the integral gain,

Kd is the current effective value of the derivative gain,

T is sampling time.

It is evident from the previous chapters that the error can be written as

*k**k-yk 6.11

2 3 0



Chapter 6

It is also evident from the previous chapters that the first order backward difference 

in error can be written as

t e k=ek -e k_ j 6.12

Further more from the previous chapters the second order backward difference in 

error can be expressed as

t f e k =ek -2ek_x+ek_2 6.13

5.2.1 NON-LINEAR INCREMENTAL NEURAL PIP CONTROLLERS

The incremental controller given by equation (6.10), can take one of two forms, one 

is linear, and the other is non-linear. In this chapter the non-linear form is to be 

investigated. The non-linearities are a function of the plant error.

It follows from equation (6.10), that the incremental non-linear PID controller can 

be described by equation of the form

^ k  =VP( ^ k) ^ e k +Vi e k +Vd( A2e k) A2e k 6.14

where

rjp(Aek) is a neural function representing non-linear proportional gain, 

T7i(ek) is a neural function representing non-linear integral gain, 

i?p(A2ek) is a neural function representing non-linear derivative gain.
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It is evident from equation (6.14), that the gain functions can be represented by 

equations of the form

= i?P(Aek) 6.15

= r?i(ek) 6.16

= *?d(A2ek) 6.17

The above gain functions are to be mapped as a neural networks gain profiles, as 

will be illustrated later in this chapter.

It follows from equation (6.14) that the incremental non-linear neural networks PID 

controller can be conveniently be described by equation of the form

Auk = ¿¡^Aek + Jifck + <#dA2ek 6.18

It is important to note that the PID controller has been implemented in the 

incremental form to make use of the dual zone tuning technique, and to avoid any 

bumpless transfer techniques associated with the integral state. Figure (6.1) shows 

a block diagram representing the control system using the neural networks to 

represent the gain functions for the non-linear incremental PID controller.

2 3 2



Chapter 6

6.2.2 NEURAL NETWORK

A fundamental aspect of artificial neural networks is the use of simple processing 

elements which are essentially models of neurons in the brain. These elements are 

then connected together in a well structured fashion, although the strength and 

nature of each of the connecting links dictates the overall operational characteristics 

for the total networks. By selecting and modifying the link strengths in an adaptive 

fashion, so the basis of the network learning is formed along the lines of the 

previous (Aleksander and Morton, 1990) definition.

One important property of a neural network is its potential to infer and induce from 

what might be incomplete or non-specific information. This is however also coupled 

with an improvement in the performance due to the network learning appropriate 

modes of behaviour in response to problems presented, particularly where real- 

world data is concerned. The network can, therefore, be taught particular patterns 

of data presented, such that it can subsequently not only recognise such patterns 

when they occur again, but also recognise similar patterns by generalisation.

6.2.2.1 NEURAL NETWORK ELEMENTS

In general, neural networks consist of a number of simple node elements, which are 

connected together to form either a single layer or multiple layers. The relative 

strengths of the input connections and also the connections between layers are then 

decided as the network learns its specific tasks. This learning procedure can make
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use of an individual data set, after which the strengths are fixed, or learning can 

continue throughout the network’s lifetime, possibly in terms of a faster rate in the 

initial period with a limited amount of allowance in the steady state. The basic node 

elements employed in neural networks differ in terms of the type of network 

considered. However one commonly encounter model is a form of the McCulloch 

and Pitts neuron (Aleksander, 1991), and is shown in figure (6.2). In this the inputs 

to the node take the form of data items either from the real-world or from other 

network elements, possibly from the outputs of nodes in a previous layer.

The output of the node element is found as a function of the summed weighted 

strength inputs.

x,

' ■ -________  Chapter 6

figure (6.2) Basic Neuron Model 

where

X| input value;

Wj connecting weighting; 

y — / ( s) output function.
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The output of the neuron is determined as:

y =f  ( ^ wix i) ( i= l,2 ,......n),i =1

/  is a defined output function that may be a sigmoid.

6.19

This output signal can then be employed directly, or it can be further processed by 

an appropriate thresholding or filtering action, a popular form being a sigmoid 

function. The above follows the forward propagation neural networks technique.

6.2.2.2 FORWARD PROPAGATION THROUGH MULTILAYER 

NEURAL NETWORKS

A multi layer feed forward neural network consists of a number of layers which 

each having an arbitrary number of neurons. Each neuron is connected to neurons 

in adjacent layers, as indicated in figure (6.3). However, in more general situations, 

it is possible for individual neurons to be connected to neurons in other layers apart 

from the adjacent layers. In figure (6.3), the input layer receives an input vector 

element through a local activation function. These activations then pass through 

weighted values to the next layer of the neurons where the same procedure takes



place until the output layer is reached.

Figure (6.3) Typical Layer of four Neuron Model connected to an output Neuron

In the case of the neural network with the input vector element, xlt this element is 

passed to an activation function, fj0, so that

y . (0)=/ . (0)(X .(0)) 6.20

Here, the bracketed superscript refers to the layer and the subscript index to the 

particular neuron in the layer.

Thus, in the first layer,

y i 1) = 6.21
J i =1
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and

y / 1)= / / ,) ( y / ,))

In the second layer,

M

6.22

6.23

and

n (2)=/*(2)(?* (2)) 6.24

Finally, in the output layer,

y
N

,<3>v (2)r{3) = 'Lw;k- ' y k'
k-i

6.25

and

y r(3)= / , (3)( y r(3)) 6.26

As can be seen from the above equation the number of neurons in any layer, and 

the number of layers can both be chosen by designer.

Also it is evident from the previous chapters that the sigmoid function is ideal to
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map the non-linear gain functions needed for the non-linear neural PID controller 

in this chapter.

From the above equation it can be seen that the neural network can be used to map 

the non-linear gain function required by the non-linear incremental PID controller.

6.3 NEURAL PID CONTROLLER GAIN FUNCTION MAPPING 

In order to use a neural network to map the non-linear gain functions for the non

linear incremental PID controller, the number of layers, and the number of neurons 

in the layers has to be defined. In this chapter it is proposed to use 1 layer with 4 

neurons, plus 1 input, and 1 input neuron. From the above analysis it can be seen 

that the output function for the proposed network is given by:

this is the output of the input layer, thus, the input to the first layer, is given by

yA0)=f i (0)( ek m ) 6.27

6.28

and the output of the first layer is given by

6.29
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Finally in the output layer

6.30

and the output of the output layer is given by

6.31

From the above it can be seen that the neural network can be used to map the non

linear PID gain functions required by the non-linear PID controllers.

The above gain function is the integral gain function since the input to the network 

is ek the tracking error, for the other two gain functions the input to the network is 

Aek and A2ek for the proportional, and derivative gain function respectively. 

figure(6.4) shows the neural network representation of the three gain functions as 

they are mapped into the system.

Input layer Hidden layer Output layer

Figure (6.4) Neural network representation of a gain function
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The non-linear gain function in figure (6.4) is for an integral gain function. Also as 

it can be seen from figure (6.4), the neural networks dose not have a bias input. 

This is because the gain functions are required to go through the origin. By omitting 

the bias and ensuring the sigmoidal function goes through the origin, there are less 

parameters in the neural network, and it is easier to search for the remaining 

parameters. The diagram in figure (6.5a) shows a typical sigmoidal function 

resulting from a neural networks with a bias, and figure (6.5b) shows the sigmoidal 

function used in this research.

y

Figure (6.5a) Typical Sigmoidal function

Figure (6.5b) Unbiased Sigmoidal function
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6.4 GENETIC DESIGN OF A DUAL- ZONED NEURAL NON-LINEAR

PIP CONTROLLERS

In order to use genetic algoritms to design neural dual zoned non-linear PID 

controllers, the parameters associated with the dual-zoned controller have to be 

precisely defined. It is evident from previous chapters that the behaviour of dual 

controller can be split into two distinct zones. The zones are defined as set-point 

zone, and tracking zone.

The parameters for the controller in the two zones are thus designed together. The 

performance of the dual-zoned controller will be contrasted by considering a number 

of plants controlled by both the genetically designed dual-zoned neural non-linear 

controller, and the genetically designed linear PID controller.

6.4.1 PARAMETERS FOR THE SET POINT ZONE

The parameters in this zone are chosen in exactly the same as was introduced in 

chapter 3 section 3.2.3.1 i.e. the GA will search the space for two feed forward 

gains for the set-point zone.

6.4.2 PARAMETERS FOR THE TRACKING ZONE

In the tracking zone it was found that for the proportional and derivative gains the 

controller operate in a very small region close to zero, and from the equations of
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the input parameters for the tracking-zone it can be seen that the controller must 

have individual gain values for the proportional, integral, and derivative gains. The 

gains used in this zone are mapped as shown in figure (6.5).

To design the dual zone neural controller the neural gain function introduced earlier 

in this chapter as in equation (6.18), will now be used to produce gain function for 

the gains required to produce a non-linear incremental neural PID controller. The 

gain functions produced will map the whole tracking zone for each of the gains (i.e. 

proportional, integral, and derivative).

Figure (6.5) General Gain Function Mapping Using Neural 
Interpolation to Represents Proportional Gain

In order to use GAs to select the tuning parameters in such a way that as to produce 

satisfactory response in the case of a step input, it is only necessary to encode the 

elements of the tracking zone gain functions, plus the feed forward gains needed for
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the set point change zone, as binary strings. The binary string would be represented 

as

{ (w pn .... wp2n) (w*;;.... w 2n) ( wd„ .... wd2n) ( F0 F,)}

proportional integral derivative set point change

where the whole string contains the neuron weights associated with the three gains, 

plus the feed forward gains.

Random initialization is the approach used to initialize the initial population. The 

process of interviewing introduced in chapter 2 is used to insure that the randomly 

generated variables do not initially violate any constraints on the function to be 

tuned. The system incorporates both the linear plant, and the non-linear PID 

controllers, the controllers are designed by randomly generated sets of tracking zone 

gains elements, and feed forward gains by the GA’s. A simulation test is then 

carried out on all the controllers to asses local stability.

In the case of a violation of stability in any of the cases, the cases, the randomly 

generated set of tracking zone gains elements, and feed forward gains will not be 

included in the initial population. This type of initialization is essential in this type 

of design, since otherwise their would be a danger of creating an initial population 

which many of its members violate the constraints on the controllers being designed, 

figure (6.6) shows the sequence of genetic algorithms.

2 4 4
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Following the initialization, the objective function is introduced and its value is 

calculated using decoded values of the parameters in each string. Thus for example, 

if minimum ISE is regarded as the ultimate design requirement, genetic algorithms 

can be readily used to select the best set of tracking gains elements, and the feed 

forward gains such that the ISE is minimised.

In the genetic design of non-linear PID controllers the plant under consideration is 

subjected to a command input ( i.e. unit step), then the performance index is 

computed for the plant. Therefore, for each member in the population the function

ISE =Y je
j =1

6.32

is evaluated, where 

ej=v-y

and ej c 9i , is the error signal, y3 e 9i ,is the output signal, T is sampling time, 

and r  is an appropriately chosen settling time.
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Figure 6.6 Sequence o f GA’s using neural networks to map gain functions
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Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation. 

It is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of violation of the 

constraints the corresponding set of tracking zones gains elements and the feed 

forward gains produces large ISE and the result will be zero or low fitness, and by 

the action of the selection operator it would not be chosen for the next generation.

6.5 ILLUSTRATIVE EXAMPLES

To design the dual zone neural controller the analysis done earlier in this chapter 

to produce gain functions using the neural network gain function mapping given by 

equation (6.26), will now be extended to produce gain function for the gains 

required to produce a non-linear incremental neural PID controller. The gain 

functions produced will map the whole tracking zone for each of the gains (i.e. 

proportional, integral, and derivative).

The gain function produced in equation (6.26) is the integral gain function since the 

input to the network is ek the tracking error, for the other two gain functions the 

input to the network is the first order backward difference in error Aek, and the 

second order backward difference in error A2ek for the proportional, and derivative 

gain function respectively.
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It is evident that the proportional gain function is given by

} 6 . 3 3

this is the output of the input layer, thus, the input to the first layer, is given by

y / 1) = E < (1)y i (°) 6.34
’ i =1

and the output of the first layer is given by

«-35

Finally in the output layer

M
y kW = £ w t t 2)y j W  6.36

and the function representing the proportional gain is given by

•*r = f km ( y km ) 6.37

It can be seen that the above analysis can be used to produce the integral gain as

y i (0) (0)( e jk<0)) 6.38
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this is the output of the input layer, thus, the input to the first layer, is given by

y ^ - i w ^ y ^  6.39

and the output of the first layer is given by

> ' / < , , = / y ( , ) 0 ’/ <1))  « - 4 0

Finally in the output layer

M
6 A l

and the function representing the integral gain is given by

X  = / V 2)( n (2)) 6.42

Finally It is evident that the derivative gain function is given by

y / i0)= / i (0)(A2**(0)) 6.43

this is the output of the input layer, thus, the input to the first layer, is given by

y j ^  = t  6.44
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and the output of the first layer is given by

y . O U / . n ^ . O ) )  6.45

Finally in the output layer

M
y kW ^ w ^ y t W  6.46

and the function representing the derivative gain is given by
*

■X, =  f km ( y km ) 6.47

9

The gain functions will be used in the incremental controller given in equation 

(6.18) to produce a neural PID controller. The weights in the gain functions are 

encoded in the GA as binary strings, The GA will search and produce weight that 

give the best ISE for the controller. The GA binary string is given by:

{ ( wp,j .... wp24) ( w'u .... w‘24) ( w d„ .... wd24) ( F0 Fj)}

proportional integral derivative set point change

As it can be from the string their are 8 parameters (weights) needed for each of the 

gain functions, which means that the GA will be searching for 26 Parameters in 

total. The parameters are 24 weights for the three gain functions in the tracking 

zone, plus the two feed forward gains needed for the set-point zone. v
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6.5.1 PLANT 1

The procedure for the tuning of genetic control systems can be conveniently 

illustrated by designing a genetic non-linear PID control system for the open loop 

SISO plant with transfer function of the form

g ( z ) 0. 8
z 4(z -0. 9)

6.48

the sampling period is 0.1 sec.

The Anna model for the plant is of the form

y k =aoyk-i+bouk-5 649

The plant variables are given by 

ao = 0.9 

b0 = 0.8

where the incremental PID controller is given by equation (6.18). The controller is 

implemented in the incremental form so as, to avoid any bumpless transfer 

techniques associated with the integral state, because the integral state would require 

bumpless transfer every time the integral gain is changed. The controller is designed 

using the dual zone method introduced earlier.

2 5 1
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6.5.1.1 NON-LINEAR NEURAL PIP CONTROLLER

Initially the gains <#p, Cf(x and CfiA are chosen as a function of the first order backword 

deference in error, error, and second order backword deference in error respectively 

as that given by equations (6.37, 6.42, 6.47), i.e. dual zoned neural PID controller. 

Then the controller was designed by means of genetic algorithms, so as that the 

Integral square error is minimised for the plant.

In this case, a population of 100, a crossover probability, Pc=0.65, and a mutation 

probability, Pm =  0.01, was used, also this case the maximum value for both the 

first and second order backward difference in error ( Aekmax and A2ekmax ), were 

chosen for this design .Figure (6.8) shows the transient response of the genetically 

designed controller.

6.5.1.2 LINEAR PIP

To contrast the difference between linear and non-linear PID controllers, a 

genetically designed linear PID controllers was also condidered, the genetic 

algorithms was used to design a fixed gain controller \”here the values of Kp, Kit 

and Kd are chosen by the GAs to minimise the ISE for the fixed controller.

In this case, a population of 100, a crossover probability, pc = 0.65, and a mutation 

probability, Pm = 0.01 was used. Figure (6.9) shows the transient response of the 

genetically designed controller. The ISEs for both the multi-zoned nueral and the 

linear PID controllers are shown in table (6.1).

252



Chapter 6

CONTROLLER Multi-Zoned Neural UNEAR

ISE 5.524 9.16

Table (6.1)

Table (6.2) shows the weights for the multi-zoned non-linear PID controller gains.

Gain W ll W12 W13 W14 W21 W22 W23 W24

8.546 4.273 0.356 5.697 9.614 6.766 3.917 5.341

M. 6.409 8.902 4.629 7.834 7.478 4.273 5.697 7.834

Mi 0.712 1.068 9.614 6.053 9.614 1.068 4.273 0.002

Table (6.2).

Table (4.3) shows the feed forward gains for the multi-zoned nueral PID controller.

Feed Forwad Gains 0.712 11.039

Table (6.3).

6.5.2 PLANT 2

A second plant was considered, to investigate the effectiveness of the genetic 

algorithms in designing linear, and non-linear controller. The plant considered has
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a transfer function of the form:

g ( z )
0. 03573 +0. 044625 z 

z 4( 0.0513423 -1.4331 z 2)
3.50

the sampling period is 0.1 sec.

The Arma model for the plant is of the form as

y k =aoyk-i+aiyk-2 +b0uk-5 +b iu k . 6 3.51

The plant variables are given by,

ao = 1.4331,

a, =-0.51342, 

b0 = 0.044625,

b, = 0.03573,

and the incremental PID controller is governed by equation (6.18). The plant was 

tested under different operating conditions as shown in the examples bellow:

6.5.2.1 NON-LINEAR NEURAL PID CONTROLLER

Initially the gains «51', CJi„ and «%, where chosen as a function of first order 

backward difference in error, error, and second order backward difference in error 

respectively, asthat given by equations (6.37, 6.42, 6.47), i.e. dual-zoned PID 

controller with linear plant. The controller was designed by means of genetic
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algorithms, such that the Integral Square Error ISE is minimised for the plant.

In this case, a population of 100, a crossover probability, Pc = 0.65, and mutation 

probability, Pm = 0.01 was used, also this case the maximum value for both the 

first and second order backward difference in error ( Aekmax and A2ekmax ), were 

chosen for this design. Figure (6.10), shows the transient response of the genetically 

designed non-linear controller for the above plant, Figure 6.9a, 6.9b, and 6.9c 

shows the resulting profiles for the proportional, integral, and derivative gains 

respectively.

6.5.2.2 LINEAR PIP

Finally to contrast the deference between linear and non-linear PID controllers, a 

genetically designed linear PID controller constructed, the genetic algorithms was 

used to design a fixed gain controller where the values of Kp, Kit K,,, are integer 

values chosen by the GA’s to minimise the ISE for the fixed controller. In this 

case, a population of 100, a crossover probability, pc = 0.65, and a mutation 

probability, Pm = 0.01 was used. Figure 6.11 shows the transient response of the 

genetically designed controller. The ISEs for both the multi-zoned neural and the 

linear PID controllers are shown in table (6.4).

CONTROLLER Multi-Zoned Neural LINEAR

ISE 6.466 10.57
Table (6.4).
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Table (6.5) shows the weights for the multi-zoned non-linear PID controller gains.

Gain W1I W12 W13 W14 W21 W22 W23 W24

Cfi]p 3.254 0.001 0.465 11.16 2.324 3.254 7.438 4.649

8.368 0.465 10.23 11.62 3.254 14.41 13.02 8.368

A « V.../>*
4.649 12.55 3.254 11.62 13.95 12.55 10.69 3.719

Table (6.5).

Table (6.6) shows the feed forward gains for the multi-zoned nueral PID controller.

Feed Forwad Gains 0.930 4.649

6.5.3 ROBUSTNESS TEST

This test is aimed at finding how robust are the genetically designed dual zone PID 

controllers are for changes in the plant operating conditions. In this case the plants 

used in the illustrative example were modified to produce different plants . To do 

this test consider plant 1 with transfer function of the form

g ( z ) = ___0-8 _ P
z 4(z -0. 9) z Y(z -a)

To produce the new plants the value of a, (3, and y are changed. The tables (6.7) 

show the range of plants considered in this robustncs test, and the respective ISEs 

obtained,
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Plaiit LinlSE Ne-ISE 0 a 7
1 9.16 6.28 0.89 0.90 5

2 11.76 7.894 0.80 0.90 6

3 13.07 8.959 1.2 0.90 6

4 14.867 13.221 1.2 0.94 6

5 9.976 4.986 1.2 0.94 4

6 13.967 6.066 1.2 0.60 4

7 22.652 14.623 0.5 0.60 4
Table (6.7)

Figure (6.12 to 5.17) show the response of the plants for the non-linear multi-zoned 

PID controller designed using plant 1.

Table (6.8) shows the results of the rubestness test using cliped controller as 

introduced in chapter 3.

Plant Lin ISE Cli-ISE 0 a 7

1 9.16 6.28 0.89 0.90 5

2 11.764 7.894 0.80 0.90 6

3 13.07 8.959 1.2 0.90 6

4 14.867 13.221 1.2 0.94 6

5 9.976 4.986 1.2 0.94 4

6 13.967 6.066 1.2 0.60 4

7 22.652 14.623 0.5 0.60 4
Table (6.8).

The transient response of the clipped controller robustness tests is shown in figure 

(6.18-6.23).
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6.6 CONCLUSIONS

In this chapter the dual zone technique was used to design a simple neural networks 

PID controllers for linear plants. The neural networks was used to map the non

linear PID gains to produce a genetically designed neural PID controller. It has thus 

been shown in this chapter that a simple neural PID controller can produce very 

effective results. This design also shows that the use of the neural networks to map 

the gain functions combined with the use of dual zone technique in a genetically 

designed controller can benefit from the neural network ability at a reduced number 

of parameters for the GA to find compared to a full neural network controller. The 

result is illustrated by genetically designed digital dual zoned neural PID controllers 

for linear plants. Indeed comparing the results of the genetically designed controllers 

from the previous chapters to that designed using the neural network it can be seen 

that the design method has produced very effective high performance controllers.

The robustness test indicate that the non-linear PID controllers are more robust 

than the linear controllers. Because of the nature of the sigmoidal function, where 

by it saturates for larger than normal input signal. The addition of a clipping feature 

did not have any effect on the performance of controllers.
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Figure (6.10) Transient response of the genetically designed dual-zoned neural PID
controller for plant (2)
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Figure (6.13) Transient response of robustness test using genetically designed
non-linear PID controller for plant (3), table (6.7).
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non-linear P1D controller for plant (4), table (6.7).
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Figure (6.16) Transient response of robustness test using genetically designed
non-linear PID controller for plant (6), table (6.7).
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Figure (6.17) Transient response of robustness test using genetically designed
non-linear PID controller for plant (7), table (6.7).
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PART III

CHAPTER 7

Design of Non-Linear Controllers for

Non-Linear Plants



GENETIC DESIGN OF NON-LINEAR CONTROLLERS 
EOR NON-LINEAR PLANTS . v: '

7.1 INTRODUCTION

In this chapter it proposed to use genetic algorithms to design non-linear controllers 

for non-linear plants. The design of non-linear controllers for non-linear plants is 

a non-trivial problem. One approach which has dominated this field is the gain

scheduling technique. A typical gain scheduled design procedure for non linear 

plants is as follows. First, the designer selects several operating points which cover 

the range of plants dynamics. Then, at each of these operating points, the designer 

constructs a linear time-invariant approximation to the plant and designs a linear 

controller for each linearized plant. In between operating points, the parameters 

(gains) of the compensators are then interpolated, or scheduled, thus resulting in a 

global compensator. The design problem then becomes centred on choosing the 

scheduling variables, and selecting an appropriate number of operating points for 

designing the controller, at each of the operating points. The automation of this 

design procedure appears to be a daunting task. The design specification is to design 

a control scheme for a non-linear plant such that the controller performs optimally 

throughout the operating envelope. The design of a gain-scheduled controller 

becomes even more difficult in the case where the non-linearity is dependant on 

more than one variable. Furthermore, in such cases the design process is often 

lengthy as large number of operating points have to be explored. This problem 

motivates the consideration of deploying GA for searching the operating envelope
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and designing the appropriate locally linearized controller for incorporation into the 

gain-scheduled control scheme. Indeed, the technique of genetic algorithms 

introduced in the previous chapters, appears to be an ideal design tool for such a 

complex control scheme such evolutionary techniques are significantly different from 

traditional methods. Hence in this chapter it is proposed to design a non-linear 

controller for non-linear plants. Within this context it is proposed to genetically 

design a non-linear gain-scheduled controller for non-linear models of a water tank, 

and concentration tank [103 ].

7.2 NON-LINEAR SYSTEM

The basic definitions and general characteristics of a non-linear systems are :

i) superposition does not hold;

ii) sinusoidal inputs do not necessarily produce sinusoidal outputs;

iii) system stability may depend on input amplitude or frequency; 

vi) instability may be exhibited by the presence of limit cycles, i.e.

oscillation of constant amplitude and arbitrary waveform;

v) sub-harmonics can be generated.

7.2.1 METHODS OF ANALYSING NON-LINEAR SYSTEMS

There are many methods which already exist for the purpose of analysing non-linear

systems, for the purpose of stability and controllability. But very little is available
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on the design of such non-linear control systems. The following are some of the 

traditional methods used to analyse non-linear systems.

7.2.1.1 PIECEWISE LINEAR APPROXIMATION

This type of approximation gives satisfactory results for systems having small size 

non-linearities. Many physical systems are decidedly non-linear, even within a 

restricted region about the operating point. For example, a dry friction element 

produces a damping force of the nature shown in figure (7.1a). From this figure, 

it is seen that no single straight line can represent such a curve through out the 

range of speeds usually encountered. However, the advantages of linear theory can 

be extended to this case by piecewise linearization as shown in figure (7.1b). In 

such cases, the response obeys a certain linear differential equation in one region 

of operation and a different one in another region. Depending upon the value of the 

region parameter, the differential equations are switched from one region to another, 

such that the end conditions of the first are carried over as the initial conditions of 

the other. Such systems are known as piecewise linear systems.

At the cost of considerably increased computational work, piecewise linearization 

could be applied to any non-linear system by dividing the whole region of operation 

into small pieces. In some situations, where the system is only slightly non-linear, 

piecewise linearization is cumbersome and time consuming. For such cases, two
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force force

figure (7.1) Piecewise linear approximation of dry friction nonlinearity

methods of analysis are available, which have an appreciable degree of generality. 

One of these is the Phase-Plane method, the other is known as the Describing 

Function method.

7.2.1.2 DESCRIBING FUNCTION

The describing function technique is an extension of the frequency response methods 

to non-linear systems. It provides a way of investigating limit cycles in the class of 

feedback systems, which has a single non-linearity. It differs from the methods of 

Lure and Popov in that the non-linearity is not restricted to the first and third 

quadrants, and that the method is concerned only with limit cycles not with any 

other sort of stability. Classically, it is applicable only to non-linear elements whose
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outputs in response to sinusoidal inputs with period T of the Form

are also periodic with period t, and the input amplitude A. 

The output may be written as Fourier series:

00
£ B „ s in  ( n oi +<f>n)
n=  1

The describing function is the ratio of the complex Fourier coefficient

Bxe i4>l

which is essentially a frequency response function of an approximation of the non

linear element. In general, Bx and <j>x are functions of both the input frequency

Once the describing function method has been applied to the non-linear element, 

linear frequency domain stability theory such as the Nyquist stability criteria can 

be applied.
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7.2.1.3 PHASE-PLANE

Second-order dynamic systems are particularly well suited to graphical analysis 

because, with only two state variables, the state space is a plane, which is 

topologically simpler than higher-order spaces and has trajectories that can be 

represented by single lines on a two dimensional form. In this context the two- 

dimensional state space is known as the phase plane. Phase plan analysis, like other 

techniques based on state space, is applicable both to linear and non-linear systems. 

It is usually restricted to continuous-time systems. Nevertheless, it can lead to useful 

results about non-linear problems which have no closed-form solution. The basic 

technique of phase-plane analysis is to consider continuous-time, stationary, second- 

order systems under conditions where the control u is held constant so that the 

dynamic equations have the form

* i = £ i ( * i >*2)

*2= S 2(* l>*2)

These equations give an expansion of the form 

<fr2 _ * 2 _ g 2(* i>*2)
d*\ * i  S i (* i>*2)

determining the slope, and thus the shape, of the trajectories at every point in phase 

space. Hence it can be concluded that phase-plane analysis is most useful for
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second- rder systems; it can be used to study transient behaviour subject only to 

initial conditions (i.e. no other excitation); only time-invariant system can be 

considered. The performance is plotted with state variables as the coordinates. In 

general, this technique is not applicable to systems of higher order than 2 or 3, but 

by extending the concept it can provide insight into the performance of the systems 

order.

7.2.1.4 LIAPONOV’S SECOND METHOD

The objective of Liapunov’s direct method is to answer questions about stability of 

dynamic systems directly without solving the non-linear differential equations. It is 

also known as the ’second method’, as opposed to the ’first method’ which is to 

linearize about singularities and then consider eigne-values of the resulting linear 

equations. The first method generally can only provide information about local, 

rather than global, stability, although topological arguments in the phase plane can 

yield global, results for second-order systems. The second, or direct, method is 

introduced by considering stability of continuous-time autonomous systems having 

an equilibrium point at the origin. 

g(0) = 0.

Other equilibrium points can be investigated by shifting the origin of coordinates in 

state space to coincide with the point in question. No control u appears in these 

equations because they would be describing ’closed-loop’ behaviour of a complete
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state space to coincide with the point in question. No control u appears in these 

equations because they would be describing ’closed-loop’ behaviour of a complete 

system, not the ’open-loop’ behaviour of a controlled process.

The method is to consider the variation with time of the value of some, as yet 

specified, function V(x) of the state variables, called Liapunov function.

This method can be applied to higher-order systems if the differential equation is 

written in the first canonic form. However, this closed-loop system must have only 

one non-linear element.

As it can be seen the above analysis methods check the system for stability, but does 

not go into the actual design analysis of the non-linear control system itself.

7.2.1.5 PREVIOUS WORK IN NON-LINEAR CONTROL

D uring the last few  years alot o f  research was done in the field o f non-linear 

system s. F o r exam ple, A S  C  Sinha [71], studied the controllability  o f  the non

linear delay system s. Sharky and O reilly [72], w orked on non-linear singularly
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perturbed systems. Jones and Billing [73], produced a recursive algorithm for 

computing the frequency response of non-linear difference equation model. Many 

more researchers [74-90], have worked on different aspects of non-linear control 

systems.

7.3 SYNTHESIS OF GAIN SCHEDULED PIP CONTROLLERS

In the design of a gain scheduled PID controller consider the SISO non-linear 

system of the respective forms

x = f ( x ) + g ( x ) u  7.1

y=h(x)  7.2

w here x G 9tn, u G 9 i , y G 9 f ,  f(.)  and g (.)  are sm ooth vector fields on an  open 

set U  C  91", f (0 )= 0 , and h (.)  is a sm ooth function on U .

This behaviour is governed by non-linear state and output equations o f  the respective 

form s

T, y j )  Txl *% T, y kT) Tuk 7.3
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and

y * =r**r 7.4

where the state vector xkT e 9fn, the input ukTe9iT,the output ykT e 9i+„ $  e Si1“", 

SF e Si1"1, T e 9flx, T e 9f+ is the sampling period, and n is the number of plant 

states.

7.3.1 NON-LINEAR GAIN SCHEDULE PIP CONTROLLER

In non-linear control systems the non-linearity is a function of one or more of the 

following:

i ) system input;

i i ) system output;

iii) system state.

Therefore it is very important for a designer to be able to identify which of the 

above is applicable to the gain-scheduled controller being designed. Hence it is 

evident that some identification process is needed to establish the gain-scheduling 

variable or variables. The identification process can be done by carrying out step 

response test on locally linearizied models, and then examining the change of the 

transfer function variables through out the operating envelope of the plant. The non

linear gain-scheduled PID controller used in this chapter is based on the linear
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incremental PID controller used in the previous chapters. From chapter 3 the 

incremental linear PID controller can be described as

A u*= r(fc /e*+ 7V jk+fcdA2e*) 7.5

where Auk is the incremental change in input,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error, 

kp is the current value of the proportional gain, 

kj is the current value of the integral gain, 

kd is the current value of the derivative gain,

T is sampling time.

It is evident from chapter 3 that the error can be written as

« k=v k-yk  7-6

Also from chapter 3 that the first order backward difference in error can be written 

as

& k=ek- e kA 7.7

Further more from chapter 3 the second order backward difference in error can be 

expressed as

& ek=ek~2ek-i+ek-z 7 ,8
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The incremental PID controller given by equation (7.5), can take one of two forms, 

one is linear, and the other is non-linear. In this chapter the non-linear form is to 

be investigated. In this case the non-linearities are a function of the plant output.

It follows from equation (7.5), that the incremental non-linear PID controller can 

be described by an equation of the form

^ k =̂ P( S k) Ae k^T trt ( S k) e k +ird( S k) t f e k 7.9

where 7rp(Sk) is a gain-schedule function representing proportional gain,

7Ti(Sk) is a gain-schedule function representing integral gain,

7rd(Sk) is a gain-schedule function representing derivative gain.

It is evident from equation (7.9), that the gain functions can be represented by 

equation of the form

= p̂iSjc) 7.10

= 7Tj(Sk) 7.11

= ^di^k) 7.12

The issue in this case is how to design the gain functions. From previous work in 

chapter 4 it was found that an efficient function to represent the gain function in this 

way was the Lagrangian’s Polynomial. Hence, from the previous finding the above 

gain-schedule functions are to be based on the Lagrangian’s polynomial interpolation 

function. It follows from equation (7.5), that the incremental non-linear PID 

controller can be conveniently described by equation of the form

Auk = Jifp Aek + ek+ A2ek 7.13
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The diagram in figure (7.3) shows a block diagram representing the non-linear gain- 

scheduled PID control system.

7.3.1.1 GAIN SCHEDULE (INTERPOLATION) FUNCTION

The scheduling function chosen in this chapter is the smooth Lagrangian’s function 

with overlapping to cover a minimum of 4 points. In this function the scheduling 

function is always working on four points i.e. if the gain being scheduled happened 

to be gain number 4, then the gains which the function would schedule would be 1 

to 4, but when the gain is gain number 5, then the gains that the function would 

schedule are gains 2 to 5. The function used is an overlapping function which would 

give an extra smoothness to the function, i.e. no discontinuities between interpolated 

gains. It is also evident that the minimum number of gains in the design has to be 

4 gains, the maximum only depends on the design requirement. The gain schedule 

function is thus given by:

_ i^kk ~  + i)  (  Skk ~  +2) ( Skk ~  *a) 7  1 4

( V ^ K V - S i - a X V S i . j )

The above equation is the first element in the gain schedule function

_ ( Skk ~  ~  S|- , 2)  ( 5 ^  -  Sf , 3)  _  . .
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The above equation is the second element in the gain schedule function

_ (Skk~Sj ) (Skk '
* (i+2)~ ( W  S i ) ( S i+2

$i +l)($kk~ *3)
+l) ( $i *2~ $1 +3)

7.16

The above equation is the third element in the gain schedule function

£ ( ¿ + 3 )  "
( $ k k  $ i  ) ( $ k k  + l ) ( S k k ~  +2)

( S i . 3 -  S t) ( S i t 3-  S, . , ) ( $ , * -  Si+2)
7.17

The above equation is the 4rth element in the gain schedule function.

By using the above equations ( 7.18, 7.19, 7.20, and 7.21) the Lagrangian’s 

function is thus, given to be

X  = g, k  ‘ +g,- tlk {i +1) +g, .2k (i +2) ,3k i *3 7.18

where i=  (l,2 ,....n ) , and n number of gains,

X  is the effective gain-schedule function , 

kj to kn are the gains provided by the G A,

Sj to y„ are the interpolation points,

Skk is the actual output of the system at a given gain.
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where Sk is Schedule variable

Figure 7.2 Polynomial interpolation of PID Gain scheduled Controller
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The above equation gives the Lagrangian’s polynomial gain-schedule function 

equation used in this chapter. The mapping of the gain-schedule function is shown 

in figure (7.4). It evident that the above method is very difficult to do by using 

conventional design methods. In order to overcome the difficulty, the technique of 

genetic algorithms is therefore proposed as a new and novel technique for designing 

and tuning the gain scheduled PID controller.

Gain

Figure 7.4 Gains mapping using Polynomial Interpolation
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7.4 GENETIC DESIGN OF GAIN SCHEDULED CONTROLLER 

FOR NON-LINEAR PLANTS

In order to use genetic algorithms to design a gain scheduled PID controllers, the 

number of parameters ( gains ), used in the design of such controller have to be 

precisely defined. To assess the performance of the gain scheduled controller it will 

be necessary to consider a number of plants controlled by the genetically designed 

gain-scheduled controllers, and the genetically designed linear PID controller. In 

order to use the GA to select the tuning parameters ( gains ) in such a way that as 

to produce satisfactory response in the operating envelope, it is necessary to firstly 

chose the scheduling variables and then encode the gains required by the gain- 

scheduled functions i.e. (proportional, integral, and derivative gains), as binary 

strings in accordance with a system of concatenated, multi-parameter fixed point 

coding. The binary string would be represented as

{ ( k 1, ------ knp) ( k ‘, ---------k*,) ( k 'j ---------k"„)}
proportional integral derivative

where the whole string contains the three gains (proportional, integral, and 

derivative gains). The mapping of the string is shown in figure (7.5). Then 

following the initial choice of the gains { k°p, k'p(. . . , knp, k°j, kllt. • . » k", k°d, 

kV. • • , knd}, entire generations of such strings can be readily obtained by using 

the basic genetic operators of selection, crossover, and mutation. The process of 

interviewing introduced in chapter 2 is used to insure that the randomly generated 

variables do not initially violate any constraints on the function to be tuned. The
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system incorporates both the non-linear plant, and the non-linear gain scheduled PID 

controllers, the controllers are designed by randomly generated sets of gains, by 

the GA. A simulation test is then carried out on all the controllers to test the local 

stability. In the case of a violation of stability in any of the cases, the randomly 

generated set of gains, will not be included in the initial population. This type of 

initialization is essential in this type of design, since otherwise there would be a 

danger of creating an initial population which many of its members violating the 

constraints on the controllers being designed.

Following the initialization, the objective function is introduced and its value is 

calculated using decoded values of the parameters in each string. Thus for example, 

if minimum ISE is regarded as the ultimate design requirement, genetic algorithms 

can be readily used to select the best set of gains, such that the ISE is minimised. 

In the genetic design of non-linear gain scheduled PID controllers the plant under 

consideration is subjected to a succession of set-point changes which span the 

operating envelope of the plant, and the generalised ISE is then obtained by adding 

the individual performance from each set-point change to obtain

I S E *  £
N

t £ ej -0 !;1 7.19

where

ej =vf -yj  , and N = m=number of steps.
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and ej e 3? , is the error signal, yj e 9? ,is the output signal, T is sampling time, 

r  is an appropriately chosen settling time, and A-t ( i=l , . . .m) are the set-point 

changes.

Minimization of this performance index over the entire population can be rapidly 

obtained by using the genetic operations of reproduction, crossover, and mutation. 

It is interesting to note that the conditions for the existence of a non-linear PID 

controllers for the plant under consideration will be automatically satisfied by the 

genetic algorithms. This is obvious, because in the case of violation of the 

constrained the corresponding set of gains elements produces large ISE and the 

result will be zero or low fitness, and by the action of the selection operator it 

would not be chosen for the next generation.

The above performance index can be modified slightly by adding a weighting 

factor X. This weighting factor can be chosen to increase or decrease the 

performance of the plant in certain operating points within the operating envelope. 

The new performance index is thus given by

m  N

i S E ‘  E l E V 2/]  7-20i =1 j =0

The designs done in this chapter will use both of the above performance indexes.
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7.5 ILLUSTRATIVE EXAMPLES

To design the gains-scheduled controller the gain schedule functions produced earlier 

in this chapter will be used to produce the gain-schedule functions for the gains 

needed by the gain-scheduled PID controller as in equation (7.13).

The gain schedule function for the three gains (proportional, integral, and derivative 

gains) is thus given by

S i  =
( $ k k  $ ¡ * 1  ) ( $ k k  S j * 2 ) ( S k k  $ i +3 )

( S , -  S , +1) ( S 4-  S, * ) ( $ , -  S ,+3)
7.14

where in the above equation the first element in the gain schedule function

£(1 +i)
( S kk-  S , ) ( J t t -  S , . 2) ( S a -

W S , . ! -  S, * ) ( $ , . ,
7.15

where in the above equation the second element in the gain schedule function

8( i .2) "
( S k k -  S t ) ( S k k -  5, .,) ( 5 , , -  5,-,3)

( *2~ S j )  ( Sj *2 — $i  .1) ( 5 , ,2" «3)
7.16
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where in the above equation the third element in the gain schedule function

( -Sjufc ~ -S,) ( ~ +1) (Skk~ +2) 7 17

8 <‘ *3>' ( s , . 3- s<) (S i .3 -  S i . i H W  S(.2)

where above equation represents the 4rth element in the gain schedule function.

By using the above equations the resulting Lagrangian’s functions for the three gain 

functions are of the form

y/ = 0 b i +o k (i+I>+p k <*+2>+p k <*+3>
fc/lp S i K p  + 8 i * l K n +8 i * 2 K p  o  j *3^  p 7.21

— p k * +p t (* +U +n k +p k8 i Ki +8i*iKi *8i*2Ki 8i*3Ki 7.22

—  o  ]c * 4-n (f +1) xp I' (i +2) xp t (» +3)
S i K d  8 i + \ K d  8 i * 2 K d  8 i * l K d 7.23

and (i = l_,....N) where N is the number of gains used in the design.

The above equations represent the scheduling function for the three gains 

(proportional, integral, and derivative gains) respectively.

To be able to start the design, the GA will need some initial gains, the initial gains 

can be obtained by using the GA to design and tune some fixed local controllers. 

A fixed gain linear controller was designed and tuned by the GA, the GA binary
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string is of the form

i kp K  }

proportional integral derivative

The fixed gains obtained were used to initialise the gain scheduled controller, where 

the GA is minimising the ISE across the operating envelope using the following gain 

functions. In the gain-schedule PID controller the gains for the three gains( 

proportional, integral, and derivative gains) were encoded into the GAs binary sting 

as

As it can be seen from the string their are 10 parameters (gains) needed for each of 

the gain functions, which means that the GA will be searching for 30 Parameters 

(gains) in total.

7.5.1 NON-LINEAR PLANT 1 (GAIN SCHEDULED OFF THE OUTPUT! 

The SISO nonlinear plant used to illustrate the design of gain scheduled controller 

is a tank system where the cross section A varies with height h. The model is given

proportional integral derivative

2 9 0
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by equation

) ‘ q t ( l - T ) - a ^ g h ( t ) 7.24

where

qj is the input flow; 

a is the cross section of the outlet pipe; 

h is the output of the system;

T is the sampling time; 

r  is the time delay.

The plant Arma model is given by

y k =y k - i - « yy*-i+ b uk 7.29

and "a" , "b", and t/T are constant chosen for the design to be 

a = 8; 

b = 0.08.
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The gain scheduled controller is given by equation (7.13), and is governed by 

equations (7.21, 7.22, and 7.23). The controller is deployed in the incremental form 

so as to avoid any bumpless transfer techniques associated with the integral state, 

because the integral state would require bumpless transfer every time the integral 

gain is changed.

7.5.1.1 LOCALLY LINEARIZED DESIGN

A number of points were chosen to cover the whole search envelope of the plant, 

the gains for this controller (Kp, Kj and Kd) are chosen to be linear gains . Then at 

each of the points a fixed point linear PID controller for the non-linear plant was 

designed using the GA, such that the integral Square Error ISE is minimised for the 

non-linear plant. In this case, a population of 100, a crossover probability, Pc=0.65, 

and a mutation probability, Pm = 0.01, was used. The results obtained for the set- 

point change design are shown in table (7.1). All ISEs in table (7.1) are multiplied 

by E5.

No 1 2 3 4 5 6 7 8 9 10

Size 0 -  1 1 -2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9-10

ISE 1.19 1.32 1.34 1.42 1.46 2.3 5.43 5.7 7.4 10.1

kp 1.03 0.79 0.99 1.27 1.42 1.23 1.34 1.34 1.47 1.49

kj 1.12 0.49 0.43 0.51 0.5 0.59 0.63 0.63 0.64 0.65

kd 0.67 0.97 0.73 0.5 0.5 0.63 0.63 0.63 0.61 0.59
Table (7.1)

The total ISE for the above design method is 3.766E6
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7.5.1.2 GLOBAL NON-LINEAR DESIGN OF GAIN SCHEDULED

CONTROLLERS

In this design, the fixed gains obtained from the local set-point change design done 

earlier are used to initialise the GA. For the purpose of this design the gain 

functions for the gain scheduled controller are chosen to be as given by equations 

(7.21, 7.22, 7.23), i.e. the gains are non-linear and they are Lagrangian’s gain 

schedule functions. The gain-scheduled controller is implemented in the incremental 

form so as to avoid any bumpless transfer techniques associated with the integral 

state, because the integral state would require bumpless transfer every time the 

integral gain is changed. Then non-linear gain scheduled PID controller for the non

linear plant was designed using the GA, such that the integral Square Error ISE is 

minimised for the non-linear plant. In this case, a population of 100, a crossover 

probability, Pc=0.65, and a mutation probability, Pm = 0.01, was used. Figure 7.6 

shows the transient response of the genetically designed controller using 

performance index 7.24, figure 7.6a, 7.6b, and 7.6c shows the resulting profile for 

the gain-schedule gains, proportional, integral, and derivative respectively. Figure

7.7 shows the transient response of the genetically designed controller using 

performance index 7.23, figure 7.7a, 7.7b, and 7.7c shows the resulting profile for 

the gain-schedule gains, proportional, integral, and derivative respectively.
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Total ISEs in table (7.2) is 1.22E6.

zone 0 -  1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9-10

ISE 1.23 1.13 1.11 1.06 1.2 1.12 1.17 1.25 1.42 1.5

* 1.29 3.84 4.9 3.85 3.12 4.88 4.19 0.44 2.29 3.1

0.93 1.86 0.98 3.99 3.0 4.15 4.14 4.59 1.52 2.38

3.92 2.04 1.24 1.07 4.64 1.30 1.81 4.19 3.62 1.45
T a b le  ( 7 .2 )

Table (7.2) shows gain-schedule controller results using performance index given 

by equation (7.33). Table (7.3) shows gain-schedule controller results using 

performance index given by equation(7.34). All ISEs in table (7.3) are multiplied 

by 1E5, and the total ISE is 1.1356.

zone 0 -  1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 ■ 0
0

0
0 1 V
O 9-10

ISE 1.12 1.1 1.00 1.03 0.93 0.89 1.14 1.24 1.4 1.5

2.23 3.54 3.4 3.85 3.12 3.28 3.39 2.44 2.59 2.1

0.93 1.36 1.48 1.99 2.2 2.35 2.14 3.20 3.22 3.38

1.11 1.23 1.24 1.27 1.24 1.20 1.21 1.24 1.22 1.26

Table (7.3)

From the above results, it can be seen that the total ISE obtained by designing a 

locally linearized PID controller for the non-linear plant is a lot higher than that 

obtained by the gain scheduled controller design for the same non-linear controller.
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7.5.2 NON-LINEAR PLANT 2 (GAIN SCHEDULED OFF THE INPUT)

The SISO nonlinear plant used to illustrate the design of gain scheduled controller 

is a concentration control of a tank system. Where the inlet concentration, cin is 

changed. The model is given by equation

( C i . O - 0 - c . )  730

where

T =
7,

and
4,

if t < T, then it is straightforward to determine a PID controller that performs well 

when q is constant. However it is difficult to find values of the controller 

parameters that will work well for a wide ranges of q ( J. Astrom and B. 

Wittenmark [103]).

The process has a time delay, with sampling period

where d is an integer, the plant Arma model is given by

y k = ( 1 ~a)uk.h 7.31
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where a and h are given by

h = i nt ( — ) , a = e ~uKl ,K u '

where Kj and K2 are constants.

Ki = 1 

K2 = 0.01.

The gain scheduled controller is given by equation (7.13), and is governed by 

equations (7.21, 7.22, and 7.23). The controller is deployed in the incremental form 

so as to avoid any bumpless transfer techniques associated with the integral state, 

because the integral state would require bumpless transfer every time the integral 

gain is changed.

7.5.2.1 LOCALLY LINEARIZED DESIGN

A number of points were chosen to cover the whole search envelope of he plant, the 

gains for this controller (Kp, Ki and K )̂ are chosen to be linear gains . Then at each 

of the points a fixed point linear PID controller for the non-linear plant was 

designed using the GA, such that the integral Square Error ISE is minimised for the 

non- linear plant. In this case, a population of 100, a crossover probability, 

Pc=0.65, and a mutation probability, Pm = 0.01, was used. The results obtained for 

the set-point change design are shown in table (7.4). Wher all the ISEs in table (7.4)
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are multiplied by E5.

No l 2 3 4 5 6 7 8 9 10

Size 0 -  1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7
001r- 8 - 9 9-10

ISE 6.3 5.9 5.1 4.8 4.4 3.2 2.8 2.4 2.2 1.9

K 3.5 3.4 4.5 8.7 4.73 4.5 9.9 9.6 9.4 8.5

ki 3.4 3.4 3.2 1.8 2.9 3.1 1.5 2.4 2.8 3.1

k„
m—n-- t%

1.96 2.1 1.5 2.2 4.1 4.5 7.7 7.5 7.2 6.2
table (7.4)

The total ISE for the above design method is 3.9E6.

7.S.2.2 GLOBAL NON-LINEAR DESIGN OF GAIN SCHEDULED

CONTROLLERS

In this design, the fixed gains obtained from the local set-point change design done 

earlier are used to initialise the GA. For the purpose of this design the gain 

functions for the gain scheduled controller are chosen to be as given by equations 

(7.32, 7.33, 7.34), i.e. the gains are non-linear and they are Lagrangian’s gain 

schedule functions. The gain-scheduled controller is implemented in the incremental 

form so as to avoid any bumpless transfer techniques associated with the integral 

state, because the integral state would require bumpless transfer every time the 

integral gain is changed. Then non-linear gain scheduled PID controller for the non

linear plant was designed using the GA, such that the integral Square Error ISE is 

minimised for the non-linear plant. In this case, a population of 100, a crossover

2 9 7
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probability, Pc=0.65, and a mutation probability, Pm = 0.01, was used. Figure 7.8 

shows the transient response of the genetically designed controller using 

performance index 7.24, figure 7.8a, 7. 8b, and 7.8c shows the resulting profile for 

the gain-schedule gains, proportional, integral, and derivative respectively. Figure

7.9 shows the transient response of the genetically designed controller using 

performance index 7.23, figure 7.9 a, 7.9b, and 7.9c shows the resulting profile for 

the gain-schedule gains, proportional, integral, and derivative respectively. The 

result obtained from both design methods are given in table (7.5).

zone 0 -  1 1 -2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9-10

ISE 1.2 1.1 1.2 1.3 1.4 1.2 1.2 1.1 1.3 1.4

1.21 2.49 2.66 2.82 2.24 1.76 2.82 2.75 2.76 2.33

0.57 0.34 0.40 0.42 0.46 0.56 0.32 0.22 0.25 0.45

0.21 0.23 0.24 0.27 0.24 0.20 0.21 0.24 0.22 0.26

Table (7.5) 

total ISE is 1.24E6.

Table (7.5) shows gain-schedule controller results using performance index given 

by equation (7.33). Table (7.6) shows gain-schedule controller results using 

performance index given by equation(7.34)
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zone 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9-10

ISE 1.3 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.2

«74 1.32 1.54 1.87 1.91 1.53 1.96 2.03 2.25 2 .66 2.71

0 .74 0.21 0 .14 0 .12 0 .26 0 .38 0 .32 0 .18 0 .15 0.1

& d 0 .19 0 .17 0.23 0 .22 0.12 0.23 0 .26 0 .12 0 .1 2 0 .1 0
» 1 7 :6 )

total ISE is 1.19E6.

From the above results, it can be seen that the total ISE obtained by designing a 

locally linearised PID controller for the non-linear plant is a lot higher than that 

obtained by the gain scheduled controller design for the same non-linear controller.

7.5.3 ROBUSTNESS TEST

This test is aimed at finding how robust are the genetically designed gain-scheduled 

PID controllers are for changes in the plant operating conditions. In this case the 

plants used in the illustrative example were modified slightly to produce two further 

plants, by increasing and decreasing the step-size. The resulting responses are shown 

in figure (7.10 and 7.11) respectively. The resulting ISEs are given in table (7.7).

Plant 1 3 (step-size 150) 4 (step-size 50)

ISE 1.19E6 1.36E6 3.3E6
table(7.7)
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7.6 CONCLUSIONS

The techniques of genetic algorithms have been proposed as a means of designing 

non-linear PID controllers for non-linear plants. It has been shown that the use of 

GAs for this purpose greatly facilitates the design of such controllers such that the 

integral square error to set point changes across the operating envelope of the plant 

is minimised. The results have been illustrated by genetically designing a gain 

scheduled controllers for two discrete-time non-linear plants, the resulting robustness 

test indicates that the non-linear PID controllers designed are robust for different 

size set-point changes.
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Figure (7.6) Transient response of the genetically designed controller using performance
index 7.24 for plant (1).
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Figure (7.7) Transient response of the genetically designed controller using performance
index 7.23 for plant (1).
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Figure 7.7a, b,and c Resulting gain profile for gain scheduled controller in fig(7.
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Figure (7.8) Transient response of the genetically designed controller using performance
index 7.24 for plant (2).
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Figure 7.8a, b,and c Resulting gain profile for gain scheduled controller in fig(7.8)
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Figure (7.9) Transient response of the genetically designed controller using performance
index 7.23 for plant (2).
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Figure (7.10) Transient response of rubstness test for step size increase.
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'F ig u re  (7.11) Transient response of rubstness test for decrease in step size.
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PART IV

CHAPTER 8

Design of Linear Controllers for

Non-Linear Plants



/
Chapter 8

GENETIC DESIGN OF A FIXED GAIN LINEAR CONTROLLERS 
FOR NON-LINEAR PLANTS

8.1 INTRODUCTION

The previous chapter introduced the concept of using GAs to design non-linear 

controllers for non-linear plants. In this chapter it is proposed to use genetic 

algorithms to design fixed gain linear controllers for non-linear plants. In general 

it is a very difficult task to design a fixed gain linear controller for a non-linear 

plant. This is because the gains of the controller need to be tuned to cope with the 

full operating envelope of non-linear plant. Hence, the design of the linear controller 

requires gains, that would give it the ability to control the plant satisfactorily 

throughout the operating envelope under all the different possible non-linear 

conditions . It is evident that the resulting controller can not be an optimum 

controller. However, it could be considered as a Locally Optimised, Worst Point, 

Globally Validated ( LOWPGV ) fixed term PID controller. Where the context of 

the term "optimised" refer to a controller that provides the best level of local control 

at the worst operating point of the non-linear system, such that the local 

performance of the fixed term PID controller everywhere else in the operating 

envelope of the non-linear system is better than the design at the worst point. 

Therefore in this chapter a new cost function is formulated for developing ( 

LOWPGV ) fixed term PID controllers. The cost function or performance index is 

defined as the minimisation of the worst local performance of the controller
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throughout the operating envelope. This implies that the non-linear system will be 

divided into a number of local operating regions which totally cover the non-linear 

characteristics of the system. The cost function then takes the maximum of the local 

cost functions as its cost. By defining the cost function in this way the design of the 

controller is concentrated on the difficult parts of the operating envelope. The 

resulting controller controls the plant at the worst operating point, and attempts to 

minimise this local performance.

From the definition of the cost function it follows that if the controller is used at any 

other points within the operating envelope of the performance of the controller is 

better than at the worst point. The resulting controller does not provides optimum 

global control in the sense of minimising a global cost function. Such a cost function 

could give a broad spectrum of local responses, some of which could be very good 

with others very bad. However, the resulting controller does provide optimum local 

control at the worst operating point, such that control everywhere else in the 

operating envelope is better.

This cost function is one that is very much sought after in the design of fixed term 

PID controller for non-linear plants. However, if the design was to be effected by
i

a trial and error technique the search would have to proceed at three fronts, the first 

one looking for the worst operating point, the second looking to tune the controller 

at the worst operating point, and the third checking that the controller tuned at the 

worst operating point was still better at all the other operating points. Because of 

the multi-objective nature of the problem trial and error methods in this case would
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be very difficult. It is evident that the design of such controller is almost impossible 

to achieve manually. This motivates the consideration of using an automatic 

techniques for both searching the operating envelope and designing the appropriate 

linear controller. Indeed, the technique of genetic algorithms introduced in the 

previous chapters, appears to be an ideal design tool for such a complex control 

problem. Hence in this chapter the findings of chapter 3, are applied to design a 

linear controller for non-linear plants.
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8.2 SYNTHESIS OF FIXED GAIN PIP  CONTROLLERS FOR 

NON-LINEAR PLANTS

In the design of a gain scheduled PID controller consider the SISO non-linear 

system of the respective forms

* = /(* )  +g ( x ) u  

y = h ( x )

where x €  9in, u 6  9i, y £  9?, f(.) and g(.) are smooth vector fields on an open 

set U C 3T, f(0)=0, and h(.) is a smooth function on U.

In order to design linear PID controllers for SISO non-linear plants governed by 

equations (8.1), it is convenient to consider the behaviour of such plants on the 

discrete-time set Tx = {0, T, 2T,....}.

This behaviour is governed by non-linear state and output equations of the respective 

forms

T x k + 1 ^ T , y kT ) T x k + ^ T , y k T ) T u k

3 1 4



Chapter 8

and

yk=r x kT 8.4

where the state vector xkT e 9tn, the input ukTe9fT,the output ykT e 9?+, 4» e Si1“", 

^  e 9tnxl, T e 9t lx, T e 9i+ is the sampling period, and n is the number of plant 

states.

8.2.1 T JNEAR INCREMENTAL PIP  CONTROLLER

The linear incremental PID controller introduced in chapter 3 will be used in this 

chapter, this controller will be used to control non-linear plants. This incremental 

linear PID controller can be described as

^ i k = T ( k p ^ k + T k i e k + k d ^ e k)  8.5

where

Auk is the incremental change in input,

Aek is the first order backward difference in error,

A2ek is the second order backward difference in error, 

kp is the current value of the proportional gain, 

ki is the current value of the integral gain, 

kd is the current value of the derivative gain,

T is sampling time.
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It is evident from chapter 3 that the error can be written as

e k~v k~yk 8.6

Also from chapter 3 that the first order backward difference in error can be written 

as

& k =ek~e k-1 8.7

Further more from chapter 3 the second order backward difference in error can be 

expressed as

$ e  k =e k - 2 e  k . \ + e k - 2  8 .8

The issue in this chapter is how to design a linear robust incremental PID controller 

for non-linear plants . The gains used in this design are constant values chosen by 

the designer to give the best controller performance for the non-linear plants. But 

if this task is to be done manually it will be tedious and time consuming. Hence, it 

is proposed to use the genetic algorithm to chose the gain values, and the tune the 

controller to produce the best performance for the non-linear plants.
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S 3 CFNETIC DESIGN OF LINEAR PIP  CONTROLLER 

FOR NON-LINEAR PLANTS

The main problem in the design of linear incremental PID controllers for non-linear 

plants is how to define a cost function that would give the required global 

performance. After the cost function selection the GA can be used to select the 

tuning parameters (gains), in such a way that to produce satisfactory response 

throughout the operating envelope, in this case it is only necessary to encode the 

gains required by the linear controller i.e. (proportional, integral, and derivative 

gains), as binary strings in accordance with a system of concatenated, multi

parameter fixed point coding. The binary string would be represented as

{ ( kd ) }
proportional integral derivative

where the whole string contains the three gains (proportional, integral, and 

derivative gains). Entire generations of such strings can be readily obtained by using 

the basic genetic operators of selection, crossover, and mutation. The system 

incorporates both the non-linear plant, and the linear PID controllers, the 

controllers are designed by randomly generated sets of gains, by the GA. A 

stability test is then carried out on all the controllers. In the case of a violation of 

stability in any of the cases, the randomly generated set of gains, will not be 

included in the initial population. This type of initialization is essential in this type 

of design, since otherwise their would be a danger of creating an initial population 

which many of its members violate the constraints on the controllers being designed.
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8.3.1 COST FUNCTION

The cost function used in the previous design methods was

m j =N

I S E = E  E  e 1)
¡=1 ;- i

is evaluated, where

ei =vi~yj  > N  = -j, » and m=number of steps

and c, £ 5» , is the error signal, yj e SR ,is the output signal, T is sampling time, 

and r  is an appropriately chosen settling time.

In this cost function the objective is to minimise the total ISE for the plant when it 

is subjected to a set-point change. This cost function however, only produces good 

performance for fixed gains linear controllers for linear plants, or gain scheduled 

controllers, since in the non-linear plant the operating condition of the plant change 

this cost function would results in linear gains which produces good performance 

in one region of the plant operating envelope. The above cost function can be 

modified slightly by adding a weighting factor X. This weighting factor can be 

chosen to increase or decrease the performance of the plant in certain operating
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points within the operating envelope. The new performance index is thus given by

j=N
I S E = Z  £  A.,- e 2j

¡=1 ¡ - 1 8.10

is evaluated, where

T
ej =vi~y > N  = — and m=number of steps.

and e, £ M . is the error signal, y, e M ,is the output signal, T is sampling time, 

and r  is an appropriately chosen settling time.

It was found that both of the above cost functions are not suitable for designing a 

linear controller for non-linear plants, because the linear gains will only produce 

suitable performance for the plant in a specific region within the operating envelope. 

Hence a different cost function is proposed which will be suitable to produce a

robust controller for non-linear plants. This coast function will produce the 

robustness required.
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8-3.1.1 COST FUNCTION FOR A LOWPGV FIXED TERM T INEAR P in  

CONTROLLER DESIGN

The main task in this design method is to design a cost function that is capable of 

producing the required global performance as was defined earlier (i.e. minimises the 

worst local performance of the controller throughout the operating envelope of the 

non-linear plant). In the genetic design of linear PID controllers for non-linear plant, 

the plant under consideration is subjected to a succession of set-point changes which 

span the operating envelope of the plant. Therefore it was decided in this design to 

use a cost function that would look for the maximum cost function for individual 

steps, and then minimise the highest of the individual ISE found by a single 

controller. By employing this cost function the controller will not be deigning a 

local step minimum ISE, but a global plant ISE. The new cost function is 

represented by equation of the form

I S E ^ j r e * !  ¡ = ( 1 ...... m )
o

ISE =MAX [ ISE ¡] 
1 *1
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is evaluated, where

ej =vi ~yi » ^  = ~f » m=number of steps.

and ej e 9? , is the error signal, y3 e 9? ,is the output signal, T is sampling time, 

and r  is an appropriately chosen settling time.

This performance index produced similar ISE for every set-point change in the 

plant operating envelope. This of course means that the performance of the 

controller everywhere in the plant operating envelope is similar.

8.4 ILLUSTRATIVE EXAMPLES

To be able to start the design, the GA will need some initial gains, the initial gains 

can be obtained by using the GA to design and tune two fixed local controllers the 

first at the initial set-point change, and the second at the last set-point change then 

choosing the initial gains to be in between these two gains.

A fixed gain linear controller was designed and tuned by the GA, the GX binary 

string is of the form

< K  k, }

proportional integral derivative
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The fixed gains obtained were used to initialise the global linear controller, where 

the GA is minimising the ISE across the operating envelope. In the linear PID 

controller the gains for the three gains( proportional, integral, and derivative gains) 

were encoded into the GAs binary sting as shown above.

8.4.1 NON-LINEAR PLANT 1 (WATER TANK1

The SISO nonlinear plant used to illustrate the design of gain scheduled controller 

is a tank system where the cross section A varies with height h [91] . The model is 

given by equation

j L ( A ( h ) h ( t ) )  = q (( t  - t ) -  as/2gh( t ) 8.12

where

qt is the input flow; 

a is the cross section of the outlet pipe; 

h is the output of the system;

T is the sampling time; 

t is the time delay, 

the plant Anna model is given by

yk=yk-\~ a v'y*-i+ b uk- i 8.13
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and "a" , "b", and r/T are constant chosen for the design to be 

a = 8.0; 

b = 0.08.

T =10

The controller is deployed in the incremental form so as to avoid any bumpless 

transfer techniques associated with the integral state, because the integral state 

would require bumpless transfer every time the integral gain is changed.

8.4.1.1 GLOBAL LINEAR PIP CONTROLLER USING UNVVFTCTTFT) 

PERFORMANCE TNDF.Y

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was 

designed using the GA, such that the integral square error ISE is minimised for the 

non-linear plant. In this case, a population of 100, a crossover probability, Pc=0.65, 

and a mutation probability, Pm = 0.01, was used. Figure 8.1 shows transient 

response of the genetically designed controller. The results obtained for this 

controller are shown in table (8.1). AH the ISEs in table (8.1) are multiplied by 

1E5.
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zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ISE 1.60 1.32 1.23 1.37 1.32 1.45 1.50 1.65 1.73 1.75
table (8.1).

The gains and the total ISE for the controller are given in table (8.2).

K 0.45

ki 7.91

K 0.71

Total ISE 1.532E6
able (8.2)

8.4.1.2 GLOBAL LINEAR PIP  CONTROLLER USING WEIGHTED 

PERFORMANCE INDEX

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was 

designed using the GA, such that the integral square error ISE is used for the non-
t

linear plant. In this case the performance index is modified slightly by adding a 

weighting factor X. This weighting factor can be chosen to increase or decrease 

the performance of the plant in certain operating points within the operating 

envelope. The new performance index is thus given by equation (8.15). In this case, 

a population of 100, a crossover probability, Pc=0.65, and a mutation probability,

3 2 4
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Pm= 0.01, was used. Figure 8.2 shows the transient response for the genetically 

designed controller. The results obtained the controller are shown in table (8.3).

zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ISE
rkfl l A . 1 St

1.73 1.55 1.53 1.50 1.65 1.58 1.75 1.82 1.68 1.80
T a b le  ( 8 3 ) 7

The gains and the total ISE for the controller are given in table (8.2).

kp 0.45

ki 7.9

kc 0.71

Total ISE 1.669E6
Table (8.4).

8.4.1.3 LOWPGV FIXED TERM LINEAR PTD CONTROLLER
i

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was

3 2 5
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designed using the GA, such that the integral square error ISE is minimised for the 

non-linear plant. In this case the performance index used is the sum of minimum of 

the maximum of the individual set-point change. The new performance index is 

thus given by equation (8.16). In this case, a population of 100, a crossover 

probability, Pc=0.65, and a mutation probability, Pm = 0.01, was used. Figure 8.3 

shows the transient response for the genetically designed controller. The results 

obtained the controller are shown in table (8.5).

zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
ISE 1.90 1.76 1.77 1.87 1.90 2.10 2.28 2.25 2.26 1.99

The gains and the total ISE for the controller are given in table (8.6).

kp 7.87

ki 0.02
kd 4.66

Total ISE
'abU ------------ —

2.0081E6

8.4.2 NON-LINEAR PLANT 2 (Concentration of Water Tank)

The SISO nonlinear plant used to illustrate the design of gain scheduled controller 

is a concentration control of a tank system. Where the inlet concentration, cin is 

changed.
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The model is given by equation

<lt ( c in( t - 1 ) - c t ) 8.14

where

v
and T=-m

if 7" ^  T, then it is straightforward to determine a PID controller that perform well 

when q is constant. However it is difficult to find values of the controller 

parameters that will work well for a wide ranges of q (J.Astrom and 

B. Wittenmark) ,[103].

The process has a time delay, with sampling period

where d is an integer, the plant Arma model is given by

yk = ayk-\+ C 1 -a) “k-h 8.15
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where a and h are given by 

h = i nt ( ,  a = e ~uKl ,

where Kj and K2 are constants.

Kt = 1, K2 = 0.01.

The controller is deployed in the incremental form so as to avoid any bumpless 

transfer techniques associated with the integral state, because the integral state 

would require bumpless transfer every time the integral gain is changed.

8.4.2.1 GLOBAL LINEAR PIP CONTROLLER USING UNWEIGHED 

PERFORMANCE TNDFY

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was 

designed using the GA, such that the integral square error ISE is minimised for the 

non-linear plant. In this case, a population of 100, a crossover probability, Pc=0.65,

3 2 8
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and a mutation probability, Pm = 0.01, was used. Figure 8.4 shows the transient 

response for the genetically designed controller. The results obtained for this 

controller are shown in table (8.7), which is multiplied by E5.

zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ISE 1.32 1.40 1.60 1.68 1.75 1.78 1.73 1.83 1.90 2.38
table (8.7).

The gains and the total ISE for the controller are given in table (8.8).

K 3.9

2.3

kd 2.5

Total ISE 1.737E6
Table (8.8).

8.4.2.2 GLOBAL LINEAR PIP  CONTROLLER USING WEIGHTED 

PERFORMANCE INDEX
t

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was

3 2 9



designed using the GA, such that the integral square error ISE is minimised for the 

non-linear plant. In this case the performance index is modified slightly by adding 

a weighting factor X. This weighting factor can be chosen to increase or decrease 

the performance of the plant in certain operating points within the operating 

envelope. The new performance index is thus given by equation (8.15). In this case, 

a population of 100, a crossover probability, Pc=0.65, and a mutation probability, 

Pm= 0.01, was used. Figure 8.5 shows the transient response for the genetically 

designed controller. The results obtained the controller are shown in table (8.9), 

which should be multiplied by E5.

zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ISE 4.6 0.16 0.19 0.22 0.33 1.25 4.1 9.85 12.1 12.9
Table (8.9). —---------------------------

The gains and the total ISE for the controller are given in table (8.10).

K 0.15

ki 0.17

K 3.23

Total ISE 2.531E6

Table (8.10)

3 3 0



Chapter 8

8.4.2.3 LOWPGV FIXED TERM LINEAR PIP  CONTROLLER

In this design, the fixed gains obtained from the local set-point change designs were 

used to initialise the GA. The linear PID controller is implemented in the 

incremental form so as to avoid any bumpless transfer technique associated with the 

integral state, because the integral state would require bumpless transfer every time 

the integral gain is changed. Then the linear PID controller for non-linear plants was 

designed using the GA, such that the integral square error ISE is minimised for the 

non-linear plant. In this case the performance index used is the sum of the m inim um 

of the maximum of the individual set-point change. The new performance index 

is thus given by equation (8.16). In this case, a population of 100, a crossover 

probability, Pe=0.65, and a mutation probability, Pm = 0.01, was used. Figure 8.6 

shows the transient response for the genetically designed controller. The results 

obtained the controller are shown in table (8.11), which is multiplied by E5.

zone 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ISE 4 3.62 3.33 3.1 2.84 2.64 2.44 2.3 2.13 2.14
Table (!m y.

The gains and the total ISE for the controller are given in table (8.12).

kp 4.61

ki 3.04

kd 0.23

Total ISE 2.854E6
Table (8.12).
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8.5 CONCLUSIONS

In this chapter genetic algorithms were used to design a globally optimised Linear 

PID controller for a non-linear plant. The design shows that the cost function 

employed in this design is effective for the design of global controllers it also 

guaranties some minimum level of performance through out the operating envelope. 

Indeed comparing the results of this design with that obtained using the gain 

scheduling design for the two plants indicates that the robust design has produced 

a highly effective global controller. It is evident that the resulting controller does 

provide near optimum local control at the worst operating points, such that the 

control everywhere else in the operating envelope is better. This shows the 

controller performs in the same manner as a robust controller.
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Figure (8.1) Transient response of the genetically designed global linear PID
controller for plant (1), example (8.4.1.1)
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Figure (8.2) Transient response of the genetically designed global linear P1D
controller for plant (1), example (8.4.1.2)
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Figure (8.3) Transient response of the genetically designed locally optimised PID
controller for plant (1), example (8.4.1.3).
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Figure (8.4) Transient response of the genetically designed global linear P1D
controller for plant (2), example (8.4.2.1)
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Figure (8.5) Transient response of robustness test using genetically designed global
PID controller for plant (2), example (8.4.2.2).
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Figure (8.6) Transient response of the genetically designed global linear PID
controller for plant (2), example (8.4.2.3)
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CONCLUSIONS

9.1 CONCLUSIONS

The concepts, and design procedures for linear control systems has been studied by 

numerous people. But this is not the case for the non-linear control system. This is 

because of the lack of a technique or method. Therefore this thesis attempts to 

develop a new technique for the design of non-linear control systems. In achieving 

this goal the technique of genetic algorithms has been proposed as a means of 

effecting the design. It was found that the GA can provide a new design method that 

is significantly different from the mathematical approach. In general non-linear 

control systems can be defined as one of the following types:

i) non-linear controller for linear plant;

ii) non-linear controller for nonlinear plant',

iii) linear controller for non-linear plant.

The GA was deployed successfully to design controllers for all the above cases.

non-linear controllers for linear plants

The non-linear controllers can be implemented in a number of different ways such:

i) by using functions to map non-linear gains',
i

ii) by using fuzzy sets to map non-linear gains',

iii) by using neural networks to map non-linear gains.

The GA was used to successfully design non-linear control systems using all the 

above techniques.

3 3 8
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Indeed, it is evident that in principle GAs could be used to design any controller 

involving PID, fuzzy or neural architectures. During the analysis of the non-linear 

incremental controller it was found that the controller operates in two distinct region 

within the operating envelope of the plant. Hence, the non-linear gain mapping was 

done so as the controller can operate in the two zones, this implementation resulted 

in an increase in the performance of the controllers being designed. The principle 

reason for this being that the search space for the GA could then be chosen 

precisely. From the results obtained it was found that the GA could design a high 

performance controller. Indeed, in some of the cases the resulting controller was a 

dead beat controller. The most interesting point of this study was that the 

polynomial, fuzzy and neural controllers all performed to a similar level of 

performance. However, the neural controller had 26 parameters, the fuzzy and the 

polynomial both had 14 parameters each. This is of interest as it suggest that 

polynomial functions may be better than fuzzy or neural method for implementing 

non-linear PID controllers.

non-linear controllers non-linear plant

In the third section of the thesis the GA was used to design non-linear ‘controllers 

for non-linear plants (gain scheduled controllers). In this case polynomial 

interpolation was used to map the gains of the gain scheduled controllers. Using this 

implementation the GA produced high performance controllers over the operating 

envelope of the plant. Since in the non-linear control systems, the non

3 3 9
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linearity is a function of either input, output or state, in this work two illustrative 

examples were considered one with input and one with output non-linearities. The 

resulting gain scheduled control systems could not have been designed autonomously 

using any other technique.

linear controller for non-linear plants

In the fourth section of the thesis the GA was used to design linear controller for 

non linear plants. When designing fixed linear PID controllers for a non-linear plant 

the question of local and global performance is addressed. In this context the GA 

was used to design a globally optimised fixed term linear PID controller for a non

linear plant. The robustness of the control systems has long interested control 

engineers, with the most recent advances being made by the H® design method. In 

this section of the thesis a simple cost function involving the minimisation of the 

worst performance of the controller throughout the operating envelope was 

proposed. This min-max performance index provides a time-domain robustness 

measure if used to design a linear controller for a set of linear plants which may 

rival the H® robustness concepts.

Finally it can be said that the future of the GA as a general control systems design 

tool is very bright. And from the results obtained using the GA it can be postulated 

that in the future all computer aided control system design (CACSD) will be done 

using GAs, where the controller can either be linear or non-linear.
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9.2 RECOMMENDATION FOR FURTHER WORK

The new concepts, and design methods presented in this thesis can be readily 

extended for application in the fields of:

i) aerospace, to design gain scheduled aircraft controllers;

ii) process control, to design high performance dual zoned controllers;

iii) robotics, to design high performance dual zoned controllers;

iv) green approach, move away from "output optimisation" to "input optimisation" 

i.e. minimise sum of input for set-point changes, this could provide energy saving 

hence, the term "green".

The robustness studies could be further enhanced by using the principle of co

evolution and fitness sharing. With the additional concepts the robustness design 

method of such control system could be developed to rival the H* design method. 

The only problem with using GA is they essentially really on the ability to simulate 

the process being controlled. This requirement makes the issue of process 

identification very important. GAs and genetic programming GPs have been used 

by other researchers to model non-linear process [102]. This identification procedure 

enables the evolutionary techniques to be applied. Therefore further research in the 

identification of models of non-linear systems is required.
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