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Abstract 

This paper presents a new method for constructing a novel thick-panel origami cube. 
By replacing the equivalent 4R-spherical linkage in a four-crease zero-thickness 
origami vertex with a plane-symmetric Bricard linkage, the thick-panel form of a 
general plane-symmetric four-crease origami vertex is identified and constructed. The 
proposed thick-panel vertex preserves the kinematics of the original four-crease 
origami vertex. Then, by utilizing the proposed thick-panel vertex, a thick-panel cube 
is constructed based on the zero-thickness cube that was proposed in our previous work. 
Through mechanism decomposition, geometric constraints and kinematic properties of 
the corresponding integrated mechanism are investigated and formulated, which reveals 
the kinematic equivalence between the thick-panel and zero-thickness forms of an 
origami cube. In addition, a prototype of the proposed thick-panel origami cube is 
fabricated, verifying its kinematic properties. The proposed technique can be extended 
to the design and construction of thick-panel polyhedrons with potential applications in 
the fields such as aerospace exploration, robotics and architecture.  

    

Keywords: Thick-panel vertex; Plane-symmetric Bricard linkage; Thick-panel cube; 
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1. Introduction  

In the past two decades, interest in folded structures and mechanisms has increased 
dramatically, and origami-inspired structures and mechanisms have founded 
applications in wide areas including, to mention but a few, aerospace mechanisms and 
devices [1, 2], robotics [3, 4], medical devices [5], mechanical metamaterials [6, 7], 
energy absorption structures [8, 9], and MEMS devices [10, 11]. The traditional origami 
is normally made of thin and flexible paper, but when it is transformed into engineering 
applications, rigid origami is considered in which the facets of the crease patterns are 
typically rigid panels that rotate around predetermined folds (which become complaint 
hinges) without any tension-bend deformation during the continuous folding process 
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[12]. From kinematics point of view, the folding process of a rigid origami pattern is 
equivalent to the motion of a mechanism if facets are regarded as rigid links and crease 
lines as revolute joints [13], e.g., the case that four creases in a rigid origami pattern 
intersect at one point is kinematically equivalent to a spherical 4R linkage [14-16]. In 
general, the traditional rigid origami patterns are primarily created by idealized zero-
thickness facets. In order to enhance the engineering applications of rigid origami, the 
thickness problem of the panels for enhancing stiffness and strength has to be overcome. 
Various methods have been proposed for accommodating thickness in the folding 
motion of thick panels [17]. Some of these techniques maintain the original kinematic 
model [18] of the zero-thickness origami. The tapered panels technique [19] was 
proposed for geometrically constructing thick panel structures that follow the kinematic 
behavior of the rigid origami by trimming material away from panels to avoid 
interference. In the offset panel technique [20, 21], offsets were used to position the 
panels away from the zero-thickness surface to achieve full range of angular motions. 
The split-vertex technique [22] added spacer panels at fold lines to accommodate 
thickness, as a result, a degree-four split-vertex vertex was comprised of two spherical 
4R linkages while maintaining single-degree-of-freedom mobility. In addition, Cai [23] 
proposed constructing foldable plate structure with rolling joint. 

Different from the methods mentioned above, spatial linkages are utilized as 
another kinematic model at the origami vertices to achieve the folding motion of thick-
panel origami. Ku and Demaine [24] presented the doubled hinge technique for 
thickness accommodation by splitting each fold line into two, thus the loop of eight 
creases at a simple degree-four vertex can be modeled as a spatial 8R linkage with two 
independent degrees of freedom. Lang et al. [25] proposed a new approach by using 
designed-offset linkages to achieve rigid foldability and parallel stacking of panels, the 
proposed thick origami is equivalent to a multiloop eight-bar spatial mechanism that 
could be analyzed as separated four-bar linkages. Hoberman [26] discovered the hinge 
shift technique for constructing 3D structures by shifting the location of the rotational 
axes away from a single plane of the Miura-ori pattern; in the proposed 3D structures, 
each symmetric vertex is in fact a Bennett linkage [27, 28]. Chen et al. [29] developed 
a systematic approach for creating thick-panel origami based on the spatial linkages, 
where the 4R Bennett linkage, 5R Myard linkage [30] and 6R Bricard linkage [31] were 
identified to replace the equivalent spherical linkages at four-, five- and six-crease 
vertices of zero-thickness origami. Using this method, the kinematic properties of the 
original zero-thickness origami are preserved in the thick-panel origami. In addition, 
Zhang and Chen [32,33] proposed a novel method for constructing mobile assemblies 
of spatial overconstrained linkages from origami patterns with their thick-panel forms 
acting as the intermediate bridge.  

In order to apply the zero-thickness origami cubes [34] in engineering application 
with rigid and thick panels, this paper for the first time presents a new approach for 
constructing a thick-panel origami cube by replacing the equivalent spherical 4R 
linkages at the vertices of zero-thickness origami-form mechanism with plane-
symmetric Bricard linkages. The proposed thick-panel origami cube preserves the 
kinematic properties of the corresponding original zero-thickness rigid-origami cube. 
Furthermore, following the kinematic equivalence in this proposed approach, the thick-
panel origami with the same geometry can reproduce motions that are identical to that 
of the zero-thickness origami, in which crease pattern of zero-thickness rigid origami 
can be potentially applied to engineering applications based on its thick-panel form.  

The rest of this paper is arranged as follows. Section 2 presents a new technique for 
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the design of a thick-panel form for a general plane-symmetric four-crease origami 
vertex. Using the proposed thick-panel vertex, Section 3 presents the synthesis and 
analysis of a thick-panel cube based on a foldable zero-thickness rigid-origami cube 
[34]. Conclusions and discussion are addressed in Section 4.  

 

2 The thick-panel form of a general plane-symmetric four-crease origami vertex  

In this section, a thick-panel form of the general plane-symmetric four-crease 
origami vertex is constructed and presented. The proposed thick-panel origami vertex 
is equivalent to a plane-symmetric Bricard linkage and can preserve the kinematics of 
the original four-crease origami vertex.  

2.1 Design of the thick-panel form for a general plane-symmetric four-crease 
origami vertex 

A plane-symmetric four-crease zero-thickness origami vertex in the Miura-ori 
pattern is shown in Fig. 1(a), where the red solid lines stand for mountain creases, and 
the dashed lines denote valley creases. This type of origami vertex has two groups of 
sector sheets with section angles    and   , as indicated in blue and yellow 
respectively in Fig. 1. It should be noted that +    is the geometric condition of 
coplanarity corresponding to Miura-ori pattern. Regarding the creases and rigid sheets 
as revolute joints and links, respectively, the four-crease rigid origami vertex can be 
modeled as a spherical 4R linkage of one degree-of-freedom (DOF). The corresponding 
thick-panel origami of this rigid origami pattern was firstly proposed by Hoberman [26] 
by using the hinge shift technique as shown in Fig. 1(b). This thick-panel form origami 
has one DOF, the thickness of thicker portion (in blue) is 2a and that of the thin portion 
(in yellow) is a. From mechanism point of view, the kinematic model in this four-crease 
thick-panel origami vertex is equivalent to a Bennett linkage of symmetric case. With 

i i   (i = 1, 2, 3, 4, see Figs. 1(a) and (b)), the equivalent folding performances of 

the four-crease zero-thickness rigid origami and the thick-panel form origami have been 
analyzed and verified in [32]. It should be pointed that, to form the equivalent Bennett 
linkage of one-DOF as shown in Fig. 1(b), the special geometry condition +  
must be satisfied. 

In addition to the special case with +    in Fig. 1(a), Fig. 1(c) gives the 
general plane-symmetric four-crease zero-thickness origami vertex with the condition 
that +   . In this case, under the definition of mountain crease and valley crease, 
such a vertex cannot be deployed to a planar state but can be folded flat. In this paper, 
we try to construct its corresponding thick-panel origami form that preserves the 
kinematics of the zero-thickness form. Firstly, we use the hinge shift technique having 
been applied to the Miura-ori pattern, as shown in Fig. 1(d), the corresponding thick-
panel origami constructed by this method turns out to be a structure with no mobility, 
which can only be assembled in the fully folded configuration. This is due to the reason 
that the strict geometry constraints for forming a Bennett linkage are no longer satisfied 
as +    . In order to solve this problem and find an equivalent thick-panel 
counterpart for the general case of plane-symmetric four-crease origami, this paper 
proposes a new technique, which extends the hinge shift technique [26], the doubled-
hinge method [24], and our previous work [32, 33].  
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Fig. 1. Plane-symmetric four-crease zero-thickness origami vertices and the corresponding thick-
panel forms. (a) The plane-symmetric origami vertex with +   and (b) its thick-panel form in 

Miura-ori pattern. (c) The general plane-symmetric origami vertex with +    ; (d) the 

corresponding thick-panel structure without mobility; (e) four panels in an overlapped state with a 
gap of 2a; (f) the general plane-symmetric thick-panel origami vertex and (g) its equivalent plane-
symmetric Bricard linkage. 

 

Referring to the structure in Fig. 1(d), to make it an equivalent thick-panel 
mechanism, we remove the inner material of thickness a each respectively from the two 
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α sectors, as highlighted in red dotted area in Fig. 1(d). The structure then turns into the 
overlapped state with four panels of consistent thickness a, see Fig. 1(e). At this stage, 
a gap of 2a appears and thus a close-loop assembly cannot be formed since the two blue 
panels are not connected. To overcome this problem, referring to Fig. 1(f), we add two 
auxiliary thin panels (illustrated in grey) connected by three parallel revolute joints 
symmetrically between the two panels with sector angle   . These two panels are 
articulated by a revolute joint (with joint axis denoted as 5z   in Fig. 1(g)), and are 

connected to the two α-section thick panels by two other revolute joints (with joint axes 
denoted as 4z   and 6z  , respectively in Fig. (1g)). Joint axes 4z   and 6z   are 

symmetric with respect to joint axis 5z  . The plane-symmetric Bricard linkage can 

preserve the kinematics of the original zero-thickness origami, which is proven in the 
next section. 

2.2 Kinematic equivalence 

In this section, the kinematic analysis of general plane-symmetric origami vertex in 
Fig. 1(c) and proposed thick-panel form in Fig. 1(f) is carried out based on the matrix 
method with the D-H notations [35].  

Firstly, the notation used for the analysis is introduced. For a part of a spatial linkage 
with revolute joints, see Fig. 2, iz  is along the axis of revolute joint i and ix  is along 

the direction of the common perpendicular between 1iz    and iz  . The geometrical 

parameter ( 1)i ia    represents the distance between iz  and 1iz    , also known as the 

length of link i(i + 1), positive along the axis 1ix  ; ( 1)i i   represents the twist angle 

between iz  and 1iz   about the axis 1ix  ; and offset iR  is the distance between axes 

ix  and 1ix   along the iz  axis. Further, the joint angle i  is defined as the rotation 

angle between ix  and 1ix   about the axis iz , here it has (0, 2 )i   in this paper. 

In general, for a single-loop spatial linkage consisting of i links, the closure equation 
using the transformation matrices obtained through the D-H parameters is 

 21 32 ( 1) 1 4... i i i T T T T Ι .                       (1) 

The transformation matrix  1i iT can be expressed as 

 

   

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)
( 1)

( 1) ( 1)

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i i i i

i i i i i i i i i i
i i

i i i i i

a

a

R

     
     

 

  

  


 

 
  
 
 
 

T ,        (2) 

For a single-loop spherical linkage, the axes of revolute joints meet at a point, the 
lengths of each link are zero, and thus closure equation Eq. (1) reduces to 

21 32 ( 1) 1 3... i i i Q Q Q Q Ι                       (3) 

where  
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( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos cos sin sin sin

sin cos cos sin cos

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

    
    

 

 

  

 

 
   
  

Q .            (4) 

Closure equations (1) and (3) can be used to obtain the relationships of the joint 
angles at each thick-panel origami vertex and rigid origami vertex, respectively. 

 

 
Fig. 2. The D-H notations of a portion of a spatial linkage. 

 

Based on the above formulation, for the four-crease origami vertex in Fig. 1(c), its 
kinematics can be deduced through the equivalent spherical 4R linkage with the 
geometric parameters that 12 23      and 34 41     , the relationships 

between the dihedral angles and kinematic joint angles are 1 1    , 2 2    , 

3 3      and 4 4     . Substituting these geometric parameters into the D-H-

convention-based closure equations, Eq. (3), the relationships of dihedral angles at this 
origami vertex can be expressed with respect to the sector angles   and   as 

2 1

1

sin sin
tan

2 sin cos cos cos sin

  
    




,                (5a) 

3 1  ,                           (5b) 

 
2

4 22

sin
cos 1+ cos 1

sin

 


  ,                   (5c)  

where 1  is taken as the input dihedral angle for the general plane-symmetric origami 

vertex.  

Using Eq. (5) and specifying that the sector angles are / 2   and / 4  , 

the input-output curves relating the dihedral angles of the general plane-symmetric 
origami vertex can be obtained and illustrated in Fig. 3. 
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Fig. 3. Input-output curves of dihedral angles of the general plane-symmetric origami vertex with 

/ 2  and / 4  . 

 

For the derived thick-panel origami vertex in Fig. 1(f), its equivalent mechanism in 
a plane-symmetric Bricard linkage form is illustrated in Fig. 1(g), where the coordinate 
frames are established, and the associated D-H parameters are assigned. In addition, the 
D-H parameters of the proposed plane-symmetric Bricard linkage have the following 
relationships, 

12 23 34 61 45 56, , 0                 ,     

12 23 34 61 45 56, 0,a a a a a a a b      ,                (6) 

1 2 3 5 4 60,R R R R R R c       ,                  

where link length a represents the thickness of the sector panels, and b is the width of 
the two auxiliary thin panels, offset c can be selected based on the structure of the 
proposed thick-panel with the condition that no interference during the motion being 
considered. 

Substituting the above D-H parameters into the closure equation, Eq. (1), the joint 
angle relationships of the plane-symmetric Bricard linkage can be derived as 

2 1

1

sin sin
tan

2 sin cos cos + cos sin

  
    




,                 (7a) 

5 2cos cos
2 2

a

b

 
  ,                        (7b) 

   
2

4 5 22

sin
cos 2 + 1+ cos 1

sin

  


  ,                 (7c)  

3 1 6 4,     ,                         (7d)  

where 1  is the input for the one-DOF plane-symmetric Bricard linkage. 
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Referring to Fig. 1(f), the dihedral angles of the four sector panels are 1 , 2 , 

3 , and 4 . Here, 4  is the virtual dihedral angle between the two panels with sector 

angle   . Comparing the thick-panel origami vertex in Fig. 1(f) and the equivalent 
Bricard linkage in Fig. 1(g), the dihedral angles can be expressed with respect to the 
joint angles as 

1 3 12      , 2 2  ,                    (8a) 

4 4 5 6 4 52 ( ) ( ) ( ) 4 2
2 2

                   .         (8b) 

Substituting Eq. (8) into Eq. (7), with 1  being the equivalent input (related to 

input angle 1  of the equivalent Bricard linkage), the relationships of dihedral angles 

expressed by the sector angles   and   are 

2 1

1

sin sin
tan

2 sin cos cos cos sin

  
    




,               (9a) 

3 1=  ,                           (9b) 

   
2

4 4 5 22

sin
cos cos 2 + 1+ cos 1

sin

   


   ,             (9c)  

which are consistent with relationships for the dihedral angles of the original zero-
thickness origami vertex obtained in Eq. (5). 

 Hence, from the above derivation, we prove that the kinematic properties of the 
proposed thick-panel origami vertex are the same as the corresponding zero-thickness 
origami.  

It should be noted that, due to the gap of 2a in the folded state of the thick-panel 
origami vertex, the width b of the auxiliary panels (see Fig. 1(g)) should satisfy the 
condition that / 1b a  . This ensures that the entire folding motion can be achieved. 
From Eq. (7), it can be seen that the angles 4 , 5  and 6  are related to /b a , but 

in Eq. (9), it shows that the relationships among the dihedral angles i  in the thick-

panel origami are not affected by /b a .  

Further, by assigning that /2    and /4   , and / 1b a    (or / 2b a   ), 
and substituting the geometric parameters into Eqs. (7) and (9), the input-output curves 
for the joint angles of the equivalent plane-symmetric Bricard linkage, and for the 
dihedral angles of the associated thick-panel origami vertex are obtained and illustrated 
in Fig. 4. Comparing Fig. 4(b) with Fig. 3，it can be found that the relationships for the 
dihedral angles of the thick-panel form in Fig. 1(f) are identical with that of the 
corresponding zero-thickness origami in Fig. 1(c). Therefore, from the above analysis, 
the equivalence of their folding performances has been proven. It is noted that the two 
auxiliary panels in the thick-panel origami are connected by parallel joints and their 
further physical construction depends on the specific application. Overall, to secure the 
proposed design, according to the structure of the thick panel, the condition that 

2 21 / 1 ( / ) tan ( )   b a c a     should always be considered to avoid physical 

interference.   
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For example, in the phototype shown in Fig. 5 (in which the sector angles are 
/2   and /4   according to Figs. 1(f) and 1(g)), to make the position of axis 

5z  stable and avoid bifurcation when 4z  and 6z  are collinear in the fully deployed 

state, right-angled isosceles triangular prism structures are adopted as the auxiliary 
panels, and in this case 2b a .   

 

 

Fig. 4. Input-output curves of (a) joint angles i  in the Bricard linkage and (b) dihedral angles i  

of the thick-panel origami vertex with / 2  , / 4   and b/a = 1 or 2 . 

 

 

Fig. 5. Folding process of the general plane-symmetric thick-panel origami vertex. 

Therefore, in this section, a novel thick-panel origami vertex with kinematic 
equivalence for the general plane-symmetric four-crease zero-thickness origami vertex 
is identified and constructed, which is equivalent to a plane-symmetric Bricard linkage, 
hence we call it a PSBL thick-panel origami vertex.  
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3 Construction and analysis of a thick-panel origami cube 

A zero-thickness origami cube has been presented in our previous work [34], as 
shown in Fig. 6(a). In this crease pattern, there are three symmetric four-crease origami 
vertices A, B and C, and one symmetric six-crease vertex D, these vertices form a 
foldable 4R-4R-4R-6R spherical linkage loop, which has been proven to have the 
mobility of one and is flat foldable [34] (The detailed description and the kinematic 
analysis results of this zero-thickness origami cube are provided in Appendix A). In this 
section, by replacing the three plane-symmetric four-crease origami vertices with the 
proposed PSBL thick-panel origami vertex, we aim to construct a thick-panel origami 
cube that preserves the kinematics of the zero-thickness origami cube.  

3.1 Construction of the thick-panel origami cube  

Referring to Fig. 6(b), to construct a thick-panel origami cube, by placing the 
original zero-thickness origami cube in the deployed cube configuration, we replace the 
four-crease vertices A, B and C with the proposed PSBL thick-panel vertex, where the 
auxiliary panels are placed along edge AD, BF and CD, respectively. The PSBL vertices 
at vertices A and B share a common revolute joint along edge AB, and two common 
panels as triangular facets ABD and ABF. Similarly, the PSBL vertices at vertices B and 
C have a common joint along edge BC, and two common panels, i.e. triangular panels 
BCD and BCF. The three PSBL vertices at vertices A, B and C are of the identical 
geometry. Then, by merging the related joints and panels, and expanding the panels 
shapes, a think-panel form is constructed as illustrated in Fig. 6(c), in which the panels 
associated with vertex H and edge DH are missed. In order to generate a thick-panel 
cube, two additional triangular panels, i.e. panels DEH and DGH, are implanted 
connecting by revolute joints along edges DE and DG. If a revolute joint is used to 
connect panels DEH and DGH along edge DH, the thick-panel cube will become a 
structure.  

To obtain the entire thick-panel cube with mobility one and flat foldability, similar 
as the construction of the PSBL vertex, we add another two auxiliary panels together 
with three parallel revolute joints along edge DH. Ultimately, a thick-panel origami 
cube is constructed as shown in Fig. 7. The proposed thick-panel cube in Fig. 7(a) 
contains 10 identical triangular panels and four pairs of auxiliary panels that are 
connected by 21 revolute joints. While vertices A, B, and C are 6R linkages, vertex D 
is formed by three edges (DA, DC, DH) with auxiliary panels with their associated 
joints and three diagonal revolute joints (DB, DE, DG), which is equivalent to a spatial 
12R linkage. Hence, the whole thick-panel origami cube is equivalent to a 6R-6R-6R-
12R integrated overconstrained linkages.  

In the design of thick-panel origami cube in Fig. 7, considering the geometric 
conditions in the crease pattern of the original zero-thickness origami cube, right-angled 
isosceles triangular prism blocks are adopted as the auxiliary panels for the three PSBL 
thick-panel vertices as well as the two along edge DH. The width of the auxiliary panels 

for the three PSBL vertices is 2a , and width of the auxiliary panels along edge DH 

is 3 2a , with a being the thickness of all triangular panels. It should be noted that the 
total width of the two identical auxiliary panels should be greater than the thickness of 
the internal six-layer panels in the folded state without interference, so the width b  of 
each auxiliary panel along edge DH should satisfy the condition that 

2 23 9 ( ) / 4a b a L l    , in which L is the side length of the cube and l is the length 

of auxiliary panel. Similar to the design strategy of the auxiliary panels in the PSBL 
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vertices, to make the position of axis 1z  stable at vertex D (see Fig .8) at the fully 

deployed state and to avoid interference, we assign the width of the auxiliary panels 

(right-angled isosceles triangular prism blocks) along edge DH as 3 2a .  

In the following section, we prove that the proposed thick-panel cube can preserve 
kinematics of the original zero-thickness origami cube, both of mobility one.  

 
Fig. 6. Construction of thick-panel mechanism based on a zero-thickness origami cube. (a) Typical 
configurations of the zero-thickness origami cube [34]; (b) the integration of PSBL thick-panel 
vertices at vertices A, B and C; (c) a thick-panel form made by three PSBL think-panel vertices. 
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Fig.7. Thick-panel origami cube with 6R-6R-6R-12R integrated mechanism from (a) the deployed 
configuration, via (b) a middle configuration, to (c) the folded configuration.  

 

3.2 Kinematics preservation 

To carry out kinematic analysis of the proposed thick-panel origami cube, using 
mechanism decomposition, its equivalent 6R-6R-6R-12R integrated mechanism can be 
decomposed into four sub-linkages at the four vertices A, B, C and D. The three sub-
linkages at vertices A, B and C are all equivalent to the plane-symmetric 6R Bricard 
linkage, and the sub-linkage at vertex D is a spatial 12R linkage. Kinematics of the 
plane-symmetric 6R Bricard linkage has been presented in Section 2, hence, kinematics 
of linkages A, B and C and be formulated straightforward by adapting the related 
derivation in Section 2.  

The PSBL thick-panel vertices A, B and C have the same geometric parameters, 

/2   , /4    and = 2b a  . Hence, with the coordinate frames shown in Fig. 
6(b), by adapting Eq. (7), general relationships of the joint angles can be rewritten as 

   

2 5 2
1

4 5 2 3 1 6 4

2
tan 2 tan cos cos

2 2 2 2
1

cos 2 + cos +1
2

i i i
i

i i i i i i i

  

      

   

  

, ,

, , ,

            (10)  

in which A, B, C.i   

Thus the corresponding dihedral angles for the PSBL thick-panel vertices have the 
following relations, 

2
1tan 2 tan

2
i

i

  , 3 1=i i  ,  4 2

1
cos cos +1

2i i  ,          (11) 

where A, B, C.i   

In addition to the above relationships, due to the fact that each pair of the adjacent 
PSBL thick-panel vertices A, B and C shares a common revolute joint, referring to Fig. 
6(b), there exit further relations that  

A3 B3  , B1 C1  ,                       (12a) 

and 
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A3 B3  , B1 C1  .                       (12b) 

Hence, for the three PSBL thick-panel vertices A, B, and C and their equivalent 
linkages, the assembly conditions can be expressed as 

A B Cj j j     ( j=1, 2, ..., 6),                   (13a) 

and  

A B Cj j j     ( j =1, 2, 3, 4).                  (13b) 

The thick-panel vertex D is indicated in Fig. 8, it contains six triangular panels and 
six auxiliary panels, that are connected by 12 revolute joints, it is equivalent to a spatial 
12R linkage. This linkage is coupled with the plane-symmetric Bricard linkages at 
vertices A, B and C, hence to ensure the entire folding motion and the axis positions 
between auxiliary panels, link lengths in the 12R linkage at vertex D have the following 
relationships 

D12 D12,1 D23 D34 D10,11 D11,12

D45 D56 D89 D9,10 D67 D78

3 2 , 0,

2 , ,

a a a a a a a

a a a a a a a a

     

     
         (14a) 

with the coordinate frames established in Fig. 8(b), other D-H parameters of this 12R 
linkage are identified as 

D12 D45 D56 D89 D9,10 D12,1

D23 D34 D67 D78 D10,11 D11,12

D1 D3 D5 D7 D9 D11

D2 D4 D6 D8 D10 D12

0,

,
4 4

0,

.

R R R R R R

R R R R R R c

     

      

     

      

     

        

，
           (14b) 

 

 

 
Fig. 8. Spatial 12R linkage at (a) vertex D and (b) its D-H coordinate frames.  
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Referring to Fig. 8(b), joint angles in the 12R linkage at vertex D that are coupled 
with the joints in the three Bricard linkages at vertices A, B and C can be related with 
the associated angles as follows. Related with linkage A, it has 

D8 A43    , D9 A52    , D10 A62    ，           (15a) 

relating with linkage B, there exists  

D7 B22    ,                         (15b) 

and relating with linkage C, it has 

D4 C42    , D5 C52    , D6 C63    .            (15c) 

If A1   is given as the only input of the 6R-6R-6R-12R integrated mechanism, 

kinematics of the 6R linkages at vertices A, B and C can be determined by Eqs. (10), 
(12a) and (13a). Then, based on Eqs. (13a) and (15), the seven joint angles D4  

throughout D10  at vertex D can be deduced and represented with respect to A1  as 

D4 D6 D8 D10 A42              , D5 D9 A52      , D7 A22    . (16)      

Further, by substituting the D-H parameters in Eq. (14) and kinematic conditions in 
Eq. (16) into the closure equation Eq. (1), the other five joint angles in the 12R linkage 
at vertex D can be expressed by D4 D5,   and D7 as 

  

     

 

2 D5
D4 D4 D5 D4

D4 D4 D5 D4 D5
D1

4 2D5 D5
D4 D4 D5 D4

sin sin cos 1
2

2
+ 2 cos cos 1 sin 2

2cos
2

6 1 cos sin 2 sin
2 22

F

E

E
F

   

    
    

             
 
     
 

            
   

, (17a) 

 2 4 2D5 D5D1
D2 D4 D4 D5 D4cos + cos sin 2 + sin

2 2 22

E
F

                    
     

, (17b) 

   

    

   

 

D7
D4 D5 D4 D5

D7
D4 D5 D4 D5D3 D7

2 D7
D4 D5 D4 D5

2
D4 D5

2
cos 2 tan sin 2

2 2

2 tan sin 2 1 cos 2
tan = / tan2

2 2
1

tan cos 2 sin 2
2 2

cos 2

   

     

    

 

 
   

 
 

   
 
        

  
   

,      (17c)

D11 D3  , D12 D2  ,                       (17d) 

where   2 D5
D7 D4 D5 D7 D4cos sin 2 / 2 sin sin

2
E

         
 

 , and 

  2 D5
D7 D4 D5 D7 D4sin sin 2 / 2 cos sin

2
F

         
 

. 
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Using the above joint angles of the 12R linkage at vertex D, the dihedral angles 
between the adjacent triangular panels for the corresponding thick-panel vertex can be 
derived as  

D1 D2 D12 4      ,                         (18a) 

D2 D6 D3      ,                          (18b) 

D3 D5 D4 D52 2        ,                      (18c) 

D4 D72    .                           (18d) 

In addition, referring to Fig. 8(a), the dihedral angles at vertex D, i.e., D3 , D4  

and D5  can also be obtained directly from the related dihedral angles in the PSBL 

thick-panel vertices A, B and C as 

D3 C4  , D4 B2  , D5 A4  .                   (19) 

Given the inputs A1  and A1  respectively, using Eqs. (10)-(13) and (15)-(19), 

the input-output curves of joint angles Di  in the 12R linkage and dihedral angles Di  

in the corresponding thick-panel vertex at vertex D are computed and shown in Fig. 9. 
The input-output curves for the dihedral angles at vertex D shown in Fig. 9(b) are the 
same as that for the zero-thickness origami cube indicated in [34]. From the above 
analysis, it can be seen that A1   is the only input of the equivalent 6R-6R-6R-12R 

integrated mechanism, and the rest of joint angles can be determined with A1 . Hence, 

the proposed thick-panel origami cube is equivalent to a 6R-6R-6R-12R integrated 
mechanism and has mobility one. Furthermore, as shown in Fig. 10, compared with the 
results in Fig. A2 in Appendix A [34], the input-output curves of the dihedral angles in 
the proposed thick-panel cube are the same as those in the original zero-thickness 
origami cube. Therefore, the proposed thick-panel cube preserves the kinematics of the 
original zero-thickness origami cube.  

 

 

Fig. 9. Input-output curves of (a) joint angles Di  and (b) dihedral angles Di  in the spatial 12R 

linkage at vertex D.  
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Fig. 10. Input-output curves of dihedral angles in the thick-panel origami cube. 

 

3.3 Verification and extension 

To verify the above design and analysis, a physical prototype of the proposed thick-
panel cube is fabricated in this paper as shown in Fig. 11. The thick-panel cube is flat 
foldable, it can be fully expanded into a cube and folded into a flat block as shown in 
Fig. 11(a). It has mobility one and presents the plane-symmetric folding performance 
like the original zero-thickness origami cube. However, it should be pointed out that 
the top of this proposed thick-panel cube cannot be covered by additional thick panels 
to achieve flat foldability. This may be an open problem for further investigation. To 
seal the top of the proposed thick-panel cube, idealized zero-thickness facets (cardboard 
model) like the ones used for the origami cube in [34] can be temporarily employed, as 
shown in Fig. 11(b), the idealized zero-thickness top facets do not affect the folding 
performance of the proposed thick-panel cube.  

 
Fig. 11. Folding process of (a) thick-panel origami cube and (b) the model with origami top facets.  
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Further, referring to the construction of the proposed thick-panel origami cube, as 
shown in Fig. 12, the procedure of constructing thick-panel origami with kinematic 
equivalence based on a zero-thickness origami can be summarized as follows: Step 1, 
choose a zero-thickness origami crease pattern with general symmetric four-crease 
vertices; Step 2, replace each suitable zero-thickness four-crease vertex with the 
proposed PSBL thick-panel vertex; Step 3, synthesize thick-panel origami form based 
on crease pattern and verify the kinematic equivalence between thick-panel origami and 
zero-thickness form.  

Based on kinematic equivalence, the kinematics of the original origami can be 
directly used to control and plan the motion of the evolved thick-panel origami-based 
structure in engineering applications. Noted that if the equivalent thick-panel origami 
form cannot be constructed in Step 3, the original zero-thickness crease pattern should 
be reconsidered.  

For demonstration purpose, following the procedure of constructing equivalent 
thick-panel origami, a thick-panel cuboid is identified and constructed as follows to 
extend the application of the proposed synthesis approach. The zero-thickness crease 
pattern of a cuboid was presented in [15] (see Fig.13(a)), the zero-thickness origami 
cuboid can be fully expanded into a cuboid structure and be folded into a flat panel. In 
this crease pattern, vertices A, B, C and D are the symmetric four-crease origami 
vertices with the identical symmetric geometry, which have been given in [15]. These 
vertices can be conveniently replaced by the proposed PSBL thick-panel vertices. 
Through thick-panel transition at each vertex, Fig.13(b) shows the thick-panel cuboid 
structure with PSBLs at vertices A, B, C and D, in which the auxiliary panels are placed 
along edge AB and CD, respectively. Each pair of adjacent PSBL vertices share a 
common edge, i.e., AB, BC, CD and DA. The flat foldability and equivalent folding 
motion are preserved in the thick-panel cuboid. 

 

 

 

Fig. 12 The procedure of constructing equivalent thick-panel origami. 
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Fig. 13 Construction and folding process of deployable cuboid structure. (a) zero-thickness crease 
pattern [15]; and (b) corresponding thick-panel form with PSBL thick-panel vertices. 

 

 

4．Conclusions and discussion 

In this paper, we proposed an innovative approach for constructing a thick-panel 
origami cube. For a general plane-symmetric four-crease rigid origami vertex, a plane-
symmetric Bricard linkage has been introduced and analysed to present the equivalent 
folding motion between the zero-thickness origami vertex and its thick-panel form. 
Using the proposed PSBL thick-panel origami vertex, the construction of a novel thick-
panel origami cube of one-DOF was presented, and the geometric constraints and 
kinematic properties of its equivalent 6R-6R-6R-12R integrated mechanism have been 
investigated. It should be noted that, compared with original 4R-4R-4R-6R zero-
thickness origami cube, the symmetric and equivalent motion behavior is completely 
preserved in this thick-panel form. Physical prototypes have been fabricated to 
demonstrate and verify the proposed thick-panel origami and the approach.  

 It is found that, in order to construct an equivalent PSBL thick-panel vertex, two 
pairs of symmetric sector angles of thick panels should be satisfied, and the symmetric 
condition between the two auxiliary panels with three parallel revolute joints should be 
met. For a zero-thickness origami crease pattern with general symmetric four-crease 
vertices, the proposed PSBL thick-panel vertex can be useful for the construction of its 
equivalent thick-panel form with the same geometry, which can reproduce identical 
motions and be readily applied to engineering applications.  

In addition to constructing a thick-panel origami cube, the new method can be 
readily extended to transfer the zero-thickness origami patterns into its thick-panel 
counterpart, such as prism structures. Moreover, there are enriched designs of zero-
thickness origami patterns cumulated in art and mathematics. It will be a great resource 
for engineering if we can take the original origami pattern directly and transfer it into 
the thick-panel form by keeping their folding motion equivalently by employing the 
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method proposed in this report; it will save engineers a lot of efforts in dealing with the 
compatibility for those independently proposed thick-panel origami patterns without 
referring to the original zero-thickness ones. 
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Appendix A: The zero-thickness origami cube [34] 

The crease pattern of a zero-thickness origami cube in our previous work [34] is 
shown in Fig. A1. There are three symmetric four-crease origami vertices A, B and C 
with identical geometry, and one symmetric six-crease vertex D, which form a foldable 
4R-4R-4R-6R spherical linkage loop. The dihedral angles of the zero-thickness origami 
cube are noted as ij   in [34]. As each pair of adjacent spherical linkages share a 

common joint, the kinematic relationships of dihedral angles are A1 B1  , B3 C3=  , 

C4 D2  , D6 A4   and B2 D1=  . If A1  is given as an input dihedral angle, the 

kinematics of three one-DOF S4R linkages are determined. Meanwhile, three inputs, 

D1 , D2  and D6 , required by three-DOF S6R linkage can also be obtained from 

B2 , C4  and A4 , respectively. The input-output curves of dihedral angles in Fig. A2 

demonstrate that all dihedral angles can be determined with A1  . Hence, the zero-

thickness origami cube with 4R-4R-4R-6R spherical linkage loop has mobility one. 

 

 
Fig. A1. The crease pattern and dihedral angles ij  of the zero-thickness origami cube [34]. 
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Fig. A2. Input-output curves of dihedral angles in the zero-thickness origami cube [34]. 
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