
Vol.:(0123456789)1 3

AI & SOCIETY
https://doi.org/10.1007/s00146-021-01240-x

ORIGINAL ARTICLE

An architecture governance approach for Agile development
by tailoring the Spotify model

Abdallah Salameh1 · Julian M. Bass1

Received: 18 April 2021 / Accepted: 1 June 2021
© The Author(s) 2021

Abstract
The role of software architecture in large-scale Agile development is important because several teams need to work together
to release a single software product while helping to maximise teams’ autonomy. Governing and aligning Agile architecture
across autonomous squads (i.e., teams), when using the Spotify model, is a challenge because the Spotify model lacks prac-
tices for addressing Agile architecture governance. To explore how software architecture can be governed and aligned by
scaling the Spotify model, we conducted a longitudinal embedded case study in a multinational FinTech organisation. Then,
we developed and evaluated an approach for architectural governance by conducting an embedded case study. The collected
data was analysed using Thematic Analysis and informed by selected Grounded Theory techniques such as memoing, open
coding, constant comparison, and sorting. Our approach for architectural governance comprises an organisational structure
change and an architecture change management process. The benefits reported by the practitioners include devolving archi-
tectural decision-making to the operational level (i.e., Architecture Owners), enhancing architectural knowledge sharing
among squads, minimising wasted effort in architectural refactoring, and other benefits. The practitioners in our case study
realised an improved squad autonomy by the ability to govern and align architectural decisions. We provide two key contri-
butions in this paper. First, we present the characteristics of our proposed architectural governance approach, its evaluation,
benefits, and challenges. Second, we present how the novel Heterogeneous Tailoring model was enhanced to accommodate
our architectural governance approach.

Keywords Large-scale Agile developments · Agile architecture · Spotify Tailoring · FinTech · Thematic analysis ·
Grounded Theory

1 Introduction

The Spotify model, which was introduced by Kniberg and
Ivarsson (Kniberg 2014; Kniberg and Ivarsson 2012), has
become influential among Agile proponents and hence
formed the basis of Agile methods used in several other
organisations (Salameh and Bass 2018, 2019b, 2020). In
the study of knowledge sharing using the Spotify model,
previous research has identified patterns for knowledge shar-
ing by cultivating Spotify Guilds (Šmite et al. 2019) and
presented the importance of cultivating participation culture

in general and establishing communities of practices (Šmite
et al. 2020). Also, previous research on the Spotify model
has revealed a new approach to Agile tailoring, called Het-
erogeneous Tailoring (Salameh and Bass 2020). Two key
features characterise this approach. First, each squad (i.e.,
team) is empowered to select and tailor its development
method. This key feature is supported by a set of identi-
fied guidelines that facilitate building squads’ autonomy
(Salameh and Bass 2020). Second, each squad is aligned
with other squads and common product development goals.
This key feature is supported by a set of identified influential
factors on aligning autonomous squads (Salameh and Bass
2018, 2019b). Each identified factor is supported by a set of
practices and processes that facilitate aligning autonomous
squads. However, our empirical research identified a chal-
lenge in governing and aligning Agile architecture across the
autonomous squads of the Spotify model.

 * Abdallah Salameh
 a.salameh@edu.salford.ac.uk

 Julian M. Bass
 j.bass@salford.ac.uk

1 University of Salford, 43 Crescent, Salford M5 4WT, UK

http://orcid.org/0000-0002-3012-9353
http://orcid.org/0000-0002-0570-7086
http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-021-01240-x&domain=pdf

 AI & SOCIETY

1 3

Our research addresses the question: How can software
architecture be governed and aligned by scaling the Spotify
model? We conducted a longitudinal embedded case study in
a multinational FinTech organisation to gain an understanding
of how the Spotify model is being used. In this longitudinal
embedded case study, we conducted a direct observation of
Agile practices over 21 months and 14 semi-structured open-
ended interviews. Our analysis identified a challenge in gov-
erning and aligning Agile architecture across autonomous
squads. Therefore, we decided to intervene by developing
and evaluating an approach for architectural governance. We
conducted an intervention embedded case study, which lasted
3 months, during which 32 ceremonies were observed and 8
semi-structured open-ended interviews were conducted. The
collected data was analysed using Thematic Analysis (Braun
and Clarke 2006) and informed by selected Grounded Theory
techniques (Glaser 1998).

Our approach for architectural governance considers align-
ing autonomous teams vertically on the product level and
horizontally on the individuals’ skillsets, which was not the
case in the previous work (Bellomo et al. 2014; Martini and
Bosch 2016; Nord et al. 2014). Our approach incorporates
a structural change and an architecture change management
process. According to the practitioners of our case study, the
proposed approach for architectural governance has shifted the
boundaries and facilitated the alignment and governance of
Agile architecting by tailoring the Spotify model. This trans-
formation has, in turn, improved squads’ autonomy by aligning
architectural decisions across autonomous squads.

The key contributions of this paper are: (1) developing and
evaluating an approach for architectural governance when
using the Spotify model; and (2) adapting the Heterogeneous
Tailoring approach to include aligning and governing archi-
tectural decision across autonomous squads by introducing our
approach for architectural governance to the Spotify model.
In this paper, we present the characteristics, benefits, and
challenges of our proposed approach for architectural govern-
ance. Also, we present the impact of the evaluated approach
for architectural governance on the Heterogeneous Tailoring
approach.

The remainder of this article is outlined as follows. Back-
ground and related work are presented in Sect. 2. In Sect. 3, we
describe the employed research methodology. The findings are
presented in Sect. 4 and concluded with a discussion in Sect. 5,
which discusses our contribution, limitations and threats to
validity, and related work. In Sect. 6, we conclude the article.

2 Background

2.1 Agile architecture

The role of software architecture in Agile software devel-
opment has been controversial in previous research (Abra-
hamsson et al. 2010; Kilu et al. 2019). Many advocates
give software architecture a vital role in Agile develop-
ment as in other development approaches, other opponents
against this. This clash between the two different cultures
is because of different believes on each side. For example,
some advocates argue about the importance of scaling any
development approach that does not pay sufficient atten-
tion to software architecture in a large-scale (Abrahamsson
et al. 2010; Kilu et al. 2019). One of the principles behind
the Agile Manifesto is “continuous attention to techni-
cal excellence and good design enhances agility”. Hence,
Agile software development should pay attention to soft-
ware architecture.

Agile architecting is an iterative and incremental way
of architecture evolution, which is recognised by previ-
ous research as an approach that replaces Big-Design-
Up-Front and keeps a project synchronised with the latest
changing conditions (Booch 2009; Dingsøyr et al. 2010).
The notion of “Agile architecture” evokes two concepts
(Bellomo et al. 2014): (1) software architecture that is easy
to evolve and modify and (2) an Agile way that defines
an architecture using an iterative lifecycle. While the first
is resilient enough not to degrade after a few changes,
the second does evolve over time, as the problem and the
constraints are better understood. These two concepts are
not the same; non-Agile software development process can
lead to a flexible and adaptable architecture. Also, an Agile
process can lead to rigid software architecture. However,
what teams build is influenced and constrained by how
they build it. Also, how teams build a product is influenced
and constrained by the followed design and architecture
(Buschmann and Henney 2013). Thus, Agile practition-
ers should focus on architectural issues that block teams’
agility to achieve technical excellence, good design, and
improve the agility of software development (Buschmann
and Henney 2013). Neglecting specific architectural con-
siderations even early in the development process can
make architectural refactoring costly (Erdogmus 2009).

Agile Architecture can be understood as patterns and
tactics that enable a simultaneous focus on architecture
and Agile development (Bellomo et al. 2014). Bellomo
et al. (2014) identified Agile architecture patterns and tac-
tics that influence the time and cost to implement, test,
and deploy requested changes. These patterns and tactics
include layer architecture, separate interfaces, restrict
dependencies and separate concerns. Also, they identified

AI & SOCIETY

1 3

some patterns and tactics that improve product scalability,
which includes clustered architecture with load balancing
and replicated copies, encapsulation of algorithms, and
data caching. Moreover, Bellomo et al. identified some
patterns and tactics that focus on flexibility in deploy-
ment and controlling the cost and time for testing. These
patterns and tactics include virtualisation (layering both
the infrastructure and the application), standardised and
configurable architecture (parameterisation and static and
dynamic binding), and executable (interface-driven code
structure).

Nord et al. (2014) provide an example of using architec-
tural tactics and aligning architecture, Agile development
teams, and production infrastructure. They explored archi-
tectural tactics that support scaled Agile development and
improve the alignment of the architecture and the develop-
ment of the organisation. The proposed alignment by Nord
et al. includes (1) a vertical and horizontal decomposition of
the software architecture to enable alignment of the teams
accordingly, (2) a matrix augmented-role team structures by
using Scrum, and (3) a catalogue of tactics mapped to Agile
development. This catalogue of tactics can be collected from
successful organisations and literature.

Yang et al. (2016) identified several architecting activi-
ties and Agile architecting practices. They found that the
architecting process, which covers the entire architectural
lifecycle, is comprised of 11 architecting activities. These
architecting activities received varying degrees of attention
in Agile software development. These activities are Archi-
tectural Description, Architectural Evaluation, Architectural
Understanding, Architectural Maintenance and Evolution,
Architectural Analysis, Architectural Refactoring, Architec-
tural Impact Analysis, Architectural Implementation, Archi-
tectural Synthesis, Architectural Reuse, and Architectural
Recovery. Most of the previous research effort has been put
on Architectural Description based on the desires of Agile
practitioners (Yang et al. 2016). However, architectural
understanding, analysis, and refactoring were identified as
the most beneficial activities that can be used with Agile
development (Yang et al. 2016). Besides, Yang et al. iden-
tified 41 Agile practices used with architecture. However,
only a few of these practices have been widely employed in
practice and discussed in the literature—such as Backlog,
Sprint, Iterative and Incremental Development, Just Enough
Architectural Work, and Continuous Integration. There is a
lack of guidance on how and when to use such Agile archi-
tecting practices (Yang et al. 2016). Therefore, Agile prac-
titioners are using such practices based on their experience
and knowledge.

Martini and Bosch (2016) identified some architect roles
and architecture practices, which are then used to develop
and evaluate a framework for Agile architecting in large-
scale organisations with embedded software projects. The

identified Architect roles include Chief Architect, Govern-
ance Architect, and Team Architect. By analysing the rela-
tionships among the architects, Martini and Bosch found that
most practices need the roles to coordinate and cooperate
and thus mitigate the challenges. Besides the architect roles,
Martini and Bosch identified different sorts of teams: Fea-
ture Team, Runway Team, Architecture Team, and Govern-
ance Team. Feature Teams are steered by Product Managers
and consist of cross-functional teams. Each Feature Team
has a Team Architect who is responsible for the reference
architecture and leads architecture activities. Runway Teams
are dedicated teams for one or more sprints to focus on the
“architecture feature” rather than on customer-related fea-
tures to overcome architectural debt, which might lead to cri-
sis. Architecture Team, which comprises the Architect roles
above, work together to coordinate and collaborate since
no single architect can have all the information needed to
support numerous teams within large-scale organisations.
Governance Team involves Governance Architects and Prod-
uct Owners with the responsibility of strategically making
a risk assessment of architecture changes and prioritising
the backlogs of the teams between features and architecture
improvements to balance the short-term with the long-term
objectives.

2.2 Autonomous teams

Large-scale projects are challenging because several teams
need to work together to release a single software product
(Conboy and Carroll 2019; Moe et al. 2016). Some examples
of the identified challenges in large-scale Agile development
are building and maintaining teams’ autonomy (Conboy and
Carroll 2019; Stray et al. 2018) and aligning self-organising
teams (Moe et al. 2016; Stray et al. 2018).

The “Autonomous Teams” concept has different origins
and definitions in the literature (Stray et al. 2018). This
concept was studied and described from various perspec-
tives in the past; socio-technical, organisational theory, and
complex adaptive systems. Stray et al. found that the clos-
est definition of autonomous teams as applied from outside
software engineering into Agile development comes from
the knowledge-management perspective. Stray et al. state
that the first introduction of autonomous teams into soft-
ware engineering was made by way of the Agile manifesto,
which cited self-organising teams as the source of “the best
architectures, requirements, and designs”. Other researchers
define autonomous teams in terms of informal self-organis-
ing roles (Hoda et al. 2013). Self-organisation is recognised
as one of the Agile principles since the introduction of Agile
Manifesto. Agile teams are self-organising teams that can
manage the workload and embrace team-based decision-
making while having mutual trust and respect (Cockburn
and Highsmith 2001). Autonomy has a direct influence on

 AI & SOCIETY

1 3

team effectiveness since the authority of decision-making is
moved into the operational level (Moe and Dingsøyr 2008).
This decentralised decision-making speeds up the develop-
ment process and increases the accuracy of problem-solving.
Such teams have a sense of accountability for the committed
work (Cockburn and Highsmith 2001; Hoda et al. 2013).
Also, they work toward a compatible goal while merging and
resolving conflicting priorities (Cockburn and Highsmith
2001; Salameh and Bass 2018). However, self-organising
autonomous teams are not uncontrolled (leaderless) teams
(Cockburn and Highsmith 2001). The leadership in self-
organising teams is considered light and adaptive. Lead-
ers are responsible for building strategy, setting directions,
aligning people, motivating teams, and providing feedback
(Anderson and McMillan 2003). These leaders have different
job titles such as Scrum Master in Scrum, Coach in XP, and
Squad Leader or Agile Coach in Spotify.

Previous research (Conboy and Carroll 2019; Moe et al.
2008; Salameh and Bass 2018) has identified barriers to
autonomous teams in large-scale Agile. For example, there
is a lack of guidelines for how teams should be organised,
which is the case in Scrum (Moe et al. 2008). Also, high
individual autonomy can increase the individuals’ prefer-
ence for their own goals over the team’s goals (Moe et al.
2008). Moreover, aligning autonomous teams is challeng-
ing because of the varying degrees in stakeholders’ expecta-
tions for the alignment of teams (Conboy and Carroll 2019).
Besides, there is a tension between teams’ autonomy and
alignment (Salameh and Bass 2018, 2019b). Too much
alignment might hinder the autonomy of the teams, but with-
out alignment, the teams are autonomous but are ineffective.

2.3 Tailoring the Spotify model

Spotify is a music streaming service, which had a total of
248 million monthly active users worldwide in October
2019. The Spotify organisation has benefited from sub-
stantial growth in the last decade because of its innovation
(Kniberg and Ivarsson 2012; Salameh and Bass 2020). The
Spotify organisation has developed its own Agile culture
and tailored Agile practices to fit a very-large-scale software
programme (more than 300 people) distributed across four
cities (Kniberg and Ivarsson 2012; Salameh and Bass 2018).

The Spotify model is driven by creating autonomous,
yet aligned squads (Kniberg 2014; Kniberg and Ivarsson
2012). To initiate the creation of autonomous yet aligned
squads, Spotify employs an adaptive structure and creates
communities around this structure (Kniberg 2014). This
structure is based on a matrix of two dimensions (vertical
and horizontal), which inspires innovation (Kniberg 2014).
The communities of Squads and Tribes represent the vertical
structure. The communities of Chapters and Guilds represent
the horizontal structure.

A Tribe consists of a collection of co-located squads and
is designed to be of less than 100 people (Kniberg 2014;
Kniberg and Ivarsson 2012). A Tribe aims to promote col-
laboration and to mitigate dependencies between squads.
Within each Tribe, there are small groups of people shar-
ing a similar skillset and working within the same compe-
tency area, called Chapters. Members of each Chapter meet
regularly to solve problems within their expertise. These
Chapters are considered the glue that sticks the whole
organisation together without sacrificing too much auton-
omy (Kniberg 2014; Kniberg and Ivarsson 2012). While
Chapters are located within the same Tribe, there are wide-
reaching groups of people across the whole organisation,
called Guilds, with a desire to share knowledge and practice
over the whole organisation (Kniberg and Ivarsson 2012).

Spotify squads are encouraged to use Lean Startup to pro-
mote innovation (Kniberg 2014; Linders 2016). However,
squads are allowed to tailor their practices while having the
support of Agile coaches (Salameh and Bass 2020). The
Spotify model has become influential among Agile propo-
nents and hence formed the basis of Agile methods used
in several other organisations (Salameh and Bass 2018,
2019b, 2020). Previous research on Spotify Tailoring has
identified (1) tailored practices that promote effectiveness
in autonomous squads (Salameh and Bass 2019b), (2) influ-
ential factors on aligning autonomous squads (Salameh and
Bass 2018), (3) influential factors on Spotify Tailoring for
B2B product development (Salameh and Bass 2019a), (4)
patterns for knowledge sharing by cultivating participation
culture and establishing Spotify Guilds as communities of
practices (Šmite et al. 2019, 2020), and (5) an approach to
Agile tailoring when using the Spotify model (i.e., Hetero-
geneous Tailoring) (Salameh and Bass 2020).

Figure 1 illustrates our perception of the Heterogeneous
Tailoring approach (Salameh and Bass 2020), which is char-
acterised by two key features. First, each squad is empow-
ered to select and tailor its development method, which is
depicted on the bottom side of Fig. 1. For example, one
squad uses Scrum whereas another uses a different method
such as Kanban or Lean. Thus, each squad has the power to
select and tailor its Agile development practices based on
its mission.

Second, each squad is aligned with other squads and
common product development goals, which is depicted in
the upper side of Fig. 1. Previous research identified fac-
tors that influence the alignment of autonomous squads
(Salameh and Bass 2018, 2019b). These influential factors
are (1) adaptive structure, (2) collective code ownership,
(3) collective decision-making, (4) knowledge sharing, (5)
inter-team coordination, (6) mission-based planning, and (7)
delivery strategy. Each identified factor is supported by a set
of practices and attributes that strengthens the alignment of
autonomous squads. The identified influential factors and

AI & SOCIETY

1 3

their related practices can aid Agile practitioners in align-
ing squads.

2.4 FinTech

FinTech is the abbreviation of “Financial Technology”,
which is a blend of “financial services” and “information
technology”. FinTech is defined as the technology used to
provide markets with a financial software product or finan-
cial software-as-a-service (SaaS), which has sophisticated
technology (Gimpel et al. 2018; Knewtson and Rosenbaum
2020). SaaS allows companies to use a cloud-based software
application over the internet, instead of buying or building
their own product.

FinTech organisations harness benefits such as data
security, end-to-end cost savings, scalability and agility.
Such organisations are, usually, characterised by having
financial services, technological innovation and agility
(Knewtson and Rosenbaum 2020). They have different
business models, which operate by displacing or comple-
menting current financial services in the industry or by

creating new financial services. Also, financial institutions
recognize the importance of employing a proven record
of technology to embrace technological innovation. Fur-
thermore, FinTech organisations must be Agile to adapt
quickly to new market opportunities.

The infrastructure is comprised of financial APIs, which
work as an interface between financial services firms and
external parties (Gimpel et al. 2018; Knewtson and Rosen-
baum 2020). For example, a financial API provides the
infrastructure between a bank and an investment appli-
cation to provide customers with a convenient banking
experience.

The FinTech services are managed with national and
international regulations related to finance to control data
collection, storage and reporting (Knewtson and Rosen-
baum 2020). Protocols such as software-as-a-service (i.e.,
SaaS), Payment Card Industry (i.e., PCI) data security
standard, Anti-Money Laundering (i.e., AML) and Know
Your Customer (i.e., KYC) are provided for which Fin-
Tech organisations should automate regulatory tracking
and compliance to.

Fig. 1 Heterogeneous Tailoring
approach

C
ha

pt
er

s Fr
on

t-e
nd

B
ac

k-
en

d

Product
Line Feature

Core
DevOps

Project-X

Alignment

A
lig

nm
en

t
A

ut
on

om
ou

s s
qu

ad
s

Alignment repository
(practices and processes)

ScrumKanbanScrumban
Lean

Startup

Sq
ua

d
ba

se
d

ta
ilo

re
d

m
et

ho
ds

 AI & SOCIETY

1 3

3 Research methodology

Initially, we conducted a longitudinal embedded case study
to have a deep understanding of how the Spotify model
is being used in the FinTech industry. The data were col-
lected through observing 225 ceremonies over 21 months,
conducting 14 semi-structured open-ended interviews, and
accessing different sorts of artefacts. The collected data
were analysed using Grounded Theory (Glaser 1998), and
thereby the findings were published. In particular, we iden-
tified a challenge in governing and aligning Agile architec-
ture across the autonomous squads when using the Spotify
model. The Spotify model lacks practices addressing Agile
architecture governance. Therefore, we decided to con-
duct an intervention embedded case study. We developed
an approach for architectural governance by tailoring the
Spotify model aiming to evaluate it in the same case study
organisation.

3.1 Research setting

A multinational FinTech organisation with a large-scale
project using the Spotify model was selected for this study.
An overview of FinTech and its characteristics is provided
in Sect. 2.4. Our case study organisation does process pay-
ment transactions in 65 markets around the world, employs
approximately 700 staff, and processes around 65 billion
EUR per year.

This study focuses on a SaaS project that manages
autonomous financial services. These autonomous soft-
ware services operate under the control of a single admin-
istrative project that presents a commonly defined manage-
ment policy to the service. Thousands of customers (i.e.,
organisations) utilise this product to manage the payment
transactions of their end-users. These payment transac-
tions are managed by the case study project and go through
many payment providers around the world. The project
allows the customers to configure payment providers
easily and quickly since it has a unique rules engine and
intelligent routing capabilities that increase the payment
acceptance rates. Also, the project helps the customers to
detect fraud, analyse all payment transactions, and focus
on growing their business.

The software development programme is co-located in
the head-quarters—Stockholm—and consists of 37 mem-
bers. The developers are distributed among six squads
(i.e., teams) with around five members in each squad.
The developers are also distributed into seven Chapters.
In addition, there are one architect, five Product Owners
(PO), three Key Account Managers (KAM), two Agile
coaches, one support lead, and one test lead.

According to the confidentiality agreement by the
organisation, we are not allowed to reveal a detailed
description of the explored product and its teams.

3.2 Data collection

After introducing our developed approach to the case study
organisation, the case study organisation agreed to try it. The
first author, who works in the case study organisation as a
senior Software Engineer, conducted a direct observation
of the full development lifecycle for 3 months. During the
observation period, we observed minor adaptations to our
introduced approach, which were introduced by the develop-
ment programme to respond to the organisation’s needs. The
first author used the memoing technique to record reflec-
tive notes about what the researcher was learning from the
observed ceremonies. These recorded notes accumulate as
written ideas in a notebook about identified concepts and
their relationships. The observed ceremonies, which are
32, include daily stand-ups, backlog grooming, planning
sessions, Chapter based meetings, product owners’ meet-
ings, and on-demand architectural-based discussions. The
employment of direct observation provided the researchers
with a deep understanding of the studied phenomenon and
mitigated the possibility of deviation between “interviews”
view of matters and the “real” case, which is in line with
Robinson et al. (2007) findings.

After 3 months, an iterative way of data collection—
through semi-structured interviews—and analysis was
adopted to perform a constant comparison of data. Per-
forming a constant comparison of collected data facilitated
the guidance of future interviews and the analysis, while
observations fed the emerging results (Glaser 1998). Since
our collected data was analysed continuously, the subse-
quent interview questions had minor updates to focus on
the emerging codes.

The semi-structured open-ended interviews targeted par-
ticipants from different areas of software development. Thus,
practitioners in several different organisational roles were
approached. In a result, 8 interviews were conducted, and the
participants were one Agile coach, three senior developers,
one Product Owner, two Chapter leaders (i.e., Architecture
Owners) and one Architect (i.e., Enterprise Architect). An
open-ended guide was used to provide the interviewees with
the opportunity to raise other issues. The interview guide
was revised after the second interview to adapt the ques-
tions to focus on emerging results and to choose participants
that can provide information on the emerging concerns.
The interview guide is published online at (Bass and Sala-
meh 2020). Each interview was recorded (approximately
50 min) and then transcribed verbatim for detailed analysis
continuously.

AI & SOCIETY

1 3

3.3 Data analysis

The collected data was analysed using Thematic Analysis
(Braun and Clarke 2006) and informed by some Grounded
Theory techniques such as memoing, open coding, constant
comparison, and sorting (Glaser 1998). Our analysis was
carried out by following the six steps proposed by Braun
and Clarke (2006): (1) familiarising with the data, (2) gen-
erating initial codes, (3) searching for themes, (4) themes
review and refinement, (5) defining and naming themes,
and (6) writing the final report. During these steps, we uti-
lised some Grounded Theory techniques such as continuous
memoing, open coding, constant comparison, and sorting
(Glaser 1998). Utilising these Grounded Theory techniques
empowered us with a rigorous method for systematically
analysing the collected data.

When an interview was conducted, we transcribed it and
started familiarising ourselves with the data by reading it.
Then, we employed an open coding mechanism to break
down the collected data analytically in detail (Glaser 1998).
This mechanism begins by collating key points from each
interview transcript. Then, a code, which represents a phrase
that summaries the key point in 2 or 3 words, was assigned
to each key point. A constant comparison method, which
rigours the generated theory, was employed after conduct-
ing each interview (Glaser 1998). This method involves a
constant comparison of emerging codes from each inter-
view against other codes from the same interview as well as
those from other interviews. Using this constant comparison
method facilitated the process of grouping emerged codes
into a higher level of abstraction, called themes.

An ongoing process of writing memos was employed
throughout the analysis, called Memoing (Glaser 1998).

The memos represent ideas about emerging codes and
their relationships. Memoing is considered a powerful way
to pour out the emerging variables (codes, sub-themes,
or themes). Also, Memoing facilitates the emergence of
relationships (similarities or differences) between differ-
ent variables. The continuous data collection and analysis
reflected on memos’ ideas and caused some modification.
Sorting the theoretical memos was initiated when data
collection was almost finished, and coding was almost
saturated. Sorting collected memos produced a theoretical
outline, which put the scattered data back together (Glaser
1998). As the last step of our analysis, the observation data
(i.e., memos) were analysed and compared to the derived
themes from the analysed interviews. In result, minor
contradictions were identified, which were explored and
accommodated in the results.

As a result, two main themes were emerged from our
analysis “benefits” and “challenges”, which are depicted in
Fig. 2. In this figure, the themes are marked with bold text
and located within the rectangle. Each theme is associated
with multiple categories or concepts, which are marked
with italic text. Each category is supported by multiple
Codes, which are marked with plain text. The emerged
themes did not create a model that consists of higher-order
themes relationships between them but instead did present
the strengths and weaknesses of our approach by relying
on the participants’ perspectives. The next section presents
these two themes as well as our approach for architectural
governance, which comprises an organisational structural
change and an architecture change management process,
by tailoring the Spotify model.

- Mitigating possible technical risks across
autonomous squads
- Architectural aspects are left to evolve in iterative
and incremental way
- Trusting and encouraging squads to make internal
architectural decisions
- Avoid dictating specific architectural directions
- Resolving the conflicts among developers
- Architecture Owners work closely with
the Enterprise Architect

 - Decentralised decision-making
- Enterprise Architect focuses on making
enterprise architectural decisions.
- Enterprise Architect aligns enterprise
architectural decisions among squads.
- Aligning project vision and roadmap

Resolving conflict
in architectural

decisions

Creating technical
and enterprise

architectural alignment

Challenges

- Developing the architectural skills of Architecture
Owners
- Enterprise Architect trains the Architecture Owners
- Creating technical and architectural alignment
- Arranging formal and informal sessions for
knowledge sharing

Facilitating
architectural

knowledge sharing
- Balancing the effort for architecting practices.
- Conducting decentralised architectural decisions.
- Creating generic and dynamic software features
- Minimising the effort in architectural refactoring
- Strengthening the autonomy of squads
- Making good architectural decisions is time-
consuming

Improving
software
quality

Decentralising
architecture

decision-making

- Overcoming possible delay in decision-making
- Enterprise architectural decisions are discussed
within the architecture squad
- Discussing internal architecture decisions at
the operational level

Benefits

Handling
Architectural

spikes

- Making provisional architectural decisions
- Proposing multiple architectural decisions
- Allocating extra resources
- High complexity and uncertainty
- Discussing architectural spikes with the enterprise
architect and relevant architecture owners
- Time consuming and expensive

Prioritising user
stories without
considering the

architectural
aspects

- Architecture Squad do not screen the user stories
- Discussing architectural aspects informally
- The members of the architecture squad do not join
planning sessions
- Squad members initiate the process of investigation

Fig. 2 The emerged themes, categories, and codes

 AI & SOCIETY

1 3

4 Findings

This section presents the findings of our intervention
embedded case study. It presents the current state of the
organisation before and after conducting the intervention.
Thus, this section describes the characteristics of our pro-
posed approach for architectural governance, in its final
state. This approach incorporates an organisational struc-
tural change and an architecture change management pro-
cess. Also, this section describes the reported benefits and
challenges of the approach. Finally, this section describes
how our Heterogeneous Tailoring approach was adapted to
accommodate our approach for architectural governance.

4.1 Before conducting the intervention—baseline

The case-study organisation employed Spotify’s organisa-
tional structure, as illustrated in Fig. 1, while exercising
a centralised based architectural decision-making. The
squads were empowered to select and tailoring their Agile
development practices based on their missions. Those peo-
ple sharing similar skillset and working within the same
competency area were distributed among Chapters while
existing in different Squads. Hence, the organisation was
utilising a two-dimensional structure. Despite aligning the
squads on the product level, the autonomous squads had
the freedom to do the required development on different
associated parts of the software product because of the
realisation of collective code ownership. Consequently,
all squads were referring to an Architect because of the
complexity of the FinTech project.

The Architect was responsible for designing the soft-
ware product to address encountered business issues by
developing architectural blueprints to produce a cutting-
edge software solution with high quality. Practitioners say:

“Despite having chapters communities, I was the
main reference for all squads when it comes to any
architectural based change because of the complexity
of the project”–P2, Architect.
“We (developers) were always turning to our archi-
tect when it comes to architectural based decisions
to figure out the best way to perform an architectural
change”–P4, Senior Developer and Chapter Leader.

However, Chapter communities should be empowered
from an architectural perspective to transform decisions
into the operational level. In a Product Owner’s view,
“there should be someone or a team in charge of the bigger
picture… A bit more structure around the ownership based
on the missions, verticals, architecture, and by considering
a long-term road map”–P3, Product Owner.

The case study organisation had challenges in aligning
architectural decisions across autonomous squads because
of lacking a defined process for Agile architecting and uti-
lising a centralised decision-making process. According to
the Architect, “The size of the development programme is
now much larger than what it was 3 years ago… I’m over-
loaded with many responsibilities, which in turn causes a
delay in taking architectural decisions and impacts squad’s
autonomy”–P2, Architect. From another perspective, a sen-
ior developer highlights the importance of having a proper
process for architecting to enable squads’ autonomy. In mak-
ing this comment, this developer reports that “we lacked
sufficient Agile architecting process that would improve the
autonomy of our squads” –P5, Senior Developer and Chap-
ter Leader.

4.2 After conducting the intervention—the
evaluated approach

To overcome the challenge of aligning and governing
architectural-based decisions among autonomous squads,
we conducted an intervention embedded case study. In this
intervention, an approach for architectural governance,
which incorporates a structural change and an architecture
change management process, was developed and evaluated.
This section describes the characteristics of the evaluated
approach for architectural governance using the Spotify
model.

4.2.1 Organisational structural change

Our approach includes changes to the organisational struc-
ture. These changes aim to facilitate the governance and
alignment of architectural decisions across autonomous
squads and ultimately to strengthen the squads’ autonomy.
The structural changes are (1) empowering Chapter Leaders
and experienced developers with the role of Architecture
Owners, (2) changing the responsibilities of the Architect
to be of Enterprise Architectural focus, and (3) locating
the Architecture Owners in a virtual squad that is led by
an Enterprise Architect. Figure 3 illustrates the introduced
structural changes with brown colour.

Architecture Owner role and responsibilities:
The role of Architecture Owner is assigned to Chapter

Leaders and other experienced developers. Since Chap-
ters are formed based on competency areas and Squads are
aligned on the product-level, we have aligned the Architec-
ture Owners accordingly. Practitioners say:

“Giving me the role of Architecture Owner facilitates
taking architectural decisions within my Chapter…
However, this role increases the overhead on me since

AI & SOCIETY

1 3

I also work a developer”–P4, Senior Developer and
Chapter Leader.
“Breaking down the role of the architect into Archi-
tecture Owners roles and distribute it among Chapter
Leaders and other developers, based on their compe-
tency areas, transform decisions into the operational
level, which is beneficial in aligning architectural
based decisions”–P1, Agile Coach.

Most of Architecture Owners time is spent on software
development as they work in different squads and the rest
of their time is spent on performing architecture activities.
Architecture Owners’ awareness of the technical and busi-
ness roadmaps is crucial for aligning architectural deci-
sions within Chapter based communities and hence across
autonomous squads. In an Agile Coach’s view: “Architecture
Owners should be aware of our business and technical chal-
lenges to work on them along the journey”–P1. Discussing
architectural aspects within a Chapter creates an alignment

among the squads. For example, a practitioner said: “dis-
cussing architectural decisions within my Chapter facilitates
building an agreement among the squads about how to do
stuff and when to do it”–P5, Senior Developer and Chapter
Leader.

Architecture Owners are responsible for sharing architec-
tural knowledge among autonomous squads. These Architec-
ture Owners are responsible for creating technical guidelines
such as coding, database, and security guidelines. Also, they
are responsible for mentoring and coaching the members of
their Chapters concerning architectural and design skills. A
practitioner said: “disseminating technical and architectural
based knowledge within my Chapter is one of my responsi-
bilities… I create some coding guidelines, review code, and
coach my Chapter whenever needed”–P4, Senior Developer
and Chapter Leader.

Resolving conflicts in architectural decisions and mitigat-
ing key technical risks across squads are other responsibili-
ties of the Architecture owners. Developers might encounter

Fig. 3 Organisational structural
change—the impact of the
introduced intervention on the
organisational structure is high-
lighted with brown colour

A
rc

hi
te

ct
ur

e
O

w
ne

rs

Enterprise
Architect

Agile architecting

Product
Line Feature

Core
DevOps

Project-X

Squads

Working architecture
(enablers) Working product Small release

Produce

Backlog

Produce

Work

 AI & SOCIETY

1 3

conflicts in architectural decisions and not always agree. In
making this comment, a practitioner admitted that “many
developers are smart and strong-willed where they do not
always come to an agreement… Someone should lead and
facilitate the evolution of the architecture”–P4, Senior
Developer and Chapter Leader.

Architecture Owners might encounter challenging archi-
tectural tasks that require exploration. Hence, they might
either explore such architectural work on their own or could
ask a Chapter member, who has encountered this challenge,
to explore it. Then, both sides could discuss it further. For
instance, practitioners say:

“I use an architectural spike to write just enough code
to explore the benefits of a specific technology or tech-
nique that other members of my Chapter are not famil-
iar with”–P5, Senior Developer and Chapter Leader.
“Sometimes, I do ask other members to explorations
on their own… Yet, we do discuss the results within
our chapter before taking a final decision”–P4, Senior
Developer and Chapter Leader.

Architecture Owners collaborate with the Enterprise
Architect as well as other Architecture Owners within the
virtual architecture squads. This collaboration is crucial to
get the best out of the Architecture Squad and to utilise bet-
ter alignment across the organisation. A practitioner said:
“The main reason behind creating a virtual Architectural
squad, which consists of Chapters Leaders who have the
Architecture Owner roles is to have proper technical and
architectural based alignment through the organisation…
Meeting whenever needed is important to resolve encoun-
tered technical or architectural issues”–P1, Agile Coach.

Enterprise Architect role and responsibilities:
The role of Enterprise Architect is assigned to the Archi-

tect. We have adapted the Architect’s responsibilities to be of
enterprise-based architectural focus. According to the Agile
Coach, “the Enterprise Architect has great knowledge about
the technical and the business roadmaps of our organisa-
tion… He should continue focusing on the Enterprise
architectural tasks”–P1, Agile Coach. Since the Enterprise
Architect is leading the Architecture squad, the Enterprise
Architect should have a strong commitment and provide
Architecture Owners with the necessary support. “It is cru-
cial to have the required commitment and support from our
Enterprise Architect in taking enterprise architectural deci-
sions such as integrating two intercorrelated components
or even specifying how to expose some APIs”–P5, Senior
Developer and Chapter Leader.

The Enterprise Architect works with the solution man-
agement team (i.e., Product Owners and Key Account
Managers) and close to the Architecture Owners. This
close collaboration aligns architectural decisions over the
organisational roadmap and solution intent. A practitioner

said: “the Enterprise Architect spends much time collabo-
rating with senior stakeholders across the organisation to
create proper technical and architectural alignment across
the squads”–P3, Product Owner. This collaboration, in turn,
facilitates applying proper enterprise architectural decisions
at the right time according to the business values.

Creating technical and architectural alignment for the
full software product is delegated to the Enterprise Archi-
tect. In contrast to the Enterprise Architect, the Architecture
Owners are responsible for specific components within the
product and concerned about specific technical competency
areas. The Enterprise Architect reports, “I started focusing
on architectural based tasks that are related to the full solu-
tion to create technical and architectural alignment”–P2,
Enterprise Architect.

The duties of the Enterprise Architect also include pro-
moting enterprise engineering and architectural practices
and driving architectural initiatives. Instead of forcing spe-
cific architectural decisions, the Enterprise Architect facili-
tates making enterprise architectural decisions and align-
ing them across autonomous squads. Thus, the Enterprise
Architect facilitates reusing ideas, components, and aligning
proven patterns across squads while collaboratively working
with squads to develop and evolve the architecture. Practi-
tioners say:

“The Enterprise Architect leads our Enterprise Archi-
tecture… This role requires proposing architectural
initiatives, promoting architectural practices among
the squads, and creating technical and architectural
alignment on the enterprise level”–P1, Agile Coach.
“Our Enterprise Architect does not force us adopting
a specific architectural decision… Instead, he drives
architectural initiatives and facilitates them among us
(i.e., Architecture Owners)”–P4, Senior Developer and
Chapter Leader.

4.2.2 An architecture change management process

Our introduced architecture change management process
was adapted throughout our conducted intervention. This
change management process aimed to guide the involved
stakeholders (i.e., developers, Architecture Owners, Enter-
prise Architects, and Product Owners) in governing and
aligning architectural-based decisions. This process is com-
prised of those activities illustrated in Fig. 4. The evaluated
architecture change management process activities are as
follows:

Activity 1: Discover possible architectural change: When
a developer encounters a possible architectural change, the
developer will determine the impact of the architectural
change. To initiate the Architectural Analysis process, the
involved developer should create a Kanban card (i.e., ticket)

AI & SOCIETY

1 3

Fig. 4 An architecture change
management process Developer Architecture Owner Enterprise Architect Product Owner

Change request

1. Found possible
architectural change

Possible impact
on architecture

7. Change request
implementation

Discovered
unpredicted change

8. Run all related tests
(unit, integration,
acceptance test, etc.)

Failed test
cases?

9. Build and deploy

Done!

Impacts
enterprise

architecture?

Architectural
related?

Refine change
specifications

4. Investigate the impacted
components to decide on
the required change

2. Understand the change
and its impact

Add or Derive
new user stories

5. Derive/Modify more user
stories

New user
stories and

tasks

3. Understand the change and
identify the impacted
components

6. Plan the
implementation of
change

Change
specifications

Refine change
specifications

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

 AI & SOCIETY

1 3

that describes the change request with more technical speci-
fications and visualise it as a WIP in the analysis phase. Such
Kanban cards are perceived as enablers for other working
items. This activity is followed by Activity 2.

Activity 2: Understand the change and its impact on the
software project and its architecture: The architecture owner
and the involved developers should understand the nature of
the change and determine its potential architectural impact.
The Architecture Owner updates the Kanban card with more
accurate technical specifications. The outcome of this activ-
ity should provide plausible data about the impacted parts of
the product and its architecture.

If the identified changes can impact the architecture, one
of two possible actions should be performed:

1. If the work requires a change of enterprise architec-
ture, the architecture owner should discuss the neces-
sary change with the enterprise architect and if needed
within the architecture squad– should follow Activity 3.
Thus, the card is moved in Kanban board as WIP in the
enterprise analysis phase.

2. Determining whether the change request could affect the
architecture or not.

(a) If the change request affects the architecture, the
architecture owner and the involved developers
should investigate the impacted components and
decide on the required change, follow Activity 4.

(b) Otherwise, the task can either be forwarded for
planning—follow Activity 6, or forwarded to the
related squad for implementation—follow Activ-
ity 7).

Activity 3: Understand the change and its impact by the
Enterprise Architect: In this activity, the involved stake-
holders (i.e., developers, Architecture Owner, and Enter-
prise Architect) should discuss the received data about the
impacted parts of the software product and its architecture.
If the architectural change request impacts other parts of the
project, those Architecture Owners who work on the respec-
tive part are invited to this session. In this activity, the archi-
tecture owner presents the provided data in the Kanban card,
which is the outcome of Activity 2. Then, an impact analysis
is initiated. However, an iterative impact analysis process
can be conducted based on the encountered challenges.

The outcome of this activity is an in-depth data about the
architecture impact. This outcome includes the identifica-
tion of the impacted components and the specifications of
newly introduced scenarios and requirements. Afterwards,
the stakeholders decide whether to proceed to a low-level
investigation by following Activity 4 or by proceeding in
the change request implementation—when an architectural
change is rejected, and a new solution is introduced and

replaces the architectural change request—by following
Activity 7.

Activity 4: Investigate the impacted components to
decide the required change: During this activity, a meeting
is carried out between the architecture owner and involved
developers to investigate the specifications of the architec-
tural change request deeply. In this meeting, they break down
the specifications and requirements into scenarios and then
document the details into tasks that can be planned. This
activity might identify new impacted components. Hence,
the architecture owner might create new user stories for
unpredicted changes.

If identifying unpredicted changes was possible, follow
Activity 5. Otherwise, the Kanban card, which includes the
user story and its tasks, should be moved into To-Do state
and forwarded to POs for planning, follow Activity 5.

Activity 5: Derive/modify more user stories: When
the architecture owner and the developers identify newly
impacted components, the architecture owner will create a
new user story for unpredicted changes. These user stories
are then moved to WIP in the enterprise analysis phase,
which is followed by Activity 3. This way, a new iteration
of impact analysis is initiated. In this case, an informal meet-
ing is conducted to discuss such changes.

Activity 6: Plan the implementation of change: If the
change request was approved by the architecture squad and
the architecture owner, the Kanban card should be avail-
able for planning and development. Thus, POs can plan the
implementation of this change request and forward the user
story and its tasks to the relevant squads for implementation,
follow Activity 7.

Activity 7: Implement the change request: In this
activity, the implementation of the change is carried out.
The squads utilise a hybrid process of Behaviour Driven
Development and Test Last Development (Hammond and
Umphress 2012). Since the user stories describe the behav-
iour of the introduced scenarios and requirements, develop-
ers are expected to implement the described behaviour in the
required test coverage. This implementation might impact
negatively other existing test cases. These test cases are sub-
ject to modification to accommodate the new requirements.
Yet, two cases could encounter the development team while
implementing the change request:

1. If the solution is to modify or add new requirements
that would require an architectural change, developers
should inform the PO and Architecture Owner about
the suggested changes to the requirements. In this case,
the suggested changes by developers should be declared
as unexpected changes. Afterwards, the architecture
owner and developers should have an informal meeting
to investigate the unexpected changes, follow Activity 2.

2. Otherwise, follow Activity 8.

AI & SOCIETY

1 3

Activity 8: Run the related tests: The developers should
utilise continuous integration to avoid delays caused by
integration problems. Subsequently, a continuous testing
process should be initiated to obtain immediate feedback
on the possibility of violating architectural countermeas-
ures to prevent unreasonable risks associated with a soft-
ware release. The scope of testing should be extended from
test cases to behaviour requirement to validate architec-
tural goals and product behaviour. In case of any violation
of requirements after running the tests, developers should
check the implementation and failed test cases, follow
Activity 7. Otherwise, follow Activity 9.

Activity 9: Build and deploy: This activity should be fol-
lowed once the continuous testing is completed successfully.
A new release can be planned for deployment on production.

4.3 Adapting the Heterogeneous Tailoring
approach to govern architectural decisions

This section presents how the Heterogeneous Tailor-
ing approach was adapted to accommodate the developed
approach for architectural governance, which consists of
structural change and an architecture change management
process. Figure 5 illustrates the impact of our approach on
the Heterogeneous Tailoring approach by highlighting the
introduced changes with brown colour. Consequently, the

Enterprise
Architect

Product
line FeatureCore

DevOps
Project-X

Squads

Produce

Alignment

Alignment repository
(practices and processes)A

lig
nm

en
t

A
ut

on
om

ou
s S

qu
ad

s

Squad/mission based
tailored methods

Squad

Squads

Scrum

Scrumban

Squad

Squad

Tailored
methods

Kanban

Squad

Sa
m

e
m

iss
io

n

ScrumbanSquad

PL

Mission
(purpose)

Maintenance

PL

Project X

Complex
features

(exploratory)
Lean

Startup

Autonomy

A
lig

nm
en

t

- Lost: does not know
 what to be done
- Can not fix it

- Knows what to do
- Can not fix it

- Knows what to do
- Can fix it

- Lost: does not know
 what to be done
- Can fix it

High

H
ig

h

Low

Product
backlog

K
an

ba
n

Agile architecting

Relevant stakeholders

POs

Iteration
planning
meeting

Produce
Architectural

Change

Iteration
backlog

Work

A
rc

hi
te

ct
ur

e
O

w
ne

rs

Pr
od

uc
t d

ev
el

op
m

en
t

Product
backlog

Agile architecting

POs

Iteration planning
meeting

Management

Backlog

Produce

Align & Work

When
needed

Change impact
and working
architectural
(enablers)

Management

Architect
and engineers

KAM
POs

Agile coaches

Building strategy

Working
architecture
(enablers) Working

architecture
(enablers)

Working
product

Small releases

Produce

R
el

ea
se

 st
ra

te
gy

C
us

to
m

er
s

B
2B

Draw the strategy

Fig. 5 Adapting the heterogeneous Tailoring approach—the impact of the introduced intervention on the heterogeneous Tailoring approach is
highlighted with brown colour

 AI & SOCIETY

1 3

Heterogeneous Tailoring approach was illustrated using four
key features: Product development, alignment, autonomous
squads, and release strategy.

Product development, which is depicted at the top part of
Fig. 5, is impacted by introducing our approach for architec-
tural governance to the case study organisation. This impact
is perceived in the outcome of the employed architecture
change management process, which produces architectural-
based user stories (i.e., enablers) in the backlog. These ena-
blers should be prioritised and planned. A practitioner said:
“this change management process results in sometimes new
architectural based tickets (i.e., enablers) that need prioriti-
sation and planning”–P3, Product Owner.

The influential factors on aligning autonomous squads
are presented in previous research (Salameh and Bass 2018,
2019b). These identified factors and their related prac-
tices can guide Agile practitioners in aligning autonomous
squads. Our intervention improves the alignment of the
autonomous by considering architectural aspects as depicted
at the second part of Fig. 5. The alignment and governance
of the software architecture is depicted in the introduced
change to the organisational structure—through the Archi-
tecture Owners and Enterprise Architect roles—as well as
the architecture change management process. Our structural
change has shifted the boundaries and transformed the archi-
tectural-based decisions into the operational level, which is
aligned through Chapter communities. A practitioner said:
“discussing architectural-based aspects with our Architec-
ture Owner (Chapter Leader) speeds up the process and puts
all members of our Chapter on the same page”–P7, Senior
Developer. The introduced change management process has
aligned the Agile architecting process among all involved
stakeholders (developers, Architecture Owners, Enterprise
Architect, and Product Owners) to enhance squads’ auton-
omy. Practitioners say:

“Following this standardised process across the
squads helps all parties to organise their architectural
work instead of being dependant on some members
from other squads or even relying only on the archi-
tect”–P1, Agile Coach.
“The nature of the user stories requires respond-
ing quickly to our customers… The process is now
more disciplined and organised, which consequently
increased the speed of taking architectural decisions”–
P8, Senior Developer.

The autonomy of the squads, which is depicted in the
third part of Fig. 5, was improved by utilising our approach
for architectural governance as described in the following
section. The introduced approach has strengthened squad’s
autonomy by decentralising architectural-based decision-
making, which is depicted in the introduced structural
change. Also, an architecture change management process

was introduced to balance the Agile and architecture-based
disciplinaries and hence create a holistic approach that ena-
bles squad’s autonomy. A practitioner said: “the employed
rules in our Agile architecting process, which manages the
interactions among all stakeholders, balances the Agile and
architecture activities… These rules along with the struc-
tural changes have mitigated the dependencies and in turn
has improved the autonomy of the squads”–P1, Agile Coach.

The employed release strategy, which is depicted in the
last part of Fig. 5, is impacted by aligning and governing
architectural decisions. This impact is perceived in continu-
ous delivery of working architecture (i.e., enablers) along
to the working product. A practitioner said: “we release the
developed architectural-based tickets (i.e., enablers) when-
ever they are finished… Releasing such tasks enables the
upcoming sprints”–P7, Senior Developer.

4.4 Benefits and challenges of the architectural
governance approach

This section presents the identified benefits and challenges
of our proposed approach for architectural governance,
which incorporates a structural change and an architecture
change management process.

4.4.1 Benefits

Our approach for architectural governance has transformed
architectural decision-making from a centralised decision-
making process into decentralised process. This transforma-
tion has benefited the case study organisation in different
aspects. A practitioner stated that “I do not need to wait for
the architect anymore… Instead, I can now get directly in
touch with our Architecture Owner”–P6, Senior Developer.
However, enterprise architectural decisions need to be dis-
cussed within the architecture squad. A practitioner said:
“Taking decisions about how to integrate different compo-
nents, or APIs might require a deep investigation by multi-
ple Architecture Owners and the Enterprise Architect”–P4,
Senior Developer and Chapter Leader.

The proposed approach has resolved conflict in archi-
tectural decisions and mitigated technical risks among
autonomous squads. In the proposed architectural govern-
ance approach, “many complex technical and architectural
aspects are left to evolve through iterative and incremen-
tal development and learning”–P5, Senior Developer and
Chapter Leader. Thus, complex technical and architectural
decisions are finalised later in the lifecycle as depicted in
the change management process. In addition, the squads are
trusted to make local architectural decisions on their own
without waiting for the Enterprise Architect. A practitioner
said: “we are encouraged to make architectural decisions
on our own and with the support of our Architecture Owner

AI & SOCIETY

1 3

without waiting for the architect as the technical details are
left to evolve”–P8, Senior Developer. Architecture Owners
usually try to avoid dictating specific architectural directions
in favour of a collaborative team-based approach. A practi-
tioner said: “I try to encourage the members of my Chapter
to collaborate and discuss architectural-based decisions to
make the right architectural decisions”–P5, Senior Devel-
oper and Chapter Leader.

However, developers might have conflict in architectural
decisions and might not always come to an agreement. A
practitioner said: “Many developers are smart and strong-
willed where they do not always come to an agreement…
Someone should lead and facilitate the evolution of the
architecture”–P4, Senior Developer and Chapter Leader.
Architecture Owners work with the Enterprise Architect to
tackle enterprise-based architectural decisions, which impact
two or more components in the software project. The Enter-
prise Architect said: “Our Architecture Owners get back to
me when they encounter a situation that requires making
an enterprise-based architectural decision… Sometimes we
discuss such enterprise architectural changes with other
Architecture Owners if needed”–P2, Enterprise Architect.

Furthermore, decentralising architectural-based decisions
provided the Enterprise Architect with the opportunity to
focus on creating technical and enterprise architectural
alignment for the full software product. A practitioner said:
“I focus right now on aligning the enterprise architectural
direction with the solution intent rather than being con-
cerned for specific components”–P2, Enterprise Architect.
The alignment of enterprise architecture involves making
sure that project vision and roadmap are carried out across
architectural-based working items. “The Enterprise Architect
ensures that all Architecture Owners support the desired
architectural capabilities and directions of the overall solu-
tion”–P4, Senior Developer and Chapter Leader. This is
achieved through close collaboration within the Architec-
ture Squad by utilising the architecture change management
process. A practitioner said: “The introduced architecture
change management process facilitates the alignment of
architectural decisions across the whole organisation”–P5,
Senior Developer and Chapter Leader.

Moreover, our architectural governance approach has
facilitated sharing architectural knowledge among autono-
mous squads. The Enterprise Architect works on transition-
ing architectural skills and training the Architecture Own-
ers. A practitioner said: “Our Enterprise Architect started
arranging and conducting workshops to train and coach our
squads in architectural related aspects”–P4, Senior Devel-
oper and Chapter Leader. Also, Architecture Owners focus
on creating technical alignment and disseminating techni-
cal and architectural-based knowledge. Architecture Own-
ers arrange formal and informal sessions for architecture
knowledge sharing. Practitioners say:

“our Architecture Owner arranges sometimes formal
classes and other times brown-bag lunch sessions… In
such sessions, we discuss planned subjects of interests
which are related to our Chapter”–P6, Senior Devel-
oper.
“we provide technical guidance around coding, secu-
rity, architectural based aspects, monitoring the work,
and so on”– P5, Senior Developer and Chapter Leader.

In addition, our approach has improved software quality
and mitigated obstacles to aligning architectural decisions
across autonomous squads. Our case study organisation tries
to balance the effort for architecting, by utilising the intro-
duced change management process while having a decen-
tralised architectural-based decision-making. This balance,
in turn, facilitates the creation of generic software features,
minimises wasted effort in architectural refactoring, and gov-
erns the architecture while strengthening squads’ autonomy.
A Senior Developer said: “conducting proper Architectural
Analysis within our Chapter and then evaluating and dis-
cussing the results, if needed, with the Enterprise Architect
improved the quality of our produced work”–P4. However,
this process can be time-consuming. In this respect, a Sen-
ior Developer is warning that “it can be time-consuming to
make a good architectural decision that can be maintained
easily in future without making a lot of refactoring… over-
looking some architectural aspects that can be considered
at the time being can cause much waste because of the needs
for refactoring”–P6, Senior Developer.

4.4.2 Challenges

The practitioners in our case study reported two challenges
of our introduced approach. First, prioritising user stories
without considering the architectural aspects can impact the
planning activity negatively. The introduced architecture
change management process does not facilitate screening
the user stories by the Architecture Squad before or during
the planning activity. A practitioner said: “We do not go
through the user stories, in our Architecture Squad, before
planning… Yet sometimes we discuss them informally upon
POs request”– P5, Senior Developer and Chapter Leader.
However, our change management process handles such
a situation when encountering unpredicted architectural
changes by moving from activity 6 to activity 1. A practi-
tioner said: “The architecture squad members do not join
our planning session because we should be able to handle
our work autonomously. We expect that our squad members
should initiate the process of investigation and provide good
input to either of the Architecture Owner or the Enterprise
Architect”–P3 Product Owner.

Second, handling an architectural spike might require
making provisional architectural decisions or even multiple

 AI & SOCIETY

1 3

possible decisions to conduct required exploration. Our case
study organisation considers a spike as an investment to find
out what should be built and how to build it. A practitioner
said: “We allocate some resources for complicated work
items, ahead of the targeted delivery deadline, to find out
what needs to be done… Such investments are considered
a necessity to solve architectural issues, which work as an
enabler for the next Sprint”–P3, Product Owner. The com-
plexity and uncertainty of spikes can result in taking multi-
ple provisional architectural decisions. A practitioner said:
“Sometimes when we discuss a user story with the enter-
prise architect and the architecture owner, the outcome can
be ambiguous as there is no concrete decision that can be
taken… We have to explore multiple solutions”–P6, Sen-
ior Developer. Hence, Architecture Owners or even senior
developers could write just enough code to explore the archi-
tectural change before proceeding with development. This
exploration process can be expensive for complicated archi-
tectural spikes. A practitioner said: “Architecture owners
might pair with another developer to explore complicated
architectural spikes”–P2, Enterprise Architect. Hence, the
practitioners might sometimes need to employ an iterative
and incremental way of architecture evolution by utilising
the introduced change management process. This iterative
and incremental way of architecting can be a time-consum-
ing and yet powerful technique for risk-reduction.

5 Discussion

Coordinating and aligning software architecture among
autonomous teams is identified as a challenge to Agile
development (Martini and Bosch 2016; Salameh and Bass
2020; Stray et al. 2018). The Spotify model is an example
of an Agile approach that is driven by creating autonomous
yet aligned squads (Salameh and Bass 2018). However, the
Spotify model does not provide guidelines for aligning and
governing architectural-based decisions across the autono-
mous squad.

To explore how software architecture can be governed
and aligned by scaling the Spotify model, a longitudinal
embedded case study was conducted in a multinational Fin-
Tech organisation to have a deep understanding of how the
Spotify model is being used. In this longitudinal embedded
case study, we did a direct observation of Agile practices
over 21 months and performed 14 semi-structured open-
ended interviews. We found that the case study organisation
was utilising a centralised architectural process by employ-
ing an architect because of the complexity of the software
product. This centralised architectural decision-making
has impacted squads’ autonomy negatively. The authority
of decision-making should exist at the operational level to
enable teams’ autonomy (Moe and Dingsøyr 2008; Salameh

and Bass 2018). However, the Spotify model lacks practices
for governing Agile architecting across autonomous squads.

5.1 Contribution to research and practice

In this study, we highlight a current challenge for architec-
tural governance and alignment in large-scale Agile devel-
opment programme (2–9 teams with less than 100 people)
when using the Spotify model. This gap points us to con-
tribute by (1) developing and evaluating an approach for
architectural governance and (2) adapting the Heterogeneous
Tailoring approach to accommodate our proposed approach.

Our approach for architectural governance introduces spe-
cific architect roles (i.e., Architecture Owners and Enter-
prise Architect) to transform architectural decision-making
into the operational level. The role of Architecture Owner
is assigned to Chapter Leaders or experienced developers of
different skillsets and responsible for coordinating and han-
dling Agile architecting. Since Chapters are formed based
on competency areas—to align people horizontally—and
Squads are aligned on the product-level while sharing the
product, the Architecture Owners are aligned accordingly.
The role of Enterprise Architect is a key role in resolving
enterprise Agile architecture and scaling Agile architecting
in large-scale organisations. Enterprise Architect works with
solution management (i.e., Product Owners) and close to
the Architecture Owners to resolve enterprise-based archi-
tectural decisions. In this approach, Architecture Owners
are located in a virtual squad that is led by the Enterprise
Architect.

We introduced an architecture change management pro-
cess to guide the involved stakeholders (i.e., developers,
Architecture Owners, Enterprise Architects, and Product
Owners) in governing and aligning architectural-based deci-
sions across the autonomous squads of the Spotify model.
The architecture change management process comprises
a set of activities and practices, which cover seven activi-
ties out of 11 architecting activities that have been identi-
fied by Yang et al. (2016). These architecting activities are
Architectural Analysis and Synthesis (Activity 1 and 2),
Architectural Evaluation and Impact Analysis (Activity 3),
Architectural Refactoring (Activity 6), Architectural Mainte-
nance and Evolution (moving from Activity 6 back to Activ-
ity 1). However, the activities of Architectural Description
and Understanding are used to some extent at the enterprise
architecture level. Also, Architectural Reuse is practised,
according to our observation, within the squads and encour-
aged by Chapter Leaders.

We adapted the Heterogeneous Tailoring approach to
accommodate our approach for architectural governance
using the Spotify model. The adaptation of the Heteroge-
neous Tailoring approach revealed two new key features:
product development and release strategy. Consequently, the

AI & SOCIETY

1 3

Heterogeneous Tailoring approach incorporates now four
key features: product development, alignment, autonomous
squads, and release strategy. First, product development is
mainly impacted by practising the change impact analysis,
which is introduced in the architecture change management
process. This impact analysis produces new work items that
enable software architecture. The emerged architectural-
based work items need planning to enable future sprints.
This change in product development facilitates the align-
ment of autonomous squads and hence improves their
autonomy. Second, the alignment of architectural decisions
was facilitated by employing both the structural change
and the architecture change management process. Thirdly,
the introduced change to the organisational structure has
improved the squads’ autonomy by governing and aligning
architectural decision. In addition, the change management
process has balanced the Agile and architecture processes
to strengthen squads’ autonomy. Finally, these autonomous
squads work independently and collaborate to produce a
working architecture, which enables future sprints, or/and
a working product.

In particular, we found improvements mitigating the
gaps highlighted before the introduction of our architec-
tural governance approach, related to the following aspects
as reported by the practitioners:

• Transforming architectural decision-making into decen-
tralised-based decision-making.

• Creating technical and enterprise architectural alignment
for the full software product, which in turn resolves con-
flicts in architectural decisions and mitigates key techni-
cal risks across squads.

• Sharing architectural knowledge among autonomous
squads.

• Minimising wasted effort in architectural refactoring.
• Improving software quality.

5.2 Related work

Yang et al. (2016) conducted a systematic mapping study
on the combination of software architecture and Agile
development. The authors identified 11 architecting activi-
ties and 41 Agile architecting practices. The Spotify model
has become influential among Agile proponents and hence
formed the basis of Agile methods used in several other
large-scale organisations of different contexts (Salameh
and Bass 2018, 2019b, 2020). However, the Spotify model
does not provide guidelines or Agile practices for align-
ing Agile architecture decision across autonomous teams
(Salameh and Bass 2020). Whereas the new research we
present here provides Agile activities, which utilise the
identified architecting activities by Yang et al., that are

employed in the introduced change management process.
In addition, our approach introduces new roles within the
organisation.

Bellomo et al. (2014) identified Agile architecture pat-
terns and tactics that (1) influence the time and cost of
software development, (2) improve project scalability, (3)
focus on flexibility in deployment and controlling the cost
and time for testing. However, the authors do not provide a
framework or an approach for Agile architectural govern-
ance and alignment.

In a more abstract level, Nord et al. (2014) explored
architectural tactics that support scaled Agile develop-
ment and improve the alignment of the architecture and
the development. They proposed an Agile architecture
alignment using vertical and horizontal decomposition of
the software architecture as well as matrix augmented-role
team structures by conceptualising Scrum as an example.
However, their work is not supported by scientific investi-
gation following a rigorous research process. Our research
does so by conducting an empirical investigation of the
proposed approach in a specific domain (i.e., FinTech) of
large-scale, which tailors the Spotify model.

Martini and Bosch (2016) have identified three architect
roles, four sorts of teams, and some architecture practices,
which are used to develop and evaluate a framework for
Agile architecture in large-scale organisations developing
embedded software projects. Their framework employs an
Architect within each team, which works with a Govern-
ance Architect who functions as an intermediate role (i.e.,
coordinator) between the Chief Architect and the Agile
teams. Also, their framework does not consider aligning
the teams horizontally, which is the case in our evalu-
ated approach. Our approach considers aligning the teams
horizontally through Chapters and based on individuals’
skillsets.

Through SaaS technology, FinTech organisations aim
to (1) increase their agility to adapt quickly to new market
opportunities, (2) improve data security, (3) offer unlimited
scalability to upsize or downsize as needed, and (4) comply
with industry protocols (Gimpel et al. 2018; Knewtson and
Rosenbaum 2020). To satisfy these aims and objectives, our
approach decentralises the architectural decision-making
process and creates a technical and enterprise architectural
alignment among the autonomous squads. Other software
development contexts might not be subject to the aforemen-
tioned aims and objectives. However, our research did not
identify any evidence of which our approach could be lim-
ited to specific contextual or project factors. Our evaluated
approach for architectural governance introduces vertical
and horizontal alignment by tailoring the Spotify model,
which was not the case in the previous empirical research
(Bellomo et al. 2014; Martini and Bosch 2016; Nord et al.
2014).

 AI & SOCIETY

1 3

5.3 Limitations and threats to validity

Even though the practitioners reported improvements con-
cerning architectural risk management across autonomous
squads, some practitioners reported that architectural debt
management remained a challenge that needs well-defined
practices. This architectural debt management is perceived
in the absence of practices that facilitate the investigation
of architectural aspects before prioritising new user stories,
which might impact the planning activity negatively. How-
ever, complex architectural decisions are finalised later in
the lifecycle as depicted in the architecture change manage-
ment process. Such a phenomenon is concerned with risk-
informed architecture decisions about which architecture
changes need to be conducted for having an acceptable ratio
of cost or impact. This phenomenon is already studied from
different angles (Edith et al. 2013; Nord et al. 2014).

Our study is subject to population bias. The introduced
approach for architectural governance was evaluated in a
single case study organisation, which develops a FinTech
project using the Spotify model. However, we performed
a triangulation in data collection (observation data (i.e.,
memos) and semi-structured open-ended interviews) and
analysis. The participant interviewees were holding dif-
ferent roles: developers, Architecture Owners, Enterprise
Architect, Product Owner, and Agile Coach. The observed
ceremonies include backlog grooming, planning sessions,
retrospectives, daily stand-ups, POs synchronisation meet-
ings, and Architecture squad meetings.

The research limitations are discussed by considering
the criteria introduced by Lincoln and Guba for judging
the quality of research through credibility, dependability,
transferability, and confirmability (Lincoln and Guba 1985).
Credibility is concerned with compatibility between the
respondents’ opinions and the researcher’s interpretation.
The first researcher was embedded in the case study organi-
sation and observed employed Agile practices for 3 months
after introducing the developed approach for architectural
governance. Then, we have iteratively interviewed the prac-
titioners—triangulating perspectives from different roles.
Dependability is concerned with the ability to replicate the
conducted research. This study was limited to the FinTech
industry, in which the first author works as senior software
engineer. Also, the selection of participant interviewees
was limited by their willingness to participate in this study.
Transferability refers to the extent to which the findings from
one context are applicable to another while understanding
the circumstances that affect the studied context. We can-
not fully transfer the results to large-scale Agile software
development since we conducted a single case study. Hence,
we limit our results to large-scale (2–9 teams with less
than 100 people) organisations using the Spotify model to
develop SaaS, such as FinTech services. These large-scale

organisations focus on technological innovation and agility
to adapt quickly to new market opportunities while com-
plying with industry-specific regulations, such as AML,
PCI and KYC. Confirmability examines the researcher’s
objectivity in relation to the studies context. The proposed
approach to architectural governance was validated in a real-
world organisation. In this work, also, two researchers were
involved in the study and a triangulation analysis was con-
ducted. In this analysis, the interview data (practitioners’
perceptions) were analysed and compared with the observa-
tion data (i.e., memos) to prevent any suspected deviation
between “semi-structured interviews” view of matters and
the “real” case.

Given the time limitation of this study, we could not aim
at a complete evaluation within the whole organisation,
which is, however, in the researchers’ long-term goal. The
preliminary evaluation gave the researchers and the practi-
tioners, in the case study organisation, valuable insights on
how the developed approach for architectural governance
can be used in practice. In fact, our analysis did not identify
any evidence of which our approach could be limited to spe-
cific contextual or project factors.

6 Conclusion

Software architecture is one of the key technical advances in
the field of software engineering over recent decades. The
role of software architecture is important in large-scale Agile
development because several teams need to work together to
release a single product without degrading teams’ autonomy.
We have identified a challenge in governing and aligning
Agile architecture across autonomous squads when using the
Spotify model. The Spotify model lacks practices addressing
Agile architecture governance.

Our study addresses the research question: How can
software architecture be governed and aligned by scaling
the Spotify model? To answer this question, we conducted a
longitudinal embedded case study in a multinational FinTech
organisation using the Spotify model to gain a deeper under-
standing of how the Spotify model is used. Then, we devel-
oped and evaluated an approach for architectural governance
by conducting an intervention embedded case study. This
embedded case study lasted 3 months, during which eight
semi-structured open-ended interviews were conducted. The
collected data were analysed using Thematic Analysis and
informed by selected Grounded Theory techniques.

There are two key contributions of this paper. First, we
developed and evaluated an approach for architectural gov-
ernance when using the Spotify model. We have presented
in this paper the characteristics of our proposed architectural
governance approach, its benefits, and challenges. Second,

AI & SOCIETY

1 3

we tailored the novel Heterogeneous Tailoring model to
accommodate our architectural governance approach.

Our architectural governance approach aims to improve
the alignment of squads (i.e., teams) without compromis-
ing their autonomy. This approach incorporates a structural
change and an architecture change management process.
The structural change comprises (1) empowering Chapter
Leaders and experienced developers with the novel role of
Architecture Owners, (2) changing the responsibilities of
the Architect to focus on Enterprise Architecture, and (3)
locating the new Architecture Owners in a virtual squad
that is led by an Enterprise Architect. Compared to previous
approaches and frameworks (Bellomo et al. 2014; Martini
and Bosch 2016; Nord et al. 2014), our approach introduces
horizontal architectural alignment, based on the individuals’
skill sets, as well as vertical alignment on the product level.
To streamline the architecture process, we also introduced
an architecture change management process, which aims to
guide stakeholders (i.e., developers, Architecture Owners,
Enterprise Architects, and Product Owners) in governing
and aligning architectural decisions among autonomous
squads.

Our proposed approach has influenced the Heterogeneous
Tailoring approach by shifting its boundaries to emphasise
on other aspects. Consequently, the Heterogeneous Tailoring
approach comprises now 4 key features: Product develop-
ment, alignment, autonomous squads, and release strategy.
These key features interact together to enable and strengthen
the autonomy of squads and ultimately increase squads’ pro-
ductivity and improve their innovation.

The practitioners in our case study reported several ben-
efits of introducing the architectural governance approach
to the Heterogeneous Tailoring approach. These benefits
include: (1) decentralising the architectural decision-making
process, (2) creating technical and enterprise architectural
alignment for the full software product, (3) resolving con-
flicts in architectural decisions and mitigating key technical
risks across autonomous squads, (4) sharing architectural
knowledge among the squads, (5) minimising wasted effort
in architectural refactoring, (6) improving product quality
and mitigating obstacles to aligning architectural decisions
across autonomous squads and (7) balancing the effort
for architectural quality facilitates the creation of generic
software features. Hence, the alignment and governance
of architectural decisions have improved the autonomy of
squads.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abrahamsson P, Babar MA, Kruchten P (2010) Agility and architec-
ture: Can they coexist? IEEE Softw 27(2):16–22

Anderson C, McMillan E (2003) Of ants and men: self-organized
teams in human and insect organizations. Emergence 5(2):29–41

Bass J, Salameh A (2020) Architectural Governance Interview
Guide. University of Salford, UK. https:// doi. org/ 10. 17866/ rd.
salfo rd. 12613 424. v1

Bellomo S, Kruchten P, Nord RL, Ozkaya I (2014) How to Agilely
architect an Agile architecture. Cut IT J 27(2):12–17

Booch G (2009) The defenestration of superfluous architectural
accoutrements. IEEE Softw 26(4):7–8

Braun V, Clarke V (2006) Using thematic analysis in psychology.
Qual Res Psychol 3(2):77–101

Buschmann F, Henney K (2013) Architecture and agility: married,
divorced, or just good friends? IEEE Softw 30(2):80–82

Cockburn A, Highsmith J (2001) Agile software development, the
people factor. Computer 34(11):131–133

Conboy K, Carroll N (2019) Implementing large-scale Agile
frameworks: challenges and recommendations. IEEE Softw
36(2):44–50

Dingsøyr T, Dybå T, Moe NB (2010) Agile software development:
current research and future directions, 1st edn. Springer Pub-
lishing Company (Incorporated)

Erdogmus H (2009) Architecture meets agility. IEEE Softw
26(5):2–4

Gimpel H, Rau D, Röglinger M (2018) Understanding FinTech start-
ups—a taxonomy of consumer-oriented service offerings. Electron
Mark 28(3):245–264. https:// doi. org/ 10. 1007/ s12525- 017- 0275-0

Glaser BG (1998) Doing grounded theory: issues and discussions.
Sociology Press

Hammond S, Umphress D (2012) Test driven development: the state
of the practice. In: Proceedings of the 50th Annual Southeast
Regional Conference, Tuscaloosa, Alabama

Hoda R, Noble J, Marshall S (2013) Self-organizing roles on Agile
software development teams. IEEE Trans Software Eng
39(3):422–444

Kilu E, Milani F, Scott E, Pfahl D (2019) Agile software process
improvement by learning from financial and fintech companies:
LHV Bank Case Study. Software Quality: the complexity and
challenges of software engineering and software quality in the
cloud, Cham

Knewtson HS, Rosenbaum ZA (2020) Toward understanding FinTech
and its industry. Managerial Fin 46(8):1043–1060

Kniberg H (2014) Spotify Squad framework. Retrieved July, 2020 from
https:// medium. com/ proje ct- manag ement- learn ings/

Kniberg H, Ivarsson A (2012). Scaling Agile @ Spotify with tribes,
squads, chapters & guilds. Retrieved June, 2020 from https:// blog.
crisp. se/ wp- conte nt/ uploa ds/ 2012/ 11/ Spoti fySca ling. pdf

Lincoln YS, Guba EG (1985) Naturalistic inquiry. Sage Publications,
Berlin

Linders B (2016) Don’t copy the Spotify model. https:// www. infoq.
com/ news/ 2016/ 10/ no- Spoti fy- model

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17866/rd.salford.12613424.v1
https://doi.org/10.17866/rd.salford.12613424.v1
https://doi.org/10.1007/s12525-017-0275-0
https://medium.com/project-management-learnings/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://www.infoq.com/news/2016/10/no-Spotify-model
https://www.infoq.com/news/2016/10/no-Spotify-model

 AI & SOCIETY

1 3

Martini A, Bosch J (2016) A multiple case study of continuous archi-
tecting in large Agile companies: current gaps and the CAFFEA
framework. In: 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA)

Moe NB, Dingsøyr T (2008) Scrum and team effectiveness: theory and
practice. Agile Processes in Software Engineering and Extreme
Programming, Berlin

Moe NB, Dingsøyr T, Dybå T (2008) Understanding self-organizing
teams in Agile software development. In: Proceedings of the 19th
Australian Conference on Software Engineering (aswec 2008)

Moe NB, Olsson HH, Dingsøyr T (2016) Trends in large-scale Agile
development: a summary of the 4th workshop at XP2016. In:
Proceedings of the Scientific Workshop Proceedings of XP2016

Nord RL, Ozkaya I, Kruchten P (2014) Agile in distress: architecture to
the rescue. Agile methods. Large-scale development, refactoring,
testing, and estimation, Cham

Robinson H, Segal J, Sharp H (2007) Ethnographically-informed
empirical studies of software practice. Inf Softw Technol
49(6):540–551. https:// doi. org/ 10. 1016/j. infsof. 2007. 02. 007

Salameh A, Bass JM (2018) Influential factors of aligning Spotify
squads in mission-critical and offshore projects—a longitudi-
nal embedded case study. Product-Focused Software Process
Improvement, Cham

Salameh A, Bass JM (2019a) Spotify tailoring for B2B product devel-
opment. In: Proceedings of the 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA)

Salameh A, Bass JM (2019b) Spotify tailoring for promoting effec-
tiveness in cross-functional autonomous squads. Agile processes
in software engineering and extreme programming—Workshops,
Cham

Salameh A, Bass JM (2020) Heterogeneous tailoring approach using
the Spotify model. In: EASE ’20 proceedings of the evaluation and
assessment on software engineering, Trondheim, Norway

Šmite D, Moe NB, Levinta G, Floryan M (2019) Spotify guilds: how
to succeed with knowledge sharing in large-scale Agile organiza-
tions. IEEE Softw 36(2):51–57

Šmite D, Moe NB, Floryan M, Levinta G, Chatzipetrou P (2020) Spo-
tify guilds. Commun ACM 63(3):56–61

Stray V, Moe NB, Hoda R (2018) Autonomous Agile teams: challenges
and future directions for research. In: Proceedings of the 19th
international conference on Agile software development: com-
panion, Porto, Portugal

Yang C, Liang P, Avgeriou P (2016) A systematic mapping study on
the combination of software architecture and Agile development.
J Syst Softw 111:157–184

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.infsof.2007.02.007

	An architecture governance approach for Agile development by tailoring the Spotify model
	Abstract
	1 Introduction
	2 Background
	2.1 Agile architecture
	2.2 Autonomous teams
	2.3 Tailoring the Spotify model
	2.4 FinTech

	3 Research methodology
	3.1 Research setting
	3.2 Data collection
	3.3 Data analysis

	4 Findings
	4.1 Before conducting the intervention—baseline
	4.2 After conducting the intervention—the evaluated approach
	4.2.1 Organisational structural change
	4.2.2 An architecture change management process

	4.3 Adapting the Heterogeneous Tailoring approach to govern architectural decisions
	4.4 Benefits and challenges of the architectural governance approach
	4.4.1 Benefits
	4.4.2 Challenges

	5 Discussion
	5.1 Contribution to research and practice
	5.2 Related work
	5.3 Limitations and threats to validity

	6 Conclusion
	References

