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Abstract
Closed-loop supply chains are complex systems as they involve the seamless backward
and forward flow of products and information. With the advent of e-commerce and online
shopping, there has been a growing interest in product returns and the associated impact on
inventory variance and the bullwhip effect. In this paper, a novel four-echelon closed-loop
supply chain model is presented, where base-stock replenishment policies are modelled by
means of a proportional controller. A stochastic state-spacemodel is implemented, initially to
capture the supply chain dynamics while the model is analysed under stationarity conditions
with the aid of a covariance matrix. This allows the bullwhip effect to be expressed as a
function of replenishment policies and product return rates. Next, an optimisation method
is introduced to study the impact of the Internet of Things on inventory variance and the
bullwhip effect. The results show that the Internet of Things can reduce costs associated with
inventory fluctuations and eliminate the bullwhip effect in closed-loop supply chains.

Keywords Closed loop supply chain · Bullwhip effect · Control theory · Inventory control ·
Internet of things · State space

1 Introduction

Modern supply chains have started transforming from integrated networks to dynamic sys-
tems to cope with rising customer expectations. Augmented services and unique experience
for products that are sent swiftly have compelled companies to collaborate with all supply
chain stakeholders. Supply chains should indeed be agile and adaptive enough to withstand
competition as well as to be able to compensate for disruptions and any ripple effects that
could challenge both their performance and stability (Dolgui et al. 2019). The enormous
volume of products offered and delivered by companies in conjunction with the “common”
logistics-related problems such as demand fluctuations, environmental and political chal-
lenges requires innovative and high-performance supply chains.
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Over the years the ultimate goal of supply chain management to serve customers has
become not only imperative but also a unified strategy to efficiently manage the flow of
information and products delivered and returned to/from customers. Reverse logistics (RL)
and closed-loop supply chains (CLSC) have become more and more common as manufac-
turers, distributors and retailers orchestrate a backward logistics network to support product
recovery or returns (Govindan and Soleimani 2017). RL and CLSC models were in the past
deployed mainly to highlight and support business engagement towards waste minimisation,
pollution prevention and circular economy (Hazen et al. 2017). However, as more customers
are embracing the online purchasing of products, RL and CLSC may merely support prod-
uct returns for in-store or online purchases. Retailers such as Asos and Harrods have only
recently adopted measures to deal with “serial” returners (customers that intentionally buy
several items knowing that theywill return some or all of them)who add complexity to supply
chain processes and governance (Espinosa et al. 2019). Although more evident in the fashion
retail sector, product returns are an inevitable part of operations in almost all industries [see
indicatively (Figueira et al. 2013; Senthil et al. 2014; Hames et al. 2018)]. The present work
assumes that returned products are “good as new” and thus constitute part of the serviceable
inventory.

Product returns induce high complexity in replenishment policies, having a huge impact on
inventory decision-making and management (Fleischmann and Minner 2004; De Giovanni
2017). Assid et al. (2019) argue that uncertainties of demand and returns can significantly
deteriorate the reverse flows while lack of information on returned product quantities and
timing impede return policies (Alinovi et al. 2012). The number of returned products operates
as a disruption to inventory levels in forward supply chains, and, thus effectual inventory
management not only very often becomes an increasing challenge for many companies but
also forces them to constantly amend or optimise their replenishment policies (Chen and Bell
2013; Mallidis et al. 2018). Although there is extant literature on linking product return rates
to the bullwhip effect and inventory management, the relationship between product return
rates and replenishment policies has not been dealt with. The present work attempts to bridge
this gap as it investigates this relationship in explicit terms and identifies the conditions
under which the bullwhip effect exists. To the best of author’s knowledge, no research to
date examines or formulates the relationship between replenishment policies and product
return rates. Nevertheless, there are situations where supply chain managers would wish to
know whether their ordering policies exhibit bullwhip effect when product return rates are
known,in order to modify them.

The impact of demand uncertainty on supply chains was first studied by Forrester (1961)
who noticed that demand variability is amplified towards the upstream levels of supply chains.
P&G executives coined the term “bullwhip effect” to describe and study the effect of this
phenomenon on supply chain dynamics within the retail industry (Lee et al. 1997). Since
then, a considerable number of researchers have considered the presence of the bullwhip
effect on both Reverse Logistics (RL) and closed-loop supply chains (CLSC). Braz et al.
(2018) conducted a comprehensive literature review of 56 articles addressing the bullwhip
effect in CLSC within a 14-year period (2004–2018). More than half of the articles deal with
system dynamics and simulation methods (29). Seventeen (17) of all the papers apply control
theory-based approaches and have been used extensively to study the bullwhip effect as they
are capable to capture the dynamics of the supply chain systems with the aid of a controller
and control action (see early papers (Riddalls and Bennett 2001; Dejonckheere et al. 2003)
as well as more recent ones (Fu et al. 2018; Xiong et al. 2019).

One of the methodological contributions of the present work is the development of a
stochastic state-space control model which depicts the full dynamics of CLSC. The pro-

123



Annals of Operations Research

posed model is represented in a compact parametric form, outlining the evolution of the
dynamic CLSC state processes. At the same time it provides detailed information on the
interaction between the various CLSC key variables (i.e., inventory levels, order and product
flows, replenishment policies, product return rates). This helps for a formula representa-
tion to be derived, which characterises the bullwhip effect with respect to product return
rates and replenishment policies. Furthermore, the model allows for optimal techniques to
be implemented to eliminate the bullwhip effect; and finally useful insights are offered in
understanding the effects of the different parameters in the resulting time-varying variances
and covariances. Also, in contrast to most studies which investigate the bullwhip effect with
a focus on remanufacturing or recycling processes, this work provides an alternative (yet
relatively new) approach to studying closed-loop supply chain dynamics by closing the loop
downstream of the CLSC.

Product returns should be supported by extensive supply networks, which are usually the
same and used for forwardmovements. Inmost cases, companies apply particular strategies to
minimise returns as much as possible. When this is not achievable, companies apply strategic
decisions to improve their returns operations by using specifically designed practices to fully
utilise their supply networks (Prakash et al. 2018). Very often, these networks require closer
collaboration between manufacturers, distributors and retailers as products travel forwards
and backwards concurrently (Shaharudin et al. 2017).

One of themost common features of the collaborationwith the aim to alleviate the bullwhip
effect is information sharing between supply chain participants. Thus, in the context ofRL and
CLSC, traditional sharing approaches should be extended to encompass strategies to collect
and share information on product returns. However, most of the literature dealing with the
benefit of collaboration and integration usually involves sharing of valuable information on
customer demand and inventory levels. The value of information related to supply chains
with product returns has not been studied extensively while most studies assume that return
distribution is fully observable (Brito et al. 2009). However, supply chain participants in
non-integrated CLSC, may not have strong incentives to share information due to factors
concerning competitiveness, as well as uncertainty on pricing decisions (Fallah et al. 2015).
In addition, information sharing, without a strong technology-based infrastructure, increases
the risk of leakage whether accidentally or deliberately by third parties to obtain proprietary
information (Kong et al. 2017; Taleizadeh et al. 2019).

The present study aims to fill this gap in the literature by proposing a sophisticated infor-
mation sharing platform that is grounded in the concept of the Internet of Things (IoT).
In contrast to the traditional information sharing solutions proposed in supply chain litera-
ture, this paper considers IoT technology as a well-established interoperable infrastructure
beyond ERP/IT/IS architecture. This allows supply chain participants to share real-time com-
plex information by utilising cloud computing technology for the data stored in ERP systems,
GPS position tracking of transport fleets, RFID based shipment tracking at warehouses and
last but not least a middleware which communicates and integrates all individual devices
with a very high level of encryption and security. In addition, one of the highest priorities in
supply chains is to deliver the products on time to the customer in good condition. The model
presented in this study, provides complete visibility and transparent (real-time) information
of the product condition and location across the supply networks.

This paper considers a four-echelon series CLSC (Customer, Retailer, Distributor, Manu-
facturer) similar to the one presented by Pati et al. (2010), allowing customer product returns
to the retailers. Initially, it is assumed that ordering policies are decentralised and based
on local information (inventory levels and downstream demand). Replenishment decisions
of the Retailer and Distributor follow continuous base stock policies, which are tuned by
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a proportional gain controller. Also, the impact product returns has on inventory variance
is investigated because the bullwhip effect is also associated with inventory fluctuations. A
further contribution of this paper is to investigate whether a centralised approach - reinforced
by an integrated CLSC infrastructure based on Internet of Things - can effectively suppress
the bullwhip effect.

2 Literature review

2.1 Bullwhip effect on reverse logistics

Closed-loop supply chains help organisations reducewaste andmaximise resources by allow-
ing products to travel backwards. These products are returned usually at the participants’
warehouses resulting in constant changes at inventory levels. Turrisi et al. (2013) showed
that the higher the variability of reverse flow, the greater inventory fluctuations that CLSCs
participants see Zhou and Disney (2006) first studied the impact of returned products on
inventory variations by means of the bullwhip effect. Their study showed that CLSCs tend
to alleviate the bullwhip effect in comparison to forward supply chains. Likewise they found
that the greater the return product rate the lesser the bullwhip effect, a finding also supported
by Zhao et al. (2018) and Dominguez et al. (2019). Some scholars argue that remanufacturing
can improve the reuse ratio and alleviate the bullwhip of closed-loop systems (Da et al. 2008;
Corum et al. 2014). Zanoni et al. (2006) found that even with longer lead times pull policies
can in turn mitigate the bullwhip effect.

In contrast to the research discussed in the previous paragraph, there are works in the
literature indicating that closed loop supply chains may actually reinforce the bullwhip effect
and inventory variance. Khiavi et al. (2019) studied closed loop supply chains with stochastic
noise and found that demand amplification occurs. Huang and Liu (2008) argued that the
bullwhip effect is higher in CLSC than in forward supply chains, which does not depend on
collection rates or lead times. Hosoda et al. (2015) considered aCLSCwith stochastic product
returns that are correlated to each other. Based on a mathematical model and numerical
study, they concluded that a CLSC is more likely than a forward supply chain to experience
a bullwhip effect. Chatfield and Pritchard (2013) built a hybrid discrete-event/agent-based
simulation model of a five-stage serial supply chain and showed that CLSC with product
returns exhibit a significantly larger bullwhip effect. They also found that the increase in order
variance due to product returns has more impact on the upstream supply chain. Adenso-Díaz
et al. (2012) considered a simulation instrument similar to the Beer Game and showed that
the bullwhip effect depends on the percentage of material returned.

The contradictory findings suggest that further empirical investigation is required in order
to more fully understand the presence of the bullwhip effect within CLSC. There may be a
number of causes for this discrepancy in the literature, including different bullwhip effect
constructs and divergent perspectives regarding CLSC characteristics (Adenso-Díaz et al.
2012); it could be due to distinct modelling assumptions (Cannella et al. 2016), or different
CLSC structure and configuration (Zhou et al. 2018). Still, for products as good as new, as
regards quality, which is what this study examines - it is not clear whether the return rates
(or yields) mitigate or amplify the bullwhip effect. Some scholars argue that the relationship
between product rates and the bullwhip effect also depends on the quality of the information
shared (Hosoda et al. 2015; Cannella et al. 2016; Linda and Imam 2020). In their study, Ponte
et al. (2020) claim that increasing the product rates may improve or worsen the bullwhip
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effect, depending on the degree of CLSC visibility and the types of information (transparent
or opaque) being shared between echelons. Thus, as the dynamics of CLSC tend to be
prone to different information sharing practices (and information per se) there is a need
for an innovative CLSC configuration which overcomes those limitations and exemplifies
an explicit relationship between product return rates and the bullwhip effect. The inherent
aspects of such a configuration are discussed in more detail in Sect. 2.3.

2.2 Control theory and bullwhip effect mitigation strategies in CLSC

At present, a considerable number of modelling studies on supply chain dynamics are based
on the control and systems theoretical approaches. Themain reason for this is because control
theory is based on amathematical approach that describes the relationship between the inputs,
states and outputs of a complex system such as a supply chain (Ivanov et al. 2012). Various
control theory-based research has been developed to study the bullwhip effect in CLSC.
Within the remanufacturing context, most scholars consider the automatic pipeline inventory
and order based production control system (APIOBPCS) as the basis to facilitate ordering
policy. Indicatively, Zhou and Disney (2006) implemented a replenishment rule that can be
tuned by a proportional controller. Different versions or extensions of APIOBPCS have also
been applied to study the dynamic behaviour of a remanufacturing system by setting certain
control parameters (Tang and Naim 2004; Zhou et al. 2017; Lin and Naim 2019).

State space methods by means of mathematical structures which contain key variables
sufficient to describe the CLSC systems’ future responses in a unique way - as this paper
suggests - have only recently been introduced. In most research articles, H-infinity (H∞)
control strategies have been offered to achieve certain performance specifications in addition
to providing stability. Zhang et al. (2011) implemented an H∞ control method to reduce the
bullwhip effect in a CLSC under uncertainties by examining the quality of returned products,
demand fluctuations and market demand forecast. Guo and Sun (2010) presented a two-
chain cooperation in a CLSC configuration by applying H∞ control methods to mitigate the
bullwhip effect. In order to reduce the bullwhip effect, Guo (2007) and Guo and Sun (2010)
demonstrated linear state-space approaches to design an H∞ control strategy in the worst-
case scenario when a customer’s demand in a CLSC exhibits the highest fluctuations. Guo
(2015) applied a convex optimisation problem involving linear matrix inequalities (LMIs)
to quantify the bullwhip effect in a CLSC served by third-party reverse providers (3PRLP).
Model predictive controlmethodswithin aCLSCdynamic systemproviding state estimations
to restrain the bullwhip effect have also been investigated (Guo 2017; Yuan et al. 2019). It
is interesting to note that most of the articles which use state space methods provide similar
insights with regards to the influence of CLSC on dynamic behaviour (Cannella et al. 2016).

2.3 Information sharing practices and internet of things technology in CLSC

Even a recent review of the literature suggests that the bullwhip effect cannot be completely
eliminated even though various methods and techniques have been tested on CLSC networks.
Studies on inventory management and the bullwhip effect on CLSCs assert that information
sharing and information transparency for product returns help the overall SC performance
to restrain the bullwhip effect (Tang and Naim 2004; Ketzenberg 2009; Hosoda et al. 2015).
Brito et al. (2009) argue that the value of information is crucial and that sharing policies
assume “perfect” information between supply chain echelons. In fact, the value of infor-
mation can be reinforced with the use of technology. Dominguez et al. (2019) state that
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investing in technologies to process product returns helps managers to absorb the uncertainty
in terms of quality and reduce the bullwhip effect. Recent technological innovations, such as
radio-frequency identification (RFID), distributed systems and cloud computing have been
investigated as to whether they can reduce information distortion through data acquisition,
data analytics, and real-time communication systems (Lindner et al. 2010; Zhigang 2012;
Gowda and Subramanya 2017).

Since information sharing alone is insufficient to completely eliminate the bullwhip effect,
CLSCs require effective coordination, sharing of key information at different locations and
no losses or delays in transmitted data. Thus, more sophisticated synergies than RFID prac-
tices should be adopted to link all key information with regards to supply chain management.
Internet of Things (IoT) technology has only recently been explored as a technological solu-
tion to address those issues. Paksoy et al. (2016) conducted experimental research and found
that IoT not only reduces uncertainty, waste and costs but also provides vital information
of returned products throughout the CLSC network. The benefits of IoT for manufacturers
within the CLSC context have been studied in terms of optimal production planning (Fang
et al. 2016) and better inventory management.

IoT can be used as a safe and reliable way of exchanging information related to goods and
services in a global supply chain. IoT, obviously, uses the Internet as a carrier to integrate
all interconnected and independently addressable “things” through wireless communica-
tion technology and radio frequency technology (Jiang 2019). Ivanov et al. (2018) argue
that Industry 4.0 systems can benefit from control theory by integrating crucial information
feedbacks and dynamics leading to robust, stable and resilient supply chains. An exploratory
literature review on the applications and challenges of IoT, including the supply chain context
is given by Mishra et al. (2016).

Xu et al. (2012) introduced the concept of the smart reverse supply chain (SRSC), which
enables an intelligent combination of recycling, ERP, CRM and SCM systems. In an SRSC,
each returned product is assigned a unique code, which is stored on the internet. IoT then
enables the gathering and management of real-time information regarding the returned prod-
uct. In contrast to the common information sharingmethods, this paper considers that product
return rates and replenishment policies are sharedwith the aid of an IoT infrastructure between
two neighbouring CLSC echelons. An optimisation method is applied involving the minimi-
sation of inventory fluctuations in such an infrastructure to study whether the bullwhip effect
can be completely eliminated.

3 State-spacemodel formulation

A series of four-echelon CLSC is considered in this study as shown in Fig. 1. The CLSC is
segmented in three parts (upstream, midstream and downstream). It is assumed that in the
upstream and midstream parts of the CLSC, the flow of information (orders) is backward,
while the flow of products is forward; whereas in the downstream part the flow of products
is bidirectional. Figure 1 depicts a typical decentralised CLSC where product replenishment
decisions are made locally. Customer demand, which is placed on the Retailer site (R), is
considered a normally distributed signal as N (μ, σ 2). Given that the order-setup costs in the
midstream parts are usually small compared to other costs, both Distributor (D) and Retailer
(R) follow a simple (installation) base-stock for continuous inventory review policy. Under
this base-stock policy, the inventory level is updated at every time step and is a function of
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Fig. 1 Four-echelon series closed-loop supply chain model

on-hand inventory levels and projected material quantities that are sent and received to and
from the downstream and upstream echelon, respectively (Ignaciuk 2017).

It is assumed that all four echelons always have sufficient inventory tomeet the downstream
demand (typically the production capacity of the factory has no limitswhereasDistributor and
Retailer echelons always have sufficient levels of specific products). This research refrains
from studying the impact of lead-time on the bullwhip effect as this has been examined
extensively in theCLSC literature (see indicatively (Turrisi et al. 2013;Chatfield andPritchard
2013;Hosoda et al. 2015). Hence, for simplicity throughout this paper, we assume that L = 1.
By denoting with QR,C (t) the quantities of products delivered by the Retailer at time t and
with OC,R(t −1) the orders placed from the Customer (C) to the Retailer at time t −1, then:

QR,C (t) = OC,R(t − 1) (1)

As long as product returns are allowed in the downstream part of the CLSC, product
return rate is represented by the variable α with {α ∈ R | α ≥ 0}. The variable α expresses
the percentage of products returned to the Retailer echelon from the Customer.

The inventory level IR(t) in the Retailer echelon (R) at time t is given by:

IR(t) = IR(t − 1) − QR,C (t) + QD,R(t − L) + αQC,R(t − L) (2)

Note that essentially the Retailer receives an α percentage of the QR,C products that were
sent to the Customer in the past. The variable QD,R(t − L) indicates the quantities sent to
the Retailer by the Distributor (echelon D). Note also, that the quantities dispatched by the
neighbouring echelon have lead time L = 1.

As long as the Retailer follows a base-stock policy, inventory levels are reviewed continu-
ously against inventory (pre) set points while order decisions are based on local information.
To better model the continuous replenishment policy - followed by the Retailer site - a pro-
portional control algorithm is introduced by means of proportional gain kR ≥ 0, which
(continuously) adjusts the difference between the inventory set-point SPR , which is assumed
to be constant throughout this analysis, and actual inventory level IR . Thus, the orders placed
by the Retailer site to the Distributor can be written as:

OR,D(t) = kR[SPR − IR(t)] (3)

Note that the Retailer experiences backorders BR(t), which at time t are given by: BR(t) =
BR(t−1)+OC,R(t)−−QR,C (t). Similarly, theDistributor attempts tominimise the inventory
fluctuations while maintaining sufficient on hand stock. The inventory level of the Distributor
ID(t) at time t is depleted by QD,R(t) and increased by the quantities received by the
Manufacturer (echelon (M) QM,D(t), with L = 1, as:

ID(t) = ID(t − 1) − QD,R(t) + QM,D(t) (4)
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The orders placed by the Distributor to the Manufacturer OD,M (t) at time t is the
discrepancy between the set-point SPD and the inventory level ID(t), compensated by a
replenishment gain factor kD ≥ 0, which again signifies the base-stock policy followed by
the Distributor. Hence,

OD,M (t) = kD[SPD − ID(t)] (5)

while backorders at the Distributor site BD(t), are given by: BD(t) = BD(t−1)+OR,D(t)−
−QD,R(t). Since theManufacturer (echelonM) always has enough inventory to cover down-
stream demand, the quantities sent to the Distributor are always equal to the number of orders
placed in the previous time unit. Thus,

QM,D(t) = OD,M (t − 1) (6)

Equations (1–6) demonstrate the dynamics of the four-echelon CLSC model and can be
compactly written in a state-space form by selecting IR(t−1), ID(t−1), QM,D(t), QD,R(t),
QR,C (t) and QR,C (t − 1) as state-space variables. The input and output variables are also
selected as OC,R(t) (customer demand) and QR,C (t) (quantities dispatched to Customer by
Retailer). Then the state-space model can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

IR(t)
QR,C (t + 1)

ID(t)
QD,R(t + 1)
QM,D(t + 1)
QR,C (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1 0 α

0 0 0 0 0 0
0 0 1 −1 1 0

−kR kR 0 −kR 0 −α kR
0 0 −kD kD −kD 0
0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

IR(t − 1)
QR,C (t)
ID(t − 1)
QD,R(t)
QM,D(t)

QR,C (t − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
α

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
OC,R(t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
kR 0
0 kD
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
SPR

SPD

]
(7)

and

QR,C (t) = [
0 1 0 0 0 0

]

⎡
⎢⎢⎢⎢⎢⎢⎣

IR(t − 1)
QR,C (t)
ID(t − 1)
QD,R(t)
QM,D(t)

QR,C (t − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

which is of the form x(t + 1) = Ax(t) + Bu(t) + GSP and y(t) = Cx(t)

4 Delineation of the bullwhip effect

The stochastic state space representation in Eqs. (7–8) provides all necessary information
to continuously measure, learn and update the inventory level and movement of products.
It also allows the integration of historical data from past state variables and formalises the
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causation from the past to the future. Although the state-space representation of the elements
and the supply chain system’s dynamics given in Eqs. (7–8) offers many advantages, the
CLSC model presented here can also be used to study undesired phenomena such as the
bullwhip effect. This can be achieved by calculating the covariance matrix of the state vector
of the overall supply chain model in parametric form.

Equations (7, 8) can be rewritten in the generic form: xk+1 = Axk + Cek + DSP and
yk = Hxk , where ek is a random uncorrelated Gaussian random sequence (applied as the
input to the model from the infinite past) with zero mean and cov{ek} = 1 for all k. Provided
that A is stable (all eigenvalues are inside the unit circle), the steady state covariancematrix P
is given by the unique solution of the Lyapunov equation P = APAT +CCT , Davis (2013).
Note that cov{yk, yk− j } = HPA j HT , for j > 0 and cov{yk, yk− j } = HPHT , for j = 0.
Then, the state variable xk+1 and state matrix A are expressed as a linear combination of kR ,
kD and α, which are assumed to be parameters. The covariance matrix P corresponding to
the CLSC model is given by:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− Λ
kR (kR−2) 0 Θ Γ

(kR−2)Δ
Λ

kR−2 − kD Θ Γ
(kR−2)Δ

−1
0 1 0 0 0 0

Θ Γ
(kR−2)Δ

0 kR {Δ−α[α(Δ−2)+2(2−kR−kD )]−2}
kD (kD−2) (kR−2)Δ

− kR Θ Γ
(kR−2)Δ

− kR {Δ−α[α(Δ−2)+2(2−kR−kD )]−2}
(kD−2) (kR−2)Δ

0
Λ

kR−2 0 − kR Θ Γ
(kR−2)Δ

− kR Λ
kR−2

kD kR Θ Γ
(kR−2)Δ

kR
− kD Θ Γ

(kR−2)Δ
0 − kR {Δ−α[α(Δ−2)+2(2−kR−kD )]−2}

(kD−2) (kR−2)Δ
kD kR Θ Γ
(kR−2)Δ

kD kR {Δ−α[α(Δ−2)+2(2−kR−kD )]−2}
(kD−2) (kR−2)Δ

0
−1 0 0 kR 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where:

Λ = 2αkR − 2α + α2 + 1

Θ = αkR − α + 1

Γ = α + kR − 1

Δ = kD + kR − kD kR

Note that since Λ > 0, the diagonal elements (variances) of the positive semi-definite
P denote that the system is stable if Δ > 0, αgeq0, kR < 2 and kD < 2. The bullwhip
effect (demand amplification) towards the Manufacturer echelon (M) can be quantified by
calculating the variability in orders faced by the Manufacturer and compare it with the
variability of demand OC,R(t) placed by the Customer. Thus, the demand at theManufacturer
site may be calculated easily from the covariance matrix P . Equation (6) with the aid of
Eqs. (4) and (5) can be rewritten by assuming a time-shift, t − 1 → t , as:

QM,D(t + 1) = OD,M (t) ⇔ OD,M (t)

= −kD ID(t − 1) + kD QD,R(t) − kD QM,D(t) + kDSPD
(10)

It can be inferred that OD,M (t) in Eq. (10) is a linear function of the state variables and
constant SPD in the form OD,M (t) = Ξ ′ x(t) + kD SPD , where x(t) is the state vector and
Ξ ′ = [0 0 − kD kD − kD 0]. Then, the demand amplification factor DAF is expressed as
a fraction between the two order variances Var{OD,M (t)} and Var{OC,R(t)} as in Simchi-
Levi et al. (2008):

DAF = Var{OD,M (t)}
Var{OC,R(t)} = Ξ ′PΞ = kD kR {Δ − α [α (Δ − 2) + 2 (2 − kR − kD)] − 2}

σ (kD − 2) (kR − 2) Δ

(11)

In order to find the regions in the (α, kR, kD) plane where the bullwhip effect occurs,
Eq. (11) was set to one so that kD can be expressed as a function of kR and α leading to the
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Eq. (12) with σ = 1. Due to the rather complex calculations involved, α was set to 0.5 (50%
of product returns).

kD = f (kR, α ≡ 0.5) = 34 kR − 13 kR2 − 16 ± 4
√

(kR−2)
(
119 224 kR−kR3−130 kR2−128

)
16

2
(
9 kR2 − 13 kR + 8

)
(12)

Equation (12) has two solutions, however, given that kD ≥ 0 and α ≥ 0, the positive
square root part should be chosen. Note, that the root expression and the denominator have
positive values for 0 ≤ kR < 2. Figure 2 depicts the region where the amplification (bullwhip
effect) exists, which resides in the upper part of the mesh surface, whereas the area under the
mesh signifies the region where the bullwhip effect is attenuated. It can be seen that large
values of α reinforce the bullwhip effect, a finding that agrees with previous studies (Huang
and Liu 2008; Chatfield and Pritchard 2013; Khiavi et al. 2019). Thus, products with very
high return rates provide limited flexibility for both the Retailer and the Distributor to opt
for replenishment policies that do not cause the bullwhip effect. Note that Fig. 2 provides
the theoretical values of α where the bullwhip effect does exist. Later, it will be shown that
under stationary conditions, 0 ≤ α ≤ 1.

Similarly, large values of the proportional controller bolster the bullwhip effect. Hence,
when “aggressive” replenishment policies are followed for some products (kR > 1 or kD >

1), even small return rates for those products may cause a bullwhip effect. Note that both
proportional gain factors kR and kD are lying in the interval (0, 2), which denotes that when
the Retailer experiences high product return rates, even with smoothed ordering policies
kR < 1 the Distributor site has limited flexibility to compensate the downstream demand and
avoid the bullwhip effect. This type of control action is typical in proportional controllers
since the orders OD,M (t) placed by the Distributor are simply related to the proportional
algebraic difference SPD − ID(t).

Fig. 2 The bullwhip effect regions in the (kD, kR , α) hyperplane
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5 Employing Internet of Things to alleviate the bullwhip effect

Next, an integrated supply chain is considered, where information sharing regarding the
products returned by customers to retailers is reinforced by the Internet of Things (IoT)
frameworks presented by Abdel-Basset et al. (2018) and Garrido-Hidalgo et al. (2019). A
typical framework consists of database middleware, a software (HTML, CSS, JavaScript)
and a hardware (RFID technology, GIS and GPS, sensors) gateway implementation. The
returned products are interconnected with IoT devices through long-range communication
technologies. RFID tags are attached to products usually by the retailer or manufacturer and
contain all necessary (data-encrypted) information allowing the tracking and classification
of products. Hence, the IoT-based CLSC infrastructure helps supply chain echelons to gain
accurate real-time information on the number of products returned, and, subsequently product
return rates.

The sharing of ordering policies in real-time within the IoT framework presented in this
paper can be achieved by allowing the Retailer to connect automatic replenishment systems
(APS) to distribution sensors technology that collect and transform valuable data. These
data, through the communication process, reach the Distributor’s end (see Fig. 3) in real-
time. Thus, the IoT framework may realise (automatic) information interactions between
intelligent sensing devices and the Retailer’s replenishment systems that can be easily set
up according to the Retailer’s choice of replenishment programme or ordering policy tuned
by kR . As a result, the Retailer shares ordering policies kR with the Distributor at real-time
t , and, therefore, the Distributor also knows whether the Retailer is applying an aggressive
ordering policy (kR > 1) or not.

It is also assumed that the Distributor (alongwith the Retailer) can track the rate of product
returns α leaving the Customer site at real-time t . In fact, both the Retailer and the Distributor
are informed about product return rates at each time step. Last but not least, the Distributor
receives at time t the number of orders OR,D(t) placed by the Retailer. As a result, thanks
to the IoT framework, the Distributor now has at each time step a full picture of the key
parameters that govern the dynamics of the CLSC (i.e., product return rates, replenishment
policies, and the number of orders placed by the downstream echelon).

The revised CLSC model is shown in Fig. 3. For modelling purposes and to assess the
efficiency of the IoT-based CLSC in terms of bullwhip effect elimination, it is assumed that
αQC,R(t) is the aggregated number of return products at time t (e.g., return products per
day). Also, it is assumed that the returned products can be immediately resold without the
need for remanufacturing or refurbishment.

Note, that most of the suggested strategies for reducing the magnitude of the bullwhip
effect focus the centralisation of “on-demand” information bymaking customer demand data
available to the upstream stage of the supply chain (see Tang and Naim (2004); Hosoda et al.
(2015)). The present study goes beyond this “remedy” by allowing both parties to commu-
nicate and interact with each other over the Internet by collecting all necessary information
from physical things, which helps to identify and share the exact (actual) value of α.

Let’s assume that the system is stable (kR, kD < 2) and the demand from the Customer
site OC,R(t) consists of independent and identically distributed random variables of mean μ

and variance σ 2. Then, if all echelons in the CLSC always have enough inventory to satisfy
downstream demand, all signals are stationary. The state space model given in Eq. (7) can
be written in compact form as:

x(t + 1) = Ax(t) + Bu(t) + G × [SPR SPD]′
y(t) = Cx(t)

(13)
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where u(t) is customer demand and SPR , SPD are the deterministic values of inventory
set-points at the Retailer and the Distributor sites, respectively. By means of the equilibrium
state (t → ∞) the state space model becomes: x(t) = Ax(t)+ Bu(t)+G×[SPR SPD]′ ⇔
x(t) = (I − A)−1Bu(t) + (I − A)−1G × [SPR SPD]′. The expected values of the state
variable can be easily calculated as:

E{x(t)} = μ(I − A)−1B + (I − A)−1G × [SPR SPD]′ (14)

So long as the state space model in Eq. (13) is an LTI model, then it satisfies the condition
that x(t − t1) = A[y(t − t1)], which provides stationarity in time (Strejc 1981). The five state
variables are distributed as follows (note that under stationary conditions the state variables
QR,C (t) and QR,C (t + 1) are distributed equally):

IR(t) ∼ N

(
SPR + μ (α − 1)

kR
,−σ 2 Λ

kR (kR − 2)

)

QR,C (t) ∼ N
(
μ, σ 2)

ID(t) ∼ N

(
SPD + μ (α − 1)

kD
,−σ 2 kR{Δ − α [α (Δ − 2) + 2 (2 − kR − kD)] − 2}

kD (kD − 2) (kR − 2) Δ

)

QD,R(t) ∼ N

(
−μ(α − 1),−σ 2 kR Λ

kR − 2

)

QM,D(t) ∼ N

(
−μ(α − 1), σ 2 kD kR {Δ − α [α (Δ − 2) + 2 (2 − kR − kD)] − 2}

(kD − 2) (kR − 2) Δ

)

(15)

Since QD,R(t) and QM,D(t), and their means, may always take positive values, Eq. (15)
signify that under stationarity 0 ≤ α ≤ 1. To study the benefit of employing the IoT frame-
work in terms of inventory management performance, a new variable (sufficient inventory),
SID(t) = ID(t − 1) − OR,D(t) is introduced, which denotes the ability of the Distributor to
meet the demand placed by the Retailer. Then the sufficient inventory is distributed as:

SID(t) ∼ N

(
SPD − μ + μ(α − 1)

kD
,−σ 2 kR{Δ − α [α (Δ − 2) + 2 (2 − kR − kD)] − 2}

kD (kD − 2) (kR − 2) Δ

)

(16)

From Eq. (16), it can be inferred that under step input demand, ID(t) tracks the set-point
SPD with a steady state error −μ + μ(α−1)

kD
, which applies to zero-type feedback systems.

Thus, the magnitude of the discrepancy between the actual inventory level and the target level
at the Distributor site clearly depends on replenishment strategies and the product return rate.

When the Retailer dispatches returned products, the Distributor attempts to promptly
fulfill backorders based on the new inventory balance. Any backorders are updated through
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the demand signal and as a result the Distributor follows an aggressive replenishment policy
kD > 1. As long as the Distributor site is responsible for managing returns of any missing
products, the necessary arrangements need be made as to how to bring back returned product
quantities to their place of origin. This leads to higher transportation costs, while often these
are proportional to the number of returned products, they can, however, be better estimated
if quantities are known beforehand (Hosoda et al. 2015).

The overall costs become even higher due to fluctuations in the inventory levels leading
to an increase in holding costs. However, if α and kR are shared between supply chain
participants in real-time using the IoT framework presented here, the Distributor can use
this information to minimise costs associated with excessive inventory levels. In fact, the
Distributor site can avert additional costs by eliminating both the average and the fluctuations
in inventory levels. Note, that Distributor can control the inventory level average by setting
SPD to a desired position, which can be used to shift SID(t) to any optative level, too. The
following analysis deals with the costs associated with fluctuations in inventory levels.

5.1 Optimal policies in the internet of things context

The information in covariancematrix P , given in Eq. (9), can be used to obtain the variance of
inventory level ID(t) at the Distributor site. Then, for any given 0 ≤ α ≤ 1 and 0 < kR < 2
an optimal choice of kD , kD∗ = f ∗(α, kR) is sought tominimise the variance of ID(t) subject
to Prob{SID(t) < 0} ≤ ζ , where ζ is considered to be a very small parameter. This can be
achieved by taking the first derivative of Var{ID(t)} with respect to kR and α and setting it
equal to zero. Since this again involves some complex calculations we derive the resulting
equation by setting α = 0.5. Then, the optimal choice for kD , (kD∗) is given by:
kD

∗ = f ∗(kD , kR , α ≡ 0.5)

= kR
(
5 kD3 kR2 − 6 kD3 kR + kD3 − 9 kD2 kR2 + 11 kD2 kR − 4 kD2 + 3 kD kR2 − 8 kD kR + 4 kD − kR2 + 2 kR

)

2 kD2 (kD − 2)2 (kR − 2) (kD + kR − kD kR)2

(17)

Then, by setting Eq. (17) as being equal to zero, we can express kR as a function of
kD = f ∗(kR) given that Eq. (17) is continuous in the interval 0 ≤ kR < 2 and 0 < kD < 2.
Figure 4a shows the plot of kD∗ = f ∗(kR) (solid line) alongside the regions where the
bullwhip effect exists when α = 0, α = 0.5 and α = 1 (dotted line). Figure 4a also provides
a schematic comparison of the bullwhip effect regions for the original CLSC (dotted line) as
well as the one reinforced by IoT technology (solid line).

It can clearly be seen that a CLSC with an IoT infrastructure for any value of α does
not allow the bullwhip effect to occur, as the curve (solid line) is always to be found in the
attenuation region, which is the area marked out underneath the dotted line. Note also that
when all products ordered in the previous period are returned (α = 1), the region where
the bullwhip effect occurs (the area above the dotted line in Fig. 4a) is greater than the
corresponding area when α = 0.5 (half of the products have been returned from the Retailer
to the Customer). Similarly, with α = 0.5 the bullwhip effect region is bigger than that with
no returns (α = 0). In fact, the results of this study indicate that the bigger the product return
rates, the smaller the range for the replenishment gain factor kD at the Distributor site, which
guaranteesminimum inventory fluctuations as well as elimination of the bullwhip effect. This
supports the findings in Sect. 4 where even without the implementation of the proposed IoT
infrastructure, the Distributor has less flexibility to follow a replenishment policy, leading to
a complete elimination of the bullwhip effect when product return rates are high.
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Fig. 4 a Optimal policies kD = f ∗(kR) and boundaries of bullwhip effect, b plot of Var∗ ID(t) versus kR

Another useful observation from Fig. 4a is that optimal inventory fluctuation policies
always guarantee the elimination of the bullwhip effect evenwhen theDistributor is enforcing
aggressive ordering policies. Thus, with the sharing information strategies reinforced by
the IoT framework which this paper presents, not only is the Distributor able to minimise
inventory fluctuations, but the bullwhip effect in CLSCs can also be fully avoided. In the
long-run, the proposed model may lead to significant cost savings, which can depreciate the
high costs currently associated with IoT solutions. Figure 4b shows the optimal (minimum)
variance of inventory fluctuations at Distributor Var∗ ID(t) for the three values of α. The
optimal variance can be derived by substituting the optimal policy kD = f ∗(kR, α) into
P(3, 3) an element of the covariance matrix P . It can be inferred that (Var∗ ID(t) is a
monotonically increasing function of kR . Interestingly, there is a positive analogy between
Var∗ ID(t) and α. Hence, the more product returns, the more inventory fluctuations the
Distributor experiences. In fact, the practical implication, which can be seen in Fig. 4b is that
the higher the product returns rates, the less the flexibility for the Distributor to minimise the
inventory variance for bigger values of kR e.g., kR > 1.5.

6 Conclusion

This article presents a model for analysing the effect on product return rates with continuous
replenishment polices based on a four-echelon series closed-loop supply chain structure.
The idea was to initially obtain a covariance matrix of the model in parametric form as a
function of product rates and replenishment policies. This helps to characterise and quantify
the bullwhip effect under certain parameter values. The present results indicate that higher
product return rates and aggressive ordering policies exhibit a larger bullwhip effect. This
finding is in agreement with other studies suggesting that there is a positive correlation
between product returns and the bullwhip effect (Guo and Sun 2010; Chatfield and Pritchard
2013).
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The impact of returned products on the bullwhip effect appears to be contradictory in the
literature. It is important to emphasise here that closed-loop supply chains, reverse logistics
and the stock management in circular economy models can be examined in several ways.
Product returns are associated with recycling, refurbishing, reusing or remanufacturing pro-
cesses and, thus, they may feedback into the supply chain network at different levels. There
are also different aspects of returns with regards to their source, such as end-customer or
intermediaries (e.g., 3PL’s). The findings of this research are based on a CLSC model which
considers the returns process of previously purchased products from the end customer through
the retailer-distributor supply channel and not directly through the distributor or manufac-
turer. As also found in other studies, it is valid that the absence of common ground in CLSCs
brings contradictory results and, for this reason further research should be conducted to unify
different constructs and settings.

An additional contribution of this paper is the formulation and solution of an optimisation
problem involving the minimisation of inventory fluctuations in closed loop supply chains
reinforced by an IoT platform. It has been shown that initially sharing replenishment-related
information eliminates demand amplification a finding that has been also derived in (Der-
akhshan et al. 2019). The proposed model provides useful insights into how IoT are linked
with replenishment policies and product return rates. The findings also indicate that IoT
infrastructure eliminates the bullwhip effect even if the product return rates are high. Despite
the high cost of IoT implementation, CLSCs (especially those impacted by the boom in
online shopping) have started to convert to integration by adopting sophisticated technologi-
cal means. Besides this, many companies more and more are considering platforms that can
homogenise and share data gathered from disparate sources.

As this research work effectively deals with information asymmetry problem in closed-
loop supply chains, it may help organisations to develop CLSC structures based on IoT
technology. Although the model proposed in this paper is based on a series supply chain
structure, the closed-loop supply chain can become divergent on the assumption that all
mathematical formulas pertain to a single product. Thus, for more realistic CLSC represen-
tations involving the movement of multiple products, the number of series supply chains
should be equal to the number of products. Last but not least, the proposed structure of
the CLSC model allows the required covariance analysis to be extended to models with an
arbitrary number of echelons.
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