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Abstract- The present article examines the transport of species in streaming blood through 

a rigid artery in the presence of multi-irregular stenosis. The carrier fluid i.e., blood is 

assumed to be non-Newtonian fluid (Casson’s viscoplastic model is used) and the arterial 

wall is considered to be rigid. A robust model is developed for non-Newtonian flow and 

hydrodynamic dispersion with first-order chemical reaction on the arterial boundary in 

multiple irregular stenosed arterial geometries. Multiple scale solutions of the non- 

dimensional boundary value problem are presented. Asymptotic expressions are 

developed for velocity and shear stress. Extensive visualization of velocity, 

concentration, and other flow characteristics is included for various stenotic scenarios, 

Péclet numbers, and Damköhler numbers.  Significant modification in hemodynamic 

characteristics is computed with viscoplasticity. Mean concentration is also dramatically 

modified with yield stress and Péclet and Damköhler numbers 

Keywords- Multiple scale analysis, Arterial stenosis, Damköhler number, reaction; 
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1.INTRODUCTION 

The wide occurrence of hematological diseases worldwide provides a strong motivation 
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to continuously refine mathematical models of blood flow in the human circulatory 

system. Many ailments are related intimately to the obstruction of blood flow in arteries 

and examples include congenital or acquired constrictions, renal arterial stenosis, 

arteriosclerosis (associated with fatty deposits), coarctation of the aorta, etc. [1]. Pulsatile 

flow is generated by the rhythmic pumping action of the human heart. It is fundamental 

to all hemodynamic studies and an excellent exposition of many aspects of pulsatile 

biophysics including branching trees, perfusion, vascular wall effects, and 

pathophysiology has been presented by Zamir [2]. Many areas of pulsatile 

hydrodynamics have been investigated in recent years including ophthalmology [3]. 

Theoretical, computational, and laboratory models of such flows have provided an 

indispensable insight into the intrinsic mechanisms involved and an excellent 

complement to clinical investigations.  Many excellent studies have been communicated 

in particular in the past three decades. Fukushima et al. [4] used glass tube models to 

visualize horseshoe vortex patterns in pulsatile flow through Y- and T-shaped arterial 

bifurcations. Moore and Ku [5] employed dye injection to study pulsatile flow patterns in 

the infrarenal aorta, noting substantial time-dependent variations in the hemodynamics 

under differing physiological scenarios. Daripa and Dash [6]  used an optimized finite 

difference technique to compute the axial pressure gradient and velocity distribution in 

pulsatile flow through an eccentric catheterized artery. Boyd and Buick [7] investigated 

pulsatile blood flow in a three-dimensional carotid artery geometry using the lattice 

Boltzmann method, considering a number of conditions under a physiologically realistic 

velocity waveform. These studies have however generally been confined to the 

Newtonian model for blood flow. At low shear rates, even in large arteries, blood exhibits 

non-Newtonian characteristics. The presence of multiple suspensions (proteins, fats, ions, 

red and white blood cells, etc) generates markedly rheological properties in blood. To 
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more precisely simulate shear stress-strain characteristics of actual blood, therefore 

rheological models are required and these are invariably adopted from polymer physics 

and chemical engineering for which they were originally developed. Many excellent and 

robust formulations have been adopted in hemodynamics including the Maxwell upper 

convected (UCM) viscoelastic models, FENE-P (finitely extensible nonlinear elastic-

Peterlin) model, Oldroyd-B models, Williamson fluids, Vocaldo viscoplastic models, 

Walters-B short memory fluid models, etc. Zaman et al. [8] used a forward time centered 

space numerical difference algorithm to compute the pulsatile hemodynamic flow in 

multi-phase blood through a rigid cylindrical vessel using a Sisko power-law model for 

the core region and a Newtonian model for the peripheral layer. Ponalagusamy [9] 

deployed the Herschel-Bulkley model to derive perturbation solutions for pulsating flow 

in tapered blood vessels. At low shear rates, the viscosity of the blood increases as the red 

blood cells accumulate at the center of the blood vessel. This accumulation results in the 

blood behaving as a semi-solid and forming a plug region where no velocity shear can be 

seen. This behavior can be modeled mathematically by incorporating the idea of yield 

stress. The yield stress for blood depends on other rheological parameters including 

hematocrit, temperature, fibrinogen concentration, and under normal conditions, the yield 

stress of human blood ranges from 0.01 to 0.06 dyn/cm2 as noted by Chandran et al. [10]. 

A particularly popular model in simulating plug flow is the Casson model [11] which was 

originally formulated to simulate printing inks in the 1950s. Blair [12] and later Copley 

[13] have shown that the Casson viscoplastic fluid model provides a robust model for the 

simple shear behavior of blood in narrow arteries, confirming that at low shear rates the 

yield stress for blood is non-zero. Merrill et al. [14]  demonstrated that blood flow in tubes 

with a diameter of 130–1000 μm can be reasonably accurately modeled with the Casson 

model. Charm and Kurland [15] later indicated that the Casson model can also simulate 
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human blood at a wide range of hematocrit and shear rates. Extensive elaboration of 

applications of the Casson model in hemodynamics has also been documented by Blair 

and Spanner [16] . A seminal study of pulsatile hemodynamics using the Casson model 

was presented by Aroesty and Gross [17] who considered arterioles, venules, and 

capillaries simulating the core flow with Casson theory and the lower viscosity wall layer 

as Newtonian. They observed that the plasma layer achieves enhanced lubrication when 

the effective shear viscosity is much greater than the ultimate high shear viscosity and 

that this can be beneficial in hemorrhagic shock. Chaturani and Palanisamu [18] used a 

finite difference technique to compute the pulsatile Casson blood flow under periodic 

body acceleration and considered the three cases of the wide (femoral) and narrow 

(arteriole and coronary) tubes. They noted that initial transient time exhibits trivial 

modifications with yield stress in narrow tubes whereas it is strongly reduced in wide 

vessels with yield stress. They also observed that axial velocity, wall shear amplitude, 

and fluid acceleration variations with yield stress are non-uniform only in wider vessels. 

The Casson model has also been successfully utilized in symplectic cilia-driven 

propulsion of magnetized blood flow by Akbar et al. [19] (for biomagnetic flow devices) 

and in periodic blood flow in small vessels by Rohlf and Tenti [20] (who conducted a 

perturbation analysis using Womersley number i.e. product of Reynolds and Strouhal 

number as the perturbation parameter).  

The above studies were confined to purely fluid flow and ignored mass diffusion or 

dispersion effects. A primary role of the cardiovascular system is to transport nutrients 

and oxygen to cells and metabolic waste products away from cells. Therefore, transport 

of species in arterial blood flow is therefore an important area of hemodynamics research. 

One of the key transport coefficients in hydrodynamic dispersion i.e. the effective 

dispersion coefficient for shear flow in a Newtonian fluid was first derived analytically 
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by Taylor [21] in which experimental verification was also included. This original 

foundational work was motivated by an aim to theoretically characterize the transport of 

soluble salt in blood flows and to develop a means for accurately quantifying its molecular 

diffusivity. This approach essentially describes the transverse mean concentration 

governed by a diffusion equation in a constantly moving coordinate system. It is based 

on considering the rate of axial dispersion in fully developed steady Newtonian flow in a 

straight pipe under the conditions that the dispersion be relatively steady and that 

longitudinal transport is dominated by convection rather than diffusion. Taylor [21] 

effectively demonstrated that the resulting effective axial diffusivity is proportional to the 

square of the Peclet number and inversely proportional to the molecular diffusivity. 

Thereafter the mathematical fluid dynamic study of solute dispersion in a shear flow, now 

popularly known as Taylor dispersion, emerged as a major area of interest. Aris [22] 

significantly generalized the Taylor model by incorporating axial dispersion. Taylor 

dispersion in arterial blood flows plays a central rule in mixing and is also fundamental 

to pharmacodynamics i.e. drug transport the physiological system [23]. Important works 

on Taylor dispersion in blood flow (based on the Newtonian fluid model) include  Barton 

[24], Mazumder and Das [25], and Paul and Mazumder [26]. Recently Wu et al. [27] have 

computed in detail the diffusion patterns in Taylor dispersion showing that with a 

modified approach to the longitudinal normality of the transverse mean concentration at 

the time scale of 
2 /R D  ( R  is the tube radius and D  is the molecular diffusivity), the 

solute concentration is found to be uniformly distributed across a family of invariant 

curved transverse surfaces rather than the conventional flat cross-sections computed in 

traditional studies. These investigations have been confined to Newtonian fluids. Taylor’s 

dispersion model has however been deployed in a number of computational non-

Newtonian pulsatile blood flow and other physiological studies in recent years.  Bhargava 
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et al. [28] used a variational finite element method and a Carreau shear-thinning 

rheological model to simulate the magnetized pulsating blood flow in a channel with 

Taylor dispersion and porous medium drag effects magneto-biofluid flow and mass 

transfer in a non-Darcian porous medium channel, based on the “pistons at infinity 

approach”. Zueco and Bég [29] applied an electrothermal finite difference solver 

(PSPICE) to simulate the pulsatile flow of blood in a rigid channel with a dual non-

Newtonian formulation (Stokes polar model and the Eyring-Powell model), also 

considering wall lateral mass flux. Bég et al. [30] used both implicit finite difference and 

finite element methods to examine the hydromagnetic blood flow and drug dispersion in 

a permeable channel with the Nakamura-Swada bi-viscosity model. Kiran et al.[31] 

obtained asymptotic solutions for peristaltic digestive pumping flow and reactive 

hydrodynamic dispersion in a distensible conduit using the Eringen micropolar fluid 

model. Several researchers have also implemented the Casson viscoplastic model in 

hemodynamic Taylor dispersion analysis. Sharp [32] investigated Taylor dispersion in 

non-Newtonian fluid flow through circular conduits and channels, considering Casson, 

Bingham, and Ostwald-DeWaele power-law models. He showed that for a core radius of 

one-tenth the radius of the tube, the effective axial diffusivity in Casson fluids is reduced 

to approximately 78% of that in a Newtonian fluid at the same flow. Dash et al. [33] 

extended the work of Sharp [32] to consider unsteady concentration fields in Casson 

blood flow using the Gill-Sankarasubramanian generalized dispersion model [34]. Using 

a generalized dispersion model, Nagarani et al. [35] later studied the solute dispersion in 

channel and pipe Casson blood flow and discussed the impact of yield stress and 

irreversible wall reaction on various transport coefficients using asymptotic methods. 

Rana and Murthy [36] revisited the problem in [35] with the motivation of estimating the 

time-dependent transport coefficients. Recently, Roy et al. [37] and Debnath et al. [38, 
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39] highlighted the impact of various factors on the dispersion transport coefficient in 

Casson blood flows.  

The flow-through blood vessels are adversely affected when an obstruction arises. The 

deviation in blood flow from the natural healthy state, as noted earlier, manifests in many 

deadly diseases including atherosclerosis. Arterial stenosis is a consequence of 

atherosclerosis and is essentially a constriction in the blood vessel induced by undesirable 

deposits on the arterial walls [40]. The blood flow is disrupted by the accumulation of 

fats, lipids, cholesterol, and fibrous tissues at the inner walls of the blood vessel, leading 

to heart diseases and conditions including cardiac arrest, cardiac ischemia, brain ischemia, 

etc. Due to the immense clinical significance of stenotic hemodynamics, it has become a 

major focus in modern physiological fluid dynamics and has been increasingly studied 

with the acceleration in computer hardware and improvement in numerical methods. This 

research thrust aims ultimately to mitigate such ailments via a deeper understanding of 

the root causes of these diseases and the development of suitable bioengineering methods 

for their elimination. Although significant work has been done on Newtonian flows in 

stenosed arterial geometries, non-Newtonian hemo-rheological flows have only quite 

recently received attention. Zaman et al. [41] used finite difference methods to simulate 

micropolar blood flow in a tapered arterial segment featuring both stenosis (constriction) 

and aneurysm (bulge). Zaman et al. [42] deployed a penalty finite element technique to 

analyze time-dependent viscoelastic blood flow in a W-shaped stenotic artery. Ali et al. 

[43] further investigated the dispersion of nanoparticles in pharmacological transport in 

Carreau blood flow through a converging stenotic zone also considering heat transfer 

effects. Dubey et al [44] used the FREEFEM++ finite element code to compute the core 

(Casson viscoplastic fluid) and peripheral (Sisko viscoelastic model) pulsatile 

hemodynamics in a cylindrical conduit doped with nanoparticles and featuring stenosis 
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followed by an aneurysm.  Srivastava and Saxena [45] simulated the blood flow through 

an artery with mild stenosis in which the core region was modeled as a Casson fluid and 

the peripheral layer of plasma as a Newtonian fluid. They observed that hemodynamic 

impedance and wall shear stress (WSS) are both suppressed with a decrease in peripheral 

layer viscosity. Very recently Priyadharshini and Ponalagusamy [46] have very recently 

investigated the hydromagnetic pulsatile Casson blood flow conveying nanoparticles in a 

stenosed artery with a periodic body acceleration using a finite difference scheme. They 

computed the influence of stenotic height, yield stress, magnetic field, particle 

concentration, and mass parameters on wall shear stress, flow resistance, and velocity 

profiles. Increased nanoparticle doping, stronger magnetic field, and higher yield stress 

were all found to expand notably the plug core radius. These studies have been restricted 

however to regular stenotic geometries. A number of coronary arterial diseases exhibit 

irregular stenoses which require more sophisticated geometrical models for their accurate 

simulation. These may also occur in a multiple fashion over protracted lengths of the 

artery. Numerical analyses of such systems, therefore, furnishes a more realistic appraisal 

of clinical situations. Several studies have appeared in the last decade considering multi-

irregular stenotic blood flows. Mustapha et al. [47] used the Harlow-Welch marker and 

cell (MAC) and successive-over-relaxation (SOR) method to study the time-dependent 

Newtonian blood flow in an arterial segment in the presence of dual stenoses featuring 

surface irregularities. They observed that the hydrodynamic flow pattern exhibits a 

separation Reynolds number for the multi-irregular stenoses which is significantly lower 

than those for cosine-shaped stenoses and a long single irregular stenosis. They also found 

that cosine stenoses produce a higher pressure drop compared with irregular ones. Other 

interesting studies of irregular stenotic hemodynamics include Johnston and Kilpatrick 

[48] and Andersson et al. [49], again both for Newtonian fluids. Chakravarty et al. [50] 
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used a finite volume, immersed boundary and finite element methods to study Newtonian 

irregular stenotic hemodynamics, noting that improvements to the simulations were 

required via incorporation of heterogeneity of the vascular wall and non-Newtonian 

rheology of the streaming blood. Further analysis of Newtonian blood flow in irregular 

stenotic regions with body acceleration has been reported by Mustapha et al. [51].  

Mass transfer in stenosed arteries has also received some attention owing to applications 

in nutrient transport. Fowler et al. [52] conducted an early study of the relative 

contributions of venous admixture and pulmonary oxygen diffusing capacity to the 

alveolar-arterial oxygen tension gradient in multiple patients with stenosed arteries. More 

recently valencia and Villaneuva [53] used the ADINA finite element code to simulate 

unsteady non-Newtonian blood flow and mass transfer with full-body fluid-structure 

interaction in symmetric and non-symmetric stenotic arteries. They employed a 

hyperviscosity blood model and hyperelastic Mooney–Rivlin model for the compliant 

arterial wall and observed that wall distensibility significantly modifies the 

hemodynamics and furthermore that the stenosis length and depth impact substantially on 

recirculation length, and distribution of concentration of macromolecules, such as low-

density lipoproteins (LDL). Zaman et al. [54] have simulated the combined heat and mass 

transfer in tapered artery hemodynamics with an overlapping stenosis using the Cross 

non-Newtonian model. Further studies include Olgac et al. [55], Kaazempur-Mofrad et 

al. [56], and Yang and Vafai [57]. 

The above studies however have not simultaneously considered non-Newtonian flow and 

Taylor hydrodynamic dispersion with the first-order chemical reaction on the arterial 

boundary in multiple irregular stenosed arterial geometries. This is the novelty of the 

present work which aims to provide a more comprehensive multi-physico-chemical 

simulation of obstructed arterial flow. The Casson model is employed for blood rheology. 
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We develop multiple-scale solutions of the non-dimensional boundary value problem. 

asymptotic expressions are developed for velocity and shear stress. Extensive 

visualization of velocity, concentration, and other flow characteristics is included for 

various stenotic scenarios, Péclet numbers, and Damköhler numbers. The study is 

relevant to oxygen transport in realistic physiological systems [58] and plaque deposition 

in the intima layer of arteries (atherogenesis) [59, 60]. To the best of our knowledge, the 

present work constitutes a novel contribution to stenotic hemodynamic transport 

modeling.  

2. MATHEMATICAL MODEL 

2.1 Mass Transfer Model  

 

Fig. 1: Schematic diagram of axisymmetric blood flow in an irregular multi-stenosed vessel. 

Consider the solute dispersion in fully developed incompressible viscous non-Newtonian 

blood flow through a rigid artery in the presence of axially symmetrical multi-irregular 

stenoses. The concentration 𝐶 ′(𝑧 ′, 𝑟 ′, 𝑡′) of the species dissolved in the blood is governed 

by the following partial differential equation: 

2

2
( , ) (0, ),  

C C C D C
u r t D r T

t z z r r r

        
     + = +             

in  (1) 

here D  denotes constant molecular diffusivity of the species in blood, ( , )u r z     is blood 

velocity while   represents the geometry of the stenosed artery which is defined with 

the following expression: 
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       − − − +   +    

  

(3) 

Where l  and    length and critical height of the stenosis, respectively. A cylindrical 

coordinate system ( , , )r z   . is considered to describe the model (Fig. 1), where L  is 

the length of the artery. We presume that the solute molecules do not react with each 

other; however, they undergo a first-order chemical reaction on the arterial boundary at 

a constant rate   defined by:  

 on (0, ),
C

D C T
r


   − =   

  
(4) 

where  2( , ) : 0 , ( )z r z L r R z        =    =¡ . Also, due to symmetry: 

0  at 0.
C

r
r


= =

  
(5) 

The initial and upstream and downstream condition is taken as: 

 

2

0

( )
( , ,0) ,

Q z
C z r

R






   =


 

(6) 

( , , ) 0.C r t   =  (7) 

where Q  is the mass of the species released in the blood flow and ( )   is the direct delta 

function. 

The blood considered in this study is assumed to be non-Newtonian Casson fluid which 

is known to approximate quite accurately hemodynamic characteristics at low shear rates. 

The appropriate momentum equation for steady one-dimensional shear flow is: 
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1
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z r r


 

  − = 
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in
 

(8) 

 The axial periodic pressure gradient /p z    is assumed to be constant.    is shear stress 

of the Casson fluid which obeys the following constitutive equation [37]. 

( )
21

 if 

0  if 

y y

y

u

r

   


 


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     

(9) 

The quantities,   and 
y   in Eq. (9), are viscosity and the yield stress of the blood, 

respectively. The boundary conditions for the regime may be prescribed as: 

( , ) 0,  on 

( , ) ,  at 0.

u r z

r z r

   =  


     =   
(10) 

The first condition in Eq. (10) describes the classical no-slip boundary condition whereas 

the second condition depicts the finite shear stress at the center of the arterial geometry. 

Let us now introduce the following set of normalized variables, where quantities with a  

prime indicate that they are dimensional:  
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(11) 

The subscript R used above denotes reference variables. By virtue of Eq. (11), the mass 

transport (species diffusion) problem defined by Eqs. (1 -5) is readily transformed to: 

2
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 



     
+ = +   

     
 
− =  
 


= =

  

(12) 
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(13) 
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Choosing the time scale /R RT L u=  we arrive at the following dispersion problem: 

2
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1
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
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
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  The derivation of axial velocity ( , )u r z  is shown in the Appendix.
0 /Ru DR=Pe  and 

0 /RT R D=Da  are the  Péclet number and  Damköhler numbers respectively. The boundary 

condition (17)  at 1 ( )r z= −  can be approximated at 1r =  using a Taylor series expansion 

as follows: 
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(19) 

     

In order to prepare the appropriate foundation for a perturbation analysis, it is assumed 

that:  

The length scale of the axial spreading is much greater than that of radius of the tube 

artery, i.e., the ratio 
0 / 1R L   =  . 

 The stenosis of the artery is mild thus 
0/ 1R     is very small. 

Péclet number assumed to be of order unity i.e., ( )0~ / ~ (1).Ru R D
Pe O O   

Two time scales are considered: convection time and diffusion time along the artery. 

Therefore, it follows that: 
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Eqns. (18) and (19) imply: 

0 1

1
: 1: .T T


=

 
(22) 

Based on these time-scales, we may introduce the following relation:  

0 1,  .t t t t= =  (23) 

Here 0t  and 2t  indicate dimensionless fast and slow time variables. 

0 1

   .
t t t


  

 → +
    

(24) 

Surface absorption is assumed to be comparable with advection speed and therefore 

Damköhler number is of the order of unity i.e; ( )=Da O . 

2.2 Asymptotic analysis of the transport coefficient 

 Using the asymptotic expression for solute concentration, C, suggested by Fifa and 

Nicholes [37], in various time scales as: 

2 3

(0) 0 1 (1) 0 1 (2) 0 1( , , ) ( , , , ) ( , , , ) ( , , , ) ( ),C t r z C t t r z C t t r z C t t r z  = + + +O
 

(25) 

Now substituting the above expansion in Eqn. (16) we have: 

(0) (0) (1) (0) (1) (0)2 2

0 0 1

0 1 0

2

(0) (0) (1) (2)2 2 3

2

( ) ( ) ( )

1 1 1
( ) in (0, )

C C C C C C
u r u r u r

t t t z z z

C C C C
r r r T

z r r r r r r r r r

   

   

        
+ + + +   

       

          
= + + + +      

           

Pe Pe Pe Pe

O

 

(26) 

 Now, by equating the like powers of   from both side we have: 

(0)1
1: 0

C
r

r r r

 
= 

    

(27) 

(0) (0) (1)

0

0

1
: ( )

C C C
u r r

t z r r r


   
+ =  

    
Pe Pe

 

(28) 

2

(0) (1) (1) (0) (0) (2)2

0 1 2

1 0

1
: ( ) ( )

C C C C C C
u r u r r

t t z z z r r r


        
+ + + = +   

        
Pe

 

(29) 

The boundary conditions of (0)C , (1)C  and (2)C  are determined using Eqns. (18), (19) and 

assumptions (e), which are displayed in the equations below: 
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(0)

(0)

0  at 0

1:

0  at 1

C
r

r

C
r

r


= = 


 = =

   

(30) 

(1)

2

(1) (0)

(0)2

0  at 0

:

 at 1

C
r

r

C C
C r

r r






= =

 

 

− = − =
    

(31) 

(2)

2

2 32
(2) (1) (0)

(1)2 3

0  at 0

:

 at 1
2

C
r

r

C C C
C r

r r r







= =

 

  

− + = − =
     

(32) 

2.3.1 Leading order 

For leading order Eqn. (27) and (30) assume the form: 

(0)1
0

C
r

r r r

 
= 

    

(33a) 

(0)
0     0 at

C
r

r


= =

  
(33b) 

(0)
1   0  at

C
r

r


= =

  
(33c) 

Eqns. (33a)-(33c) ensure that the leading order concentration (0)C  is independent of r  

i.e., 

(0) (0) 0 1( , , )C C t t z=
 

(34) 

2.3.2 First order 

For the first-order perturbation problem, we have, recalling Eqs. (28) and (31): 

(0) (0) (1)

0

0

1C C C
u r

t z r r r

   
+ =  

    
Pe Pe

 

(35a) 

 

(1)
0     0 at

C
r

r


= =

  
(35b) 

 

(1)

(0)  at 1 
C

C r
r


= − =

  
(35c) 



16 

 

By taking the section average of Eq. (35a) with the aid of Eqs. (35b) and (35c) yields: 

(0) (0)4

(0)

0

1 8 2 1
2 0

2 7 3 42
p p p

C C
r r r C

t z

  
+ − + − +  =   

Pe Pe

 

(36) 

In view of Eq. (36), then Eq. (35a) becomes: 

(1) (0)4

0 (0)

1 1 8 2 1
2

2 7 3 42
p p p

C C
r u r r r C

r r r z

    
= − + − + −        

Pe

 

(37) 

Next, using the boundary conditions (35b) and (35c) the solution of Eq. (37) emerges as: 

(0) 2

(1) (0) 0 1( ) ( , , ).
2

C
C r C r f t t z

z

 
= − +


PeA

 
(38) 

Where: 

4 4 4

2

4
3 7/2

2 4

2

8115 1
ln

7056 84 8 168 21 3

322
( ) ,

9 16 147

81
,

8 3 21 12 168

pp p p p

p

pp

p

pp p p

p

rr r r rr
r

r

rr r
r r r r r

rr r r
r r r

   
  − − + + − +        



= − − + 

 
 + − − + 
 
 

A

 

(39) 

Here 0 1( , , )f t t z  is an arbitrary function, and to determine this function we assume 

1

(1)
0

2 0rC dr = , without loss of generality. This gives: 

4 6 4

(0)

0 1 (0)

6013 71
( , , ) ln( )

1764 1320 24 539 90 84 4

pp p p p

p

rr r r r C
f t t z r C

z

   
 = + − + − − +
  
 

Pe

 

(40) 

2.3.2 Second order 

Now we recall Eqs. (29) and (32) for the second-order perturbation problem:  

( )

( ) ( )

( )( )

(2) (0) (0)2

1 0

(0)2

0 1

2

(0)2

0 2 2

1
1 2

4

1 2 2
4

1
,

C C C
r r

r r r t t

C
r u u X

z

C
u F X

z

    
= + − + 

    

 
− + −  +   

 
+ − + −   

Pe Pe

Pe A

Pe A
Pe  

(41a) 

 

(2)
0  at 0,  

C
r

r


= =

  
(41b) 
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6 4

(2) (0)

2

(0)

4 1
( )

1320 336 30 77 48

              ( )  at 1.
4

pp p p
rC r r r C

z F
r z

z C r





   
  = − + − + − +

   
  

 
− +  = 
 

Pe

 

(41c) 

Here the following definitions apply:  

41 8 2 1
,

2 7 3 42
p p pF r r r= − + −

 
(42) 

( )44 6 60 ln13 71
.

1764 1320 24 539 90 84

p p pp p p
r r rr r r

X = + − + − −
 

(43) 

Taking the section average of Eq. (41a) using Eqs.(41b) and (41c) we arrive at: 

4 6 4

(0)

1

3/22
(0)
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5888 558368 61441
1 1
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   
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

+

   
− − + + +  =     

 (44) 

Now multiplying Eqn. (44) by   and adding to Eqn. (36) yields: 

2

(0) (0) (0)

1 2 0 (0)2
2 0,

C C C
K K K C

t z z


  
+ − + =

  
Pe Pe  (45) 

where: 

2

0 ( ) ,
4

 K z





=  + +   (46) 

4

4

1

6 4
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,
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pp p

p p p

pp p p

rr r
K r r r z

rr r r


  
 = − + − + − − + −      

 
 + − − + +
 
 

Da

 (47) 
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( )

3/2 2 42

2

89/2 5 6 13/2 7 8 10

5888 558368 6144 128 8
1 1

192 1155 56595 715 45 21

8 ln3840 32 8 512 64 943 8
        .

3773 45 55 1155 165 147 22295 1155

p p p p p

p pp p p p p p p

r r r r r
K

r rr r r r r r r


= + − + − + −




+ − + − + − − +



Pe

 (48) 

The above simplified mathematical model for zeroth-order concentration is analogous 

with the earlier Shanksubramanian-Gill dispersion model [34]. Thus the coefficient of the 

above equation can be characterized by the reaction 
0( )K , convection 1( )K  , and 

dispersion 
2( )K  coefficients (regardless of the signs). The transport coefficients 0K  and 

1K  are functions of ( )z ; however, the dispersion coefficient is not dependent on ( )z , 

and a higher-order correction is required to illustrate the effect of arterial stenosis. The 

dispersion coefficient is found to match exactly with Dash et al. [33]. It is worth 

mentioning that the perturbation parameter   corresponds to a pair of dimensionless 

numbers viz., aspect ratio, and Damkohler number; the former is associated with the 

geometry of the problem and the latter corresponds to the reaction at the boundary. In 

view of this,   has been replaced by Da  whereas ( )z  remains unchanged in the 

transport Eqns. (47) and (48). In the absence of arterial stenosis (i.e. ( ) 0z = ) and if the 

blood is assumed to be Newtonian ( 0pr = ) then the transport coefficients are found to 

be, respectively: 

2

0
( ) 0,
lim ,

4
 

z
K

 →


=  +

Da

 
(49) 

1
( ) 0,

0

1
lim ,

2 1
 

2
p

z
r

K
 →

→


= +

Da

 

(50) 

2

2
0 2

 lim 1
19pr

K
→

= +
Pe

 
(51) 

Eq. (51) is consistent with that reported in Aris [22].  Eqn. (45) is a linear homogeneous 

partial differential equation, however, the coefficients 0K  and 
1K  are both functions of 

z  due to the arterial stenosis. To avoid this complication and noting that a mild stenosis, 

is present, one can neglect therefore the terms involving ( )z  from the transport 

coefficient and denote them by approx

0K  and approx

1K . To extract the solution of Eq. (45), 

the following transformations are implemented: 

approx
(0) 0( , ) ( , )exp( 2 / )C z t x t K t=  − Pe

 (51) 
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2
0 /

t
t

R D






=

 
(52) 

approx
1

0

z
K t

R
 




= − Pe

 
(53) 

Furthermore, invoking the conditions (A6), (A7), the solution is derived as: 

2
approx

(0) 0

22

1
( , ) exp 2

44
C t K t

K tK t






 



 
= − − 

 
Da

 

(54) 

It follows that: 

(0)2 2

(0)( , , ) 1 (1 2 ) ( ) ( )
4

C
C r t r C X




 

= + − + + +   

Da
Pe A DaO

 
(56) 

The mean concentration mC  can be determined by taking the cross-sectional average of 

Eq.(56), i.e., 
1

(0)
0

( , ) 2 ( , )mC t rCdr C t  = = . 

 

3. ASYMPTOTIC COMPUTATION VISUALIZATION 

Extensive visualization of asymptotic results has been presented in Figs. 2-8. All 

biophysical data has been carefully checked and conforms with realistic physiological 

flow scenarios. Also axial velocity ( , )u r z  and shear stress  ( , )r z  can be plotted based 

on expressions (A5) and (A6) given in the Appendix A. The transport coefficients can 

also be evaluated for different stenotic scenarios and yield stress (rheological parameter) 

values.  

  

Fig. 2 Radial variation of blood velocity across the blood artery for fixed 1, 4l d= =  and 0.4 = ; (a) different 

axial location but fixed yield stress 0.5y =  and aspect ratio ( 0.1 = ) ,(b) different yield stress ( y ) and aspect 

ratio (  ) but fixed axial location ( 4.8)z = . 
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Figures 2a,b visualize the radial velocity ( )u r  distributions across the arterial cross-

section (a) at different axial location but fixed yield stress, 0.5y =  and aspect ratio (

0.1 = ) and (b) for different yield stress ( y ) and aspect ratio ( ) but at fixed axial 

location ( 4.8)z = . The other geometrical default parameters are 1, 4l d= =  and 0.4 =

. Figure 2a clearly captures the plug flow velocity in the core region characterizing 

viscoplastic behavior (yield stress 0.5y = ). With greater axial coordinate, z , the plug 

plateau is clearly reduced indicating that the core plug flow zone contracts with progress 

along the artery i.e. the effect of yield stress diminishes.  Figure 2b shows that in the very 

weakly non-Newtonian case ( 0.05)y = , essentially the classical parabolic distribution 

for radial velocity is computed. However, with greater yield stress ( 0.2,0.5)y = , the 

velocity profile morphs into the plug flow associated with stronger viscoplastic effect in 

the blood. These plots correspond to an intermediate axial coordinate value ( 4.8)z = . 

The rheological nature of the radial blood flow distribution is clearly reproduced 

accurately in both figures and essentially higher yield stress effect induced a deceleration 

in the flow associated with greater viscous effects. This observation concurs with many 

other studies on yield stress hemodynamics, notably Sriyab [61] and also Venkatesan et 

al. [62], who both also considered the Casson model in mild stenotic flows. 

 

Fig. 3: Shear stress ( )  at the wall of blood artery at different axial location for different of aspect ratio (  ) with 

1, 4l d= =  and 0.4 = . 
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Figure 3 depicts the wall shear stress (WSS), w , evolution distributions with axial 

coordinate i.e. along the artery, for two different values of the aspect ratio ( ) . 

Significantly higher wall shear stress is computed with greater aspect ratio owing to the 

greater resistance to hemodynamic transport, in particular at intermediate axial coordinate 

locations.  

  

Fig. 4: Reaction coefficient Vs wall absorption for fixed 1, 4l d= =  and 0.4 = ; (a) different Damköhler 

numbers but fixed axial location ( 5.5z = ), (b) different axial location but fixed  Damköhler number ( 0.01=Da ). 

Figures 4(a,b) displays the reaction coefficient 
0( )K  versus wall absorption ( ) , for 

fixed 1, 4l d= =  and 0.4 = ; for (a) different Damköhler numbers but fixed axial 

location ( 5.5)z =  and (b) different axial location but fixed  Damköhler numbers 

( 0.01)Da = . Both 0K  and   ,  are related in Eq. (46) i.e. 
2

0 ( )
4

K z


=  + + 
Da

. 

Damköhler number ( )Da  permits quantification of whether diffusion rates or reaction 

rates are more ‘important’ for defining a steady-state chemical distribution over the length 

and time scales of interest. It generally expresses the ratio of diffusion time to reaction 

time or alternatively the ratio of reaction rate to diffusion rate. Popular also in chemical 

engineering [63], Da  is therefore intimately connected to characteristic diffusion and 

reaction times and this is why scaling is required in mathematical models. Two 

extremities are pertinent to comment on. The first, 1Da  implies that diffusion occurs 

much faster than the reaction and therefore diffusion attains an ‘equilibrium’ well prior 

to the reaction achieving equilibrium. The second, 1Da  indicates that the reaction 
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rate significantly exceeds the diffusion rate distribution and the regime is termed as being 

"diffusion-limited" (since diffusion is slowest, the diffusion characteristics dominate and 

the reaction is taken as assuming equilibrium instantaneously). For more realistic 

hemodynamic reactive flows, here Da  values are varied between 0.001 and 0.1 [64]. Fig 

4a shows that with increasing wall absorption (reaction) there is a monotonic growth in 

reaction coefficient 
0( )K . A significantly higher reaction coefficient is produced with 

increasing Damköhler number. The values considered for Da  are all lower than unity as 

it is one of perturbation parameter in the present study. For 0.001=Da  (i.e. 1 ), the 

reaction coefficient remains largely invariant with a change in absorption parameter. 

However as Da  is increased to 0.01 and thereafter to 0.1, a pronounced enhancement is 

induced in the reaction coefficient. Cleary for 0.1=Da  the reaction rate is one-tenth of 

the diffusion rate and this is the strongest reaction rate scenario investigated. Figure 4b 

shows that with an increasing axial coordinate, at relatively low Damköhler number (

0.01=Da  i.e. reaction rate is 100 th  of the diffusion rate), a very weak increase in reaction 

coefficient 
0( )K  is generated with a large increase in the absorption parameter,  .  

Figures. 5a-c show the evolution in convection coefficient 1( )K  with the absorption 

parameter,   for (a) different Damköhler numbers with fixed yield stress ( 0.5y = ) and 

axial location ( 5.5z = ), (b) different yield stress  ( )y  with fixed Damköhler numbers 

( 0.01)=Da  and axial location ( 5.5z = ) and (c) different axial location with fixed yield 

stress( 0.5y = ) and Damköhler numbers ( 0.01)=Da . Distinct from the reaction 

coefficient variation, here the convection coefficient is found to exhibit a linear growth 

relationship with the absorption parameter,  .  Increasing Damköhler number (Fig. 5a) 

clearly stimulates a very steep ascent in convection coefficient, which is absent at much 

lower Damköhler numbers ( 0.001)=Da  is essentially invariant and 0.01=Da  produces 



23 

 

only a very gentle growth in convection coefficient with Damköhler number. At zero 

absorption ( 0) = , the cases 0.001=Da  and 0.01=Da  have almost identical non-zero 

magnitudes of convection coefficient 1( )K , although the values diverge substantially 

with increasing absorption parameter. 

    

 

Fig. 5: Convection coefficient Vs wall absorption for fixed 1, 4l d= =  and 0.4 = ; (a) different Damköhler numbers 

but fixed yield stress( 0.5y = ) and axial location ( 5.5z = ), (b) different yield stress  (
y ) but fixed Damköhler number 

( 0.01=Da ) and axial location ( 5.5z = ), (c) different axial location but fixed yield stress( 0.5y = ) and Damköhler 

number ( 0.01=Da ). 

Figure 5b shows that with progressively increasing yield stress i.e. stronger viscoplastic 

behavior of blood, there is a marked depletion in the convection coefficient value at all 

values of absorption (wall reaction) parameter. Weakly viscoplastic fluid ( 0.05)y =  

achieves maximum values of convection coefficient and strongly viscoplastic fluid 

( 0.5)y =  corresponds to minimal values. At zero absorption rate, however, for the 

different yield stress cases, the convection coefficient has distinct non-zero values. Fig. 
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5c indicates that there is a relatively weak decrease in convection coefficient with 

increasing axial coordinate value, irrespective of the absorption (wall reaction) parameter. 

Figures 6 illustrates the evolution in relative dispersion coefficient Newtonian

2 2( / )K K  with 

plug radius ( )pr  for a variety of  Péclet numbers ( )Pe . In rheological flows, P\'eclet 

number quantifies the ratio of flow effects to diffusion effects and can describe whether 

particles are driven by flow ( 1)Pe  or by their own diffusion ( 1)Pe . Pe  also relates 

convective and diffusive transport phenomena i.e. measures convective (or advective) 

transport rate to diffusive transport rate.  

 

Fig. 6: Relative dispersion coefficient Vs plug radius for variety of Péclet numbers. 

At all values of Pe , there is a strong decay in relative dispersion coefficient 

Newtonian

2 2( / )K K  with plug radius ( )pr  implying that as the plug zone widens the relative 

dispersion is suppressed. Although sharp descents are computed in all cases at low plug 

radius, the curves tend to plateau as plug radius increases exhibiting a tendency to 

invariance at a very high plug radius. At higher, Péclet  number ( 100=Pe , for which the 

convective transport rate is 100 times the diffusion rate), relative dispersion coefficient 

Newtonian

2 2( / )K K  is clearly minimized. The contrary is observed at the lowest P\'eclet 
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number ( 10=Pe , for which convective transport rate is 10 times the diffusion rate) and 

the magnitudes here are significantly higher at all values of plug radius. The results 

concur with findings in other studies including Huang and Tarbell [65].  

  

Fig. 7: Mean concentration distribution  (a) at different times for fixed wall reaction rate ( 1 = ), yield stress (

0.5y = ), Damköhler number ( 0.01=Da ); and Péclet number ( 10=Pe ) (b) variety yield stress at times 0.5t =  

for fixed wall reaction rate ( 1 = ),Damköhler number ( 0.01=Da ),  and Péclet number ( 10=Pe ). 

Figures 7a-b depict the mean concentration distribution i.e. 
mC Pe  (a) at different times 

for fixed wall reaction rate ( 1 = ), yield stress ( 0.5y = ), Damköhler number 

( 0.01)=Da  and Péclet number ( 10)=Pe  and (b) various yield stress at times 0.5t =  

for fixed wall reaction rate ( 1) = , Damköhler number ( 0.01)=Da   and Péclet number 

( 10)=Pe . The classical bell-shaped Taylor distribution is clearly captured in both 

figures. With progression in time ( )t , the peak magnitudes in mean concentration 

distribution i.e. CmPe  are notably suppressed (Fig. 7a) for low values of / Pe   (

0.2 / 0.2−   +Pe  approximately), but nevertheless remain symmetric about vertical 

axis at the origin. However, at larger / Pe  values this trend is reversed and a marked 

elevation in mean concentration distribution i.e. 
mC Pe  is observed. In all profiles 

converge in an asymptotically smooth fashion to vanishing values of 
mC Pe  at higher 

/ Pe  values. Figure 7b shows that Newtonian fluids ( 0)y =  achieve the lowest values 

of mean concentration distribution i.e. 
mC Pe , and with greater yield stress 
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( 0.05,0.2,0.5)y =  progressively higher values are computed. However, this pattern is 

confined to smaller values of / Pe  values ( 0.1 / 0.1−   +Pe  approximately). At 

larger values of / Pe  Newtonian fluid is found to generate slightly higher magnitudes 

of mean concentration distribution i.e. 
mC Pe , whereas increasingly viscoplastic 

behavior of the Casson blood i.e. greater yield stress ( 0.05,0.2,0.5)y =  manifests in a 

lower mean concentration distribution i.e. 
mC Pe .  

  

 

Fig. 8: Mean concentration at time 0.5t =  for (a) variety of Péclet numbers but fixed wall reaction rate ( 1 = ), 

yield stress ( 0.5y = ) and Damköhler number ( 0.01=Da ); (b) variety of wall Reaction for fixed  Damköhler 

number ( 0.01=Da ), yield stress ( 0.5y = ) and Péclet number ( 10=Pe ); (c) variety of Damköhler number but 

fixed wall reaction rate ( 1 = ), yield stress ( 0.5y = ) and Péclet number ( 10=Pe ). 

Finally, Figs 8a-c illustrate the mean concentration profiles versus at time 0.5t =  for (a) 

various Péclet numbers under prescribed wall reaction rate ( 1 = ), yield stress ( 0.5y =

) and Damköhler number ( 0.01)=Da ; (b) various wall reaction (absorption) parameters 

for fixed  Damköhler number ( 0.01)Da = , yield stress ( 0.5y = ) and Péclet number 

( 10)=Pe ; (c) various Damköhler numbers with fixed wall reaction rate ( 1 = ), yield 
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stress ( 0.5y = ) and Péclet numbers ( 10)=Pe . Significant suppression in Cm 

magnitudes is induced with increasing Péclet numbers at low values of  ; however, the 

opposite effect is caused at larger values of   (Fig. 8a). The maximum mean 

concentration ( )mC  is computed in Fig. 8b for zero wall reaction rate ( )   and a strong 

depletion is observed in mC ; this trend is sustained at all values of  . Fig. 8c reveals that 

a very large enhancement in  Damköhler number (a hundred fold from 0.001=Da  to 0.1) 

produces a slight depression in mean concentration ( )mC  at very small values of  ; 

however at higher values the discrepancy there is a trivial difference. 

4.CONCLUSIONS 

A theoretical study of the transport of species in streaming blood flow through a rigid 

artery in the presence of multi-irregular stenosis has been conducted. The carrier fluid 

i.e., blood is assumed to be non-Newtonian fluid (Casson’s viscoplastic model is used) 

and the arterial wall is considered to be rigid. A robust model is developed for non-

Newtonian flow and hydrodynamic dispersion with the first-order chemical reaction on 

the arterial boundary in multiple irregular stenosed arterial geometries. Multiple scale 

solutions of the non-dimensional boundary value problem. asymptotic expressions are 

developed for velocity and shear stress. Extensive visualization of velocity, 

concentration, and other flow characteristics is included for various stenotic scenarios, 

Péclet  number, and Damköhler number. The asymptotic solutions have shown that:  

(I) At all values of Péclet number ( )Pe , there is a marked decrease in relative 

dispersion coefficient Newtonian

2 2( / )K K  with plug radius ( )pr . 
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(II) With progression in time ( )t , the peak magnitudes in mean concentration 

distribution i.e. 
mC Pe , are strongly reduced for low values of / Pe  whereas 

the opposite behavior is computed at larger / Pe  values.. 

(III) Newtonian fluids ( 0)y =  achieve the lowest values of scaled mean concentration 

distribution i.e. 
mC Pe , and with greater yield stress ( 0.05,0.2,0.5)y =  

progressively higher values in mean concentration are found, although this is 

restricted to smaller values of / Pe ; at larger values of / Pe , Newtonian fluid 

achieves weakly greater mean concentration whereas increasingly viscoplastic 

behavior of the Casson blood i.e. greater yield stress produces a drop in mean 

concentration distribution i.e. 
mC Pe .  

(IV) There is a substantial reduction in mean concentration mC  magnitudes with 

increasing Péclet  number at low values of  ; however, the converse response is 

produced at larger values of  . (Fig. 8a). 

(V) A comparatively small reduction in convection coefficient is induced with 

increasing axial coordinate value, irrespective of the absorption (wall reaction) 

parameter. 

(VI) Increasing yield stress i.e. viscoplasticity of the blood results in a noticeable 

suppression in the convection coefficient value at all values of absorption (wall 

reaction) parameter. 

(VII) Increasing wall absorption (reaction) produces a monotonic growth in zeroth-

order reaction coefficient distribution 
0( )K  whereas a significantly greater 

reaction coefficient is associated with increasing Damköhler number.  
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(VIII) Significantly higher wall shear stress is produced with a larger aspect ratio of the 

stenotic regime. 

(IX) In the very weakly non-Newtonian case ( 0.05)y = , the classical parabolic 

distribution for radial velocity is retrieved; however, with greater yield stress 

( 0.2,0.5)y = , the velocity profile topology is modified into the plug flow 

associated with stronger viscoplastic effects in the blood. 

The current study has revealed some interesting phenomena in pulsatile biorheological 

flow with mass transfer and reactive dispersion. Multi-scale asymptotics has proved to be 

a very robust tool in analyzing such flows of relevance to hemodynamics e.g. plaque 

deposition in the intima layer of arteries (atherogenesis). Future studies may consider 

alternative rheological models e.g. micropolar [31, 41] and efforts in this direction are 

currently under consideration. 
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APPENDIX 

After using scaling defined in the present study, the non-dimensional form of the 

momentum Eq. (8) is: 
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The non-dimensional form of the constitutive  Eq. (9)  becomes 
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The non-dimensional boundary conditions (10) emerge as : 

( , ) 0,  on ,u r z =   (A3) 

,  at 0.r   =  (A4) 

  

Here the reference velocity ( )Ru  is taken as 
2

0( / 4 ) /Ru R p z  = −   . Solving Eqs. (A1) 

and (A2) using boundary conditions (A3) and (A4) we get: 
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Here, / 2p yr =  is the plug radius up to which no velocity shear effect is observed. 

The radius of the blood artery is 1 ( )R z= − , by using this in Eq. (A6) and collecting 

like powers of   we get: 

2

0 1( , ) ( , ) ( , ) ( ),u r z u r z u r z = + +O  (A7) 
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