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ABSTRACT

Optimization algorithms are necessary to solve many problems such as parameter tuning. Particle 
Swarm Optimization (PSO) is one of these optimization algorithms. The aim of PSO is to search for the 
optimal solution in the search space. This paper highlights the basic background needed to understand 
and implement the PSO algorithm. This paper starts with basic definitions of the PSO algorithm and 
how the particles are moved in the search space to find the optimal or near optimal solution. Moreover, a 
numerical example is illustrated to show how the particles are moved in a convex optimization problem. 
Another numerical example is illustrated to show how the PSO trapped in a local minima problem. Two 
experiments are conducted to show how the PSO searches for the optimal parameters in one-dimensional 
and two-dimensional spaces to solve machine learning problems.

INTRODUCTION

Swarm optimization techniques are recent techniques used to solve many optimization problems. They 
are employed in image processing (Mostafa et al., 2015; Ali et al., 2016), machine learning (Yamany et 
al., 2015a; Tharwat et al.,2015c; Ibrahim & Tharwat, 2014; Tharwat et al., 2015b, Tharwat et al., 2016a, 
Tharwat et al., 2016e), power electronics (Yoshida et al., 2000), and numerical problems (Vesterstrom & 
Thomsen, 2004), and mechanical problems (dos Santos Coelho, 2010). The optimization can be defined 
as a mechanism through which the maximum or minimum value of a given function or process can be 
found. The optimization is usually used in different fields such as economics, physics, and engineering 
where the main aim is to achieve maximum production, efficiency, or some other measure. In addition, 
there are many scientific, social, and commercial problems which have various parameters which if they 
have been adjusted can produce a more desirable outcome. Generally, the optimization could be used 
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to achieve maximization or minimization where the maximization of a given function f is equivalent 
to the minimization of this function opposite, -f (Van Den Bergh, 2006; Gaber et al., 2016, Tharwat et 
al., 2016e, f).

In the past years, a wide range of optimization techniques was proposed to solve such optimization 
problems. These techniques generally make use of two main kinds of learning techniques in the litera-
ture: stochastic or random versus deterministic. First, in deterministic techniques, the algorithm results 
in the same accuracy if the algorithm uses the same initial values. On the contrary, stochastic methods 
employ stochastic optimization algorithms and it achieved different results due to randomness. There 
are two main problems with the stochastic algorithms due to randomness. First, the goodness of the 
obtained solution depends mainly on the initial random solution. Hence, different initialization may lead 
to different solutions. Second, there exist greater probabilities of local optima problem. This problem is 
common in almost all optimization algorithms (Ho et al., 2007; Tharwat A., 2016b, Tharwat A., 2016c).

The optimization algorithms have two main phases: exploration and exploitation. In the exploration 
phase, the goal is to explore the search space to search for the optimal or near optimal solutions. Hence, 
exploration may lead to new search regions that may contain better solutions. In the exploitation phase, 
the aim is to search locally around the current good solution(s) this is so-called exploitation. The opti-
mization algorithms should make a balance between a random selection and greedy selection to bias the 
search towards better solutions, i.e. exploitation, while exploring the search space to find different solu-
tions, i.e. exploration (Yamany et al., 2015a, 2015b; Tharwat et al., 2015c, 2015a, Tharwat et al., 2016d).

One of the widely used swarm-based optimization techniques is the Particle Swarm Optimization 
(PSO). PSO has a small number of parameters which control the movements of the particles inside the 
search space. PSO has been used in many applications such as machine learning (Subasi, 2013), image 
processing (Maitra & Chatterjee, 2008), and power electronics (Miyatake et al., 2011). In general, PSO 
algorithm lends itself strongly to exploitation phase which may lead to local optima problem. Hence, in 
some cases, PSO fails to find the global optimal solution.

This chapter aims to give a detailed tutorial about the PSO algorithm and it is divided into five sec-
tions. First section summarizes the related work of different applications that used PSO algorithm. A 
clear definition of the PSO algorithm and its background are highlighted in the second section while 
the third section illustrates numerical examples to show how the particles are moved and how the PSO 
algorithm trapped into a local optima problem. In fourth section, two experiments are conducted to 
show how the PSO algorithm solved machine learning in one-dimensional and two-dimensional spaces. 
Finally, concluding remarks will be given in the fifth Section.

RELATED WORK

PSO is widely used in image processing. For example, Maitra et al. used PSO algorithm to find the 
optimal thresholding value in image segmentation (Maitra & Chatterjee, 2008). Moreover, Akhilesh et 
al. used a new variant of the PSO algorithm for image segmentation (Chander et al., 2011). This new 
variant adapting social and momentum components of the velocity equation for particle move updates 
and their proposed algorithm outperformed Genetic Algorithm (GA) and the standard PSO algorithm. 
Forouzanfar et al. used PSO to search for the optimal parameters of Fuzzy c-means algorithm brain MR 
image segmentation (Forouzanfar et al., 2010). They used PSO to find the optimum value of degree of 
attraction and they found that PSO achieved results better and converged faster than GA.
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In machine learning, PSO algorithm is widely used to search for the optimal parameters of learn-
ing algorithms to enhance the classification performance. For example, PSO was used to search for 
the Support Vector Machine (SVM) parameters (Subasi, 2013). Moreover, PSO was used to adjust the 
weights of Back Propagation Neural Networks (BPNN) and it achieved good results compared with BP 
algorithm (Bashir & El-Hawary, 2009). In addition, PSO was used for feature selection (Lin et al., 2008). 
In clustering, PSO was used to search for the centroids of a user specified number of clusters and the 
PSO achieved good results compared with K-means clustering (Van der Merwe & Engelbrecht, 2003).

PSO algorithm is also used to solve mathematical problems. Vesterstrom et al. compared PSO with 
Differential Evolution (DE) algorithm using widely used benchmark functions (Vesterstrom & Thomsen, 
2004). They found that DE achieved results better than PSO. In another research, Zhao Xinchao proposed 
perturbed particle swarm algorithm (pPSA) algorithm (Xinchao, 2010). He used the new algorithm to 
search for the optimal solutions for 12 functions and he found that the proposed algorithm achieved 
results better than PSO algorithm. Moreover, Ho et al. used a modified PSO to solve multimodal func-
tions of inverse problems and they achieved good results compared with Tabu search (Ho et al., 2007).

In power applications, PSO algorithm was used for different purposes. Miyatake et al. used PSO 
algorithm to find the maximum power point tracking of multiple photovoltaic and they found that PSO 
took two seconds to find the global maximum power point (Miyatake et al., 2011). Sidhartha Pandan 
and Narayana Prasad Padhy used PSO algorithm was used to locate the optimal location of the static 
synchronous compensator (STATCOM) and its coordinated design with power system stabilizers (PSSs)
(Panda & Padhy, 2008). They found that the PSO algorithm improved the stability of the system. 
Moreover, M. A. Abido used PSO algorithm to find the optimal design of multi-machine power system 
stabilizers (PSSs) (Abido, 2002).

PARTICLE SWARM OPTIMIZATION (PSO)

PSO algorithm was discovered by Reynolds and Heppner, and the algorithm was simulated by Kennedy 
and Eberhart (Heppner & Grenander, 1990; Reynolds, 1987; Eberhart & Kennedy, 1995). The PSO is 
an easy algorithm; hence, it has been used in a wide range of applications (Kennedy, 2010; Kulkarni 
&Venayagamoorthy, 2011; Akay, 2013; Ishaque& Salam, 2013; Elbedwehyet al., 2012). The main goal 
of the PSO algorithm is to search in the search space for the positions/locations that are close to the 
global minimum or maximum solution(s). The dimension of the search space is determined by the 
number of parameters that are needed to optimize. For example, if the search space has n dimensions, 
so the numbers of variables in the objective function is alson . The PSO algorithm has many parameters. 
The current position of each particle is used to calculate the fitness value at that location. Each particle 
has three parameters, namely, position (x Ri n∈ ), velocity, i.e. rate of position change, (vi ) and the 
previous best positions ( pi ). In addition, the position of the particle that has the best fitness value is 
called global best position and it is denoted by G (Yang, 2014).

The position of each particle is denoted by xi and it is represented by a set of coordinates that repre-
sents a point in the search space. During the searching process, the current positions of all particles are 
evaluated using the fitness function. The fitness value of each particle is then compared with the current 
position and the best position is stored in the previous best positions ( pi ). In other words, the previous 
best positions store the positions of the particles that have better values.
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x t x t v ti i( ) ( ) ( )+ = + +1 1i  (1)

Each particle is moved by adding the velocity to the current position as follows:

v t wv t c r p t x t c r G x ti i i i( ) ( ) ( ( ) ( )) ( ( ))+ = + − + −1
1 1 2 2

i  (2)

where w  is the inertia weight, c
1
 represents the cognition learning factor, c

2
 indicates the social learn-

ing factors, r
1
 and r

2
, are the uniformly generated random numbers in the range of [0,1], and pi  is the 

best solution of the ith  particle. Since the velocity of the particles depends on random variables; hence, 
the particles are moved randomly. Thus, the motion of the particles is called random walk (Yang, 2014). 
From Equation (2), the new velocity of each particle in the search space is determined by:

1.  The original velocity or current motion of that particle (wv ti( ) ).
2.  The position of the previous best position of that particle that is so-called particle memory or 

cognitive component. This term as shown in Equation 2 is used to adjust the velocity towards the 
best position visited by that particle (c r p t x ti i

1 1
( ( ) ( ))− ).

3.  The position of the best fitness value is called social component (c r G x ti
2 2
( ( ))− ) and it is used to 

adjust the velocity towards the global best position in all particles (Hassan et al., 2005).

High values of the updated velocity make the particles very fast, which may prevent the particles 
from converging to the optimal solution; thus, the velocity of the particles could be limited to a range 
[-V

max
,V
max

]. This is much similar the learning rate in the learning algorithms. A large value of V
max

expands the search area; thus, the particles may move away from the best solution and it cannot converge 
correctly to the optimal solution. On the other hand, a small value of V

max
causes the particles to search 

within a small area, but it may lead to slow convergence. The positions and velocity of all particles are 
changed iteratively until it reaches a predefined stopping criterion (Eberhart & Kennedy, 1995; Ken-
nedy, 2010).

The new positions of all particles are then calculated by adding the velocity and the current position 
of that particle as in Equation (1). The PSO algorithm utilizes the currentx i , pi , v i , andG , to search 
for better positions by keep moving the particles towards the optimal solution. The details of the PSO 
algorithm are summarized in Algorithm (1).

Figure 1 shows an example of the movement of two particles in the search space. As shown, the 
search space is one-dimensional, and the first, x t1( ) , and second, x t2( )  particles are represented by the 
dotted red and blue circles, respectively. Moreover, the two particles have two different previous best 
positions, p t1( )  and p t2( ) , and one global solution (G ). As shown in the figure, there are three differ-
ent directions or directed velocity, namely; (1) the original direction (v1  andv2 ), (2) the direction to the 
previous best positions (v

p
1  and v

p
2 ), and (3) the direction to the best position (v

G
1  and v

G
2 ). The ve-

locity of the particles are calculated as in Equation (2) and it will be denoted by (v t1 1( )+  and v t2 1( )+ ). 
As shown in the figure, the positions of the two particles in the next iteration ( )t +1  become closer to 
the global solution.
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Figure 1. Illustration of the movement of two particles using PSO algorithm in one-dimensional space

Algorithm 1. Particle Swarm Optimization (PSO)

Initialize the particles’ positions (x i ), velocity (v i ), previous best posi-
tions ( pi ), and the number of particles N.
while (t <maximum number of iterations (T)) do
for all Particles (i) do
Calculate the fitness function for the current position xi of the ith particle 

(F (x i )).
if (F xi( )<F pi( ) ) then
pi = x i end if
if (F xi( ) <F G( )) then
G=x i

end if 

Adjust the velocity and positions of all particles according to Equations (1 

and 2. 

end for 

Stop the algorithm if a sufficiently good fitness function is met. 

14: end while
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Numerical Examples

In this section, two numerical examples were illustrated to show how the particles are moved in the search 
space to find the optimal solution. In the second example, the problem of local minimum is simulated to 
show how the particles are trapped in one or more local solutions instead of the global solution.

First Example: PSO Example

In this section, the PSO algorithm is explained in details to show how the particles are moved and also 
to show the influence of each parameter on the PSO algorithm. Assume the PSO algorithm has five 
particles ( pi , i = 1 5, ,� ), and the initial positions of the particles are presented in Table 1. The ve-
locities of all particles are initialized to be zeros. Moreover, the initial best solutions of all particles are 
set to 1000 as shown in Table 1. In this example, De Jong function (see Equation 3) was used as a fitness 
function.

min ,F x y x y( ) = +2 2  (3)

where x  and y  are the dimensions of the problem. Figure 2 shows the surface and contour plot of the 
De Jong function. As shown, the function is a strictly convex function1. Moreover, the optimal solution 
is zero and it is found at the origin. Moreover, the lower and upper boundaries of both x  and y  dimen-
sions were -1 and 1, respectively. Moreover, in PSO algorithm, the inertia (w ) was 0.3, and the values 
of the cognitive and social constants were as follows, c

1
= 2 and c

2
= 2.

In this example, PSO iteratively searches for the optimal solution and in each iteration; the movement 
of each particle was calculated including its position, velocity, and fitness function as shown in Figure 2.

First Iteration: The first step in this iteration was to calculate the fitness value for all particles, and if 
the fitness value of any particle (F pi( ) ) was lower than the corresponding previous best position 
( pi ), then save the position of this particle. As shown from Tables 1, the first particle was located 
at (1, 1); hence, the fitness value is 12 + 12 = 2. Similarly, the fitness values of all particles were 
calculated as in Table 1. As shown, the fitness values of all particles were lower than the current 

Table 1. Initial positions, velocity, and best positions of all particles

Particle No. Initial Positions Velocity Best Solution Best Position Fitness 
Valuex y x y x y

P1 1 1 0 0 1000 - - 2

P2 -1 1 0 0 1000 - - 2

P3 0.5 -0.5 0 0 1000 - - 0.5

P4 1 -1 0 0 1000 - - 2

P5 0.25 0.25 0 0 1000 - - 0.125
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best solutions; hence, the values of pi  were then updated with the best positions as shown in Table 
2, and the best solutions were also updated. Moreover, the fifth particle achieved the best solution, 
i.e. minimum fitness value; G = (0.25, 0.25). As shown in Table 1, the initial velocities of all 
particles were zero; thus, the particles will not move in this iteration.

The velocity of each particle was calculated as in Equation (2). In this experiment, assume the two 
random numbers r

1
 and r

2
 were equal to 0.5. Since the initial velocity of all particles was zero as shown 

in Table 1 and the previous best positions and the current positions were equal; thus, the first two terms 
of the velocity as shown in Equation (2) were equal to zero. Hence, the velocity in this iteration depends 
only on the global best position. The velocity of the first particle was calculated as follows,

v ti( )+1 =c r G x ti
2 2
( ( ))− =2 * 0.5 * ((0.25 - 1), (0.25-1)) = (0.75, 0.75), 

Figure 2. The surface and contour plot of De Jong function in Equation 3, (a) Surface (b) Contour plot

Table 2. The positions, velocity and best positions of all particles after the first iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness 
Valuex y x y x y

P1 1 1 -0.75 -0.75 2 1 1 2

P2 -1 1 1.25 -0.75 2 -1 1 2

P3 0.5 -0.5 -0.25 0.75 0.5 0.5 -0.5 0.5

P4 1 -1 -0.75 1.25 2 1 -1 2

P5 0.25 0.25 0 0 0.125 0.25 0.25 0.125
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and similarly the velocity of all particles were calculated and the values of all velocities are shown in 
Table 2. As shown in Table 2, the velocity of the fifth particle was (0, 0) because the fifth particle is the 
global best solution; hence, it remained at the same position at this iteration. Figure 3 shows the posi-
tions of all particles in this iteration. Moreover, Figure 4 shows how the best solution converged to the 
optimal solution during iterations.

Second Iteration: In this iteration, the particles were moved to the new locations inside the search space 
using the positions and velocity that were calculated in the first iteration (see Section 4.1.1). The 
new positions of all particles are listed in Table 3. The velocity of all particles are then calculated 
(see Table 3) to move the particles in the next iteration. Moreover, the fitness values of all particles 
were calculated.

Third Iteration: In this iteration, the particles continue moving towards the optimal solution. At the 
beginning, the particles were moved to the new positions and their fitness values were calculated as 
in Table 4. As shown, the first particle became much closer to the optimal solution than the other 
particles and its fitness value was 0.0313. As shown in this iteration, the velocities of all particles 
were not zero; in other words, the particles will be moved in the next iterations.

Discussion

The results in Tables 1, 2, 3 and 4 show how the PSO algorithm converges to the global solution. Figure 
3 shows the positions of particles in different iterations. As shown, the five particles were initialized at 
random positions and iteratively converge to the global solution. After the first iteration, the fifth particle 
was the best particle by achieving 0.125 fitness value and it was located at (0.25, 0.25), and this particle 
guides the other three particles to move to the better solutions. After the second iteration, all particles 
were at the same position (0.25, 0.25) and their fitness value was 0.125. After the third iteration, the 
first particle was located at (-0.125,-0.125) and it achieved the best fitness value 0.0313. Hence, as the 
iterations proceed, the PSO algorithm converged to the optimal solution. Another important note is that 
the convergence rate depends mainly on the values of PSO parameters and the initial positions or solu-
tions. Figure 5 shows the convergence curve of the PSO algorithm in our example. In addition, from 
Tables 1, 2, 3 and 4 it can be seen that the velocity of the particles was much high in the first iterations 

Table 3. The positions, velocity and best positions of all particles after the second iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness 
Valuex y x y x y

P1 0.25 0.25 -0.3750 -0.3750 2 1 1 0.125

P2 0.25 0.25 0.6250 -0.3750 2 -1 1 0.125

P3 0.25 0.25 -0.1250 0.3750 0.5 0.5 -0.5 0.125

P4 0.25 0.25 -0.3750 0.6250 2 1 -1 0.125

P5 0.25 0.25 0 0 0.125 0.25 0.25 0.125
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than the last iterations. Figure 6 shows the total velocity of the particles in our example. The velocity of 
the particles in the first iteration was 6.5, and the velocity of the 25th iteration was approximately zero, 
which reflects that the first iterations in PSO algorithm were faster than the last iterations. This is because 
two reasons, (1) the PSO algorithm uses linearly decreasing inertia weight; (2) the new velocity of any 

Figure 3. Visualization of the positions of all particles of the PSO algorithm in different iterations
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particle depends on the distance to the previous best position and the best position that maybe close to 
that particle in the last iterations than the first iterations. This simple numerical example shows how the 
PSO algorithm is simple algorithm and it rapidly converges to the global solution.

Second Example: Local Optima Problem

In this section, a numerical example is explained to explain the local optima problem of the PSO algo-
rithm. Assume the PSO algorithm in this example has five particles ( pi , i = 1 5, ,� ), and the initial 
positions of the particles are initialized randomly. The velocity of all particles is initialized to be zeros. 

Table 4. The positions, velocity and best positions of all particles after the third iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness 
Valuex y x y x y

P1 -0.1250 -0.1250 -0.1875 -0.1875 0.125 0.25 0.25 0.0313

P2 0.8750 -0.1250 -1.3125 0.1875 0.125 0.25 0.25 0.7813

P3 0.1250 0.6250 -0.1875 -0.9375 0.125 0.25 0.25 0.4063

P4 -0.1250 0.8750 0.1875 -1.3125 0.125 0.25 0.25 0.7813

P5 0.2500 0.2500 -0.3750 -0.3750 0.125 0.25 0.25 0.1250

Figure 4. Visualization of the best positions during iterations on the contour plot
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Moreover, the initial best solutions of all particles are set to 1000 as in the first example. In this example, 
Rastrigin function (see Equation 4) was used as a fitness function.

min , ( .cos .F x y n x x
i i

t

D

( ) = + − ( )
=
∑10 10 22

1

π  (4)

Figure 5. Convergence curve of our numerical example

Figure 6. Total velocity of all particles during iterations
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Figure 7 shows the surface and contour plot of the Rastrigin function. As shown, the function is not 
convex function and it has many local optimal solutions and the optimal solution is located at the origin 
and the optimal value is zero. Moreover, the limits of the search space for both x  and y dimensions are 
bounded by -5.12 and 5.12. Moreover, in this example, the inertia (w ) was 0.3, and the values of the 
cognitive and social constants were as follows, c

1
= 2 and c

2
 = 2.

PSO with Different Runs

In this example, on the contrary to the first example, we will not explain each step in the PSO algorithm 
because it is already explained in the first example. Instead, in this example, the PSO algorithm has been 
run five times. In each run, the particles are randomly initialized as shown in Table 5. The particles’ 
positions are then iteratively moved using the PSO algorithm. In this example, the maximum number 
of iterations was 20. The results of this example are shown in Figures 8 and 9.

Table 5. Initial positions and optimal values of the PSO algorithm in five different runs

Particles No. First Run Second Run Third Run Fourth Run Fifth Run

x y x y x y x y x y

P1 -4.028 3.775 -0.984 0.770 1.913 -4.289 3.850 -2.035 -4.415 3.277

P2 4.730 -4.255 -4.132 -4.508 -3.241 4.397 0.514 -0.298 -1.847 2.236

P3 -5.073 -1.026 -3.769 -2.716 -1.347 2.823 1.254 -2.760 0.316 4.799

P4 2.815 -2.459 4.527 -1.504 1.286 -0.135 0.891 3.526 1.582 0.321

P5 3.249 3.073 4.671 3.289 2.870 -0.657 -2.993 -3.126 -0.946 -1.791

Best Solution 8.96 1.99 5.14 10.62 3.99

Figure 7. The surface and contour plot of Rastrigin function in Equation 4, (a) Surface (b) Contour plot
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Figure 8. Visualization of the convergence of the PSO particles in different runs
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Figure 9. Convergence curves of the PSO particles in different runs
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Discussion

Figure 8 shows the convergence of the particles in each run. As shown, the five runs converged to dif-
ferent optimal solutions, and all of them did not reach the optimal solution. Therefore, in each run, the 
PSO algorithm achieved different optimal value. As shown in Table 5, the best value of the first run 
was 8.96, and the best values of the second; third, fourth and fifth runs were 1.99, 5.14, 10.62 and 3.99, 
respectively. This is because the PSO in each run was trapped in different local minimum solution. Fig-
ure 9 shows the convergence curves of the PSO algorithms in all runs. As shown, the convergence rate 
depends mainly on the initial solutions. For example, in Figure 9a, the PSO was trapped starting from 
the fourth iteration; hence, the PSO algorithm cannot explore different regions in the search space and 
then trapped in the local solution. On the other hand, the PSO algorithm in the fifth run (see Figure 9e) 
searched for the optimal solution till it trapped in the local solution after the twelfth iterations.

To conclude, the PSO algorithm can be trapped into local optimal solution; hence, it cannot find 
better solutions because its exploration capability is very limited, this problem is common in many op-
timization algorithms and it is called Stagnation. However, many other solutions for this problem were 
used such as combining PSO with other optimization algorithms which make a balance between the 
exploration and exploitation phases. Approximately all the recent optimization algorithms solved this 
problem but they do not guarantee to reach to the same solution in each run due to the stochastic nature 
of the optimization algorithms.

EXPERIMENTAL RESULTS AND DISCUSSION

In this section, two experiments were conducted to show how the PSO algorithm is used to solve machine 
learning problems. In the first experiment, PSO was used to find the optimal value for the k parameter in 
the k-Nearest Neighbor (k-NN) classifier. In this experiment, the PSO searches for the optimal value in 
one-dimensional space. In the second experiment, the PSO algorithm was used to search for the penalty 
and kernel parameters of the SVM classifiers. In this experiment, the PSO searched in two-dimensional 
search space.

Experimental Setup

The platform adopted to develop the PSO-SVM algorithm is a PC with the following features: Intel(R) 
Core (TM) i5-2400 CPU@3.10GHz, 4G RAM, a Window 7 operating system, and MATLAB 7.10.0 
(R2010a). To evaluate the proposed algorithm four standard classification datasets were used. The da-
tasets were obtained from University of California at Irvin (UCI) Machine Learning Repository (Blake 
& Merz, 1998). The descriptions of all datasets are listed in Table 6. These datasets are widely used to 
compare the performance of different classification problems in the literature. As shown in Table 6, all 
the datasets have only two classes.

In all experiments, k-fold cross-validation tests have used. In k-fold cross-validation, the original 
samples of the dataset were randomly partitioned into k subsets of (approximately) equal size and the 
experiment is run k times. For each time, one subset was used as the testing set and the other k-1 subsets 
were used as the training set. The average of the k results from the folds can then be calculated to produce 
a single estimation. In this study, the value of k was set to 10. Since the number of samples in each class 
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is not a multiple of 10 (see Table 6), the dataset cannot be partitioned fairly. However, the ratio between 
the number of samples in the training and testing sets was maintained as closely as possible to 9: 1.

Experimental Scenarios

The first experiment was conducted to compare the pro- posed PSO-SVM algorithm with Genetic Al-
gorithm (GA) algorithm. Table 7 shows the results of this experiment. As shown in the table, the PSO 
algorithm achieved results better than GA. Moreover, in terms of the CPU time, the PSO algorithm 
required CPU time lower than the GA algorithm.

In the second experiment, PSO algorithm was used to optimize SVM classifier. In this experiment, 
the PSO- SVM algorithm was compared with GA-SVM algorithm. Table 8 shows the results of this 
experiment. As shown in the table, the PSO algorithm achieved results better than GA. In terms of the 
CPU time, the PSO algorithm required CPU time lower than the GA algorithm.

To conclude, the PSO algorithm converged to the optimal or near optimal solutions faster than GA. 
Hence, the PSO algorithm achieved results better than GA algorithm.

Table 6. Datasets description

Dataset Dimension # Samples # Classes

Ionosphere 34 351 2

Liver-disorders 6 345 2

Sonar 60 208 2

Tic-Tac-Toc 9 958 2

Table 7. Accuracy and CPU time of the PSO-kNN and GA-k-NN algorithms

Dataset PSO-kNN GA-kNN

Accuracy (%) CPU Time (sec) Accuracy (%) CPU Time (secs)

Iono 3.12±0.12 38.58 4.15±0.4 52.36

Liver 11.12±2.1 62.13 12.31±1.5 74.26

Sonar 9.45±2.1 50.92 9.87±1.9 59.23

Tic-Tac-Toc 10.26±1.9 47.2 12.35±2.4 62.3

Table 8. Accuracy and CPU time of the PSO-SVM and GA-SVM algorithms

Dataset PSO-SVM GA-SVM

Accuracy (%) CPU Time (sec) Accuracy (%) CPU Time (secs)

Iono 2.65±0.45 421.33 3.15±0.32 612.32

Liver 10.93±0.56 1235.32 11.23±0.45 1456.65

Sonar 8.45±0.76 496.32 9.15±0.35 634.56

Tic-Tac-Toc 9.25±1.1 2845.62 11.2±1.5 3056.23
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CONCLUSION

Optimization algorithms are used recently in many applications. Particle Swarm Optimization (PSO) 
is one of the well-known algorithms. It is simple and easy to implement algorithm. This paper explains 
the steps of calculating the PSO algorithm, and how the particles are converged to the optimal solution. 
In addition, two numerical examples were given and graphically illustrated to explain the steps of PSO 
algorithm and to focus on the local optima problem and how PSO algorithm trapped in local minima 
problem. Moreover, using standard datasets, two experiments were conducted to show how the PSO 
algorithm is used to optimize k-NN classifier, where the search space in one-dimensional, and how the 
PSO optimize SVM where the search space is two-dimensional space.
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APPENDIX

In this section, a MATLAB code for the PSO algorithm is introduced.

clc 

clear all 

Max_iterations=50;  % Maximum Number of Iterations 

correction_factor = 2.0; % Correction factor 

inertia = 1.0; % IneritiaCoeffecient 

swarm_size = 5; % Number of particles 

LB=[-5.12 -5.12]; % Lower Boundaries 

UB=[5.12 5.12];   % Upper Boundaries 

xrange=UB(1)-LB(1); 

yrange=UB(2)-LB(2); 

% Initial Positions 

swarm(:, 1, 1)=rand(1,swarm_size)*xrange+LB(1); 

swarm(:, 1, 2)=rand(1,swarm_size)*yrange+LB(2); 

% Initial best value so far 

swarm(:, 4, 1) = 1000;           

% Initial velocity 

swarm(:, 2,:) = 0;              

foriter = 1: Max_iterations 

% Calculating fitness value for all particles 

for i = 1: swarm_size 

swarm(i, 1, 1) = swarm(i, 1, 1) + swarm(i, 2, 1)/1.3;     %update x position 

swarm(i, 1, 2) = swarm(i, 1, 2) + swarm(i, 2, 2)/1.3;     %update y position 

% The fitness function (DeJong) F(x,y)=x^2+y^2 

Fval = (swarm(i, 1, 1))^2 + (swarm(i, 1, 2))^2;   % fitness evaluation (you 

may replace this objective function with any function having a global minima) 

% If the fitness value for this particle is better than the  

% best fitness value of that particle exchange both values  

ifFval< swarm(i, 4, 1)                 % if new position is better 

swarm(i, 3, 1) = swarm(i, 1, 1);    % Update the position of the first dimen-

sion 

     swarm(i, 3, 2) = swarm(i, 1, 2);    % Update the position of the second 

dimension 

            swarm(i, 4, 1) = Fval;              % Update best value 

end 

end 

% Search for the global best solution 

    [temp, gbest] = min(swarm(:, 4, 1));        % global best position 

% Updating velocity vectors 

for i = 1: swarm_size 



Particle Swarm Optimization

635

swarm(i, 2, 1) = rand*inertia*swarm(i, 2, 1) + correction_factor*rand*(swarm(i, 

3, 1) - swarm(i, 1, 1)) + correction_factor*rand*(swarm(gbest, 3, 1) - swarm(i, 

1, 1));   %x velocity component 

        swarm(i, 2, 2) = rand*inertia*swarm(i, 2, 2) + correc-

tion_factor*rand*(swarm(i, 3, 2) - swarm(i, 1, 2)) + correction_

factor*rand*(swarm(gbest, 3, 2) - swarm(i, 1, 2));   %y velocity component 

end 

% Store the best fitness valuye in the convergence curve 

ConvergenceCurve(iter,1)=swarm(gbest,4,1); 

disp([‘Iterations No. ‘ int2str(iter) ‘, the best fitness value is ‘ 

num2str(swarm(gbest,4,1))]); 

end 

% Plot convergence curve 

plot(ConvergenceCurve,’r-’) 

title(‘Convergence Curve’) 

xlabel(‘Iterations’) 

ylabel(‘Fitness Value’)
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