
Handbook of Research
on Machine Learning
Innovations and Trends

Aboul Ella Hassanien
Cairo University, Egypt

Tarek Gaber
Suez Canal University, Egypt

A volume in the Advances in Computational
Intelligence and Robotics (ACIR) Book Series

Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2017 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Hassanien, Aboul Ella, editor. | Gaber, Tarek, 1975- editor.
Title: Handbook of research on machine learning innovations and trends /
 Aboul Ella Hassanien and Tarek Gaber, editors.
Description: Hershey, PA : Information Science Reference, [2017] | Includes
 bibliographical references and index.
Identifiers: LCCN 2016056940| ISBN 9781522522294 (hardcover) | ISBN
 9781522522300 (ebook)
Subjects: LCSH: Machine learning--Technological innovations. | Machine
 learning--Industrial applications.
Classification: LCC Q325.5 .H3624 2017 | DDC 006.3/1--dc23 LC record available at https://lccn.loc.gov/2016056940

This book is published in the IGI Global book series Advances in Computational Intelligence and Robotics (ACIR) (ISSN:
2327-0411; eISSN: 2327-042X)

Advances in Computational
Intelligence and Robotics

(ACIR) Book Series

While intelligence is traditionally a term applied to humans and human cognition, technology has pro-
gressed in such a way to allow for the development of intelligent systems able to simulate many human
traits. With this new era of simulated and artificial intelligence, much research is needed in order to
continue to advance the field and also to evaluate the ethical and societal concerns of the existence of
artificial life and machine learning.

The Advances in Computational Intelligence and Robotics (ACIR) Book Series encourages
scholarly discourse on all topics pertaining to evolutionary computing, artificial life, computational
intelligence, machine learning, and robotics. ACIR presents the latest research being conducted on di-
verse topics in intelligence technologies with the goal of advancing knowledge and applications in this
rapidly evolving field.

Mission

Ivan Giannoccaro
University of Salento, Italy

ISSN:2327-0411
 EISSN:2327-042X

• Synthetic Emotions
• Robotics
• Natural language processing
• Brain Simulation
• Fuzzy Systems
• Automated Reasoning
• Computational Logic
• Artificial Life
• Algorithmic Learning
• Cognitive Informatics

Coverage
IGI Global is currently accepting manuscripts

for publication within this series. To submit a pro-
posal for a volume in this series, please contact our
Acquisition Editors at Acquisitions@igi-global.com
or visit: http://www.igi-global.com/publish/.

The Advances in Computational Intelligence and Robotics (ACIR) Book Series (ISSN 2327-0411) is published by IGI Global, 701 E.
Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of titles available for purchase individually;
each title is edited to be contextually exclusive from any other title within the series. For pricing and ordering information please visit http://
www.igi-global.com/book-series/advances-computational-intelligence-robotics/73674. Postmaster: Send all address changes to above address.
Copyright © 2017 IGI Global. All rights, including translation in other languages reserved by the publisher. No part of this series may be
reproduced or used in any form or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or informa-
tion and retrieval systems – without written permission from the publisher, except for non commercial, educational use, including classroom
teaching purposes. The views expressed in this series are those of the authors, but not necessarily of IGI Global.

Titles in this Series
For a list of additional titles in this series, please visit: www.igi-global.com/book-series

Handbook of Research on Soft Computing and Nature-Inspired Algorithms
Shishir K. Shandilya (Bansal Institute of Research and Technology, India) Smita Shandilya (Sagar Institute of
Research Technology and Science, India) Kusum Deep (Indian Institute of Technology Roorkee, India) and Atulya
K. Nagar (Liverpool Hope University, UK)
Information Science Reference • copyright 2017 • 627pp • H/C (ISBN: 9781522521280) • US $280.00 (our price)

Membrane Computing for Distributed Control of Robotic Swarms Emerging Research and Opportunities
Andrei George Florea (Politehnica University of Bucharest, Romania) and Cătălin Buiu (Politehnica University
of Bucharest, Romania)
Information Science Reference • copyright 2017 • 119pp • H/C (ISBN: 9781522522805) • US $160.00 (our price)

Recent Developments in Intelligent Nature-Inspired Computing
Srikanta Patnaik (SOA University, India)
Information Science Reference • copyright 2017 • 264pp • H/C (ISBN: 9781522523222) • US $185.00 (our price)

Ubiquitous Machine Learning and Its Applications
Pradeep Kumar (Maulana Azad National Urdu University, India) and Arvind Tiwari (DIT University, India)
Information Science Reference • copyright 2017 • 258pp • H/C (ISBN: 9781522525455) • US $185.00 (our price)

Advanced Image Processing Techniques and Applications
N. Suresh Kumar (VIT University, India) Arun Kumar Sangaiah (VIT University, India) M. Arun (VIT University,
India) and S. Anand (VIT University, India)
Information Science Reference • copyright 2017 • 439pp • H/C (ISBN: 9781522520535) • US $290.00 (our price)

Advanced Research on Biologically Inspired Cognitive Architectures
Jordi Vallverdú (Universitat Autònoma de Barcelona, Spain) Manuel Mazzara (Innopolis University, Russia) Max
Talanov (Kazan Federal University, Russia) Salvatore Distefano (University of Messina, Italy & Kazan Federal
University, Russia) and Robert Lowe (University of Gothenburg, Sweden & University of Skövde, Sweden)
Information Science Reference • copyright 2017 • 297pp • H/C (ISBN: 9781522519478) • US $195.00 (our price)

Theoretical and Practical Advancements for Fuzzy System Integration
Deng-Feng Li (Fuzhou University, China)
Information Science Reference • copyright 2017 • 415pp • H/C (ISBN: 9781522518488) • US $200.00 (our price)

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

614

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 26

DOI: 10.4018/978-1-5225-2229-4.ch026

ABSTRACT

Optimization algorithms are necessary to solve many problems such as parameter tuning. Particle
Swarm Optimization (PSO) is one of these optimization algorithms. The aim of PSO is to search for the
optimal solution in the search space. This paper highlights the basic background needed to understand
and implement the PSO algorithm. This paper starts with basic definitions of the PSO algorithm and
how the particles are moved in the search space to find the optimal or near optimal solution. Moreover, a
numerical example is illustrated to show how the particles are moved in a convex optimization problem.
Another numerical example is illustrated to show how the PSO trapped in a local minima problem. Two
experiments are conducted to show how the PSO searches for the optimal parameters in one-dimensional
and two-dimensional spaces to solve machine learning problems.

INTRODUCTION

Swarm optimization techniques are recent techniques used to solve many optimization problems. They
are employed in image processing (Mostafa et al., 2015; Ali et al., 2016), machine learning (Yamany et
al., 2015a; Tharwat et al.,2015c; Ibrahim & Tharwat, 2014; Tharwat et al., 2015b, Tharwat et al., 2016a,
Tharwat et al., 2016e), power electronics (Yoshida et al., 2000), and numerical problems (Vesterstrom &
Thomsen, 2004), and mechanical problems (dos Santos Coelho, 2010). The optimization can be defined
as a mechanism through which the maximum or minimum value of a given function or process can be
found. The optimization is usually used in different fields such as economics, physics, and engineering
where the main aim is to achieve maximum production, efficiency, or some other measure. In addition,
there are many scientific, social, and commercial problems which have various parameters which if they
have been adjusted can produce a more desirable outcome. Generally, the optimization could be used

Particle Swarm Optimization:
A Tutorial

Alaa Tharwat
Suez Canal University, Egypt

Tarek Gaber
Suez Canal University, Egypt

Aboul Ella Hassanien
Cairo University, Egypt

Basem E. Elnaghi
Suez Canal University, Egypt

615

Particle Swarm Optimization

to achieve maximization or minimization where the maximization of a given function f is equivalent
to the minimization of this function opposite, -f (Van Den Bergh, 2006; Gaber et al., 2016, Tharwat et
al., 2016e, f).

In the past years, a wide range of optimization techniques was proposed to solve such optimization
problems. These techniques generally make use of two main kinds of learning techniques in the litera-
ture: stochastic or random versus deterministic. First, in deterministic techniques, the algorithm results
in the same accuracy if the algorithm uses the same initial values. On the contrary, stochastic methods
employ stochastic optimization algorithms and it achieved different results due to randomness. There
are two main problems with the stochastic algorithms due to randomness. First, the goodness of the
obtained solution depends mainly on the initial random solution. Hence, different initialization may lead
to different solutions. Second, there exist greater probabilities of local optima problem. This problem is
common in almost all optimization algorithms (Ho et al., 2007; Tharwat A., 2016b, Tharwat A., 2016c).

The optimization algorithms have two main phases: exploration and exploitation. In the exploration
phase, the goal is to explore the search space to search for the optimal or near optimal solutions. Hence,
exploration may lead to new search regions that may contain better solutions. In the exploitation phase,
the aim is to search locally around the current good solution(s) this is so-called exploitation. The opti-
mization algorithms should make a balance between a random selection and greedy selection to bias the
search towards better solutions, i.e. exploitation, while exploring the search space to find different solu-
tions, i.e. exploration (Yamany et al., 2015a, 2015b; Tharwat et al., 2015c, 2015a, Tharwat et al., 2016d).

One of the widely used swarm-based optimization techniques is the Particle Swarm Optimization
(PSO). PSO has a small number of parameters which control the movements of the particles inside the
search space. PSO has been used in many applications such as machine learning (Subasi, 2013), image
processing (Maitra & Chatterjee, 2008), and power electronics (Miyatake et al., 2011). In general, PSO
algorithm lends itself strongly to exploitation phase which may lead to local optima problem. Hence, in
some cases, PSO fails to find the global optimal solution.

This chapter aims to give a detailed tutorial about the PSO algorithm and it is divided into five sec-
tions. First section summarizes the related work of different applications that used PSO algorithm. A
clear definition of the PSO algorithm and its background are highlighted in the second section while
the third section illustrates numerical examples to show how the particles are moved and how the PSO
algorithm trapped into a local optima problem. In fourth section, two experiments are conducted to
show how the PSO algorithm solved machine learning in one-dimensional and two-dimensional spaces.
Finally, concluding remarks will be given in the fifth Section.

RELATED WORK

PSO is widely used in image processing. For example, Maitra et al. used PSO algorithm to find the
optimal thresholding value in image segmentation (Maitra & Chatterjee, 2008). Moreover, Akhilesh et
al. used a new variant of the PSO algorithm for image segmentation (Chander et al., 2011). This new
variant adapting social and momentum components of the velocity equation for particle move updates
and their proposed algorithm outperformed Genetic Algorithm (GA) and the standard PSO algorithm.
Forouzanfar et al. used PSO to search for the optimal parameters of Fuzzy c-means algorithm brain MR
image segmentation (Forouzanfar et al., 2010). They used PSO to find the optimum value of degree of
attraction and they found that PSO achieved results better and converged faster than GA.

616

Particle Swarm Optimization

In machine learning, PSO algorithm is widely used to search for the optimal parameters of learn-
ing algorithms to enhance the classification performance. For example, PSO was used to search for
the Support Vector Machine (SVM) parameters (Subasi, 2013). Moreover, PSO was used to adjust the
weights of Back Propagation Neural Networks (BPNN) and it achieved good results compared with BP
algorithm (Bashir & El-Hawary, 2009). In addition, PSO was used for feature selection (Lin et al., 2008).
In clustering, PSO was used to search for the centroids of a user specified number of clusters and the
PSO achieved good results compared with K-means clustering (Van der Merwe & Engelbrecht, 2003).

PSO algorithm is also used to solve mathematical problems. Vesterstrom et al. compared PSO with
Differential Evolution (DE) algorithm using widely used benchmark functions (Vesterstrom & Thomsen,
2004). They found that DE achieved results better than PSO. In another research, Zhao Xinchao proposed
perturbed particle swarm algorithm (pPSA) algorithm (Xinchao, 2010). He used the new algorithm to
search for the optimal solutions for 12 functions and he found that the proposed algorithm achieved
results better than PSO algorithm. Moreover, Ho et al. used a modified PSO to solve multimodal func-
tions of inverse problems and they achieved good results compared with Tabu search (Ho et al., 2007).

In power applications, PSO algorithm was used for different purposes. Miyatake et al. used PSO
algorithm to find the maximum power point tracking of multiple photovoltaic and they found that PSO
took two seconds to find the global maximum power point (Miyatake et al., 2011). Sidhartha Pandan
and Narayana Prasad Padhy used PSO algorithm was used to locate the optimal location of the static
synchronous compensator (STATCOM) and its coordinated design with power system stabilizers (PSSs)
(Panda & Padhy, 2008). They found that the PSO algorithm improved the stability of the system.
Moreover, M. A. Abido used PSO algorithm to find the optimal design of multi-machine power system
stabilizers (PSSs) (Abido, 2002).

PARTICLE SWARM OPTIMIZATION (PSO)

PSO algorithm was discovered by Reynolds and Heppner, and the algorithm was simulated by Kennedy
and Eberhart (Heppner & Grenander, 1990; Reynolds, 1987; Eberhart & Kennedy, 1995). The PSO is
an easy algorithm; hence, it has been used in a wide range of applications (Kennedy, 2010; Kulkarni
&Venayagamoorthy, 2011; Akay, 2013; Ishaque& Salam, 2013; Elbedwehyet al., 2012). The main goal
of the PSO algorithm is to search in the search space for the positions/locations that are close to the
global minimum or maximum solution(s). The dimension of the search space is determined by the
number of parameters that are needed to optimize. For example, if the search space has n dimensions,
so the numbers of variables in the objective function is alson . The PSO algorithm has many parameters.
The current position of each particle is used to calculate the fitness value at that location. Each particle
has three parameters, namely, position (x Ri n∈), velocity, i.e. rate of position change, (vi) and the
previous best positions (pi). In addition, the position of the particle that has the best fitness value is
called global best position and it is denoted by G (Yang, 2014).

The position of each particle is denoted by xi and it is represented by a set of coordinates that repre-
sents a point in the search space. During the searching process, the current positions of all particles are
evaluated using the fitness function. The fitness value of each particle is then compared with the current
position and the best position is stored in the previous best positions (pi). In other words, the previous
best positions store the positions of the particles that have better values.

617

Particle Swarm Optimization

x t x t v ti i() () ()+ = + +1 1i (1)

Each particle is moved by adding the velocity to the current position as follows:

v t wv t c r p t x t c r G x ti i i i() () (() ()) (())+ = + − + −1
1 1 2 2

i (2)

where w is the inertia weight, c
1
 represents the cognition learning factor, c

2
 indicates the social learn-

ing factors, r
1
 and r

2
, are the uniformly generated random numbers in the range of [0,1], and pi is the

best solution of the ith particle. Since the velocity of the particles depends on random variables; hence,
the particles are moved randomly. Thus, the motion of the particles is called random walk (Yang, 2014).
From Equation (2), the new velocity of each particle in the search space is determined by:

1. The original velocity or current motion of that particle (wv ti()).
2. The position of the previous best position of that particle that is so-called particle memory or

cognitive component. This term as shown in Equation 2 is used to adjust the velocity towards the
best position visited by that particle (c r p t x ti i

1 1
(() ())−).

3. The position of the best fitness value is called social component (c r G x ti
2 2
(())−) and it is used to

adjust the velocity towards the global best position in all particles (Hassan et al., 2005).

High values of the updated velocity make the particles very fast, which may prevent the particles
from converging to the optimal solution; thus, the velocity of the particles could be limited to a range
[-V

max
,V
max

]. This is much similar the learning rate in the learning algorithms. A large value of V
max

expands the search area; thus, the particles may move away from the best solution and it cannot converge
correctly to the optimal solution. On the other hand, a small value of V

max
causes the particles to search

within a small area, but it may lead to slow convergence. The positions and velocity of all particles are
changed iteratively until it reaches a predefined stopping criterion (Eberhart & Kennedy, 1995; Ken-
nedy, 2010).

The new positions of all particles are then calculated by adding the velocity and the current position
of that particle as in Equation (1). The PSO algorithm utilizes the currentx i , pi , v i , andG , to search
for better positions by keep moving the particles towards the optimal solution. The details of the PSO
algorithm are summarized in Algorithm (1).

Figure 1 shows an example of the movement of two particles in the search space. As shown, the
search space is one-dimensional, and the first, x t1() , and second, x t2() particles are represented by the
dotted red and blue circles, respectively. Moreover, the two particles have two different previous best
positions, p t1() and p t2() , and one global solution (G). As shown in the figure, there are three differ-
ent directions or directed velocity, namely; (1) the original direction (v1 andv2), (2) the direction to the
previous best positions (v

p
1 and v

p
2), and (3) the direction to the best position (v

G
1 and v

G
2). The ve-

locity of the particles are calculated as in Equation (2) and it will be denoted by (v t1 1()+ and v t2 1()+).
As shown in the figure, the positions of the two particles in the next iteration ()t +1 become closer to
the global solution.

618

Particle Swarm Optimization

Figure 1. Illustration of the movement of two particles using PSO algorithm in one-dimensional space

Algorithm 1. Particle Swarm Optimization (PSO)

Initialize the particles’ positions (x i), velocity (v i), previous best posi-
tions (pi), and the number of particles N.
while (t <maximum number of iterations (T)) do
for all Particles (i) do
Calculate the fitness function for the current position xi of the ith particle

(F (x i)).
if (F xi()<F pi()) then
pi = x i end if
if (F xi() <F G()) then
G=x i

end if

Adjust the velocity and positions of all particles according to Equations (1

and 2.

end for

Stop the algorithm if a sufficiently good fitness function is met.

14: end while

619

Particle Swarm Optimization

Numerical Examples

In this section, two numerical examples were illustrated to show how the particles are moved in the search
space to find the optimal solution. In the second example, the problem of local minimum is simulated to
show how the particles are trapped in one or more local solutions instead of the global solution.

First Example: PSO Example

In this section, the PSO algorithm is explained in details to show how the particles are moved and also
to show the influence of each parameter on the PSO algorithm. Assume the PSO algorithm has five
particles (pi , i = 1 5, ,�), and the initial positions of the particles are presented in Table 1. The ve-
locities of all particles are initialized to be zeros. Moreover, the initial best solutions of all particles are
set to 1000 as shown in Table 1. In this example, De Jong function (see Equation 3) was used as a fitness
function.

min ,F x y x y() = +2 2 (3)

where x and y are the dimensions of the problem. Figure 2 shows the surface and contour plot of the
De Jong function. As shown, the function is a strictly convex function1. Moreover, the optimal solution
is zero and it is found at the origin. Moreover, the lower and upper boundaries of both x and y dimen-
sions were -1 and 1, respectively. Moreover, in PSO algorithm, the inertia (w) was 0.3, and the values
of the cognitive and social constants were as follows, c

1
= 2 and c

2
= 2.

In this example, PSO iteratively searches for the optimal solution and in each iteration; the movement
of each particle was calculated including its position, velocity, and fitness function as shown in Figure 2.

First Iteration: The first step in this iteration was to calculate the fitness value for all particles, and if
the fitness value of any particle (F pi()) was lower than the corresponding previous best position
(pi), then save the position of this particle. As shown from Tables 1, the first particle was located
at (1, 1); hence, the fitness value is 12 + 12 = 2. Similarly, the fitness values of all particles were
calculated as in Table 1. As shown, the fitness values of all particles were lower than the current

Table 1. Initial positions, velocity, and best positions of all particles

Particle No. Initial Positions Velocity Best Solution Best Position Fitness
Valuex y x y x y

P1 1 1 0 0 1000 - - 2

P2 -1 1 0 0 1000 - - 2

P3 0.5 -0.5 0 0 1000 - - 0.5

P4 1 -1 0 0 1000 - - 2

P5 0.25 0.25 0 0 1000 - - 0.125

620

Particle Swarm Optimization

best solutions; hence, the values of pi were then updated with the best positions as shown in Table
2, and the best solutions were also updated. Moreover, the fifth particle achieved the best solution,
i.e. minimum fitness value; G = (0.25, 0.25). As shown in Table 1, the initial velocities of all
particles were zero; thus, the particles will not move in this iteration.

The velocity of each particle was calculated as in Equation (2). In this experiment, assume the two
random numbers r

1
 and r

2
 were equal to 0.5. Since the initial velocity of all particles was zero as shown

in Table 1 and the previous best positions and the current positions were equal; thus, the first two terms
of the velocity as shown in Equation (2) were equal to zero. Hence, the velocity in this iteration depends
only on the global best position. The velocity of the first particle was calculated as follows,

v ti()+1 =c r G x ti
2 2
(())− =2 * 0.5 * ((0.25 - 1), (0.25-1)) = (0.75, 0.75),

Figure 2. The surface and contour plot of De Jong function in Equation 3, (a) Surface (b) Contour plot

Table 2. The positions, velocity and best positions of all particles after the first iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness
Valuex y x y x y

P1 1 1 -0.75 -0.75 2 1 1 2

P2 -1 1 1.25 -0.75 2 -1 1 2

P3 0.5 -0.5 -0.25 0.75 0.5 0.5 -0.5 0.5

P4 1 -1 -0.75 1.25 2 1 -1 2

P5 0.25 0.25 0 0 0.125 0.25 0.25 0.125

621

Particle Swarm Optimization

and similarly the velocity of all particles were calculated and the values of all velocities are shown in
Table 2. As shown in Table 2, the velocity of the fifth particle was (0, 0) because the fifth particle is the
global best solution; hence, it remained at the same position at this iteration. Figure 3 shows the posi-
tions of all particles in this iteration. Moreover, Figure 4 shows how the best solution converged to the
optimal solution during iterations.

Second Iteration: In this iteration, the particles were moved to the new locations inside the search space
using the positions and velocity that were calculated in the first iteration (see Section 4.1.1). The
new positions of all particles are listed in Table 3. The velocity of all particles are then calculated
(see Table 3) to move the particles in the next iteration. Moreover, the fitness values of all particles
were calculated.

Third Iteration: In this iteration, the particles continue moving towards the optimal solution. At the
beginning, the particles were moved to the new positions and their fitness values were calculated as
in Table 4. As shown, the first particle became much closer to the optimal solution than the other
particles and its fitness value was 0.0313. As shown in this iteration, the velocities of all particles
were not zero; in other words, the particles will be moved in the next iterations.

Discussion

The results in Tables 1, 2, 3 and 4 show how the PSO algorithm converges to the global solution. Figure
3 shows the positions of particles in different iterations. As shown, the five particles were initialized at
random positions and iteratively converge to the global solution. After the first iteration, the fifth particle
was the best particle by achieving 0.125 fitness value and it was located at (0.25, 0.25), and this particle
guides the other three particles to move to the better solutions. After the second iteration, all particles
were at the same position (0.25, 0.25) and their fitness value was 0.125. After the third iteration, the
first particle was located at (-0.125,-0.125) and it achieved the best fitness value 0.0313. Hence, as the
iterations proceed, the PSO algorithm converged to the optimal solution. Another important note is that
the convergence rate depends mainly on the values of PSO parameters and the initial positions or solu-
tions. Figure 5 shows the convergence curve of the PSO algorithm in our example. In addition, from
Tables 1, 2, 3 and 4 it can be seen that the velocity of the particles was much high in the first iterations

Table 3. The positions, velocity and best positions of all particles after the second iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness
Valuex y x y x y

P1 0.25 0.25 -0.3750 -0.3750 2 1 1 0.125

P2 0.25 0.25 0.6250 -0.3750 2 -1 1 0.125

P3 0.25 0.25 -0.1250 0.3750 0.5 0.5 -0.5 0.125

P4 0.25 0.25 -0.3750 0.6250 2 1 -1 0.125

P5 0.25 0.25 0 0 0.125 0.25 0.25 0.125

622

Particle Swarm Optimization

than the last iterations. Figure 6 shows the total velocity of the particles in our example. The velocity of
the particles in the first iteration was 6.5, and the velocity of the 25th iteration was approximately zero,
which reflects that the first iterations in PSO algorithm were faster than the last iterations. This is because
two reasons, (1) the PSO algorithm uses linearly decreasing inertia weight; (2) the new velocity of any

Figure 3. Visualization of the positions of all particles of the PSO algorithm in different iterations

623

Particle Swarm Optimization

particle depends on the distance to the previous best position and the best position that maybe close to
that particle in the last iterations than the first iterations. This simple numerical example shows how the
PSO algorithm is simple algorithm and it rapidly converges to the global solution.

Second Example: Local Optima Problem

In this section, a numerical example is explained to explain the local optima problem of the PSO algo-
rithm. Assume the PSO algorithm in this example has five particles (pi , i = 1 5, ,�), and the initial
positions of the particles are initialized randomly. The velocity of all particles is initialized to be zeros.

Table 4. The positions, velocity and best positions of all particles after the third iteration

Particle No. Initial Positions Velocity Best Solution Best Position Fitness
Valuex y x y x y

P1 -0.1250 -0.1250 -0.1875 -0.1875 0.125 0.25 0.25 0.0313

P2 0.8750 -0.1250 -1.3125 0.1875 0.125 0.25 0.25 0.7813

P3 0.1250 0.6250 -0.1875 -0.9375 0.125 0.25 0.25 0.4063

P4 -0.1250 0.8750 0.1875 -1.3125 0.125 0.25 0.25 0.7813

P5 0.2500 0.2500 -0.3750 -0.3750 0.125 0.25 0.25 0.1250

Figure 4. Visualization of the best positions during iterations on the contour plot

624

Particle Swarm Optimization

Moreover, the initial best solutions of all particles are set to 1000 as in the first example. In this example,
Rastrigin function (see Equation 4) was used as a fitness function.

min , (.cos .F x y n x x
i i

t

D

() = + − ()
=
∑10 10 22

1

π (4)

Figure 5. Convergence curve of our numerical example

Figure 6. Total velocity of all particles during iterations

625

Particle Swarm Optimization

Figure 7 shows the surface and contour plot of the Rastrigin function. As shown, the function is not
convex function and it has many local optimal solutions and the optimal solution is located at the origin
and the optimal value is zero. Moreover, the limits of the search space for both x and y dimensions are
bounded by -5.12 and 5.12. Moreover, in this example, the inertia (w) was 0.3, and the values of the
cognitive and social constants were as follows, c

1
= 2 and c

2
 = 2.

PSO with Different Runs

In this example, on the contrary to the first example, we will not explain each step in the PSO algorithm
because it is already explained in the first example. Instead, in this example, the PSO algorithm has been
run five times. In each run, the particles are randomly initialized as shown in Table 5. The particles’
positions are then iteratively moved using the PSO algorithm. In this example, the maximum number
of iterations was 20. The results of this example are shown in Figures 8 and 9.

Table 5. Initial positions and optimal values of the PSO algorithm in five different runs

Particles No. First Run Second Run Third Run Fourth Run Fifth Run

x y x y x y x y x y

P1 -4.028 3.775 -0.984 0.770 1.913 -4.289 3.850 -2.035 -4.415 3.277

P2 4.730 -4.255 -4.132 -4.508 -3.241 4.397 0.514 -0.298 -1.847 2.236

P3 -5.073 -1.026 -3.769 -2.716 -1.347 2.823 1.254 -2.760 0.316 4.799

P4 2.815 -2.459 4.527 -1.504 1.286 -0.135 0.891 3.526 1.582 0.321

P5 3.249 3.073 4.671 3.289 2.870 -0.657 -2.993 -3.126 -0.946 -1.791

Best Solution 8.96 1.99 5.14 10.62 3.99

Figure 7. The surface and contour plot of Rastrigin function in Equation 4, (a) Surface (b) Contour plot

626

Particle Swarm Optimization

Figure 8. Visualization of the convergence of the PSO particles in different runs

627

Particle Swarm Optimization

Figure 9. Convergence curves of the PSO particles in different runs

628

Particle Swarm Optimization

Discussion

Figure 8 shows the convergence of the particles in each run. As shown, the five runs converged to dif-
ferent optimal solutions, and all of them did not reach the optimal solution. Therefore, in each run, the
PSO algorithm achieved different optimal value. As shown in Table 5, the best value of the first run
was 8.96, and the best values of the second; third, fourth and fifth runs were 1.99, 5.14, 10.62 and 3.99,
respectively. This is because the PSO in each run was trapped in different local minimum solution. Fig-
ure 9 shows the convergence curves of the PSO algorithms in all runs. As shown, the convergence rate
depends mainly on the initial solutions. For example, in Figure 9a, the PSO was trapped starting from
the fourth iteration; hence, the PSO algorithm cannot explore different regions in the search space and
then trapped in the local solution. On the other hand, the PSO algorithm in the fifth run (see Figure 9e)
searched for the optimal solution till it trapped in the local solution after the twelfth iterations.

To conclude, the PSO algorithm can be trapped into local optimal solution; hence, it cannot find
better solutions because its exploration capability is very limited, this problem is common in many op-
timization algorithms and it is called Stagnation. However, many other solutions for this problem were
used such as combining PSO with other optimization algorithms which make a balance between the
exploration and exploitation phases. Approximately all the recent optimization algorithms solved this
problem but they do not guarantee to reach to the same solution in each run due to the stochastic nature
of the optimization algorithms.

EXPERIMENTAL RESULTS AND DISCUSSION

In this section, two experiments were conducted to show how the PSO algorithm is used to solve machine
learning problems. In the first experiment, PSO was used to find the optimal value for the k parameter in
the k-Nearest Neighbor (k-NN) classifier. In this experiment, the PSO searches for the optimal value in
one-dimensional space. In the second experiment, the PSO algorithm was used to search for the penalty
and kernel parameters of the SVM classifiers. In this experiment, the PSO searched in two-dimensional
search space.

Experimental Setup

The platform adopted to develop the PSO-SVM algorithm is a PC with the following features: Intel(R)
Core (TM) i5-2400 CPU@3.10GHz, 4G RAM, a Window 7 operating system, and MATLAB 7.10.0
(R2010a). To evaluate the proposed algorithm four standard classification datasets were used. The da-
tasets were obtained from University of California at Irvin (UCI) Machine Learning Repository (Blake
& Merz, 1998). The descriptions of all datasets are listed in Table 6. These datasets are widely used to
compare the performance of different classification problems in the literature. As shown in Table 6, all
the datasets have only two classes.

In all experiments, k-fold cross-validation tests have used. In k-fold cross-validation, the original
samples of the dataset were randomly partitioned into k subsets of (approximately) equal size and the
experiment is run k times. For each time, one subset was used as the testing set and the other k-1 subsets
were used as the training set. The average of the k results from the folds can then be calculated to produce
a single estimation. In this study, the value of k was set to 10. Since the number of samples in each class

629

Particle Swarm Optimization

is not a multiple of 10 (see Table 6), the dataset cannot be partitioned fairly. However, the ratio between
the number of samples in the training and testing sets was maintained as closely as possible to 9: 1.

Experimental Scenarios

The first experiment was conducted to compare the pro- posed PSO-SVM algorithm with Genetic Al-
gorithm (GA) algorithm. Table 7 shows the results of this experiment. As shown in the table, the PSO
algorithm achieved results better than GA. Moreover, in terms of the CPU time, the PSO algorithm
required CPU time lower than the GA algorithm.

In the second experiment, PSO algorithm was used to optimize SVM classifier. In this experiment,
the PSO- SVM algorithm was compared with GA-SVM algorithm. Table 8 shows the results of this
experiment. As shown in the table, the PSO algorithm achieved results better than GA. In terms of the
CPU time, the PSO algorithm required CPU time lower than the GA algorithm.

To conclude, the PSO algorithm converged to the optimal or near optimal solutions faster than GA.
Hence, the PSO algorithm achieved results better than GA algorithm.

Table 6. Datasets description

Dataset Dimension # Samples # Classes

Ionosphere 34 351 2

Liver-disorders 6 345 2

Sonar 60 208 2

Tic-Tac-Toc 9 958 2

Table 7. Accuracy and CPU time of the PSO-kNN and GA-k-NN algorithms

Dataset PSO-kNN GA-kNN

Accuracy (%) CPU Time (sec) Accuracy (%) CPU Time (secs)

Iono 3.12±0.12 38.58 4.15±0.4 52.36

Liver 11.12±2.1 62.13 12.31±1.5 74.26

Sonar 9.45±2.1 50.92 9.87±1.9 59.23

Tic-Tac-Toc 10.26±1.9 47.2 12.35±2.4 62.3

Table 8. Accuracy and CPU time of the PSO-SVM and GA-SVM algorithms

Dataset PSO-SVM GA-SVM

Accuracy (%) CPU Time (sec) Accuracy (%) CPU Time (secs)

Iono 2.65±0.45 421.33 3.15±0.32 612.32

Liver 10.93±0.56 1235.32 11.23±0.45 1456.65

Sonar 8.45±0.76 496.32 9.15±0.35 634.56

Tic-Tac-Toc 9.25±1.1 2845.62 11.2±1.5 3056.23

630

Particle Swarm Optimization

CONCLUSION

Optimization algorithms are used recently in many applications. Particle Swarm Optimization (PSO)
is one of the well-known algorithms. It is simple and easy to implement algorithm. This paper explains
the steps of calculating the PSO algorithm, and how the particles are converged to the optimal solution.
In addition, two numerical examples were given and graphically illustrated to explain the steps of PSO
algorithm and to focus on the local optima problem and how PSO algorithm trapped in local minima
problem. Moreover, using standard datasets, two experiments were conducted to show how the PSO
algorithm is used to optimize k-NN classifier, where the search space in one-dimensional, and how the
PSO optimize SVM where the search space is two-dimensional space.

REFERENCES

Abido, M. (2002). Optimal design of power-system stabilizers using particle swarm optimization. IEEE
Transactions on Energy Conversion, 17(3), 406–413. doi:10.1109/TEC.2002.801992

Akay, B. (2013). A study on particle swarm optimization and artificial bee colony algorithms for multi-
level thresholding. Applied Soft Computing, 13(6), 3066–3091. doi:10.1016/j.asoc.2012.03.072

Ali, A. F., Mostafa, A., Sayed, G. I., Elfattah, M. A., & Hassanien, A. E. (2016). Nature inspired optimi-
zation algorithms for ct liver segmentation. In Medical Imaging in Clinical Applications (pp. 431–460).
Springer. doi:10.1007/978-3-319-33793-7_19

Bashir, Z., & El-Hawary, M. (2009). Applying wavelets to short-term load forecasting using pso-based
neural networks. IEEE Transactions on Power Systems, 24(1), 20–27. doi:10.1109/TPWRS.2008.2008606

Blake, C., & Merz, C. J. (1998). fUCIg repository of machine learning databases. Academic Press.

Chander, A., Chatterjee, A., & Siarry, P. (2011). A new social and momentum component adaptive pso
algorithm for image segmentation. Expert Systems with Applications, 38, 4998–5004.

Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the
6th international symposium on micro machine and human science, 39-43. doi:10.1109/MHS.1995.494215

Elbedwehy, M. N., Zawbaa, H. M., Ghali, N., & Hassanien, A. E. (2012). Detection of heart disease
using binary particle swarm optimization. In Proceedings of the Federated Conference on Computer
Science and Information Systems360 (FedCSIS), (pp. 177-182). IEEE.

Forouzanfar, M., Forghani, N., & Teshnehlab, M. (2010). Parameter optimization of improved fuzzy
c-means clustering algorithm for brain mr image segmentation. Engineering Applications of Artificial
Intelligence, 23(2), 160–168. doi:10.1016/j.engappai.2009.10.002

Gaber, T., Tharwat, A., Hassanien, A. E., & Snasel, V. (2016). Biometric cattle identification approach
based on webers local descriptor and adaboost classifier. Computers and Electronics in Agriculture, 122,
55–66. doi:10.1016/j.compag.2015.12.022

http://dx.doi.org/10.1109/TEC.2002.801992
http://dx.doi.org/10.1016/j.asoc.2012.03.072
http://dx.doi.org/10.1007/978-3-319-33793-7_19
http://dx.doi.org/10.1109/TPWRS.2008.2008606
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1016/j.engappai.2009.10.002
http://dx.doi.org/10.1016/j.compag.2015.12.022

631

Particle Swarm Optimization

Hassan, R., Cohanim, B., De Weck, O., & Venter, G. (2005). A comparison of particle swarm optimi-
zation and the genetic algorithm. In Proceedings of the 1st AIAA multidisciplinary design optimization
specialist conference, (pp. 1-13). doi:10.2514/6.2005-1897

Heppner, F., & Grenander, U. (1990). A stochastic nonlinear model for coordinated bird flocks. Wash-
ington, DC: American Association For the Advancement of Science.

Ho, S., Yang, S., Ni, G., & Wong, K. (2007). An improved pso method with application to multimodal
functions of inverse problems. IEEE Transactions on Magnetics, 34(4), 1597–1600. doi:10.1109/
TMAG.2006.892108

Ibrahim, A., & Tharwat, A. (2014). Biometric authentication methods based on ear and finger knuckle
images. International Journal of Computer Science Issues, 11, 134.

Ishaque, K., & Salam, Z. (2013). A deterministic particle swarm optimization maximum power point
tracker for photovoltaic system under partial shading condition. IEEE Transactions on Industrial Elec-
tronics, 60, 3195–3206.

Kennedy, J. (2010). Particle swarm optimization. In Encyclopedia of Machine Learning (pp. 760-766).
Springer.

Kulkarni, R. V., & Venayagamoorthy, G. K. (2011). Particle swarm optimization in wireless-sensor
networks: A brief survey. Proceedings of IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 41(2), 262–267. doi:10.1109/TSMCC.2010.2054080

Lin, S.-W., Ying, K.-C., Chen, S.-C., & Lee, Z.-J. (2008). Particle swarm optimization for parameter
determination and feature selection of support vector machines. Expert Systems with Applications, 35(4),
1817–1824. doi:10.1016/j.eswa.2007.08.088

Maitra, M., & Chatterjee, A. (2008). A hybrid cooperative comprehensive learning based pso algo-
rithm for image segmentation using multilevel thresholding. Expert Systems with Applications, 34(2),
1341–1350. doi:10.1016/j.eswa.2007.01.002

Van der Merwe, D., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization.
In Evolutionary Computation, 2003.CEC’03. The 2003Congress on (pp. 215-220). IEEE. doi:10.1109/
CEC.2003.1299577

Miyatake, M., Veerachary, M., Toriumi, F., Fujii, N., & Ko, H. (2011). Maximum power point track-
ing of multiple photovoltaic arrays: A pso approach. IEEE Transactions on Aerospace and Electronic
Systems, 47(1), 367–380. doi:10.1109/TAES.2011.5705681

Mostafa, A., Fouad, A., Elfattah, M. A., Hassanien, A. E., Hefny, H., Zhu, S. Y., & Schaefer, G. (2015). Ct
liver segmentation using artificial bee colony optimization. Procedia Computer Science, 60, 1622–1630.
doi:10.1016/j.procs.2015.08.272

Panda, S., & Padhy, N. P. (2008). Optimal location and controller design of statcom for power system
stability improvement using pso. Journal of the Franklin Institute, 345(2), 166–181. doi:10.1016/j.
jfranklin.2007.08.002

http://dx.doi.org/10.2514/6.2005-1897
http://dx.doi.org/10.1109/TMAG.2006.892108
http://dx.doi.org/10.1109/TMAG.2006.892108
http://dx.doi.org/10.1109/TSMCC.2010.2054080
http://dx.doi.org/10.1016/j.eswa.2007.08.088
http://dx.doi.org/10.1016/j.eswa.2007.01.002
http://dx.doi.org/10.1109/CEC.2003.1299577
http://dx.doi.org/10.1109/CEC.2003.1299577
http://dx.doi.org/10.1109/TAES.2011.5705681
http://dx.doi.org/10.1016/j.procs.2015.08.272
http://dx.doi.org/10.1016/j.jfranklin.2007.08.002
http://dx.doi.org/10.1016/j.jfranklin.2007.08.002

632

Particle Swarm Optimization

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics,
21(4), 25–34. doi:10.1145/37402.37406

dos Santos Coelho, L. (2010). Gaussian quantum-behaved particle swarm optimization approaches for
constrained engineering design problems. Expert 410Systems with Applications, 37, 1676-1683.

Subasi, A. (2013). Classification of emg signals using pso optimized svm for diagnosis of neuromuscular
disorders. Computers in Biology and Medicine, 43(5), 576–586. doi:10.1016/j.compbiomed.2013.01.020
PMID:23453053

Tharwat, A., Gaber, T., & Hassanien, A. E. (2015a). Two biometric approaches for cattle identifica-
tion based on features and classifiers fusion. International Journal of Image Mining, 1(4), 342–365.
doi:10.1504/IJIM.2015.073902

Tharwat, A., Ibrahim, A., Hassanien, A. E., & Schaefer, G. (2015b). Ear recognition using block-based
principal component analysis and decision fusion. In International Conference on Pattern Recognition
and Machine Intelligence (vol. 425, pp. 246-254). Springer. doi:10.1007/978-3-319-19941-2_24

Tharwat, A., Zawbaa, H. M., Gaber, T., Hassanien, A. E., & Snasel, V. (2015c). Automated zebrafish-
based toxicity test using bat optimization and adaboost classifier. In 2015 11th International Computer
Engineering Conference (ICENCO) (pp. 169-174). IEEE. doi:10.1109/ICENCO.2015.7416343

Tharwat, A., Hassanien, A. E., & Elnaghi, B. E. (2016a). A BA-based algorithm for parameter optimiza-
tion of Support Vector Machine. Pattern Recognition Letters. doi:10.1016/j.patrec.2016.10.007

Tharwat, A. (2016b). Linear vs. quadratic discriminant analysis classifier: A tutorial. International
Journal of Applied Pattern Recognition, 3(2), 145–180. doi:10.1504/IJAPR.2016.079050

Tharwat, A. (2016c). Principal component analysis-a tutorial. International Journal of Applied Pattern
Recognition, 3(3), 197–240. doi:10.1504/IJAPR.2016.079733

Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2016d). A Predictive Model for Toxicity Effects
Assessment of Biotransformed Hepatic Drugs Using Iterative Sampling Method. Scientific Reports, 6.
PMID:27934950

Tharwat, A., Gaber, T., & Hassanien, A. E. (2016e). One-dimensional vs. two-dimensional based features:
Plant identification approach. Journal of Applied Logic. doi:10.1016/j.jal.2016.11.021

Tharwat, A., Gaber, T., Awad, Y. M., Dey, N., & Hassanien, A. E. (2016f). Plants identification using
feature fusion technique and bagging classifier. In The 1st International Conference on Advanced Intel-
ligent System and Informatics (AISI2015), (pp. 461-471). doi:10.1007/978-3-319-26690-9_41

Van Den Bergh, F. (2006). An analysis of particle swarm optimizers (Ph.D. thesis). University of Pretoria.

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems. In Evolutionary Computa-
tion, 2004. CEC2004.Congress on (pp. 1980-1987). IEEE. doi:10.1109/CEC.2004.1331139

Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied Soft
Computing, 10(1), 119–124. doi:10.1016/j.asoc.2009.06.010

http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1016/j.compbiomed.2013.01.020
http://www.ncbi.nlm.nih.gov/pubmed/23453053
http://dx.doi.org/10.1504/IJIM.2015.073902
http://dx.doi.org/10.1007/978-3-319-19941-2_24
http://dx.doi.org/10.1109/ICENCO.2015.7416343
http://dx.doi.org/10.1016/j.patrec.2016.10.007
http://dx.doi.org/10.1504/IJAPR.2016.079050
http://dx.doi.org/10.1504/IJAPR.2016.079733
http://www.ncbi.nlm.nih.gov/pubmed/27934950
http://dx.doi.org/10.1016/j.jal.2016.11.021
http://dx.doi.org/10.1007/978-3-319-26690-9_41
http://dx.doi.org/10.1109/CEC.2004.1331139
http://dx.doi.org/10.1016/j.asoc.2009.06.010

633

Particle Swarm Optimization

Yamany, W., Fawzy, M., Tharwat, A., & Hassanien, A. E. (2015a). Moth-Flame optimization for training
multi-layer perceptrons. In 2015 11th International Computer Engineering Conference (ICENCO) (pp.
267-272). IEEE. doi:10.1109/ICENCO.2015.7416360

Yamany, W., Tharwat, A., Hassanin, M. F., Gaber, T., Hassanien, A. E., & Kim, T.-H. (2015b). A new
multi-layer perceptrons trainer based on antlion optimization algorithm. In 2015 Fourth International
Conference on Information Science and Industrial Applications (ISI) (pp. 40-45). IEEE. doi:10.1109/
ISI.2015.9

Yang, X.-S. (2014). Nature-inspired optimization algorithms (1st ed.). Elsevier.

Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., & Nakanishi, Y. (2000). A particle swarm optimi-
zation for reactive power and voltage control considering voltage security assessment. IEEE Transactions
on Power Systems, 15(4), 1232–1239. doi:10.1109/59.898095

http://dx.doi.org/10.1109/ICENCO.2015.7416360
http://dx.doi.org/10.1109/ISI.2015.9
http://dx.doi.org/10.1109/ISI.2015.9
http://dx.doi.org/10.1109/59.898095

Particle Swarm Optimization

634

APPENDIX

In this section, a MATLAB code for the PSO algorithm is introduced.

clc

clear all

Max_iterations=50; % Maximum Number of Iterations

correction_factor = 2.0; % Correction factor

inertia = 1.0; % IneritiaCoeffecient

swarm_size = 5; % Number of particles

LB=[-5.12 -5.12]; % Lower Boundaries

UB=[5.12 5.12]; % Upper Boundaries

xrange=UB(1)-LB(1);

yrange=UB(2)-LB(2);

% Initial Positions

swarm(:, 1, 1)=rand(1,swarm_size)*xrange+LB(1);

swarm(:, 1, 2)=rand(1,swarm_size)*yrange+LB(2);

% Initial best value so far

swarm(:, 4, 1) = 1000;

% Initial velocity

swarm(:, 2,:) = 0;

foriter = 1: Max_iterations

% Calculating fitness value for all particles

for i = 1: swarm_size

swarm(i, 1, 1) = swarm(i, 1, 1) + swarm(i, 2, 1)/1.3; %update x position

swarm(i, 1, 2) = swarm(i, 1, 2) + swarm(i, 2, 2)/1.3; %update y position

% The fitness function (DeJong) F(x,y)=x^2+y^2

Fval = (swarm(i, 1, 1))^2 + (swarm(i, 1, 2))^2; % fitness evaluation (you

may replace this objective function with any function having a global minima)

% If the fitness value for this particle is better than the

% best fitness value of that particle exchange both values

ifFval< swarm(i, 4, 1) % if new position is better

swarm(i, 3, 1) = swarm(i, 1, 1); % Update the position of the first dimen-

sion

 swarm(i, 3, 2) = swarm(i, 1, 2); % Update the position of the second

dimension

 swarm(i, 4, 1) = Fval; % Update best value

end

end

% Search for the global best solution

 [temp, gbest] = min(swarm(:, 4, 1)); % global best position

% Updating velocity vectors

for i = 1: swarm_size

Particle Swarm Optimization

635

swarm(i, 2, 1) = rand*inertia*swarm(i, 2, 1) + correction_factor*rand*(swarm(i,

3, 1) - swarm(i, 1, 1)) + correction_factor*rand*(swarm(gbest, 3, 1) - swarm(i,

1, 1)); %x velocity component

 swarm(i, 2, 2) = rand*inertia*swarm(i, 2, 2) + correc-

tion_factor*rand*(swarm(i, 3, 2) - swarm(i, 1, 2)) + correction_

factor*rand*(swarm(gbest, 3, 2) - swarm(i, 1, 2)); %y velocity component

end

% Store the best fitness valuye in the convergence curve

ConvergenceCurve(iter,1)=swarm(gbest,4,1);

disp([‘Iterations No. ‘ int2str(iter) ‘, the best fitness value is ‘

num2str(swarm(gbest,4,1))]);

end

% Plot convergence curve

plot(ConvergenceCurve,’r-’)

title(‘Convergence Curve’)

xlabel(‘Iterations’)

ylabel(‘Fitness Value’)

	Title-Page
	Copyright-Page
	Advances-in-Computational-Intelligence-and-Robotics--(ACIR)-Book-Series
	Particle-Swarm-Optimization_-A-Tutorial

