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Abstract: Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a
barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating
an immune response. The manner by which A. fumigatus initiates this response and the reasons for the
immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall–epithelial
cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our
aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8
in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a
low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein
production were quantified. The role of proteases in cytokine production was further determined
using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia
germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix
metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus,
IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of
both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response
by airway epithelial cells in a strain-dependent manner.

Keywords: Aspergillus fumigatus; airway epithelium; proteases; inflammatory cytokines; fungal
lung disease

1. Introduction

Aspergillus fumigatus is the causal agent of aspergillosis, a pulmonary disorder which
globally affects over 14 million people [1,2]. It has been estimated that individuals inhale
several thousand fungal conidia per day, with higher concentrations linked to the occur-
rence of aspergillosis [3]. In the healthy host, inhaled A. fumigatus conidia are efficiently
removed from the airways by the lung defence system. However, in some patients with
an impaired immune system, a previous cavitating lung infection or a chronic respiratory
condition [4,5], A. fumigatus conidia can elude the host immune response, persist and
germinate in the lungs, promoting the development of fungal disease.
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The epithelial lining of the airway is the first line of defence to inhaled conidia, and
as well as acting as a physical barrier, it is paramount in orchestrating a robust innate
defence [6]. In vitro, A. fumigatus conidia cultured with airway epithelial cells demon-
strate limited germination when internalised compared with non-internalised conidia [7–9].
Additionally, evidence points to a pivotal role for A. fumigatus-exposed airway epithelium
in directing inflammatory responses including regulation of the cytokine signature [10–13],
generation of reactive oxygen species [14] and defensins production [15], thereby contribut-
ing to the pathogenesis of airway disease [16]. Of note, inactivated and irradiated conidia
that are unable to germinate do not elicit cytokine induction, suggesting that germination is
a key step in the initiation of an epithelial innate immune response [13,17]. In vitro, proin-
flammatory mediators, including IL-6 and IL-8, are produced by airway epithelial cells
in response to A. fumigatus [13,14,17–20] and are known to mediate mucus secretion [21],
sub-epithelial fibrosis [22], neutrophil recruitment and Th2-type immune response [20,23].
IL-6 levels are elevated in asthmatic sputum samples [24], whilst IL-6 deficiency in mice is
associated with increased susceptibility to aspergillosis [25]. Furthermore, high IL-8 levels
are associated with asthma exacerbations [26] and raised IL-8 levels in lung lavage are an
emerging biomarker for invasive aspergillosis [27], which also correlate with neutrophilia
and declining lung function in allergic bronchopulmonary aspergillosis [28].

Previous studies have focused on the role of innate immune cells, including macrophages,
neutrophils and dendritic cells, in the recognition of and response to germinating A. fumigatus
conidia [29]. Cytokine secretion by airway macrophages in response to germinating conidia
is dependent on the morphological stage of growth with swollen conidia and germlings in
particular, inducing a robust inflammatory response predominately through the C-type
lectin receptor, Dectin-1 [30]. β-glucan, a structural cell wall glycoprotein present on
swollen conidia and hyphae of A. fumigatus, is the principal ligand recognised by Dectin-1
on inflammatory cells, and this interaction is essential for fungal phagocytosis, cytokine
production and clearance [31,32]. In a similar manner to inflammatory cells, airway epithe-
lial cells also express Dectin-1 and its interaction with β-glucan is proposed to be pivotal
to A. fumigatus conidia internalisation and cytokine production [12,14,33]. Less is known,
however, regarding the contribution of A. fumigatus proteases that are secreted during
fungal growth and their induction of proinflammatory cytokine production by airway
epithelium [34–37]. Importantly, such fungal-derived proteases have been associated with
mediating an allergic response and airway hyper-responsiveness in experimental rodent
models [38,39] and their presence in human airways is associated with increasing asthma
severity [40]. We previously reported that A. fumigatus grown in protein-rich culture media
secrete a high level of proteases with dominant serine and metalloprotease activity com-
pared with when grown in minimal Vogel’s media [41]. Furthermore, we demonstrated
that the administration of A. fumigatus culture filtrate intranasally in mice mediated a Th2
allergic response, and fungal proteases played a major role in the induction of airway wall
remodelling [42]. However, the interplay between fungal proteases secreted during conidia
germination and hyphal growth and fungal cell wall activation of pattern recognition
receptors (PRRs), such as Dectin-1, is likely to be complex and possibly interlinked [43].
For instance, cleavage of neutrophil Dectin-1 receptor by serine proteases produced by
A. fumigatus results in diminished anti-fungal immunity [44]. Therefore, both direct host–
fungal interactions and secreted fungal proteases may be important for the induction of
proinflammatory cytokines by airway epithelial cells. In the current study, we analysed
the relevance of secreted fungal proteases to the production of IL-6 and IL-8 by airway
epithelial cells exposed to germinating conidia from both high and low protease-producing
A. fumigatus isolates, and we show that epithelial inflammatory responses depend on both
secreted protease activity and Dectin-1–β glucan interactions.
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2. Materials and Methods
2.1. A. fumigatus Culture

A. fumigatus strain, Af293 (low protease producer in minimal media [41]), was a gift
from the Mycology Reference Centre, (Wythenshawe Hospital, Manchester, UK) and strain
A1160pyrg+ (high protease producer in minimal media), derived from a parent clinical
isolate (CEA10), was a gift from Dr. M. Bromley (University of Manchester, Manchester,
UK). Green fluorescent protein-expressing A. fumigatus (GFP-AF) was a gift from Professor
M. Moore (Simon Fraser University, Burnaby, BC, Canada). A. fumigatus strains were
propagated on Sabouraud dextrose agar (Oxoid, Basingstoke, UK) at 37 ◦C for 48–72 h.
Conidia were harvested by gentle agitation in sterile phosphate buffered saline (PBS)/0.05%
Tween 20, filtered through 4 layers of Whatman filter paper to remove hyphal fragments and
counted. The protease activity of the epithelial cell culture supernatant containing Af293
and A1160pyrg+ conidia, compared to A. fumigatus culture filtrates following growth in
Vogel’s minimal media, was determined as previously described using a universal protease
substrate (Casein, resorufin-labelled; Roche, Sussex, UK) according to the manufacturer’s
instructions [41,42].

2.2. Epithelial Cell Culture, Conidia Germination and Growth

Human bronchial epithelial cells (16HBE14o-) were provided by Dr. Dieter Gruenert,
University of California San Francisco [45]. 16HBE14o-cells were seeded into 12-well
plates at 1.5 × 105 cells/mL in minimal essential media (MEM; ThermoFisher, Paisley,
UK) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine and 1% v/v
penicillin/streptomycin (PAA, Yeovil, UK). When 80% confluent, cells were washed and
cultured overnight in serum-free supplemented MEM. In the initial dose-response experi-
ments, epithelial cells were exposed to a rising concentration of Af293 A. fumigatus conidia,
ranging from 10 to 106 conidia. Thereafter experiments were conducted using a total of
106 Af293, A1160pyrg+ or GFP-A. fumigatus conidia, which were washed and applied to
cell monolayers or cell-free wells incubated at 37 ◦C in 5% CO2. For automated, live-cell,
time-lapse imaging, an AS MDW live cell imaging system was used with a 20× HC Plan
Fluotar objective with a working distance of 1.15 mm, and a green (GFP) LED fluorescent
light source in conjunction with the imaging software Image Pro 6.3. Images were captured
every 0.5 h for 24 h using a Cascade II EM CCD camera for ultra-sensitive imaging with
four images taken per well.

2.3. Protease Inhibition and Dectin-1 Receptor Inhibition

16HBE14o-cells were seeded in 24-well plates at 1.5 × 105 cells/mL as described
above. Conidia were washed and diluted to the appropriate concentration and applied to
cell monolayers for specified times. For conditioned media transfer studies, media was
collected from 24 h cultures, filtered through Millex® 0.22 µm syringe-driven filter units
(Millipore, Watford, UK) to remove conidia and fungal fragments and applied to fresh
serum-starved 16HBE14o- cell cultures for a further 24 h. Protease inhibitors including
serine protease inhibitors, antipain (10 µg/mL), matrix metalloprotease (MMP) inhibitor,
ilomostat (2.5 µM) and cysteine protease inhibitor E64 (10 µM) were added to serum-starved
16HBE14o- for 15 min prior to A. fumigatus exposure. All inhibitors were purchased from
Sigma-Aldrich, Poole, UK. To determine the role of Dectin-1, laminarin—a soluble, linear
β-glucan from the marine algae Laminaria digitata (Sigma-Aldrich)—was applied at a final
concentration of 10 mg/mL to serum-starved cultures 30 min prior to the addition of
A. fumigatus.

2.4. Human Nasal Epithelial Cell Culture

Primary human nasal epithelial cells (HNECs) were purchased from PromoCell
(Heidelberg, Germany) and cultured at passage two in the proliferation media (PromoCell)
until >90% confluent. For air–liquid interface (ALI) studies, HNECs were seeded at a
density of 16.5 × 104 cells/mL in 0.5 mL differentiation media (PromoCell) in 12 mm
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Transwell® plates (7.4 × 104 cells/cm2) with 0.4 µM pore polyester membrane inserts
and differentiation media in the basal compartment. When confluent, apical media was
removed to facilitate ALI (day 0), where cells differentiate and become ciliated and mucus
secreting. Cells were maintained at ALI until day 14, at which point they were exposed to
A. fumigatus (Af293) conidia in a similar manner to submerged 16HBE14o- cells.

2.5. Cytokine Gene Expression and Protein Production

For mRNA analysis, cell layers were collected in 300 µL RNAprotect Cell Reagent
(Qiagen, Crawley, UK) and frozen at −80 ◦C. Qiagen’s RNeasy Plus Mini Kit was used to
extract RNA according to the manufacturer’s instructions. Applied Biosystems®, TaqMan®

Reverse Transcription Reagents kit (Fisher Scientific, Loughborough, UK) was used accord-
ing to the manufacturer’s instructions to generate cDNA. The Human geNorm Reference
Gene Kit with Perfect Probe (Primer Design, Eastleigh, UK) revealed that RPL 13A was the
most appropriate housekeeping gene for this study. Real-time PCR was performed using
SensiFAST™ SYBR green No-rox kit (Bioline, London, UK) with human specific primers
for IL-6, IL-8 and RPL 13A (Primerdesign, UK; Table A1). Gene expression levels were
analysed by two-step quantitative real-time PCR. Data were analysed by the ∆∆Ct method
and normalised to the housekeeping transcript, RPL 13A (Primerdesign validated primer).

For protein analysis, cell-free supernatant was collected, and IL-6 and IL-8 levels were
analysed using the human DuoSet® ELISA development system (R&D Systems, Abington,
UK) according to the manufacturer’s instructions.

2.6. Statistical Analysis

Data are presented as mean +/− SEM from data collated across experimental repeats
(n = 6 per data point, a biological triplicate and repeated experiment). Data were considered
significant if p < 0.05. One-way ANOVA or two-way ANOVA with Bonferroni post hoc
tests and linear regression were used to compare differences as stated. Statistical analysis
was performed using GraphPad Prism 5 for Mac OS X (GraphPad Software Inc., San Diego,
CA, USA).

3. Results
3.1. Germination of A. fumigatus Conidia Induces Cytokine Production by Airway Epithelial Cells

Bronchial epithelial cell monolayers (16HBE14o-) were exposed to increasing con-
centrations of A. fumigatus conidia (Af293 strain) for 24 h, and levels of IL-6 and IL-8
were assessed by ELISA. Exposure to germinating conidia caused a significant increase in
proinflammatory cytokine secretion at 105/mL conidia (IL-8) and 106/mL conidia (IL-6 and
IL-8) compared with unexposed control cells (Figure 1A,B). Therefore, for all subsequent
experiments, conidia were administered at a concentration of 106/mL.
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Figure 1. A. fumigatus conidia induce IL-6 and IL-8 production in a dose-dependent manner.
A fumigatus conidia significantly induced (A) IL-6 at 106 and (B) IL-8 at 106 and 105 conidia/mL
compared with the unexposed control. Data represent mean +/− SEM analysed by one-way ANOVA
with Bonferroni multiple comparison test. **** p < 0.0001; *** p < 0.001; * p < 0.05 compared with
the control.
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To assess the temporal profile of A. fumigatus-induced IL-6 and IL-8 production,
16HBE14o- cells were exposed to conidia (strain Af293) and assessed over a 24 h time
period. An upregulation of IL-6 gene expression was found at 8 h, which was 4-fold above
the control by 12 h, and 14-fold above the control expression by 24 h (Figure 2A). IL-8
expression showed a similar upregulation from 8 h, with a 22-fold increase by 12 h and 112-
fold increase at 24 h compared with the expression by unexposed control cells (Figure 2B).
Protein expression showed a similar trend with the level of both cytokines increasing after
8 h. IL-6 levels were significantly increased by 24 h, whilst IL-8 levels were significantly
higher than control at 12 h, 14 h and 24 h post-exposure (Figure 2C,D). In order to relate
the temporal secretion of cytokines to the stage-specific growth of A. fumigatus, percentage
germination and hyphal extension of A. fumigatus co-cultured with 16HBE14o- cells was
assessed. To aid visualisation, a GFP-expressing strain of A. fumigatus was used that
demonstrated similar growth kinetics to the Af293 strain (data not shown). Germination
commenced from 6 h, with conidial swelling and germlings observed between 6 and
10 h and hyphal growth occurring by 12 h, by which point around 80% of the conidia
was germinated (Figure 2E,F). It was not possible to assess germination after this time
because of excessive fungal growth and the establishment of a mycelial network. Cytokine
gene expression and increased protein production occurred once germination and hyphal
extension were established (Figure 2A–D)
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Figure 2. A fumigatus-induced cytokine secretion coincides with the onset of conidial germination.
A. fumigatus significantly upregulated both (A) IL-6 and (B) IL-8 gene expression compared with
unexposed control cells. (C) IL-6 protein level was significantly increased at 24 h, whereas (D) IL-
8 reached significance at 12 h and 24 h compared with control. (E) Percentage germination and
(F) hyphal growth of GFP-expressing conidia co-cultured with 16HBE14o- cells showed germination
after 6 h, with a rapid increase between 6 and 10 h. Data represent mean +/− SEM; two-way ANOVA
with Bonferroni multiple comparison test. **** p < 0.0001; *** p < 0.001; compared with the control.
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3.2. Primary Human Airway Epithelial Cells Show Increased Cytokine Production in Response to
A. fumigatus

To determine whether the dynamics of cytokine production in primary human airway
epithelial cells were similar to transformed airway cells, primary HNECs were grown at
ALI for 14 days and then exposed to A. fumigatus conidia (Af293). Primary cells displayed a
significant induction of IL-6 at 12 and 24 h post-exposure (Figure 3A). Similarly, in response
to Af293, IL-8 levels showed a significant increase at 12 and 24 h relative to the unexposed
controls (Figure 3B). These findings suggest that similar trends in cytokine induction in
response to conidia were observed between submerged 16HBE14o- and primary airway
epithelial cells at ALI.
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Figure 3. Primary human nasal epithelial cells grown at air–liquid interface show progressive
increase in cytokine levels following exposure to A. fumigatus. Exposure to A. fumigatus conidia
caused a significant upregulation of (A) IL-6 and (B) IL-8 protein levels at 12 h and 24 h, relative to
controls. Data represent mean +/− SEM; one-way ANOVA with Bonferroni multiple comparison
test. **** p < 0.0001, * p < 0.05 compared with control.

3.3. Proteases Play a Role in A. fumigatus (Af293)-Elicited IL-8 Induction

In order to assess the contribution of fungal-derived secreted factors in cytokine
induction, 16HBE14o- cells were exposed to conidia for 24 h and conditioned media were
collected, filtered and transferred to naïve cells for a further 24 h. Relative to the cytokine
levels observed in direct response to conidia, conditioned media derived from conidia-
exposed epithelial cells did not induce a further increase of IL-6 or IL-8 in naïve cells
over that already present in the conditioned media (Figure 4A,B). Similarly, conditioned
media from conidia cultured without cells for 24 h did not induce cytokine production in
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naïve cells. Protease activity in the conditioned media derived from these cultures was
below the level of detection using a universal protease assay (data not shown). To further
clarify the contribution of A. fumigatus proteases, specific protease inhibitors were added to
the cultures. Serine, MMP or cysteine protease inhibitors did not affect the level of IL-6
induced by Af293 conidia (Figure 4C). However, the presence of a MMP inhibitor caused an
approximate 2-fold decrease and the cysteine protease inhibitor caused an approximate 1.5-
fold decrease in the IL-8 level compared with the no inhibitor control cultures (Figure 4D).
Taken together, these findings suggest a potential role for A. fumigatus metalloprotease and
cysteine proteases in IL-8 induction in response to A. fumigatus conidia (Af293).
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cultured alone (Af293 c) or from conidia-exposed cells (Af293+cells c) did not induce production of either (A) IL-6 or (B)
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with Bonferroni multiple comparison test. **** p < 0.0001; *** p < 0.001, ** p < 0.01 compared with unexposed control and $
indicates p < 0.0001 for MMP I and p < 0.02 for Cys I compared with Af293-exposed cells.

3.4. Secreted A. fumigatus Metalloprotease (A1160+) and Cysteine Proteases Induce
IL-8 Production

To determine whether a higher protease-producing strain of A. fumigatus induced a
greater proinflammatory cytokine response, conidia from A. fumigatus strain, A1160pyrG+,
were used. As with the Af293 strain, A1160pyrG+ conidia significantly induced IL-6
and IL-8 production by 16HBE14o- cells (Figure 5A,B). Interestingly, conditioned media
from cells grown in the presence of conidia (A1160pyrG+) for 24 h significantly induced
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both IL-6 and IL-8 production in naïve cells, above that induced by directly exposed
cells. Furthermore, conditioned media from A1160pyrG+ conidia grown without cells
for 24 h significantly induced the production of IL-6 and IL-8 in naïve cells to a similar
extent as that from directly exposed cells (Figure 5A,B). However, the protease activity
was once again below the level of detection in the conditioned media derived from these
cultures in the protease assay used (data not shown). The presence of a serine protease
inhibitor again did not reduce production of either cytokine; however, a MMP inhibitor
significantly inhibited A. fumigatus (A1160pyrG+)-induced IL-6 (approximately 1.3-fold)
and IL-8 (approximately 1.7-fold) production. Cysteine protease inhibition did not affect
A. fumigatus (A1160pyrG+)-induced IL-6 production but dramatically reduced IL-8 levels
(11-fold) compared with that produced by conidia-exposed cells. Taken together these
findings confirm that A. fumigatus metalloproteases and cysteine proteases contribute to
IL-8 induction by airway epithelial cells.
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To investigate whether Dectin-1 was also involved in A. fumigatus recognition and sub-
sequent cytokine production, the Dectin-1 receptor antagonist, laminarin, was introduced.
Blocking Dectin-1 caused a significant (5.6-fold) reduction in IL-6 and a 4.2-fold reduction
in IL-8 production compared with conidia-exposed group (Figure 6A,B). These observa-
tions suggest a dual role for proteases and Dectin-1-β-glucan moieties in the induction of
proinflammatory cytokines by airway epithelium in response to A. fumigatus.
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4. Discussion

In the current study, we found differential induction of IL-6 and IL-8 by airway
epithelial cells following exposure to two different strains of A. fumigatus. Cytokine
induction required at least 8 h of exposure to A. fumigatus conidia coinciding with the
process of germination and hyphal extension. The extent of epithelial cell response was
reduced by the addition of protease inhibitors, indicating that certain proteases play a key
role in mediating proinflammatory cytokine response. In addition, conditioned media
generated by A1160pyrG+ conidia grown alone was found to induce both IL-6 and IL-8
cytokine production, indicating that secreted proteases were involved. IL-8 was found to be
induced by A. fumigatus metalloprotease activity, but to a greater extent by cysteine protease
activity, whereas IL-6 production was only induced by A. fumigatus metalloprotease activity.
Thus, the impact of secreted proteases on the proinflammatory response appears highly
dependent on the protease secretion profile of the isolate of A. fumigatus used. Furthermore,
induction of IL-6 and IL-8 production was also mediated by β-glucan recognition by airway
epithelial cells as co-incubation with the Dectin-1 receptor antagonist, laminarin, blocked
cytokine induction.

Our findings support those of others showing that A. fumigatus conidia germination
and fungal growth are necessary for proinflammatory cytokine induction [13,14,17,18]. In-
deed, Bellanger et al. found that germination and growth, and not conidial internalisation,
were responsible for induction of inflammatory cytokines, IL-8, GMCSF and TNF-α, by an
alveolar epithelial A549 cell line [19]. Previous studies have suggested that soluble prote-
olytic factors secreted by growing A. fumigatus can induce epithelial cytokine production
in vitro [34,36]; although, culture filtrate was used rather than live conidia. Kauffman and
colleagues grew a clinical isolate of A. fumigatus in a collagenous substrate to generate
culture filtrate with high protease activity that induced IL-6 and IL-8 production by A549
cells; although, A. fumigatus serine protease activity was proposed to be the main inducing
agent, but not metalloprotease or cysteine proteases [37]. The reason for this difference from
the current study may be due to the culture filtrate used. In the previous study, it was from
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A. fumigatus cultures grown for 2–5 days, so mature mycelium would have formed, and
possibly, an altered protease profile was produced compared with that secreted during ger-
mination and early hyphal growth over the first 24–48 h, as in the current study. Moreover,
we have previously shown that the profile of proteases released during A. fumigatus germi-
nation, and early growth depends on the culture substrate present [41]. Thus, isolate Af293
secreted proteases in the presence of complex protein substrates, such as homogenised lung
tissue or mucins, but not when grown in Vogel’s minimal media over a 48 h time period [43].
By contrast, the strain A1160pyrG+ exhibited protease activity in Vogel’s minimal media
even in the absence of a complex protein [41,42]. A. fumigatus metalloprotease activity
found in the current study may, in part, be due to Asp f 5 or Mep, which can degrade
collagen and elastin [46,47]. The identity of the secreted cysteine protease activity is less
clear but may be similar to PalB, a calpain-like, calcium-activated cysteine protease found
in Aspergillus nidulans [48]. It is worth noting that there are at least 231 putative secreted
proteases for the A. fumigatus genome, many of which have not yet been identified [49].
Of relevance, Neustadt et al. used free flow electrophoresis and mass spectrometry and
found cysteine protease activity in culture filtrate from A. fumigatus [50], suggesting that
a cysteine protease may be secreted by certain isolates but not others and has yet to be
fully characterised. A possible limitation of the data presented is the non-targeted action of
protease inhibitors. For instance, epithelial cell-derived MMP and cysteine proteases could
contribute to cytokine induction in an autocrine manner and may have also been blocked
by protease inhibitors. Furthermore, whilst no morphological impact of protease inhibitors
on monolayer integrity was observed, quantification of cell viability and inhibitor dose
response may have strengthened the findings. Future studies to characterise the nature
of proteases produced by germinating conidia grown in close contact with epithelial cells
will require a combination of techniques, such as mass spectrometry, substrate degradation
assays and protease inhibitor analysis, to enable the discrimination between human and
fungal proteases and whether they are active or inactive.

Our findings suggest that reduced cytokine induction in the presence of protease
inhibitors was less pronounced compared with inhibition of Dectin-1-cell wall β-glucan
interaction by laminarin, perhaps suggesting that secreted proteases and direct interaction
with PPRs by A. fumigatus may both play a role, but the importance of each is determined
by the culture environment and whether a high or low protease-producing isolate is being
assessed. These findings support those of Sun et al. showing that Dectin-1 expression is in-
ducible in bronchial epithelial cells exposed with A. fumigatus, and the silencing of Dectin-1
with siRNA resulted in a significant reduction in IL-8 gene expression [14]. In addition,
levels of inflammatory cytokines in bronchioalveolar lavage fluid following A. fumigatus
airway exposure in mice have been shown to be, in part, Dectin-1 dependent [30,31], with
Dectin-1 knockout mice displaying increased susceptibility to aspergillosis, suggesting an
essential role for this PPR in host defence [32]. Therefore, it is likely that host–pathogen
relationships are multiple and complex, and taken together, the induction of proinflamma-
tory cytokines and resultant airway inflammation occur when fungal cell wall components
are exposed, and proteases are secreted in an isolate-dependent manner. Furthermore,
it may be that the mechanism of cytokine induction is dynamic, with early induction
dependent on germinating conidia cell wall component exposure, whilst later, secretion
of proteases from invading hyphae become prominent. Elucidating the mechanisms by
which different A. fumigatus isolates drive inflammatory responses will provide a better
understanding of differential disease aetiology and contribute to the development of novel
treatment strategies.
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Appendix A

Table A1. Forward and reverse primer sequences for IL-6 and IL-8.

Gene Sense Antisense

IL-6 GCAGAAAACAACCTCAACCTT ACCTCAAACTCCAAAAGACCA

IL-8 CAGAGGGTTGTGGAGAAGTTT ATGAAGTGTTGAAGTAGATTTGCT
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