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Abstract 

Previous work has shown that chiral materials can change the state of 

polarisation of incident light. The focus of this current work is thus to explore new ways 

of investigating the polarisation response of mesoscopic structures, with a focus on 

chiral metamaterial structures and nanoparticles. 

 In the theoretical part of this work, fundamental concepts related to chirality are 

thus defined. Previous studies on the quantifying chirality of planar patterns 

are reviewed. The prospects of developing different expressions based on triangle 

models are consequently highlighted. 

A dual photoelastic modulator polarimeter, incorporating the lock-in amplifier 

technique, was used to measure the polarisation states of light. Subsequently, these 

polarisation states were mathematically analysed using Stokes parameters and Mueller 

matrices. This technique allowed to quantify the full polarisation state of light, 

including the intensity of both the polarised component and the depolarised component, 

the degree of polarisation, the degree of linear polarisation, the degree of circular 

polarisation, the polarisation orientation, and the ellipticity angle. 

Furthermore, a dual photo elastic modulator-based Stokes polarimetric 

microscope developed in the laboratory undertaking the current work was then used to 

study the polarisation states locally at the sample surface. This polarimetric imaging 

system provided quantitative measurements of the four Stokes parameters for each pixel 

and hence enabling the determination of the full range of polarisation states across the 

focusing plane. The polarimetric imaging performed by the microscope was automated 

by using Laboratory Virtual Instrument Engineering Workbench (LabView) ‘virtual 

instrument’ (vi) codes. In addition, relevant algorithms written in Python were used for 

analysing the collected data from both the calibration process and the sample 

measurements. 

The Stokes polarimetric microscopy is applicable to a wide variety of material 

studies and provides insights information about the structure of various samples. Based 

on the experimental investigations by using the polarimetric microscope in transmission 

mode, the results of several selected samples are thus presented: (i) chiral 
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metamaterials; (ii) achiral metamaterials; (iii) copper nanoparticles; and (iv) gold 

nanoparticles. In general, the results show good ability for the dual photoelastic 

modulator based polarimetric microscope in terms of exploring the polarisation 

characteristics of light at the sample surface by means of the measurements of relevant 

Stokes parameters. 

 The polarisation characteristics of the Fraunhofer diffractions of mesoscopic 

structures were also further explored within the context of Fourier optics. Preliminary 

results suggested that a combination of the mapping of the Stokes parameters at the 

surface of the mesoscopic structures and subsequent Fourier analysis may offer a new 

and an alternative technique for the study of the polarisation signatures of the diffracted 

light beams, making it possible for high throughput polarisation characterisations to be 

developed. 
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1 Introduction 

Planar chiral metamaterials are a particular class of metamaterials created from 

artificial arrays of the same chiral pattern in two dimensions. A chiral pattern is defined 

as a pattern that cannot be superimposed congruently on its mirror image under any 

possible rotation or translation operation. 

The primary aim of the current work is to investigate the effects of planar chiral 

metamaterial structures on the polarisation state of light travelling through them by 

applying polarimetry; the general characterisation technique of the polarisation state 

measurements. The polarised light and its resultant propagation through matter can be 

represented by Mueller-Stokes formalism. In this work, a polarimetric microscope 

based on a dual-photoelastic modulator (PEM) was used to acquire the four Stokes 

parameters in the form of images. 

The present research is largely motivated by the earlier work of Potts, Bagnall, 

and Zheludev (2003) on the construction of a mathematical function to measure the 

chirality of planar structures. Initially, considerable effort was focused on the 

investigation of different models that quantify such chirality. However, polarimetric 

microscopy was observed to be more attractive in the long term due to its potential 

importance in determining the optical properties of various samples. In this way, the 

polarimetric microscope was used to measure Stokes parameters as a way to study 

polarisation variations of light beams transmitted through planar chiral materials. 

The Stokes parameters are sets of four intensities and intensity differences; 

hence, optical imaging theories must be expected to be applicable to them. For example,  

it is well known that the Fraunhofer diffraction effect of an aperture may be explored by 

developing the Fourier transform of the aperture function (Goodman, 2005). Therefore, 

the application of a Fourier transform to the Stokes parameters images of the specimen 

may similarly enable evaluation of the polarisation characteristics of the Fraunhofer 

diffractions of chiral pattern arrays.  

This thesis is organised into seven chapters. Following this introduction, Chapter 

Two describes the theoretical background underlying the concept of chirality, including 
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a literature review of quantification of the chirality and offer a brief introduction to 

metamaterials. 

Chapter Three then provides an overview of the relevant theoretical principles of  

light, including the idea behind Jones calculus, Stokes parameters, and Mueller 

matrices. Moreover, a basic overview of the Poincare Sphere is also offered. 

The optical properties of chiral materials are presented in Chapter Four along 

with some of the basic concepts about light polarisation and its propagation in chiral 

media. The principles of light-matter interaction with planar chiral metamaterials, 

including optical activity, dichroism, and birefringence, are described. 

Chapter Five is devoted to describing the experimental methodologies used to 

study the samples in the current work. The instruments that required to build a dual 

photoelastic modulator polarimeter are thus introduced. Some aspects of the calibration 

procedures are discussed. Then, the chapter explains the process of adapting a light 

microscope to act as a polarimetric microscope. 

Chapter Six focuses on the simulation results obtained by using MATLAB to 

compare four different theoretical models that quantify the chirality of planar shapes. 

The limitations of these expressions are then highlighted. Using these models, the 

chirality indices of gammadion patterns were calculated. 

The last chapter, Chapter Seven, presents the main outcomes of the related 

experimental work. It discusses the investigation of the polarisation response of planar 

chiral metamaterials fabricated in various gammadion shapes. In addition, the 

measurements of nanoparticles fabricated in gold and copper are offered. Preliminary 

work on the application of Fourier analysis suggests that such steps are likely to open up 

new methods for evaluating the polarisation characteristics in the diffraction of the 

chiral pattern arrays. 

I believe that this work introduces a degree of novelty in two aspects: 

quantifying chirality and examining the use of Stokes polarimetry microscopy to study 

planar structures. Furthermore, this research offered opportunities for several 

professional and personal improvements for a researcher, based on the acquisition and 

application of various new skills during the PhD journey. From my respective point of 
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view, the most essential skill that has already improved is programming in both 

MATLAB and Python.   
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2 Chirality 

A great deal of effort has been made into quantifying chirality based on its status 

as a significant parameter since most natural materials possess chiral characteristics. Of 

Greek origin, the term ‘chiral’ means ‘hand’, which is the most well-known chiral 

objects, as it exists in clear left and right ‘mirror’ versions. Chiral material can basically 

be described as a substance that cannot be superimposed congruently on its mirror 

image under any rotation or translation operation. Any chiral material and its reflected 

form are both known as enantiomers, which is also derived from another Greek word, 

meaning ‘the opposite’ (Brandt, Salerno, and Fuchter, 2017; Schwanecke, 2009). Figure 

2-1 below illustrates the chemical structure of two molecules of the amino acid alanine, 

which serve as an example of enantiomers.  

 

Figure 2-1: Two molecules of the amino acid alanine considered as enantiomers 

Enantiomers behave differently under the same physical conditions in certain 

circumstances, despite having almost identical chemical and physical properties, such as 

chemical formula, density, and weight. For example, enantiomers of several specific 

chiral drugs must be viewed and treated as two distinct drugs, as one enantiomer may be 

biologically active while the other is inactive, such as ibuprofen (Brooks, Guida, and 

Daniel, 2011; McConathy and Owens, 2003; Wang, Cheng, Winsor, and Liu, 2016). 

Another example is seen in the interactions with light for some enantiomeric (left-right) 

forms of chiral structures, yielding different polarisation changes (Papakostas et al., 

2003; Zhang, Potts, and Bagnall, 2006).  
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These behavioural deviations have significant ramifications for several scientific 

fields, including chemistry, physics, biology, and pharmacology. Therefore, it is crucial 

to conduct more studies that facilitate the acquisition of high-quality knowledge and 

understanding of chirality. Such knowledge should make valuable contributions to the 

development of the materials industry, particularly where chirality is critical to optical 

applications. 

2.1 Handedness  

Quantitative approaches have frequently been used to measure chirality, while 

qualitative methods have been employed to ascertain the ‘handedness’ of various 

structures. The term 'handedness' stems from the root hand, and it is the characteristic of 

chirality in which each enantiomer can be classified as being either one of two versions: 

left-handed or right-handed, as depicted below in Figure 2-2. The underlying theory of 

handedness can best be explained in terms of the concept of molecule parity (Potts, 

2003).  

               

Figure 2-2: Two enantiomer spirals. a) clockwise spiral; b) anticlockwise spiral. (the figure code 
is in Appendix A-1) 

 

It is sensible to classify objects as chiral or non-chiral based on the presence of 

symmetry. At the same time, more comprehensive approaches are available for 

categorising particular chiral objects (e.g., shoes, gloves, screws, and spirals) as either 

left- or right-handed, according to an acceptable definition. Taking the spirals in Figure 

2-2 as an example: if we start from the centre of the spiral, the spiral in Figure 2-2a is a 

clockwise spiral and can be considered as a right-handed spiral; hence, the 

anticlockwise spiral in Figure 2-2b is the left-handed form.  
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However, there is no acceptable method of categorising the majority of chiral 

objects (e.g., stones, potatoes, and shells) as right- or left-handed (Fowler and Rassat, 

2006). A series of theoretical rules have been proposed for defining the handedness of a 

structure, but these almost are only applicable to certain structures and not necessarily to 

others. Numerous studies have examined handedness with regard to metamaterials and 

natural materials both theoretically and experimentally (Schwanecke, 2009).  

2.2 Previous Research 

Osipov, Pickup, Fehervari, and Dunmur (1998) proposed a theoretical applicable 

chirality expression. By considering a triangle as the simplest 2D form, this expression 

could be used to numerically calculate the chirality index of 2D chiral structure based 

on the position and arrangement of three points. Subsequently, the chirality index of any 

structure could be thus obtained by dividing the structure into points and summing up 

the chirality index of each set of three points. A chirality index should vanish for achiral 

structures while possessing the same value with opposite signs for each pair of chiral 

enantiomers. Similarly, a tetrahedron is the most basic 3D structure, consisting of four 

triangles. So, the chirality index thereby can be measured in either two or three 

dimensions based on a similar approach (Boruhovich, 2006; Osipov, Pickup, Fehervari, 

and Dunmur, 1998). 

Similar to Osipov et al. methodology, Potts, Bagnall, and Zheludev (2003) offset 

certain conditions for constructing the chirality index for a triangular form. They then 

used three different models to calculate the antisymmetric area (i.e. the difference in 

areas) when a triangle was placed above its mirror-image form. One of these models 

(the angular bisection model) was the only model, out of the three employed models, 

found to satisfy all of their required conditions (Potts et al., 2003). A theoretical attempt 

to extend their models to larger systems was performed using a gammadion-shaped 

object with four-fold rotational symmetry. They evaluated their theoretical study by 

conducting experiments on different gammadion-shaped samples to calculate the 

polarisation rotation. Eventually, they claimed that the experimental results supported 

their theoretical results (Papakostas et al., 2003; Potts et al., 2002; Zhang et al., 2006).  

In order to explore the behaviour of planar chiral materials, several empirical 

examinations of gammadion-shaped samples were undertaken by Zhang et al. (2005, 
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2006). These demonstrated that when both sides of a planar structure are illuminated, 

the polarisation rotation of one side is opposite in handedness to that of the other side. 

Zhang et al. (2005, 2006) additionally claimed that the polarisation-changing properties 

of the dielectric planar chiral metamaterial in transmission were similar to those of the 

metallic planar chiral metamaterial in reflection (Zhang et al., 2006).  

In line with the above-mentioned studies, Fedotov et al. (2006) conducted 

experimental research on a fish-scale structure. Their findings showed that there was 

greater transparency on one of the planar chiral structure sides under a circularly 

polarised light than the other. Similarly, when examining the Faraday Effect, the 

rotation of the elliptically polarised states is reversed when the light propagates through 

both sides of a planar structure. However, these phenomena are not observable in 

achiral planar or bulk materials (Fedotov et al., 2006). 

During the last decade, the optical properties of several different planar chiral 

metamaterial structures have been studied, such as: U-shaped (Li et al., 2010), two 

cross-wires (Li, Alici, Colak, and Ozbay, 2011), G-shaped (Valev et al., 2011), Z-

shaped (Kim et al., 2014), nanorods (Wen et al., 2015), L-shaped (Ye et al., 2017), split 

ring structure (Huang et al., 2017), and spiral structure (Zhao and Cheng, 2018) T-L-

shaped (Zhou et al., 2020). 

2.3   Metamaterials 

An artificially structured material engineered to produce specific properties that 

do not exist in nature is known as a metamaterial. This technique gives unlimited 

freedom to engineer different designs of materials with unique features. Typically, 

metamaterials are periodic arrays. Planar metamaterials (metasurfaces) are defined as 

two-dimensional surfaces with almost zero thickness. The thickness is sufficiently small 

to guarantee that the material pattern presented to the light is essentially two-

dimensional. Planar metamaterials can display birefringence and dichroism when they 

do not have any mirror symmetry plane, i.e., chiral shape. Due to their unique 

properties, metamaterials have attracted the interest of researchers from a variety of 

disciplines, particularly engineering and material science (Ma et al., 2017; Plum, 2010; 

Wang et al., 2016). 
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2.4 Mathematical Quantitative Measurement of Chirality 

In terms of the quantitative measurement of chirality, two essential 

methodologies have emerged, with selection depending on the object used as a 

reference (Potts et al., 2003).  

The first method involves comparing the chiral object to its closest achiral form. 

In principle, when employing this method, the most challenging step is determining 

how to generate the closest achiral form.    

The second method involves comparing the chiral object with its mirror image in 

order to determine their similarities. The general requirement is achieved via spatial 

reflection through a hyperplane, with enantiomeric transformation for an n-dimensional 

object performed using an (n-1)-dimensional hyperplane. Generation of the mirror image 

form for a two-dimensional object simply requires a reflection transformation operation 

through any line in the plane (Potts et al., 2003). 

Quantification of chirality is then based on two different parameters though 

these are related to each other, namely, the chirality index and the degree of chirality. 

The chirality index is a parameter that defines the quantity of chirality and its 

handedness in the interval [-1, 1]. Its value is pseudoscalar, meaning that it takes values 

with different signs for the object and its enantiomer; thus, if the chirality index of an 

object is c, then the chirality index of its mirror image must be –c (Boruhovich, 2006; 

Petitjean, 2003; Potts et al., 2003). 

Meanwhile, the degree of chirality is then defined as the absolute value of the 

relevant chirality index. Fundamentally, this identifies the quantity of existent chirality, 

which increases as the symmetry decreases. Hence, both the object and its enantiomer 

have the same degree of chirality measured within the interval [0, 1] (Fowler, 2005).  

Both the chirality index and the degree of chirality must satisfy the following 

conditions (Boruhovich, 2006; Potts et al., 2003): 

1- Lack of dependence on which specific form (right- or left-version) is 

selected to generate the corresponding mirror image. 
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2- Lack of susceptibility to any translation or rotation operation of the 

object. 

3- A value of zero only if the object is achiral (non-chiral). 

4- Non-linear secularity such that, when a structure is divided into N sub-

objects, the chirality of the initial structure is not necessarily simply the 

summation of the chirality of those N sub-objects, as an extra chirality 

may be, and generally is, caused by the arrangement of each N sub-

objects within the final structure.  

To develop an understanding of the last condition, consider the chiral shape 

shown in Figure 2-3, which consists of two achiral objects in a rectangular form. The 

value of the chirality index of the chiral shape is different from zero, even though the 

value of the chirality index of each of the rectangular shapes must be zero, as these are 

themselves achiral shapes.  

 

Figure 2-3: A chiral structure consisting of two achiral objects in a rectangular shape. 
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3 Algebraic Description of Polarised Light 

As known, light is electromagnetic waves that composed of coupled oscillating 

electric and magnetic fields. These fields oscillate perpendicular to each other and 

perpendicular to the propagation direction. When the electric field oscillates in a 

specific direction, the light is known as polarised light. The electric field could oscillate 

in a single direction drawing a line, which known as linear polarised light; rotate at 

constant rate drawing circle; or ellipse, which results in circular, or elliptical polarised 

light, see Figure 3-1 (Peatross, and Ware, 2011). 

 

Figure 3-1: polarization types: linear, circular, and elliptical polarised light (emedicalprep.com). 

 

3.1 The Plane Wave 

For simplicity, we assume that an electromagnetic wave is travelling as a plane 

wave where the electric field E propagates in z-direction while oscillating in x-y 

directions. Accordingly, we could write the electric field of the plane wave equation as 

(Trippe, 2014): 

𝑬(𝑧, 𝑡) = �̂� 𝐸𝑥(𝑧, 𝑡) + �̂�𝐸𝑦(𝑧, 𝑡)                                              (3-1) 

The fields Ex(z, t) and Ey(z, t) are given by the real part of a complex field as: 

𝐸𝑥(𝑧, 𝑡) = 𝑅𝑒{𝐸𝑥0 𝑒
𝑖(𝜔𝑡−𝑘𝑧+𝛿𝑥)}                                             (3-2) 

𝐸𝑦(𝑧, 𝑡) = 𝑅𝑒{𝐸𝑦0 𝑒
𝑖(𝜔𝑡−𝑘𝑧+𝛿𝑦)}                                             (3-3) 
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where ω is the angular frequency, k is the wavenumber, and factors δx and δy indicate 

phase shift in x- and y-direction, respectively. 

 The electric field direction defines the direction of polarisation. The phase 

difference between Ex and Ey and the values of the amplitudes Ex0 and Ey0 determine the 

polarisation state of the wave, namely, linear, elliptical, or circular polarisation (see 

section 4.1 for more details). 

3.2 Jones Calculus 

Developed by R. Clark Jones in 1941, the Jones calculus is a two-dimensional 

matrix algebra that is applicable only to fully polarised light, with the light being 

represented by a vector, while optical elements are represented by 2D matrices. For 

plane wave travelling in the z-direction, the Jones vector is written as (Sharma, 2006): 

𝑬 = [
Ex
Ey
] = [

Exoe
iδ𝑥

Eyoe
iδ𝑦
]                                                         (3-4) 

For the sake of simplicity, Jones matrices could be normalised to 1 at the initial 

calculation. Therefore, special cases of polarised light are given by (Sharma, 2006):  

𝒆𝑯 = [
1
0
] ;   𝒆𝑽 = [

0
1
] ;   𝒆+𝟒𝟓° =

1

√2
[
1
1
] ;    𝒆𝑳 =

1

√2
[
1
i
] ;    𝒆𝑹 =

1

√2
[
1
−i
]        (3-5) 

where eH and eV denote linear polarised light in x and y direction, respectively; 

e+45° denotes linear polarised light at 45° to x-direction; while eL and eR denote left-hand 

and right-hand circular polarised light, respectively. It can be noticed that these vectors 

contain essential information about the polarisation state. They characterise the 

amplitude and the phase of the two components of the electric field in both directions x 

and y. Hence, the intensity of the light will be the sum of the squares of the absolute 

values of the electric field components.  

The effects of the optical elements on the light can be represented as a 2D 

matrix. The following are simple examples of normalised Jones matrices of special 

cases of linear polariser (Sharma, 2006): 

𝑱𝑯 = [
1 0
0 0

] ;     𝑱𝑽 = [
0 0
0 1

] ;       𝑱+𝟒𝟓° =
1

2
[
1 1
1 1

]                                    (3-6) 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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where JH, JV, and J+45° describe a linear polariser with the transmission axis 

along the x-axis, y-axis, and at 45° to the x-axis, respectively. Table 3-1 summarises 

Jones Matrices of a polariser and wave plates at arbitrary angles θ (Peatross, and Ware 

2011). 

Table 3-1: Jones Matrices for the polariser and wave plates, where ξ is a parameter that 
signifies a general retarder's expression. 

The retarder ξ 
value 

Jones Matrix 

General retarder ξ [
cos2θ + ξsin2θ sinθcosθ − ξsinθcosθ

sinθcosθ − ξsinθcosθ sin2θ + ξcos2θ
] 

No component 1 [
1 0
0 1

]  

Polariser 0 [ cos2θ sinθcosθ
sinθcosθ sin2θ

] 

Quarter-wave plate i [ cos2θ + isin2θ sinθcosθ − isinθcosθ
sinθcosθ − isinθcosθ sin2θ + icos2θ

] 

Have- wave plate -1 [
cos2θ sin2θ
sin2θ −cos2θ

] 

 Indeed, Jones calculus has the power to explain how light behaves when it 

interacts with different components by calculating the product of Jones matrix of the 

light by Jones matrices of the components in the system to obtain the Jones matrix 

representing the total effects of the compound system.  

3.3 Stokes Parameters 

In 1852, George Gabriel Stokes introduced a unique set of four real values, 

namely, I, Q, U, and V, which have become known as Stokes parameters and depend on 

the light wavelength, position, and direction. They can represent any given polarisation 

state mathematically as (Born and Wolf, 1999): 

𝑺 = [

𝐼
𝑄
𝑈
𝑉

] =

[
 
 
 
 
〈𝐸xE𝑥

∗〉 + 〈𝐸yE𝑦
∗ 〉

〈𝐸xE𝑥
∗〉 − 〈𝐸yE𝑦

∗ 〉

〈𝐸xE𝑦
∗ 〉 + 〈𝐸yE𝑥

∗〉

−𝑖[〈𝐸xE𝑦
∗ 〉 − 〈𝐸yE𝑥

∗〉]]
 
 
 
 

                                          (3-7) 

 Where S is a stokes vector compound of the four parameters: I corresponds to 

the total intensity of the whole wave; Q is a parameter of the difference between the 
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intensities of the linear polarised light in the x and y-axis (horizontal and vertical 

polarised light); U is a parameter of the difference between the two diagonal 

components at angles of ±45° to the positive x-axis; V is a parameter that corresponds 

to the difference between the intensity of the right and the left circular polarised light. 

Thus, Q and U provide information about linear polarisation, while V is related to 

circular polarisation states. The sign <...> denotes the time average of the enclosed 

parameters (in this case, the electric field of the x-axis and the y-axis), and (*) indicates 

the complex conjugate of the quantity.  

For experimental purposes, the Stokes parameters can be expressed with the 

light intensity in the following way: 

[

𝐼
𝑄
𝑈
𝑉

] =

[
 
 
 
𝐼0° + 𝐼90° = 𝐼+45° + 𝐼−45° = 𝐼𝑅 + 𝐼𝐿

𝐼0° − 𝐼90°
𝐼+45° − 𝐼−45°

𝐼𝑅 − 𝐼𝐿 ]
 
 
 
                               (3-8) 

where Iθ is the light intensity when the linear polariser at θ° (where θ°= 0°, 90°, 

±45°), while IR and IL are the intensities of right and left circularly polarised 

components, respectively (Guan, Cook, Jones, and Shen, 2010; Hecht, 2002; Liu, 2005). 

It is also possible to define the Stokes parameters in terms of the intensity of 

polarised light performing with an ideal polariser as following:  

[

𝐼
𝑄
𝑈
𝑉

] = [

𝑃𝐻 + 𝑃𝑉
𝑃𝐻 − 𝑃𝑉

𝑃45° − 𝑃−45°
𝑃𝑅 − 𝑃𝐿

]                                                      (3-9) 

PH, PV, and P±45° are the light intensities resulting from the passing of the light 

through a horizontal, vertical, and diagonal linear polariser with the axis at 0°, 90°, and 

±45°, respectively. PR and PL denote the light intensities resulting from the passing of 

the light through a right and left circular polariser, respectively (Bass, 1995). Table 3-2 

summarises the category of polarisation states based on Stokes parameters.  
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Table 3-2: Categorisation of Stokes parameters values in some particular situation of 
polarisation state. 

polarisation state Stokes parameters values 

general polarisation state I Q U V 

Linear polarised light (Q2+U2)1/2 ≠0 ≠0 0 

Circular polarised light V 0 0 ≠0 

Fully polarised light (Q2+U2+V2)1/2 Q U V 

Partially polarised light ˃ (Q2+U2+V2) Q U V 

Unpolarised light I 0 0 0 

 

Therefore, Q/I, U/I, and V/I take values in the range [-1,1], and once any of them 

takes the extreme value, the other parameters become zero. The extremes for Q/I occur 

when the light is linearly polarised either horizontally or vertically; for U/I when the 

light is linearly polarised at ±45°; while for V/I when the light is right and left circularly 

polarised.  

Based on the Stokes parameters, the polarisation properties of light can be 

defined as follows: 

The intensity of the polarised component: 

𝐼𝑝 = √𝑄2 + 𝑈2 + 𝑉2                                                          (3-10) 

The intensity of the depolarised component: 

𝐼𝑑𝑝 = √𝐼2 − 𝐼𝑝2                                                                (3-11) 

The degree of polarisation:  
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DOP =
𝑰𝒑

√𝑰𝒑
𝟐+𝑰𝒅𝒑

𝟐
= √(𝑄2 + 𝑈2 + 𝑉2)/𝐼2                   0 ≤ 𝐷𝑂𝑃 ≤ 1                (3-

12) 

The degree of linear polarisation: 

DOLP = √(𝑄2 + 𝑈2)/𝐼2                    0 ≤ 𝐷𝑂𝐿𝑃 ≤ 1                (3-13) 

The degree of circular polarisation: 

DOCP =
𝑉

𝐼
                                    0 ≤ 𝐷𝑂𝐶𝑃 ≤ 1                    (3-14) 

It must be noted that DOP = 1 corresponds to completely polarised light, DOP = 

0 corresponds to completely unpolarised light, and any other value in between 

corresponds to partially polarised light (Liu, 2005; Schmidt, Schubert, and Schubert, 

2013). 

The formula for the polarisation orientation (azimuth angle) ψ is: 

𝛹 =
1

2
𝑡𝑎𝑛−1 (

𝑈

𝑄
)                                                   (3-15) 

The ellipticity: 

𝑒 =
𝑉

𝐼+√𝑄2+𝑈2
                                                                    (3-16) 

  
 

Eccentricity:   

𝜖 = √1 − 𝑒2                                                        (3-17) 

 

The ellipticity angle: 

𝜒 =
1

2
𝑠𝑖𝑛−1 (

𝑽

𝐼𝑝
)                                                                   (3-18) 

In principle, the general state of polarisation when polarised light was elliptical, 

or in other words, when the electric field rotated in an ellipse path. The orientation of 
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the ellipse major axis measured counter-clockwise from the x-axis is known as the 

azimuth angle, while the ellipticity is the ratio of the minor to the major axis of the 

ellipse path. The ellipticity differs from 0 for linearly polarised light and can reach up to 

1 for circularly polarised light. The eccentricity describes the deviation of the ellipse 

from circularity, having a value of zero for circularly polarised light, increasing as the 

ellipse narrows, and reaching a value of one for linearly polarised light (Bass, 1995). 

3.4 Mueller Matrices 

Any optical system consists of several optical components (e.g. a mirror, a lens, 

or a polarisation element) that interact with light in various ways: reflection, refraction, 

diffraction, or scattering. When the light is described by the Stokes vector S, the 

interaction between the light and each optical element is determined by using the 

Mueller matrix M, which is a 4x4 matrix with 16 real-valued elements invented by 

Hans Mueller in 1943. The matrix elements depend on the properties of the optical 

component.  

Besides Jones matrices, the concept of Mueller matrices is considered as an 

alternative description of the polarisation state and has the ability to handle the 

depolarisation situation. In general, the Mueller calculus is more suitable for describing 

polarisation measurements for polarimeters, radiometers, and spectrometers (Bass, 

1995; Garcia-Caurel, De Martino, Gaston, and Yan, 2013; Hecht, 2002; Schmidt et al., 

2013; Trippe, 2014). 

 If a light beam with Stokes vector Sin is altered by a material with Mueller 

matrix M, then the resultant Stokes vector Sout is calculated as: 

𝑺𝒐𝒖𝒕 = 𝑴 𝑺𝒊𝒏                                                               (3-19) 

[

𝐼`
𝑄`
𝑈`
𝑉`

] = [

𝑚00 𝑚01

𝑚10 𝑚11

𝑚02 𝑚03

𝑚12 𝑚13
𝑚20 𝑚21

𝑚30 𝑚31

𝑚22 𝑚23

𝑚32 𝑚33

] [

𝐼
𝑄
𝑈
𝑉

]                                      (3-20) 

The following are two examples of Mueller matrices that correspond to a 

reflection matrix Mref and rotation matrix Mrot of the coordinate system by an angle β 

(Trippe, 2014): 



17 
 

𝑴𝒓𝒆𝒇 = [

1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

] ; 𝑴𝒓𝒐𝒕(𝛽) = [

1 0
0 𝑐𝑜𝑠2𝛽

0 0
𝑠𝑖𝑛2𝛽 0

0 −𝑠𝑖𝑛2𝛽
0 0

𝑐𝑜𝑠2𝛽 0
0 1

]         (3-21) 

The formula for determining the Mueller matrix of a rotating optical element by 

an angle β is: 

𝑴(𝛽) = 𝑴𝒓𝒐𝒕(−𝛽) 𝑴(0) 𝑴𝒓𝒐𝒕(𝛽)                                                (3-22) 

The total Mueller matrix Mtotal that describes a cascade of N components is given by: 

 

𝑴𝒕𝒐𝒕𝒂𝒍 = 𝐌𝐍 𝐌𝐍−𝟏 . . . . . .  𝐌𝟐𝐌𝟏  = ∏ 𝑴𝒏
𝑛=1
𝑛=𝑁,−1                           (3-23) 

 

where the numerals 1, 2, … indicate the first, second, … device that interacts with the 

light (Bass, 1995). 

 

3.5 The Correlation Between Mueller and Jones Matrices  

For a non-depolarising system, the following formula gives the relationship 

between a Jones and a Mueller matrix (Bass, 2010): 

𝑴 = 𝑼(𝑱⨂𝑱∗)𝑼−1                                                  (3-24) 

Where ⨂ denotes the tensor product, * denotes the complex conjugate of the 

matrix, and U is the transform matrix: 

𝑼 =
1

√2
[

1 0
1 0

0 1
0 −1

0 1
0 i

1 0
−i 0

] = (𝑼−𝟏)†                                            (3-25) 

 

Here, † denotes the Hermitian adjoint.  

So, if the Jones matrix is expressed as: 

𝑱 = [
𝑗𝑥𝑥 𝑗𝑥𝑦
𝑗𝑦𝑥 𝑗𝑦𝑦

]                                                               (3-26) 

Then, the Mueller matrix is given by (Schmidt et al., 2013): 

𝑴 = 
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[
 
 
 
 
 
 
1

2
(|𝑗𝑥𝑥|

2 + |𝑗𝑦𝑦|
2
+ |𝑗𝑦𝑥|

2
+ |𝑗𝑥𝑦|

2
)

1

2
(|𝑗𝑥𝑥|

2 − |𝑗𝑦𝑦|
2
− |𝑗𝑦𝑥|

2
+ |𝑗𝑥𝑦|

2
)

1

2
(|𝑗𝑥𝑥|

2 − |𝑗𝑦𝑦|
2
+ |𝑗𝑦𝑥|

2
− |𝑗𝑥𝑦|

2
)

1

2
(|𝑗𝑥𝑥|

2 + |𝑗𝑦𝑦|
2
− |𝑗𝑦𝑥|

2
− |𝑗𝑥𝑦|

2
)

𝑅𝑒(𝑗𝑥𝑥 𝑗𝑦𝑥
∗ + 𝑗 𝑦𝑦 

∗ 𝑗𝑥𝑦) 𝐼𝑚(𝑗𝑥𝑥  𝑗𝑦𝑥
∗ + 𝑗 𝑦𝑦 

∗ 𝑗𝑥𝑦)

𝑅𝑒(𝑗𝑥𝑥 𝑗𝑦𝑥
∗ − 𝑗 𝑦𝑦 

∗ 𝑗𝑥𝑦) 𝐼𝑚(𝑗𝑥𝑥  𝑗𝑦𝑥
∗ − 𝑗 𝑦𝑦 

∗ 𝑗𝑥𝑦)

𝑅𝑒(𝑗𝑥𝑥  𝑗𝑥𝑦
∗ + 𝑗 𝑦𝑦 

∗ 𝑗𝑦𝑥) 𝑅𝑒(𝑗𝑥𝑥 𝑗𝑥𝑦
∗ − 𝑗 𝑦𝑦 

∗ 𝑗𝑦𝑥)

−𝐼𝑚(𝑗𝑥𝑥 𝑗𝑥𝑦
∗ + 𝑗 𝑦𝑦 

∗ 𝑗𝑦𝑥) −𝐼𝑚(𝑗𝑥𝑥  𝑗𝑥𝑦
∗ − 𝑗 𝑦𝑦 

∗ 𝑗𝑦𝑥)

𝑅𝑒(𝑗𝑥𝑥 𝑗𝑦𝑦
∗ + 𝑗 𝑥𝑦 

∗ 𝑗𝑦𝑥) 𝐼𝑚(𝑗𝑥𝑥  𝑗𝑦𝑦
∗ − 𝑗 𝑥𝑦 

∗ 𝑗𝑦𝑥)

−𝐼𝑚(𝑗𝑥𝑥  𝑗𝑦𝑦
∗ + 𝑗 𝑥𝑦 

∗ 𝑗𝑦𝑥) 𝑅𝑒(𝑗𝑥𝑥  𝑗𝑦𝑦
∗ − 𝑗 𝑥𝑦 

∗ 𝑗𝑦𝑥)]
 
 
 
 
 
 

 

 (3-27) 

where j* denotes the complex conjugate of j.  

 

On the other hand, the Jones matrix can be represented in terms of the elements 

of the Mueller matrix, as follows (Bass, 2010): 

𝑱 = [

1

√2
√𝑚00 +𝑚01 +𝑚10 +𝑚11𝑒

𝑖𝜑𝑥𝑥
1

√2
√𝑚00 −𝑚01 +𝑚10 −𝑚11𝑒

𝑖𝜑𝑥𝑦

1

√2
√𝑚00 +𝑚01 −𝑚10 −𝑚11𝑒

𝑖𝜑𝑦𝑥 1

√2
√𝑚00 −𝑚01 −𝑚10 +𝑚11𝑒

𝑖𝜑𝑦𝑦
]  (3-28) 

 

In which the relative phases are: 
 

𝜑𝑦𝑦 − 𝜑𝑥𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑚32−𝑚23

𝑚22−𝑚33
) ;                                               (3-29) 

 𝜑𝑦𝑥 − 𝜑𝑥𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑚30−𝑚31

𝑚20−𝑚21
) ;                                               (3-30) 

𝜑𝑥𝑥 − 𝜑𝑥𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑚03−𝑚13

𝑚22−𝑚23
)                                                (3-31) 

 

The phase φxx represents the reference phase.  

 
 

3.6 Poincare Sphere 

The Poincare sphere is a unity sphere representing polarisation states. It is 

depicted in Figure 3-2, where Q, U, and V are the three orthogonal vectors (instead of x, 

y, and z in the Cartesian coordinate system).  Q/I, U/I, and V/I are the respective 

polarisation components along with the vectors Q, U, and V, respectively. The fully 

polarised states lie on the sphere surface, whereas the partially polarised states lie 

inside the sphere at a distance Ip from the origin. Any point in the Q-U plane represents 

a linear polarised state. The vector V represents the circular polarisation states where the 

positive values correspond to the right-handed circular polarisation state, and the 

negative values correspond to the left-handed circular polarisation state. The other 
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points on the sphere represent elliptically polarisation states Ip. Ψ and χ are the 

polarisation angle and the ellipticity angle, respectively (Zhang, 2006). 

  

Figure 3-2: The Poincare sphere, where Q, U, and V are the three orthogonal vectors. 
(Commons. Wikimedia) 
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4 The Optical Properties of Chiral Metamaterials 

 Typically, chiral substances tend to display disparity when they absorb the right 

circular polarisation in comparison to the left. This phenomenon is referred to as 

circular dichroism. In addition, chiral substances demonstrate optical activity, as they 

can adapt the orientation of the polarisation of the transmitted linear polarisation light. 

However, for a non-chiral array (also known as achiral materials), alteration of the 

polarisation direction is not foreseen (Ma et al., 2017). 

In 1845, Faraday discovered the rotational behaviour of the polarisation state of 

linearly polarised light when a magnetic field was applied. This phenomenon has been 

known as the Faraday Effect and is attributed to the interaction between the applied 

magnetic field and the magnetic field of the light wave (Bass, 1995). In 1848, Pasteur 

recorded opposing but identical levels of polarisation rotation through different crystals 

of sodium ammonium tartrate. The difference between magnetic rotation and natural 

optical activity was finally clarified by Lord Kelvin in 1884, when he introduced the 

notion of chirality to describe this phenomenon (Ye et al., 2017). 

4.1 The Polarisation of Light  

Polarisation is one of the fundamental results of the interaction between a light 

beam and matter. Light is electromagnetic waves comprising electric and magnetic field 

components that oscillate synchronously perpendicular to each other and perpendicular 

to their propagation direction. In the most common source of light (e.g., sunlight), the 

waves oscillate in random directions; such light is termed unpolarised light. By contrast, 

polarised light can be produced by passing the light through a polariser that allows 

passage only of the light that oscillates in a specific direction, as shown in Figure 4-1. 

Typically, the light has a combination of polarised and unpolarised waves, termed 

partially polarised light (Hauge, Mueller, and Smith,1980; Peatross, and Ware, 2011). 
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The polarisation direction is determined by the direction of the electric field 

oscillation. For the purpose of simplification, we assume that an electromagnetic wave 

is travelling as the electric field E in the z-direction, which is known as a plane wave 

and could be expressed as the following (Trippe, 2014):   

𝑬(𝑧, 𝑡) = 𝐸0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + ∅)                                             (4-1) 

The direction of propagation is specified by the wavenumber k, while Ø is 

defined as the electric field phase. E(z,t) can be decomposed into its x and y 

components, so that  

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + ∅𝑥)                                          (4-2) 

𝐸𝑦(𝑧, 𝑡) = 𝐸𝑦0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + ∅𝑦)                                         (4-3) 

Here, Øx and Øy denote the phase components in the x- and y-axis, respectively. 

Then the phase retardation between x and y components is δ = Øy - Øx. The three 

independent parameters Ex0, Ey0, and δ could be used to define the polarisation state of a 

plane wave (Trippe, 2014). 

The polarisation status can be classified as elliptical, circular, or linear. In 

general, equation 4-1 describes an elliptically polarised wave, where the electric field 

rotates in the ellipse path. In terms of the direction of travelling, this rotation employs 

either right or left polarisation. When δ > 0, it means polarisation is right-handed, and 

the electric field vector rotates clockwise when viewed by an observer looking towards 

Figure 4-1: The polariser passes only light that oscillated in a specific direction. 
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the light source. Meanwhile, when δ < 0, the wave is described as left-handed 

polarisation, and the electric field vector rotates anticlockwise, as shown in Figure 4-2 

(Trippe, 2014).  

 

 

Figure 4-2: Right-handed (blue) and left-handed (red) elliptical polarisation light, with clockwise 
and anticlockwise rotation of the electric field vector, respectively (Tutor Vista)  

Similarly, circular polarisation can be considered as a particular case of elliptical 

polarisation; however, in the circular polarisation case, the electric field rotates in a 

circular path with a constant rate, where Ex0 = Ey0 =E0. In the case of δ = mπ/2, m=1, 2, 

3, …, we have 

𝐸𝑥(𝑧, 𝑡) = 𝐸0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                          (4-4) 

𝐸𝑦(𝑧, 𝑡) = ±𝐸0  𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)                                       (4-5) 

The sign ± determines the sense of the motion handedness of E. A positive sign 

is equivalent to anticlockwise motion and is identified as left-handed circular 

polarisation. In contrast, a negative sign is equivalent to clockwise motion and is 

identified as right-handed circular polarisation (Trippe, 2014).  
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In a linear polarisation case, the light oscillates in a single direction in the x-y 

plane. That can be described as a superposition of the right and left polarised wave with 

identical amplitude. In this case, Øx = Øy = 2nπ, n = 0,1,2,3,… , we can write (Trippe, 

2014): 

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                            (4-6) 

𝐸𝑦(𝑧, 𝑡) = 𝐸𝑦0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                            (4-7) 

In the case of Ey0 =0 (or Ex0 =0), the electric field of the light oscillates along the x-axis 

(or y-axis), which is known as a horizontally (or vertically) polarised light.  

4.2 Electromagnetic Response of Chiral Materials 

The following relationship gives the chiral material response to electromagnetic 

wave: 

[
𝑫
𝑩
] = [

𝜀0𝜀𝑟 −𝑖𝜅/𝑐
𝑖𝜅/𝑐 𝜇0𝜇𝑟

] [
𝑬
𝑯
]                                                  (4-8) 

where E is the electric field, H is the magnetic field, D is the electric 

displacement, and H is the magnetic induction. ε0 (εr) and µ0 (µr ) are the permittivity 

and permeability of vacuum (chiral medium), respectively. c is the speed of light in 

vacuum, and κ is a parameter that measures the effect of cross-coupling between electric 

(E) and magnetic (H) fields (Ma et al., 2017; Li, Mutlu, and Ozbay, 2013; Wang et al., 

2009). The refractive index for the right (+) and left (-) circularly polarised light waves 

can subsequently be defined as: 

𝑛± = √𝜀𝑟𝜇𝑟 ± 𝜅 = 𝑛0 ± 𝜅                                                  (4-9) 

The following relationships indicate how these parameters relate to each other 

(Li et al., 2013): 

𝑛0 = (𝑛+ + 𝑛−)/2,     𝜅 = (𝑛+ − 𝑛−)/2,                                 (4-10) 



24 
 

4.3 Polarisation Effects of Reflection and Transmission 

In general, the Jones matrix provides a mathematical description for a sample 

that reflects or transmits polarised light by a matrix that contains four complex-valued 

elements according to the following formula: 

[
𝐸𝑟
𝑥

𝐸𝑟
𝑦] = [

𝑟𝑥𝑥 𝑟𝑥𝑦
𝑟𝑦𝑥 𝑟𝑦𝑦

] [
𝐸𝑖
𝑥

𝐸𝑖
𝑦] = 𝑅 [

𝐸𝑖
𝑥

𝐸𝑖
𝑦]                                      (4-11) 

[
𝐸𝑡
𝑥

𝐸𝑡
𝑦] = [

𝑡𝑥𝑥 𝑡𝑥𝑦
𝑡𝑦𝑥 𝑡𝑦𝑦

] [
𝐸𝑖
𝑥

𝐸𝑖
𝑦] = 𝑇 [

𝐸𝑖
𝑥

𝐸𝑖
𝑦]                                      (4-12) 

Here R and T are the reflection and transmission matrices for a linear polariser, 

respectively. Ei, Er, and Et are the incident, reflected and transmitted polarised electric 

fields, respectively, in x or y directions. If a metamaterial has mirror symmetry, then rxy 

= ryx = txy = tyx = 0, which eliminates the off-diagonal elements of R and T to be 

diagonal matrices (Wang et al., 2016). 

The exact mechanism applies for circular polarisation, where 

𝑅𝑐𝑖𝑟𝑐 = [
𝑟++ 𝑟±
𝑟∓ 𝑟−−

] ;             𝑇𝑐𝑖𝑟𝑐 = [
𝑡++ 𝑡±
𝑡∓ 𝑡—

]                                 (4-13) 

The subscript + or − denotes clockwise or counterclockwise circularly polarised waves. 

For symmetrical structure (r++ = r --, r+-=r -+, t++= t --  , t +-= t -+  ) (Wang et al., 2016). 

In practical terms, the formula below is typically applied to calculate the circular 

transmission and reflection coefficients from the transmission and reflection coefficients 

of linearly polarised waves (Li et al., 2013; Wang et al., 2016):  

[
t++ t±
t∓ t—

] =
1

2
[
𝑡𝑥𝑥 + 𝑡𝑦𝑦 + 𝑖(𝑡𝑥𝑦 − 𝑡𝑦𝑥) 𝑡𝑥𝑥 − 𝑡𝑦𝑦 − 𝑖(𝑡𝑥𝑦 + 𝑡𝑦𝑥)

𝑡𝑥𝑥 − 𝑡𝑦𝑦 + 𝑖(𝑡𝑥𝑦 + 𝑡𝑦𝑥) 𝑡𝑥𝑥 + 𝑡𝑦𝑦 − 𝑖(𝑡𝑥𝑦 − 𝑡𝑦𝑥)
]       (4-14) 

[
r++ r±
r∓ r—

] =
1

2
[
𝑟𝑥𝑥 + 𝑟𝑦𝑦 + 𝑖(𝑟𝑥𝑦 − 𝑟𝑦𝑥) 𝑟𝑥𝑥 − 𝑟𝑦𝑦 − 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥)

𝑟𝑥𝑥 − 𝑟𝑦𝑦 + 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥) 𝑟𝑥𝑥 + 𝑟𝑦𝑦 − 𝑖(𝑟𝑥𝑦 − 𝑟𝑦𝑥)
]         (4-15) 
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4.4 Optical Activity  

The crystal can rotate the polarisation plane of a linearly polarised light ray and 

this constitutes optical activity, as illustrated in Figure 4-3. Some materials exhibit 

natural optical activity, that is, without any external influences (e.g. quartz). However, 

electric fields can also induce optical activity under particular conditions (Potts et al., 

2002; Zhang, 2006).  

Fundamentally, due to their low-symmetry structure, chiral materials are 

naturally optically active. Fresnel attributed optical rotation to a difference in the 

velocity of propagation of the left and right circularly polarised components of the 

linearly polarised beam in the medium. It was observed that the enantiomers rotate a 

given polarisation plane by the same magnitude but in the opposite direction (Arteaga, 

2010; Emile et al., 2013).  

  

Figure 4-3: Optical activity phenomenon. 

 

4.5 Dichroism 

Chiral materials exhibit disparity in that the right circularly polarised light is 

absorbed to a greater or lesser extent than the left circularly polarised light. Such an 

optical phenomenon is known as Circular Dichroism. Similarly, linear dichroism occurs 

as a result of differential absorption between two orthogonal components of linearly 

polarised light with certain non-isotropic crystals (Arteaga, 2010; Kwon, Werner, and 

Werner, 2008). 
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4.6 Birefringence 

When light passes through a substance, it changes the velocity depending on the 

refractive index of that substance. However, some materials have two refractive indices 

known as birefringent materials, as depicted in Figure 4-4. The phenomenon of 

birefringence arises due to anisotropy within some crystals or fluids, causing the optical 

properties to differ according to direction. However, some materials exhibit 

birefringence at specific wavelengths of light. Birefringent materials are employed in 

several optical elements that are used to modify the polarisation state of light, such as 

polarisers and waveplates. 

The two orthogonal components of linearly polarised beam travel through the 

birefringent materials at different velocities so that they exit with a phase difference 

known as the retardance. As a result of passing through a birefringent crystal, the linear 

polarisation light can be either circular or elliptical (Lin and Lee, 2012; McCall, 

Hodgkinson, and Wu, 2014; Plum, 2010). 

 

 

 

 

  

Figure 4-4: A birefringent crystal. (Wiersma, 2013) 
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5 Experimental Methods  

This chapter emphasises the dual photoelastic modulator setup with the lock-in 

amplifier technique used in this project to measure the polarisation states, which is fully 

illustrated later through this chapter. Subsequently, these polarisation states are then 

analysed mathematically based on their Stokes parameters and Mueller matrices. 

5.1 Polarimeter 

A polarimeter is an optical instrument with polarisation elements used to 

measure the polarisation properties of light beams, including the direction of the wave 

oscillation and the degree of polarisation in a given case, as a means of studying the 

optical characteristics of a sample. The polarimeters are used in several different fields, 

including astronomy, spectroscopy, and ellipsometry (when used for surfaces). Indeed, 

such instruments can facilitate the examination of a wide range of sample types, such as 

thin films, optical elements, geological surfaces, and biological structures.  

To characterise the polarisation state of the light beam, a set of measurements is 

acquired by a series of optical elements based on multiple procedures, including 

measurements, calibrations, data reductions, and the comparison between the 

polarisation states of the incident and the exiting beams. The optical elements located 

between the light source and the sample are known collectively as the polarisation state 

generator (PSG). In contrast, those located between the sample and the detector are 

known as polarisation state analyser (PSA). To use Stokes representation, the PSG 

generates a polarised light with a Stokes vector that enters the sample, allowing the PSA 

to analyse the changes in the Stokes vector of that light after interfering with the sample 

(Bass, 1995). 

The polarimeter can be one of two types: either a single wavelength polarimeter 

or a spectroscopic polarimeter. In the single wavelength polarimeter, a monochromatic 

light source is used to create a single set of resultant parameters. In contrast, with the 

spectroscopic polarimeter, a multi-wavelength light source is used to generate sample 

parameters as a function of wavelength (Shamiryan and Likhachev, 2012). However, in 

the current work, two types of LED with different wavelength were used as a 

monochromatic light source (see the details in chapter 7).  
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5.2 Polarimeter Elements 

This section provides an overview of the elements used in the polarimetry that 

used in this project.    

5.2.1 The Polariser 

In 1928, Edwin H. Land discovered the polariser by immersing a stretched 

polymer sheet into iodine. Due to the stretching, the polymer chains aligned along a 

common direction known as the transmission axis. Therefore, the function of the 

polariser is to convey only the electric field components that oscillate parallel to its 

transmission axis (Bass,1995). 

Any polariser oriented at an angle θ can be represented by 2x2 as Jones matrix 

or 4x4 as Mueller matrix (Aas, 2009): 

𝑱𝒑𝒐𝒍𝒂𝒓𝒊𝒔𝒆𝒓 = [
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛2𝜃
],                                            (5-1) 

𝑴𝒑𝒐𝒍𝒂𝒓𝒊𝒔𝒆𝒓 =
1

2
[

1 𝑐𝑜𝑠(2𝜃) 𝑠𝑖𝑛(2𝜃) 0

𝑐𝑜𝑠(2𝜃) 𝑐𝑜𝑠2(2𝜃) 𝑐𝑜𝑠(2𝜃) 𝑠𝑖𝑛(2𝜃) 0

𝑠𝑖𝑛(2𝜃) 𝑐𝑜𝑠(2𝜃) 𝑠𝑖𝑛(2𝜃) 𝑠𝑖𝑛2(2𝜃) 0
0 0 0 0

]                (5-2) 

Typically, two polarisers are used in the polarimetry, one within the PSG to 

generate a linear polarised light before the sample and the other within the PSA after the 

sample.  

5.2.2 The Wave Plate 

A wave plate (WP) is an optical element made of a birefringent material with a 

birefringence Δn. The WP causes retardation of one component of the electric field (Ex 

or Ey) compared to the other, which results in a retardance (ΔΦ), where ΔΦ=π for the 

half-wave plate (HWP) and ΔΦ=π/2 for the quarter-wave plate (QWP). The Mueller 

matrix of the WP is given by (Aas, 2009): 

𝑴𝐖𝐏 =
1

2
[

1 0 0 0
0 1 0 0
0 0 𝑐𝑜𝑠(ΔΦ) −𝑠𝑖𝑛(ΔΦ)

0 0 𝑠𝑖𝑛(ΔΦ) 𝑐𝑜𝑠(ΔΦ)

]                                        (5-3) 
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5.2.3 The Photoelastic Modulator 

The phenomenon whereby some materials become birefringent under stress is 

known as the photoelastic effect. Based on this effect, J. Badoz developed the 

photoelastic modulator (PEM) in the 1960s. PEM is an optical component designed 

primarily to modify or analyse the polarisation state of the light. It commonly consists 

of fused silica and a piezoelectric transducer (which gives electricity under pressure) 

(Guan et al.,2010).  

If, for example, a beam passes through a PEM, the electric component parallel to 

the PEM axis will travel faster than the perpendicular one. A new polarisation state is 

generated owing to the retardation phase between the two electric components. In this 

context, the PEM is a valuable element of any optical system where the assessment of a 

specific polarisation state is required.   

The PEM can be described using the Mueller matrix as follows (Guan et al., 2008): 

𝑴𝑷𝑬𝑴 = 

{
 
 

 
 
1 0 0 0

0 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (
𝛿

2
) + 𝑐𝑜𝑠2 (

𝛿

2
) 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (

𝛿

2
) − 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿)

0 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (
𝛿

2
) − 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (

𝛿

2
) + 𝑐𝑜𝑠2 (

𝛿

2
) 𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿)

0 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿) −𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿) 𝑐𝑜𝑠 (𝛿) }
 
 

 
 

  

(5-4) 

 

Here, α is the angle between the fast axis of the PEM and the x-axis. δ= δ0 sin (Ωt) is the 

retardation phase produced by the PEM, where δ0 is the retardation amplitude, and Ω is 

the modulating frequency of the PEM (Guan et al., 2008; Liu, 2005). 

 

The outcome signal can be represented by Bessel functions of the first kind and 

usually detected by the lock-in amplifier, where:  

sin(𝛿) = sin(𝛿0 sin (Ω𝑡)) = 2𝐽1(𝛿0) 𝑠𝑖𝑛(Ω𝑡) + ⋯                        (5-5) 

cos(𝛿) = cos(𝛿0 sin (Ω𝑡)) = 𝐽0(𝛿0) 𝑠𝑖𝑛(Ω𝑡) + 2𝐽2(𝛿0) 𝑠𝑖𝑛(2Ω𝑡) + ⋯             (5-6) 

 

In a polarimetric system, PEM modulates the relative phase retardation of the 

incident light sinusoidally and rapidly; it acts as an oscillating phase linear retarder. 
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5.2.4 The Lock-in Amplifier Technique  

Measurement system sensitivity can be improved via the lock-in amplifier 

technique, whereby the photodiode converts light to a small current, and the current is 

in turn converted by the amplifier to voltage signals.  

In this experiment, the DC signal is measured by an electrometer, and each of 

the other harmonic signals is measured by a different lock-in amplifier. All these signals 

are measured simultaneously by using a Keithley 6517 electrometer and three separate 

lock-in amplifiers, namely, Perkin-Elmer 7265, Stanford Research System SR810DSP, 

and EG&G 5209 (Liu, Jones, Peng, and Shen, 2006; Guan et al., 2008; Guan et al., 

2010). 

 

5.3 Determination of Stokes Parameters Using Dual PEM 

The experimental setup is shown in Figure (5-1); the polarimetry comprises a 

light source, a polariser, two photoelastic modulators, an analyser, and a photodetector.   

 

Figure 5-1: The setup of dual PEMs polarimetry. 

The modulators must operate at different frequencies to be able to distinguish 

their harmonics.  Let us assume that the passing axis of PEM2 indicates the x-axis and 

the passing axis of PEM1 and the analyser (A) make an angle α and an angle β with the 

x-axis, respectively, as shown in Figure (5-2) (Guan et al., 2008; Guan et al., 2010).  
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Figure 5-2: the orientation of the experimental components. 

 

In this situation, the Mueller matrices for each of the PEM1, PEM2, and 

analyser are as follows: 

𝑴𝑷𝑬𝑴𝟏

=

[
 
 
 
 
 
1 0 0 0

0 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (
𝛿1
2
) + 𝑐𝑜𝑠2 (

𝛿1
2
) 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (

𝛿1
2
) − 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿1)

0 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (
𝛿1
2
) − 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (

𝛿1
2
) + 𝑐𝑜𝑠2 (

𝛿1
2
) 𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿1)

0 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿1) −𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿1) 𝑐𝑜𝑠 (𝛿1) ]
 
 
 
 
 

 

 (5-7) 

 

𝑴𝑷𝑬𝑴𝟐 = [

1 0 0 0
0 1 0 0
0 0 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛 (𝛿2)
0 0 −𝑠𝑖𝑛 (𝛿2) 𝑐𝑜𝑠 (𝛿2)

]                                            (5-8) 

𝑴𝒂𝒏𝒂𝒍𝒚𝒔𝒆𝒓 =
1

2
[

1 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 0

𝑐𝑜𝑠(2𝛽) 𝑐𝑜𝑠2(2𝛽) 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 0

𝑠𝑖𝑛(2𝛽) 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 𝑠𝑖𝑛2(2𝛽) 0
0 0 0 0

]                (5-9) 

δi= δi0 sin(Ωit), i=1,2, is the retardation phase produced by the PEMi, δi0 is the 

retardation amplitude, and Ωi is the modulating frequency of the PEMi (Guan et al., 

2008; Guan et al., 2010). 
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Then 

𝑺𝒐𝒖𝒕 = 𝑴𝑨(𝛽)𝑴𝑷𝑬𝑴𝟐(0)𝑴𝑷𝑬𝑴𝟏(𝛼)𝑺𝒊𝒏                                         (5-10) 

where Sin =[I Q U V]T  represents Stokes parameters of the polarised light 

emitted through the polariser, while Sout =[I` Q` U` V`]T  represents the Stokes 

parameters for the beam after entering through PEM1, PEM2, and then the analyser, 

respectively, where […]T indicates the matrix transposed. After multiplying the three 

matrices, the quantity identified by the detector, I`, can be determined as follows (see 

Appendix B): 

𝐼` = 𝐼𝐷𝐶 + 𝐼𝑄𝑈1 + 𝐼𝑄𝑈2 + 𝐼𝑉                                             (5-11) 

where: 

𝐼𝐷𝐶 = 𝑔1𝐼 + 𝑔2𝑄 + 𝑔3𝑈                                               (5-12) 

𝐼𝑄𝑈1 = 𝑔4𝑄 + 𝑔5𝑈                                                        (5-13) 

𝐼𝑄𝑈2 = 𝑔6𝑄 + 𝑔7𝑈                                                        (5-14) 

𝐼𝑉 = 𝑔8𝑉                                                        (5-15) 

The four sub-equations could be rewritten in matrix form as (Guan et al., 2010): 

(

𝐼𝐷𝐶
𝐼𝑄𝑈1
𝐼𝑄𝑈2
𝐼𝑉

) = (

𝑔1 𝑔2
0 𝑔4

𝑔3 0
𝑔5 0

0 𝑔6
0 0

𝑔7 0
0 𝑔8

)(

𝐼
𝑄
𝑈
𝑉

)                                   (5-16) 

Where IDC, IQU1, IQU2, and IV are four different signals that can be measured 

experimentally by using different lock-in amplifiers, while gi (i=1, 2, …..8) are 

constants dependent on the retardation of the two photoelastic modulators, and also the 

angles between PEM2 and both PEM1 and the analyser (α and β) (Guan et al., 2010). 

Then, the last equation could be rewritten as: 

𝑰𝒐𝒖𝒕 = 𝑮 𝑺𝒊𝒏                                                         

 



33 
 

The Stokes parameters of the entering polarised light can be obtained by 

calculating the matrix inversion, as follows: 

𝑮−𝟏 =
𝟏

|𝑮|
�̃� 

|𝑮| = 𝑔1(𝑔4(𝑔7𝑔8) − 𝑔5(𝑔6 𝑔8)) = 𝑔1𝑔8(𝑔4𝑔7 − 𝑔5𝑔6 ) = 𝑔𝑑𝑒𝑡 

�̃�𝒊𝒋 = (−𝟏)𝒊+𝒋|𝑴𝒋𝒊| 

Mji is a submatrix obtained by removing j-th row and i-th column from G 

(

𝑔1 𝑔2
0 𝑔4

𝑔3 0
𝑔5 0

0 𝑔6
0 0

𝑔7 0
0 𝑔8

) 

�̃� =

(

 
 
 
 
 
 
 
 
 
 
|
𝑔4 𝑔5 0
𝑔6 𝑔7 0
0 0 𝑔8

| − |
𝑔2 𝑔3 0
𝑔6 𝑔7 0
0 0 𝑔8

|

− |
0 𝑔5 0
0 𝑔7 0
0 0 𝑔8

| |
𝑔1 𝑔3 0
0 𝑔7 0
0 0 𝑔8

|

|
𝑔2 𝑔3 0
𝑔4 𝑔5 0
0 0 𝑔8

| − |
𝑔2 𝑔3 0
𝑔4 𝑔5 0
𝑔6 𝑔7 0

|

− |
𝑔1 𝑔3 0
0 𝑔5 0
0 0 𝑔8

| |
𝑔1 𝑔3 0
0 𝑔5 0
0 𝑔7 0

|

|
0 𝑔4 0
0 𝑔6 0
0 0 𝑔8

| − |
𝑔1 𝑔2 0
0 𝑔6 0
0 0 𝑔8

|

− |
0 𝑔4 𝑔5
0 𝑔6 7
0 0 0

| |

𝑔1 𝑔2 𝑔3
0 𝑔6 𝑔7
0 0 0

|

|
𝑔1 𝑔2 0
0 𝑔4 0
0 0 𝑔8

| − |
𝑔1 𝑔2 0
0 𝑔4 0
0 𝑔6 0

|

− |

𝑔1 𝑔2 𝑔3
0 𝑔4 𝑔5
0 0 0

| |

𝑔1 𝑔2 𝑔3
0 𝑔4 𝑔5
0 𝑔6 𝑔7

|
)

 
 
 
 
 
 
 
 
 
 

 

�̃�

= (

𝑔4𝑔7𝑔8 − 𝑔5𝑔6𝑔8 𝑔8(𝑔3𝑔6 − 𝑔2𝑔7)

𝟎           𝑔8𝑔1𝑔7

𝑔8(𝑔2𝑔5 − 𝑔3𝑔4)         𝟎
−𝑔8𝑔1𝑔5         𝟎

𝟎                          −𝑔8𝑔1𝑔6
𝟎                     𝟎

                    𝑔8𝑔1𝑔4    𝟎

             𝟎     𝑔1(𝑔4𝑔7 − 𝑔5𝑔6)

) 

𝑲 = 𝑮−𝟏 = (

𝑘1 𝑘2
0 𝑘4

𝑘3 0
𝑘5 0

0 𝑘6
0 0

𝑘7 0
0 𝑘8

) 
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(

𝐼
𝑄
𝑈
𝑉

) = (

𝑘1 𝑘2
0 𝑘4

𝑘3 0
𝑘5 0

0 𝑘6
0 0

𝑘7 0
0 𝑘8

)(

𝐼𝐷𝐶
𝐼𝑄𝑈1
𝐼𝑄𝑈2
𝐼𝑉

)                                   (5-17) 

where ki (i=1, 2, …..8) are eight constants related to gi, which could be 

determined experimentally through the calibration process, as illustrated in section 5.5. 

The G and K matrix should be an invertible matrix; thus, the determinant of both of 

them must not be zero. 

 A simplified version of this equation is: 

𝑺𝒊𝒏 = 𝑲 𝑰𝒐𝒖𝒕                                                       (5-18) 

By using the previous methodology, the sample properties can be studied 

without moving any elements of the PSA components.  

5.4 Experimental Errors 

Systematic errors can arise from various sources during the experimental 

processes are carried out in this work; these include misalignment of the optical 

elements and determination of the retardation amplitude of PEMs (Liu, 2005). In 

addition, several random errors may be generated by fluctuation in light intensity due to 

variations in the lab temperature or fluctuation in the amplitude of the PEM retardation 

(Liu, 2005). 

To diminish the potential variation in light intensity, the fluctuations in room 

temperature were minimised to ±1ºC during the measurement process by using air 

conditioner. Also, to reduce the systematic errors, the PSA part of the dual PEM 

polarimetry was calibrated to determine the eight constants in equation (5-17) before 

any samples were added. Possible errors in the determination of the retardation values 

and the angle of the analyser and the PEM1 are thus involved within these eight 

constants. Moreover, the dual PEM polarimetry allowed to perform the measurement 

without further moving of any component in the PSA part of the system after 

calibration, preventing additional misalignment issues (Liu, 2005; Guan et al., 2010).  
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5.5 Calibration Steps for the Dual PEM Polarimetry 

In order to avoid any possible errors in the experimental arrangement, the optical 

system was calibrated to determine the K matrix prior to adding any sample. To 

calibrate the dual PEM polarimetry, the following steps were taken (Liu, 2005; Guan et 

al., 2010): 

1. The polariser axis was set at 0º and placed in the light path.  

2. The analyser was placed in the light path and rotated to the extinction position. 

3. One of the photoelastic modulators, PEM2, was placed between the polariser 

and the analyser, then slowly rotated to the extinction position, meaning that the 

fast axis was placed parallel to the fast axis of the analyser, which denotes the x-

axis of the experiments. 

4. The other photoelastic modulator, PEM1, was placed between PEM2 and the 

polariser and rotated so that the angle between its fast axis and the x-axis was 

α=45°. 

5. The retardation of both PEM1 and PEM2 was set at the first root of the Bessel 

function of the first kind; 2.4048 (see Appendix B).  

6. The analyser was rotated until the angle between its passing axis and the x-axis 

was β=22.5º. 

7. Linearly polarised light was then generated by passing the light through a 

rotatable linear polariser. The resulting polarised beam was then focused on the 

PSA system, which consists of the dual PEM and the analyser.  

8. All the four experimental signals, namely, IDC, IQU1, IQU2, and IV were measured 

using an electrometer and three different lock-in amplifiers. 

9. The passing axis of the polariser was set at a series of angles ψ = 0°, 5°, 10°, 

15°, 20°, ..., 180° to generate a range of values of linear polarised light, and the 

four resulting signals corresponding to each value were measured.  
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10. A circularly polarised light was generated by inserting a quarter-wave plate into 

the PSG part after the polariser, and the values were changed by setting the 

polariser at a series of angles in 10° increments (0°, 10°, 20°, …). 

11. All ki (i=1, 2, 3, …)=1 were considered as initial values to be able to calculate I, 

Q, U, and V from equation (5-17). 

12. The validity of the work was verified by using equation (3-15) to calculate the 

azimuth angles of the linear polarised light ψ. Subsequently, the first error was 

calculated by determining the difference between the initial consideration of ψ 

and the value calculated by applying the equation.  

13.  By assuming 100% polarised light, the relationship between I, Q, U, and V is: 

𝐼2 = 𝑄2 + 𝑈2 + 𝑉2                                              (5-19) 

The second error can be calculated by finding the difference between the 

theoretical and experimental I2.  

14.   The ki constants were obtained simultaneously by using Excel solver by 

minimising the total errors. 

The calibration results are discussed in more detail in Chapter 7.   
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5.6 The Polarimetric Light Microscope 

Insight into the material structure can be gained by using a light microscope. 

This instrument can be converted to a polarised light microscope by inserting a polariser 

before the sample stage to generate a polarised light and an analyser after the sample 

stage to analyse the changes in the polarised light after interacting with the sample. The 

polarised microscope has the ability to provide information about the optical properties 

of materials. The microscopic imaging can be characterised completely using the Stokes 

polarimetry technique, which provides an interesting tool to study biological tissue, 

crystal structure, and metamaterial surfaces. 

This project uses a light microscope converted in the laboratory to a polarised 

microscope by adding a dual PEM configuration illustrated previously in section 5.3. 

Figure 5-3 shows a photograph of the Stokes polarimeter microscope in transmission 

geometry. The system consists of a polarisation state generator (PSG), sample stage, 

objective lens, and polarisation state analyser (PSA). The PSG integrates a rotatable 

linear polariser, and a quarter-wave plate can be inserted to generate different states of 

linear and circular polarised light. In contrast, the PSA consists of dual PEMs and an 

analyser for analysing polarisation changes. 

 

Figure 5-3: A photograph of the polarised microscope 
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During studying the mesoscopic structure, polarisation information regarding the 

two-dimensional structures is obtained at each individual pixel by using a digital camera 

to acquire microscopic images. The LabView ‘virtual instrument’ alongside Python is 

used to allow a fully quantitative measurement of Stokes parameters from the output 

signals.  

 Before doing samples measurements, a calibration technique is applied in the 

absence of the sample to estimate the ki constants. During the calibration procedure, 

rotation of the polariser or the quarter-wave plate allows the generation of different 

linear and circular polarisation states. The output signals are collected in each pixel of 

the resultant image. The eight constants ki are obtained following the same steps 

illustrated in the previous section 5.5. 

In order to study a sample, the sample is placed on the sample stage, and the 

four Stokes parameters are obtained using equation 5-17.  Determining the Stokes 

parameters of the sample can reveal additional information regarding the polarisation 

characteristics of the light, such as Ip, Idp, DOP, DOLP, DOCP, ψ, and χ, which are 

defined in section 3.3. By using the microscope, these polarisation characteristics can be 

determined in each pixel of the two-dimensional structure. 
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6 Simulation Work 

Simulation is an integral component of theoretical and experimental studies in the 

field of applied science. There are many ways in which scientific studies are improved 

by employing simulation methodology, including the following:  

• Visualisation: simulations provide supportive means to gain extensive 

visualisation of scientific cases.  

• Replication of reality: when analytical or experimental solutions are 

problematic, simulations can help to mimic reality.  

• Numerical calculation: a simulation is a powerful tool for solving 

complicated mathematical problems quickly and easily.  

Even with regard to the amount of time needed to learn programming languages, 

simulation has effective applications in many scientific sectors, including 

mathematics, physics, biology, engineering, and chemistry. By using simulation, 

numerous models can be generated simply by changing the initial parameters or 

conditions (Cormen, Leiserson, Rivest, and Stein, 2009; Nava, and Kreinovich, 

2016).   

The usefulness of simulation is especially well illustrated by the field of 

nanotechnology, where the small size of the materials contributes to the complexity 

of measurements. A virtual nano-sample can be constructed with modelling, and its 

behaviour can be predicted under different circumstances without conducting an 

actual experiment. It is clear that simulation can be successfully used to reduce the 

time and the cost of scientific studies. In general, enhanced computing capability 

provides an open opportunity to support future developments in the era of nano-

devices (MacLennan, 2008). 

MATLAB programming facilitates the opportunity to model a realistic case by 

using high-level language prior to conducting an experimental study. This chapter 

attempts to understand Osipov and Potts models behaviour (which will be explained 

later in section 6.2) and calculate the chirality for a single triangle using MATLAB. 
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Subsequently, these MATLAB codes were used to study the chirality of gammadion 

patterns and how it depends on the triangle model.   

6.1 Triangle Model 

The simplest 2D object is defined by three points (triangle), which create an 

achiral object in two situations: an isosceles triangle or an equilateral triangle 

(regular triangle). Otherwise, the triangle (scalene triangle) is classified as a chiral 

object with three different sides, which could be labelled as Large (L), Medium (M), 

and Small (S). In accordance with this view, the triangle can be classified as either 

CLMS or ALMS based on the clockwise or anticlockwise ordering of Large, Medium, 

and Small sides(LMS), as depicted in Figure 6-1 (Fowler, 2005).  

 

Figure 6-1: The handedness of two enantiomer triangles.  a) ALMS triangle where the ordering of 
the Large, Medium, and Small sides is anticlockwise. b) CLMS triangle where the ordering of the 

Large, Medium, and Small sides is clockwise.  

 

The triangle model effectively describes the chirality index (K) measurement in 

planar materials. Several attempts have been made to determine the chirality based 

on the asymmetry area of the triangle when placed over its mirror image, as further 

examples in Table 6-1. 

As shown in the table below, there are many functions which can, to a certain 

degree, express the chirality as defined in section 2.4. 
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Table 6-1: Examples of the functions that calculate the chirality based on triangle model, where 

ai, aj, and ak are the triangle sides, while θi, θj and θk are the triangle angles. 

 

Chirality index (K) expression of a triangle  Reference 

∆

(𝑎𝑖𝑎𝑗𝑎𝑘)
2 [(

𝑎𝑖
2

𝑎𝑘
2 −

𝑎𝑖
2

𝑎𝑗
2) 𝑐𝑜𝑠(𝜃𝑖) + (

𝑎𝑗
2

𝑎𝑖
2 −

𝑎𝑗
2

𝑎𝑘
2) 𝑐𝑜𝑠(𝜃𝑗)

+ (
𝑎𝑘
2

𝑎𝑗
2 −

𝑎𝑘
2

𝑎𝑖
2) 𝑐𝑜𝑠(𝜃𝑘)] 

Potts et al. (2003) 

∆ [
𝑎𝑗
2 − 𝑎𝑘

2

𝑎𝑖
2 + |𝑎𝑗

2−𝑎𝑘
2|
+

𝑎𝑘
2 − 𝑎𝑖

2

𝑎𝑗
2 + |𝑎𝑘

2−𝑎𝑖
2|
+

𝑎𝑖
2 − 𝑎𝑗

2

𝑎𝑘
2 + |𝑎𝑖

2−𝑎𝑗
2|
] Potts et al. (2003) 

∆ [(
𝑎𝑘
𝑎𝑗
−
𝑎𝑗

𝑎𝑘
) 𝑐𝑜𝑠(𝜃𝑖) + (

𝑎𝑖
𝑎𝑘
−
𝑎𝑘
𝑎𝑖
) 𝑐𝑜𝑠(𝜃𝑗) + (

𝑎𝑗

𝑎𝑖
−
𝑎𝑖
𝑎𝑗
) 𝑐𝑜𝑠(𝜃𝑘)] 

∆ [(
𝑎𝑗
2

𝑎𝑖
2 −

𝑎𝑖
2

𝑎𝑗
2) + (

𝑎𝑘
2

𝑎𝑗
2 −

𝑎𝑗
2

𝑎𝑘
2) + (

𝑎𝑖
2

𝑎𝑘
2 −

𝑎𝑘
2

𝑎𝑖
2)] 

Potts et al. (2003) 

∆ [(
𝑎𝑖 − 𝑎𝑗

𝑎𝑖 + 𝑎𝑗
) + (

𝑎𝑗 − 𝑎𝑘

𝑎𝑗 + 𝑎𝑘
) + (

𝑎𝑘 − 𝑎𝑖
𝑎𝑘 + 𝑎𝑖

)] Potts et al. (2003) 

𝑐𝑜𝑠(2(2𝜃𝑖 − 𝜃𝑗)) + 𝑐𝑜𝑠(2(2𝜃𝑗 − 𝜃𝑘)) + 𝑐𝑜𝑠(2(2𝜃𝑘 − 𝜃𝑖))

− 𝑐𝑜𝑠 (2(2𝜃𝑗 − 𝜃𝑖)) − 𝑐𝑜𝑠 (2(2𝜃𝑘 − 𝜃𝑗)) − 𝑐𝑜𝑠(2(2𝜃𝑖 − 𝜃𝑘)) 

Rassat and Fowler 

(2003) 

1

𝜋6
𝜃𝑖𝜃𝑗𝜃𝑘(𝜃𝑖 − 𝜃𝑗)(𝜃𝑗 − 𝜃𝑘)(𝜃𝑘 − 𝜃𝑖) 

Rassat and Fowler 

(2003) 

(𝑠𝑖𝑛𝜃𝑖 − 𝑠𝑖𝑛𝜃𝑗)(𝑠𝑖𝑛𝜃𝑗 − 𝑠𝑖𝑛𝜃𝑘)(𝑠𝑖𝑛𝜃𝑘 − 𝑠𝑖𝑛𝜃𝑖) 
Rassat and Fowler 

(2003) 
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6.2 Osipov and Potts Models 

For the purposes of this study, the focus is on the outcomes of the four models 

presented by Potts et al. (2003). These models are simple to apply to different 2D 

shapes and almost satisfy the requirements of the chirality measurement. These models 

take the following forms: 

Osipov's model: 

K(Osipov) =
∆

(a𝑖a𝑗a𝑘)
2 [(

𝑎𝑖
2

𝑎𝑘
2 −

𝑎𝑖
2

𝑎𝑗
2) 𝑐𝑜𝑠(𝜃𝑖) + (

𝑎𝑗
2

𝑎𝑖
2 −

𝑎𝑗
2

𝑎𝑘
2) 𝑐𝑜𝑠(𝜃𝑗) + (

𝑎𝑘
2

𝑎𝑗
2 −

𝑎𝑘
2

𝑎𝑖
2) 𝑐𝑜𝑠(𝜃𝑘)]      

(6-1) 

 

Potts' 1st model: 

K(1st) = ∆ [
𝑎𝑗
2−𝑎𝑘

2

𝑎𝑖
2+|𝑎𝑗

2−𝑎𝑘
2|
+

𝑎𝑘
2−𝑎𝑖

2

𝑎𝑗
2+|𝑎𝑘

2−𝑎𝑖
2|
+

𝑎𝑖
2−𝑎𝑗

2

𝑎𝑘
2+|𝑎𝑖

2−𝑎𝑗
2|
]                         (6-2) 

 

Potts' 2nd model: 

K(2nd) = ∆ [(
𝑎𝑗
2

𝑎𝑖
2 −

𝑎𝑖
2

𝑎𝑗
2) + (

𝑎𝑘
2

𝑎𝑗
2 −

𝑎𝑗
2

𝑎𝑘
2) + (

𝑎𝑖
2

𝑎𝑘
2 −

𝑎𝑘
2

𝑎𝑖
2)]                          (6-3) 

 

Potts' 3rd model: 

K(3rd) = ∆ [(
𝑎𝑖−𝑎𝑗

𝑎𝑖+𝑎𝑗
) + (

𝑎𝑗−𝑎𝑘

𝑎𝑗+𝑎𝑘
) + (

𝑎𝑘−𝑎𝑖

𝑎𝑘+𝑎𝑖
)]                                 (6-4) 

Where: ai, aj and ak represent the lengths of the triangle's sides opposite to angles θi, θj 

and θk, respectively, and Δ denotes the area of the triangle, as shown in Figure 6-2. 

 

Figure 6-2: A triangle with the labelling of sides (ai, aj, and ak), and angles(θi, θj, and θk). 
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6.2.1 Sensitivity to the Sense of Handedness 

In order to gain an in-depth understanding of the sensitivity of the above-

mentioned models to the sense of handedness, the chirality index K is obtained of 

different triangles as a function of one angle (θ3) when 0º< θ3 <180º and the K of mirror 

images of these triangles, i.e. when 180º< θ3 <360º. These triangles have sides a1, a2, 

and a3 where a1=1, a2= r a1, and a3 changes as the opposite angle θ3 changes from 0º to 

360º. As defined by the four previous formulas, the chirality index K is plotted as a 

function of θ3. The outcomes for r=0.5 and r=0.7 are shown in Figures 6-3 and 6-4, as 

similar to the work done by Potts et al. (2003). As expected, the sign of chirality K 

changes when the handedness of the triangle changes, meaning that when θ3 >180º, K 

has the same value but with a different sign than K when θ3 < 180º. These results 

indicate that all the four models sensitive to the change of the handedness of the 

structure where they changed the sign when the handedness reversed. 

 

 

Figure 6-3: The chirality of triangles with sides a1=1, a2=.5a1, a3 changes depending on the 

changing of the opposite angle θ3 from 0º to 360º. The chirality index K, defined by the four 
different formulas, is plotted as a function of θ3. (the code is in Appendix A-2)  
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Figure 6-4: The chirality of triangles with sides a1=1, a2=.7a1, a3 changes depending on the 

changing of the opposite angle θ3 from 0º to 360º. The chirality index K, defined by the four 
different formulas, is plotted as a function of θ 3. (the code is in Appendix A-3)  

 

6.2.2 Sensitivity to Chirality 

 To investigate the behaviour of the four models when a shape has trivial 

changes, consider the five different shapes in Figure 6-5. The shape in (6-5a) is an 

achiral pattern in a square shape, and the four other shapes are constructed by modifying 

the square slightly, which result in one achiral pattern in envelope shape in Figure (6-

5b) and three chiral shapes in Figures (6-5c), (6-5d), and (6-5e). After pixelating these 

shapes, the chirality K was calculated by using the four different models. In general, all 

of the models seem sensitive when the shape change from achiral to chiral. Chirality 

tends to be zero if the shape has symmetry, such as the square in Figure (6-5a) and the 

envelope shape in Figure (6-5b). However, chirality acquires a considerable value as a 

result of chiral shapes, such as those in Figures (6-5 c), (6-5 d), and (6-5 e). It should be 

noted that the chirality K of the shapes in Figures (6-5 c) and (6-5 d) has the same value 

as the shapes are the same under the rotation operation. 
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Figure 6-5: Chirality values K obtained based on the four models for different shapes. K tends to 
be zero for a) square and b) envelope as achiral shapes; however, the value of K becomes 
considerable for any small change that results in a chiral shape, like figures c), d), and e), l 

 

  



46 
 

6.2.3 Limitations 

These models are not without limitations. One major limitation is that they are 

all reliant on the area, not just the shape, which make the comparison between different 

structure with different area not accurate. 

 

Figure 6-6: Triangles with the same angles but different area. 

 

Let us consider the following situation (see Figure 6-6): similar triangles with 

fixed angles but different sides where the first side a1 changes from 1 to 10 units, and 

the second side a2=0.7a1, while the third side a3 changes but the opposite angle is kept 

fixed as θ3=45º. The chirality K is calculated using the three models proposed by Potts 

et al. (2003) and plotted as a function of the area in Figure (6-7). As shown in the 

figure, when the area of the triangle increases, the chirality, as defined by the Potts’ 

models, decreases linearly, although the shape does not change. Note that the chirality 

index decreases with negative values, which means that the degree of chirality increases 

as the area increases. 
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Figure 6-7: The relationship between the chirality and the area of similar triangles. (the code is 
in Appendix A-4)  

 

6.2.4 The Most Chiral Triangle 

Attempting to identify the most chiral triangle is a complex task (Rassat and 

Fowler, 2003). To compare the chirality of triangles with a fixed area, consider the area 

of triangles is settled to be equal to a unit by choosing triangles with points (0,0), (0,1), 

and (x3,2) where x3 takes different values over the interval [-10, 10]. This is exemplified 

by the triangle in Figure (6-8).  

 

Figure 6-8: The area of triangles is fixed to be equal to a unit by choosing triangles with points 
(0,0), (0,1), and (x3,2), where x3=4 here as an example. (the code is in Appendix A-5)  

The four different models (Potts et al., 2003) facilitate the calculation of 

chirality, which can then be plotted as a function of x3 values. As seen in Figure 6-9, the 

Osipov model and Potts 3rd model show different extremum values around at x3=±1.3, 

±5, respectively, which indicate the most chiral triangle. However, Potts' 1st and 2nd 

models do not indicate the maximum value. 
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Figure 6-9: The chirality of triangles with fixed area calculated using the four different models 
and plotted as a function of x3 (as explained in Figure 6-8). The Osipov model and Potts 3rd 
model show different extremum value, while Potts' 1st and 2nd models do not indicate the 

maximal value.  

6.3 Chirality Index of Gammadion Patterns 

By using Osipov and Potts models (Potts et al., 2003), the chirality index K was 

calculated for gammadion patterns as a function of the bending angle (β) of the 

gammadion arm (the gammadion shape illustrated in Figure (6-10). 

 

Figure 6-10: Gammadion shape,  β is the bending angle of the arm and L is arm length. 

Similar to the work done by Potts et al. (2003), the chirality index K is 

calculated by using different pixelating of the shape: 0.1L, 0.05L, and 0.025L, where 

L=1 is the length of the gammadion arm. Then, K values were calculated by summing 

over the chirality of all possible triangles performed with three points in the clockwise 
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direction. The following figures show the chirality K of gammadion patterns using the 

four different models: Figure (6-11) Osipov model, Figure (6-12) Potts 1st model, 

Figure (6-13) Potts 2nd model, and Figure (6-14) Potts 3rd model. The figures show that 

the result of the case of the Osipov model changes significantly when the pixelating of 

the shape change, while the Potts 1st, 2nd, and 3rd models appear almost no change (Potts 

et al., 2003).  

 

 

Figure 6-11: Chirality index K by using Osipov model for gammadion patterns as a function of 
the bending angle of the arm (β), with three different pixelating of the pattern: 0.1L, 0.05L, and 

0.025L, where L is the arm length 
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Figure 6-12:Chirality index K by using Potts 1st model for gammadion patterns as a function of 
the bending angle of the arm (β), with three different pixelating of the pattern: 0.1L, 0.05L, and 

0.025L, where L is the arm length 

 

 

Figure 6-13:Chirality index K by using Potts 2nd model for gammadion patterns as a function of 
the bending angle of the arm (β), with three different pixelating of the pattern: 0.1L, 0.05L, and 

0.025L, where L is the arm length 
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Figure 6-14:Chirality index K by using Potts 3rd model for gammadion patterns as a function of 
the bending angle of the arm (β), with three different pixelating of the pattern: 0.1L, 0.05L, and 

0.025L, where L is the arm length 
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7 Experimental Results  

The experimental measurements presented in this chapter were collected using a 

dual-PEM polarimeter (illustrated in section 5.3) and the polarimetric imaging 

microscope (described in section 5.6). In this work, the polarimetric microscope was 

operated in transmission mode, with the light passing through the PSG and the sample 

before reaching the PSA. The PSG consisted of a light source, a rotatable polariser to 

generate various linear polarised light. In some experiments, a rotatable quarter 

waveplate was used to generate various circular polarised light. The PSA part consisted 

of two photoelastic modulators and an analyser. The data acquired by using a digital 

camera. The polarimetric microscope was computerised using LabView, and 

appropriate Python codes were used to analyse the collected data. 

In general, this chapter presents the calibration data of the system using three 

different light resources. Also, the experimental results of measuring Stokes parameters 

by using multiple samples are offered. Hence these parameters can be used in turn to 

determine other optical properties such as the angle of ellipticity, the azimuth angle, the 

degree of polarisation and the degree of depolarisation. 
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7.1 Sample Description 

In order to study the optical responses of chiral materials, several multiple 

samples in gammadion shapes with different bending angles (β) were patterned. One 

pattern of these samples is achiral structures, while others are chiral structures. There 

are also spiral-shaped patterns and five-folded shapes. All these samples were created in 

an external production facility in China. Figure 7-1 and 7-2 show and label the 

dimensions of gammadion and spiral pattern, while Table 7-1 lists the value of the 

dimensions in each pattern.  

 

Figure 7-1: Spiral-shaped patterns. 

 

Figure 7-2: Gammadion-shaped patterns. 
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Table 7-1: The value of the dimensions in each pattern of the experimental samples. The 
symbols (β, d, and c) are defined in Figures 7-1 and 7-2; microscope images captured using 

100x objective lens with 1.6x immersion oil. 

 Shape β  (⁰) d  (µm) c  (µm) Manufacturer SEM images Polarised Microscope image 

Gammadion 

 

G0 

0 4 1.40 

  

Gammadion 

 

G22.5 

22.5 4 1.40 

  

Gammadion 

 

G45 

45 4 1.40 

  

Gammadion 

 

G60 

60 4 1.40 

 
 

Gammadion 

 

G90 

90 4 1.40 

 
 

Spiral - 4 1 
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The pattern G0 is an achiral shape, while the other patterns are chiral shapes, and 

it might be right- or left-handed. 

The samples were arranged in 25 different arrays with spaces between them of 

around 2mm. Each array consisted of a periodic arrangement of identical patterns in two 

dimensions. The pattern was etched on a silicon nitride layer of 320 nm thickness 

placed upon a fused silica substrate layer of 1 mm thickness. The width of the etched 

line was thus about 200 nm, as shown in the schematic diagram in Figure 7-3. 

 

 

Figure 7-3: Schematic representation of a gammadion sample. 
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7.2 Calibration 

The calibration procedure characterises the PSA, and thus should be performed 

periodically to achieve higher accuracy in measurement. In order to determine ki 

elements where i=1, 2, 3, ….,8 prior to adding any sample, the dual PEM polarimetry 

was calibrated following the steps illustrated in detail in section 5.5. During the 

calibration procedure, linear and circular polarised light passed through the PSA using 

polariser and QWP. Then, the four experimental signals, IDC, IQU1, IQU2, and IV, were 

measured and, based on equation (5-17), Stokes parameters were calculated. The total 

error was calculated as follows: 

𝜀𝑡𝑜𝑡𝑎𝑙 = ∆𝐼 + ∆𝜓 

where ΔI is the difference between the experimental and theoretical value of Stokes 

parameter I, while Δψ is the difference between the experimental and theoretical value 

of azimuth angle. By using an Excel solver, the ki constants were obtained 

simultaneously by minimising the total errors.  
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7.2.1 Calibration of the Dual PEM System (using a 670-nm laser) 

Following the steps in section 5.5, a system of two PEMs (Hinds Instruments) 

with different frequencies Ω1=42 kHz and Ω2=50 kHz; and Glan-Thompson(Karl 

Lambrecht)  analyser was calibrated by using a laser light of wavelength 670 nm, acting 

as a light source, and a photodiode detector (Melles Griot). The calibration constants, ki, 

are listed in Table 7-2, along with the value of total error εtotal. The normalised Stokes 

parameters q=Q/I, u=U/I, and v= V/I are plotted in Figure 7-4 as a function of the angle 

of the polariser by using circular and linear polarised light. Note that in Figure 7-4a, q 

remains positive, although that not fully understood.   

 

Figure 7-4: The normalised Stokes parameters  q, u and v for the dual PEMs 
polarimetry with 670-nm laser as a polarised light: a) circular and b) linear. 

Lines drawn between data points are intended to be a guide to the eye. 

Table 7-2: calibration constants ki with 
the total error εtotal  for dual PEMs 
configuration with 670-nm laser light.

 

 

 

 

 

 

 

 With 670nm laser 

k1 1 

k2 0.350381062 

k3 0.362692492 

k4 2.313098818 

k5 -0.036551535 

k6 0.069754952 

k7 2.215441109 

k8 3.46277614 

Ԑtotal  3.22E-02 
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7.2.2 Calibration of the Polarimetric Microscope (using 445- nm LED) 

As explained in Section 5.5, the calibration process was used to identify the 

eight constants of the polarimetric microscope (ki, i=1,2, …,8). The microscope was 

then calibrated by using a LED with a wavelength of 445 nm as a light source. The 

frequencies of PEM1 and PEM2 were Ω1=42 kHz and Ω2=47 kHz, respectively. A 

quarter-wave plate (QWP) was used to generate the required circular polarisation states. 

The calibration constants ki are listed in Table 7-3 with total error εtotoal, while Figure 7-

5 shows the normalised Stokes parameters q, u, and v.  

 

 

Figure 7-5: The normalised Stokes parameters q, u, and v for the polarimetric 
microscope with 445- nm LED as a light source for a) circularly polarised light and 

b) linear polarised light. Lines drawn between data points are intended to be a 
guide to the eye 

Table 7-3: calibration constants ki 
(i=1, 2, ….8) with the total error 
εtotal for polarimetric microscope 

using 445-nm LED. 

 
 

 With LED 445nm 

k1 1 

k2 0.214435081 

k3 2.030462941 

k4 0.726620156 

k5 -5.769474153 

k6 -5.056997556 

k7 -1.141747266 

k8 4.349517707 

Ԑtotal 0.034613285 
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7.2.3 Calibration of the Polarimetric Microscope (using 660- nm LED) 

Aside from the fact that the light source was LED of 660-nm wavelength, the 

process was the same as in the previous section. The calibration result of the 

polarimetric microscope is shown in Figure 7-6, where Figure 7-6a shows normalised 

Stokes parameters of circularly polarised light, while Figure 7-6b shows normalised 

Stokes parameters of linear polarised light. Table 7-4 summarises the calibration 

constants (ki, i=1,2, …,8) and the total error εtotoal. Note that in Figure 7-6a u is nearly 

negative but that not the case in Figure 7-5a; although that the difference between the 

two experiments is just the light wavelength, this features is not fully understood  
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Figure 7-6: The normalised Stokes parameters  q, u, and v for the polarimetric 
microscope with 660-nm LED as a light source for a) circularly polarised light and 

b) linear polarised light. Lines drawn between data points are intended to be a 
guide to the eye  

 

Table 7-4: ki constant with the 
total error εtotal for the 

polarimetric microscope using 
660-nm LED.

 

 

 

 

 

 

 

 

 

 

 

 With LED 660nm 
k1 1 

k2 0.02911742 

k3 4.644286161 

k4 2.142209116 

k5 -9.103065789 

k6 3.514125234 

k7 4.144227242 

k8 2.819710344 

Ԑtotal 0.032891858 
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7.3 Calculation of Stokes Parameters 

A gammadion shape was measured in transmission mode by using a polarimetric 

microscope. Normalised Stokes parameters and normalised depolarisation were 

calculated. The light source was a 445nm LED, and the polarimetric microscope 

equipped with a 40x objective lens with 1.6x immersion oil. The results are shown in 

Figure 7-7.  

 

Figure 7-7:Normalised Stokes parameters (Q/I, U/I, V/I) and normalised depolarisation (ndP) of 
a pattern in gammadion shape (G45 as illustrated in Table 7-1) by using (455-nm LED and 40x 

objective lens with 1.6x immersion oil). 
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7.4 Calculation of Ellipticity and Azimuth Angles 

Both the ellipticity and azimuth angles were calculated using the data of Stokes 

parameters measured for different patterns of gammadion shapes by using the 

polarimetric microscope. All the measurements were obtained under the same 

conditions using a 445 nm LED as a light source and a 100x objective lens with 1.6x 

immersion oil. 

Table 7-5: Ellipticity (χ) and azimuth (ψ) angles of different patterns (as illustrated in table 7-1) 
by using LED 455 nm and 100x objective lens with 1.6x immersion oil. 

 Pattern 
name 

Photo of the 
pattern 

Ellipticity angle (χ) 
(rad) 

Azimuth angle (ψ) 
(rad) 

G0 

 

 
 

 
 

 
 

 

G22.5 

 

  

 

 

 

 

G45 
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Pattern 
name 

Photo of the 
pattern 

Ellipticity angle (χ) Azimuth angle (ψ) 

    
    
    

G60 

 

  
    
  

 
  

 

G90 

  

 
 

 
 

 

5-folded 
shape 
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Pattern 
name 

Photo of the 
pattern 

Ellipticity angle (χ) Azimuth angle (ψ) 

 
6-folded 

shape 

 

 

 
 

 
  

 
 

 

Z-shape 

 

 

 

 

 

 

RH Spiral 

 

 
 

 

As illustrated by the Figures in Table 7-5, the experimental results show that the 

ellipticity angle and the azimuth angle depend on the shape of the planar samples.  
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Also, this study took advantage of the availability of a rotatable polariser to 

obtain measurements of the samples with different polariser angles. In practice, the 

same light source was used throughout to allow the 2D values of the ellipticity angle 

and azimuth angle to be determined along with the rotation of the polariser angles from 

0 º to 110º. The results are shown in Figures 7-8(a-l) and 7-9(a-l). 

 

     a) polariser at 0º                    b) 10º                                      c) 20º                            

              

     d) 30º                                     e) 40º                                    f) 50º                              

 

     g) 60º                                    h) 70º                                     i) 80º  

                         

      j) 90º                                      k) 100º                                  l) 110º    

 

Figure 7-8: Ellipticity angle (χ) in radian of a pattern in gammadion shape (G45 as illustrated in 
Table 7-1) with changing the polariser angle using 455-nm LED and 40x objective lens with 1.6x 

immersion oil.  
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        a) polariser at 0 º                         b) 10 º                                           c) 20 º          

 

      d) 30 º                                             e) 40 º                                            f) 50 º      

           

           g) 60 º                                         h)70 º                                               j) 80 º             

   

              i) 90 º                                               j) 100 º                                              k) 110 º  

 

Figure 7-9: Azimuth (ψ) angles in radian of a pattern in gammadion shape  (G45, as illustrated 
in table 7-1) with changing the polariser angle using LED 455nm, 40x objective lens with 1.6x 

immersion oil. 
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The following results thus present experimental data that contains additional 

information about the sample, where the sample was rotated while it was being 

measured at each 10º. The ellipticity angle and azimuth angle of one pattern in a 

gammadion shape were calculated based on the data collected during rotation of the 

sample from (0º -60º) as shown in Figure 7-10 and 7-11. 

    
a) sample at 0º                               b) 10º                                 c) 20º           

      

 d) 30º                                           e) 40º                                   f) 45º 

 

g) 50º                                             h) 55º                                   i) 60º                  

 

Figure 7-10: Ellipticity (χ) angle in radian of a pattern in gammadion shape  (G45, as illustrated 
in Table 7-1) with rotation of the sample by using 455-nm LED 40x objective lens with 1.6x 

immersion oil. 
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a) sample at 0º                              b) 10º                                     c) 20º          

    

d) 30º                                             e) 40º                                   f) 45º 

 

g) 50º                                           h) 55º                                    i) 60º                  

 

Figure 7-11:  Azimuth (ψ) angles in radian of a pattern in gammadion shape  (G45, as 
illustrated in Table 7-1) with rotation of the sample by using 455-nm LED and 40x objective lens 

with 1.6x immersion oil. 

 

  

As clearly seen by the Figures in this section, the polarimetric microscope has 

the ability to determine the ellipticity and azimuth angles for different sitting for the 

sample or the polariser. 
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7.5 Calculation of the Mueller Matrix of a Gammadion Pattern: 

One of the most promising uses of the polarimetric microscope is to calculate 

the Mueller matrix of a given sample. The imaging technique offers excellent 

opportunities to discerning the Mueller matrix in each pixel of the sample. One of the 

main reasons behind the experiment presented in this section is to showcase the 

polarimetric microscope's ability to define the elements of the Mueller matrix as 2D 

images. 

By using the polarimetric microscope, I believe that the complete Mueller 

matrix of a sample can be determined. However, there are not sufficient measurements 

taken to provide the full set of Mueller matrix elements in the current experiment, where 

only linear polarised light was generated during the measurements. The polariser was 

oriented at five different angles (θ=0º, 20º, 40º, 60º, 80º), and at each angle, the linear 

polarised light passing through the air was measured. After that, the sample was 

inserted, and the linear polarised light was measured for the same five angles of 

polarisation. Although the determination of a Mueller matrix requires measurements of 

four different polarised states as a minimum, here, five different measurements were 

taken to offer overdetermination thus increasing the accuracy of the results. Then the 

Mueller matrix of the sample was extracted by inversion calculation.   

[

𝑰
𝑸
𝑼
𝑽

]

𝜽

= 𝑴[

𝑰𝒂𝒊𝒓
𝑸𝒂𝒊𝒓
𝑼𝒂𝒊𝒓
𝑽𝒂𝒊𝒓

]

𝜽

                                                  (7-1) 

𝑰𝜃 = 𝑚00 𝑰𝒂𝒊𝒓(𝜽) +𝑚01 𝑸𝒂𝒊𝒓(𝜽) +𝑚02 𝑼𝒂𝒊𝒓(𝜽) +𝑚03 𝑽𝒂𝒊𝒓(𝜽)                (7-2) 

𝑸𝜃 = 𝑚10 𝑰𝒂𝒊𝒓(𝜽) +𝑚11 𝑸𝒂𝒊𝒓(𝜽) +𝑚22 𝑼𝒂𝒊𝒓(𝜽) +𝑚33 𝑽𝒂𝒊𝒓(𝜽)                (7-3) 

𝑼𝜃 = 𝑚20 𝑰𝒂𝒊𝒓(𝜽) +𝑚21 𝑸𝒂𝒊𝒓(𝜽) +𝑚22 𝑼𝒂𝒊𝒓(𝜽) +𝑚23 𝑽𝒂𝒊𝒓(𝜽)                (7-4) 

𝑽𝜃 = 𝑚30 𝑰𝒂𝒊𝒓(𝜽) +𝑚31 𝑸𝒂𝒊𝒓(𝜽) +𝑚32 𝑼𝒂𝒊𝒓(𝜽) +𝑚33 𝑽𝒂𝒊𝒓(𝜽)                 (7-5) 

where [I Q U V]T  is the Stokes vector of the light entering through the sample, 

while [Iair  Qair  Uair  Vair ]T  is the Stokes vector of light travelling through the air, and 

θ=0º, 20º, 40º, 60º, 80º are the polariser angles. Each equation has four unknown 
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Mueller elements and could be separated into five different equations for the five 

different polarisation states measurements. The resulting equations could be organised 

in matrix formula as the following: 

(

𝑰0 𝑰20 𝑰40 𝑰60 𝑰80
𝑸0 𝑸20 𝑸40 𝑸60 𝑸80
𝑼0
𝑽0

𝑼20
𝑽20

𝑼40
𝑽40

𝑼60
𝑽60

𝑼80
𝑽80

) =

(

𝑚00 𝑚01

𝑚10 𝑚11

𝑚02 𝑚03

𝑚12 𝑚13
𝑚20 𝑚21

𝑚30 𝑚31

𝑚22 𝑚23

𝑚32 𝑚33

)(

𝑰𝑎𝑖𝑟0 𝑰𝑎𝑖𝑟20 𝑰𝑎𝑖𝑟40 𝑰𝑎𝑖𝑟60 𝑰𝑎𝑖𝑟80
𝑸𝑎𝑖𝑟0 𝑸𝑎𝑖𝑟20 𝑸𝑎𝑖𝑟40 𝑸𝑎𝑖𝑟60 𝑸𝑎𝑖𝑟80
𝑼𝑎𝑖𝑟0
𝑽𝑎𝑖𝑟0

𝑼𝑎𝑖𝑟20
𝑽𝑎𝑖𝑟20

𝑼𝑎𝑖𝑟40
𝑽𝑎𝑖𝑟40

𝑼𝑎𝑖𝑟60
𝑽𝑎𝑖𝑟60

𝑼𝑎𝑖𝑟80
𝑽𝑎𝑖𝑟80

)              (7-6) 

Figure 7-12 shows nine elements of the Mueller matrix measured experimentally. 

 

 

 

 

Figure 7-12: Imaging nine elements of Mueller matrix in 2D for chiral gammadion shape, the 
dimension of the measurement is 3μm x 3μm. (the code is in Appendix A-6).  

 

The experimental data collected in this section was thus insufficient to gather 

beyond nine elements because circularly polarised light was not used. To achieve 

measurement of the complete elements of the Mueller matrix (16 elements), the 
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experiment could be extended to add measurements using the QWP to generate 

circularly polarised. 
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7.6 Comparing Two Sides of a Sample 

As Zhang et al. (2005, 2006) demonstrated when illuminating both sides of a 

planar pattern, the handedness of the polarisation rotation was opposite to that for the 

other side. In this section, the results of the measurements of both sides of a single 

gammadion sample are presented. Table 7-6 shows the experimental measurements of 

transmission light for linearly polarised beams incident on both sides of metamaterial 

structure in gammadion shape. The measurements were acquired by using 660 nm LED 

light and a 40x objective lens with 1.6x immersion oil. 

Thus, chiral materials should demonstrate different signs for handedness for 

both sides of a sample, based on the result shown in previous research (Zhang et 

al.,2006). However, the current experimental results do not show any clear difference 

between the opposite sides, perhaps because the accuracy required to demonstrate such 

measurements is beyond the current technical capabilities of the polarimetric 

microscope. In fact, the obtained results should not be considered automatically in 

contradiction with previous research outcomes due to this; they should instead open the 

door to further work in this area. 
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Table 7-6: The measurement of both sides of a chiral sample: a) normalised Stokes parameters 
(Q/I, U/I, V/I) and normalised depolarisation (ndP); b) Ellipticity angle; c) Azimuth angle. 

Side 1 Side 2 

  

 

 

 

 

 

 

 

 

 

 

a) Q/I, U/I, V/I and ndP 

b) ellipticity angle 

c) Azimuth angle 
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7.7 Fourier transformation 

The Fourier transform (FT) is an important image processing tool based on 

applying a mathematical formula to transfer the image from its natural space (the space 

domain in this case) into the Fourier space (the frequency domain). FT decomposes an 

image into its sinusoidal components, with each point representing a specific frequency. 

Thus, a particular frequency of an image could be observed. FT has several applications 

in imaging processing, such as image analysis, image filtering, image reconstruction, 

and image compression. The mathematical expression for FT is generally written as the 

following (Solomon and Breckon, 2011): 

𝐹(𝑘, 𝑙) = ∑ ∑ 𝑓(𝑖, 𝑗)𝑒
−𝑖2𝜋(

𝑘𝑖

𝑁
+
𝑙𝑗

𝑁
)𝑁−1

𝑗=0
𝑁−1
𝑖=0                               (7-7) 

where the image size is NxN; f(i,j) is the input image in the spatial space; and 

F(k,l) is the image in the Fourier space. Each point of the function F(k,l) is a result of 

double summation over the multiplication of each pixel in the function f(i,j) by the 

corresponding exponential function. As is clear from the mathematical expression, FT 

output thus involves complex numbers, and the DC component appears at the centre of 

the FT representation for F(0,0) (McAndrew, 2004). 

The response of Stokes parameters images to FT was examined in order to 

develop a further understanding of the nature of the periodic patterns. By using 

MATLAB, FT was thus applied to one of the current experimental results, the outcome 

of FT shown in Figure 7-13. 
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Figure 7-13: FT of Stokes parameters I and V. a) I component; b) FT of I; c) V component; and d) 
FT of V. 

The Fourier transformation of the I and V images showed two dominating 

directions, the vertical and horizontal, passing through the centre. These dominating 

because of the regularity of the patterns in the original images.  

  

a) b) 

c) d) 
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7.8 Investigation of nanoparticles 

To understand the nature of nanoparticle responses, several experiments were 

undertaken to measure the normalised Stokes parameters for gold nanoparticles (GNP), 

gold nanostars (GNS), and copper nanoparticles (CuNP). Two different sizes of GNP, 

50 nm and 15nm, were thus investigated. Furthermore, the copper nanoparticles were 

synthesised in solution with two different pH values, PH=10 and 10.5. The resultant 

samples were prepared by either putting the particles on a glass slide and sealing this 

immediately with a top slide or allowing the particles to dry on the glass before adding 

the top slide, where the later versions were labelled as' ‘Dried’. These samples were 

provided by Dr Zeljka Krpetic (University of Salford).  

The normalised Stokes parameters (Q/I, U/I, and V/I) and the normalised 

depolarisation were measured for various nanoparticles using a polarimetric microscope 

with 455nm LED  and the result is shown in the following figures: Figure 7-14 shows 

Gold nanoparticles, Figure 7-15 shown Gold nanostars, and Figure 7-16 shown Copper 

nanoparticles.  
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*50nm GNP                                              *50nm GNP Dried                                                      

  

 

*15nm GNP                                                               *GNP Dried

 

Figure 7-14: normalised Stokes parameters (Q/I, U/I, V/I) and normalised depolarisation (ndP) 
of gold nanoparticles by using LED 455nm, 100x objective lens with 1.6x immersion oil, 

320x320 pixels 
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*GNS1                                           *GNS1 Dried      

 

 

 

*GNS2                                                  *GNS2 Dried 

 

Figure 7-15: normalised Stokes parameters (Q/I, U/I, V/I)  and normalised depolarisation (ndP); 
of gold nanostars by using LED 455nm, 100x objective lens with 1.6x immersion oil, 320x320 

pixels 
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*CuNP PH10 Dried                                   *CuNP PH10.5 Dried      

 

 

 

*CuNP PH10                                                    *   CuNP PH10.5  

 

Figure 7-16: normalised Stokes parameters (Q/I, U/I, V/I) and normalised depolarisation (ndP); 
of copper nanoparticles by using LED 455nm, 100x objective lens with 1.6x immersion oil, 

320x320 pixels 
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Conclusion 

In this thesis, the optical properties of planar chiral materials were studied both 

theoretically and experimentally. General theoretical concepts supporting this work, 

including chirality and polarised light, were thus initially discussed. Furthermore, the 

background of the experimental work was briefly reviewed. 

Simulations were performed to investigate four different models, as described in 

chapter 6. Despite the acknowledged presence of certain limitations, these models offer 

significant potential for the development of an application for analysing chiral 

structures. However, there is no doubt that these models require improvement to make 

them more convenient for the measurement of the chirality properties of any shape. In 

fact, currently, they cannot be used in making comparisons of different chiral patterns 

due to their area dependence. 

The dual photoelastic modulators polarimetry system was described as used in 

this work, that is, were operating in transmission mode. The polarimetry system was 

then used to modify an optical microscope to offer additional information about the 

optical properties of a mesoscopic structure, as described in section 5.6. Thus, the 

microscope was equipped with two polarisers and two photoelastic modulators, with a 

digital camera used as a detector. The two photoelastic modulators were operated at 

different frequencies, offering the potential to simultaneously obtain the four elements 

required for the Stokes parameters. The combined use of the microscope and the dual 

photoelastic modulators polarimetry provided valuable insights into planar chiral 

metamaterial structures, allowing certain structural insights down to the molecular level. 

We point out that the minimisation of the errors was ensured by calibrating the 

system prior to doing measurements of the samples. The calibration routine was 

performed as described to determine the characteristics of the polarimetry system based 

on generating eight constants related to the set of angles associated with optical 

elements. A detailed inspection of these revealed that the calibration process is essential 

to avoid random and systematic errors that might otherwise result from imperfections in 

the optical components and misalignments in the experimental setup.  
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The dual photoelastic configuration should be implementable in a polarimetric 

microscope, which is important based on the latter’s use as an extremely sensitive tool 

for understanding the properties of metamaterial structures. This work shows that a 

great deal of valuable information may be extracted from these images, with the system 

being used to detect metamaterial samples in gammadion shapes, as well as some 

nanoparticles, as shown in chapter 7. Several examples are offered to illustrate the 

polarimetric microscope’s adequacy for multiple practical applications, such as the 

measurements of the Stokes parameters, ellipticity angles, azimuth angles, and Mueller 

Matrices.  

The results support the idea that the proposed polarimetric microscope permits 

effective measurement of the Stokes vectors. The results also confirm that the 

polarimetric microscope is suitable for studying the effects of chiral structures on linear 

and circular polarised light. By analysing the Stokes images obtained from the signal, 

we are able to quantify the polarisation state of arbitrary polarised light, namely, the Ip, 

Idp, DOP, DOLP, and DOCP, as defined in section 2.3. 

From a more general perspective, this characterisation study has demonstrated 

that the polarimetric microscope can measure the full Mueller matrix of a sample. 

Although the experimental results offered in this work have shown the result of nine 

elements of the Mueller matrix of a planar metamaterial in transmission mode, as a 

QWP was not used in this case to generate a circular signal; however, all the 16 

elements could be gained using the same approach by adding some circularly polarised 

light.  

Interestingly, imaging in reciprocal space may constitute an attractive alternative 

to more conventional approaches, leading to a better understanding of composition and 

offering a new way to detect anomalies in specimens. This may be relevant in cases 

such as diseases in biological samples that have not been previously well understood. 

The resulting detailed mapping of the Stokes parameters may also offer a new way to 

analyse the polarisation characteristics of the diffraction based on the application of 

Fourier optics, which is an area worthy of further study in future. 

To evaluate the measurement performance of the proposed polarimetry system, 

evidence of its validity is first required. The system should be used to obtain suitable 
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measurements of materials with known Mueller matrices in order to provide evidence of 

its reliability in terms of making valid Mueller matrix measurements.  

Finally, this work has demonstrated that the microscope is a versatile instrument 

that can be used for a wide range of applications, wherever imaging the optical 

properties of a sample is essential. The method still has room for improvement; 

however, both reduce experimental errors and improve the interpretation of results. 

Work is in progress to further increase the amount of information derived from dual 

photoelastic modulators. The polarimetric microscope could thus be optimised to 

involve different vision apart from the investigated transmission mode, where 

transmission measurements depend on the thickness of the sample, which is not the case 

in reflection measurements. Another interesting perspective for future work would be to 

extend the experiments to include light sources providing a wider range of wavelength. 
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Future work 

Obviously, the use of the polarimetric microscope is a valuable technique for a 

wide range of fields. However, the method still has opportunities for further 

enhancements where new approaches can be induced. For example, the polarimetric 

microscope could thus be extended to work in reflection mode in addition to 

transmission mode. Nevertheless, the light source would be optimised to employ a 

broad band light source to get optical properties of samples as a function of the light 

wavelength. In addition, designing and running experiments to study the sample's 

behaviour under applying magnetic field could investigate addition phenomena such as 

Faraday rotation. 

Unfortunately, the experimental images were obtained by using a camera with a 

fan, and that introduced a vibration which produced noise in the outcome images. 

Future work could be carried out using a water-cooled camera to avoid vibrational 

interference. 

Using LabView, the microscope could be automated to directly calculate some 

optical properties such as the Stokes parameters, ellipticity angles, azimuth angles, and 

Mueller Matrices without the need for additional python programming. This step will 

effectively save more time. Moreover, the graphs could be improved with more 

attributes and details.  

The way used to calculate Mueller matrix elements could also be changed. In 

addition to using linear polarised light, circular polarised light could be generated to 

calculate all the 16 elements of the Mueller matrix. Moreover, evaluation of Mueller 

matrix measurements' validity could be done by obtaining measurements of materials 

with known Mueller matrices.  

Concerning the calibration results provided in section 7.2, the results of different 

light wavelength have not been compared. Such comparison could be made for different 

further calibrations, which could improve the calibration reliability in future work.   

Due to the unexpected curtailment of the research phase of this work by national 

lockdowns caused by the ongoing Covid-19 pandemic, the work in the Fourier 

transformation area is highly preliminary at this stage of writing the thesis. However, 
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the initial results suggest that this is a highly promising area, as it may lead to the 

establishment of convenient and valuable means of evaluating the polarisation 

characteristics in the Fraunhofer diffraction of light. This relates favourably to prior 

studies in the literature where the focus has been on the direct measurements of 

polarisation characteristics of the diffracted light beams. So, further research in this 

direction may also offer a new way to analyse the polarisation characteristics of the 

diffraction based on the application of Fourier optics, which is an area worthy of further 

study in future. 

Regarding the quantification of chirality, there are also many ideas that could be 

investigated to try to obtain a quantitative expression for chirality. It could be 

interesting to consider the seek on how to get a mathematical expression that just 

depends on chirality using triangle angles instead of sides to be area independent. 

In general, the preliminary results of these experiments do not seem to be 

satisfactory, and further study is still required in order to understand the behaviour of 

chiral samples and improve the polarimetric microscope.  

 

 

 

 

 

 

 

  



85 
 

References 

Aas, L. M. S. (2009). 'Mueller matrix ellipsometric imaging. Dept. Phys., NTNU, Oslo, 
Norway. 

Arteaga, O. (2010). Mueller matrix polarimetry of anisotropic chiral media (Doctoral 
dissertation, Universitat de Barcelona). 

Bass, M. (2010). Handbook of Optics: Volume I-Geometrical and Physical Optics, 
Polarized Light, Components and Instruments. McGraw-Hill Education. 

Bass, M. (1995). Handbook of Optics: Devices, Measurements, and Properties, Vol. 2. 

Born, M., and Wolf, E. (1999). Principle of the Optics Electromagnetic Theory of 
propagation interference and diffraction of light. 7th Edition, Cambridge 
University Press. 

Boruhovich, S. P. (2006). Chirality Measure for 2D and 3D Meta-Materials. 
International Conference on Mathematical Methods in Electromagnetic Theory 
on (pp. 418-420). IEEE 

Brandt, J. R., Salerno, F., and Fuchter, M. J. (2017). The added value of small-molecule 
chirality in technological applications. Nature Reviews Chemistry, 1(6), 0045. 

Brooks, W. H., Guida, W. C., and Daniel, K. G. (2011). The significance of chirality in 
drug design and development. Current topics in medicinal chemistry, 11(7), 
760-770. 

Common wikimedea Retrieved from: 
https://commons.wikimedia.org/wiki/File:Poincar%C3%A9_sphere.svg#file 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to 
algorithms. MIT press. 

emedicalprep.com Retrieved from: 

https://www.emedicalprep.com/study-material/physics/wave-
optics/polarization/ 

Emile, J., Emile, O., Ghoufi, A., Moréac, A., Casanova, F., Ding, M., and Houizot, P. 
(2013). Giant optical activity of sugar in thin soap films. Elsevier Inc. 

Fedotov, V. A., Mladyonov, P. L., Prosvirnin, S. L., Rogacheva, A. V., Chen, Y., and 
Zheludev, N. I. (2006). Asymmetric Propagation of Electromagnetic Waves 
through a Planar Chiral Structure. Physical review letters, 97(16), 167401.  

Fowler, P. W. (2005). "Quantification of chirality: Attempting the impossible. 
"Symmetry: Culture and Science 16.4, 321-334. 

https://commons.wikimedia.org/wiki/File:Poincar%C3%A9_sphere.svg%23file
https://www.emedicalprep.com/study-material/physics/wave-optics/polarization/
https://www.emedicalprep.com/study-material/physics/wave-optics/polarization/


86 
 

Fowler, P. W., and Rassat, A. (2006). A classification scheme for chiral 
tetrahedra. Comptes Rendus Chimie, 9(9), 1203-1208. 

Garcia-Caurel, E., De Martino, A., Gaston, J. P., and Yan, L. (2013). Application of 
spectroscopic ellipsometry and Mueller ellipsometry to optical 
characterization. Applied spectroscopy,67(1), 1-21. 

Goodman, J. W. (2005). Introduction to Fourier optics. Roberts and Company 
Publishers. 

Guan, W., Cook, P. J., Jones, G. A., and Shen, T. H. (2010).Experimental determination 
of the Stokes parameters using a dual photoelastic modulator system. Applied 
Optics, 49(14), 2644-2652 

Guan, W., Jones, G. A., Liu, Y., and Shen, T. H. (2008). The measurement of the Stokes 
parameters: a generalized methodology using a dual photoelastic modulator 
system. Journal of Applied Physics, 103(4), 043104. 

Hauge, P. S., Muller, R. H., and Smith, C. G. (1980). Conventions and formulas for using 
the Mueller-Stokes calculus in ellipsometry. Surface science, 96(1-3), 81-107. 

Hecht, E. (2002). Optics. 4th Edition, Pearson Education Limited. 

Huang, Y., Yao, Z., Hu, F., Liu, C., Yu, L., Jin, Y., and Xu, X. (2017). Tunable circular 
polarization conversion and asymmetric transmission of planar chiral graphene-
metamaterial in terahertz region. Carbon, 119, 305-313. 

Kim, T. T., Oh, S. S., Park, H. S., Zhao, R., Kim, S. H., Choi, W., Min, B. and Hess, O. 
(2014). Optical activity enhanced by strong inter-molecular coupling in planar 
chiral metamaterials. Scientific reports, 4, 5864. 

Kwon, D. H., Werner, P. L., and Werner, D. H. (2008). Optical planar chiral 
metamaterial designs for strong circular dichroism and polarization 
rotation. Optics express, 16(16), 11802-11807. 

Li, Z., Zhao, R., Koschny, T., Kafesaki, M., Alici, K. B., Colak, E., Caglayan,H.,Ozbay E., and 
Soukoulis, C. M. (2010). Chiral metamaterials with negative refractive index 
based on four “U” split ring resonators. Applied Physics Letters, 97(8), 081901. 

Li, Z., Alici, K. B., Colak, E., and Ozbay, E. (2011). Complementary chiral metamaterials 
with giant optical activity and negative refractive index. Applied Physics 
Letters, 98(16), 161907. 

Li, Z., Mutlu, M., and Ozbay, E. (2013). Chiral metamaterials: from optical activity and 
negative refractive index to asymmetric transmission. Journal of Optics, 15(2), 
023001. 



87 
 

Lin, J. F., and Lee, M. Z. (2012). Concurrent measurement of linear birefringence and 
dichroism in ferrofluids using rotating-wave-plate Stokes polarimeter. Optics 
Communications, 285(7), 1669-1674. 

Liu, Y. (2005). A study of magnetic ultrathin films on GaAs and optically excited spin 
injection (Doctoral dissertation, University of Salford). 

Liu, Y., Jones, G. A., Peng, Y., and Shen, T. H. (2006). Generalized theory and application 
of Stokes parameter measurements made with a single photoelastic 
modulator.Journal of applied physics, 100(6), 063537. 

Ma, X., Pu, M., Li, X., Guo, Y., Gao, P., and Luo, X. (2017). Meta-chirality: Fundamentals, 
construction and applications.Nanomaterials, 7(5), 116. 

MacLennan, B. J. (2008). Computation and nanotechnology. 

McAndrew, A. (2004). An introduction to digital image processing with matlab notes 
for scm2511 image processing. School of Computer Science and Mathematics, 
Victoria University of Technology, 264(1), 1-264. 

McCall, M. W., Hodgkinson, I. J., and Wu, Q. (2014). Birefringent thin films and 
polarizing elements. World Scientific. 

McConathy, J., and Owens, M. J. (2003). Stereochemistry in drug action. Primary care 
companion to the Journal of clinical psychiatry, 5(2), 70. 

Nava, J., and Kreinovich, V. (2016). Algorithmic Aspects of Analysis, Prediction, and 
Control in Science and Engineering. Springer-Verlag Berlin An. 

Osipov, M. A., Pickup, B. T., Fehervari, M., and Dunmur, D. A. (1998). Chirality measure 
and chiral order parameter for a two-dimensional system.Molecular 
Physics, 94(2), 283-287. 

Papakostas, A., Potts, A., Bagnall, D. M., Prosvirnin, S. L., Coles, H. J., and Zheludev, N. I. 
(2003). Optical manifestations of planar chirality. Physical Review 
Letters, 90(10), 107404.  

Peatross, J., and Ware, M. (2011). Physics of light and optics (pp. 101-119). Brigham 
Young University, Department of Physics. 

Petitjean, M. (2003). Chirality and symmetry measures: A transdisciplinary review. 
Entropy, 5(3), 271-312. 

Plum, E. (2010). Chirality and metamaterials (Doctoral dissertation, University of 

Southampton). 

Potts, A., Papakostas, A., Zheludev, N. I., Coles, H. J., Greef, R., and Bagnall, D. M. 
(2002). Optical properties of planar chiral meta-materials. In MRS 
Proceedings (Vol. 722, pp. K10-3). Cambridge University Press 



88 
 

Potts, A., Bagnall, D. M., and Zheludev, N. I. (2003). A new model of geometric chirality 
for two-dimensional continuous media and planar meta-materials. Journal of 
Optics A: Pure and Applied Optics, 6(2), 193. 

Rassat, A., and Fowler, P. W. (2003). Any scalene triangle is the most chiral 
triangle. Helvetica chimica acta, 86(5), 1728-1740. 

Schmidt, D., Schubert, E., and Schubert, M. (2013). Generalized ellipsometry 
characterization of sculptured thin films made by glancing angle deposition. 
In ellipsometry at the Nanoscale (pp. 341-410). Springer, Berlin, Heidelberg. 

Schwanecke, A. S. (2009). Novel phenomena in planar and layered, photonic and 
microwave metamaterials (Doctoral dissertation, University of Southampton). 

Shamiryan, D., and Likhachev, D. V. (2012). Spectroscopic ellipsometry of ion-
implantation-induced damage. Ion Implantation, 89-104. 

Sharma, K. K. (2006). Optics: principles and applications. Elsevier. 

Solomon, C., and Breckon, T. (2011). Fundamentals of Digital Image Processing: A 
practical approach with examples in Matlab. John Wiley and Sons. 

Testa, B. (2013). Organic Stereochemistry. Part 3. Helvetica Chimica Acta, 96(3), 351-
374. 

Trippe, S. (2014). Polarization and polarimetry: A review. arXiv preprint 
arXiv:1401.1911. 

Tutor Vista. Retrieved from:  http://www.tutorvista.com/content/physics/physics-
iv/optics/polarization.php 

Valev, V. K., Zheng, X., Biris, C. G., Silhanek, A. V., Volskiy, V., De Clercq, B., ... and 
Moshchalkov, V. V. (2011). The origin of second harmonic generation hotspots 
in chiral optical metamaterials. Optical Materials Express, 1(1), 36-45. 

Wang, B., Zhou, J., Koschny, T., Kafesaki, M., and Soukoulis, C. M. (2009). Chiral 
metamaterials: simulations and experiments. Journal of Optics A: Pure and 
Applied Optics,11(11), 114003. 

Wang, Z., Cheng, F., Winsor, T., and Liu, Y. (2016). Optical chiral metamaterials: a 
review of the fundamentals, fabrication methods and 
applications. Nanotechnology, 27(41), 412001. 

Wen, D., Yue, F., Kumar, S., Ma, Y., Chen, M., Ren, X., and Chen, X. (2015). Metasurface 
for characterization of the polarization state of light. Optics express, 23(8), 
10272-10281. 

Wiersma, D.(2013) Retrieved from: 
https://fineartamerica.com/featured/birefringence-in-a-calcite-crystal-dirk-
wiersma.html 

http://www.tutorvista.com/content/physics/physics-iv/optics/polarization.php
http://www.tutorvista.com/content/physics/physics-iv/optics/polarization.php
https://fineartamerica.com/featured/birefringence-in-a-calcite-crystal-dirk-wiersma.html
https://fineartamerica.com/featured/birefringence-in-a-calcite-crystal-dirk-wiersma.html


89 
 

Ye, W., Yuan, X., Guo, C., Zhang, J., Yang, B., and Zhang, S. (2017). Large chiroptical 
effects in planar chiral metamaterials. Physical Review Applied, 7(5), 054003. 

Zhang, W., Potts, A., Papakostas, A., and Bagnall, D. M. (2005). Intensity modulation 
and polarization rotation of visible light by dielectric planar chiral 
metamaterials. Applied Physics Letters, 86(23), 231905.  

Zhang, W., Potts, A., and Bagnall, D. M. (2006). Giant optical activity in dielectric planar 
metamaterials with two-dimensional chirality. Journal of Optics A: Pure and 
Applied Optics, 8(10), 878. 

 Zhang, W. (2006). OPTICAL ACTIVITY AND APPLICATIONS OF PLANAR CHIRAL 
METAMATERIALS. University of Southampton, Faculty of Engineering, Science 
and Mathematics, PhD Thesis. 

Zhao, J., & Cheng, Y. (2018). Ultrathin dual-band polarization angle independent 90° 
polarization rotator with giant optical activity based on planar chiral 
metamaterial. Applied Physics B, 124(9), 1-7. 

Zhou, L., Wang, Y., Zhou, J., Ding, J., Lu, M., & Sang, T. (2020). Tunable asymmetric 
transmission across stretchable chiral metamaterial. Applied Optics, 59(23), 
6868-6872. 

 

 

  



90 
 

Appendix A   

Matlab Codes 

 

A-1)  Matlab Code to plot spiral (Figure 2.2).  

%%% program to plot spiral patterns %%% 

%%% by Huda Alzahrani 29/3/2018 %%% 

============================================= 

  

 t = linspace(0,10*pi,2000);  

  

x1=(t.^2).*sin(t);  

 y1=-(t.^2).*cos(t);  

z = zeros(size(t));  

   

  

col = t;        % This is the color, vary with x in this case.  

surface([x1;x1],[y1;y1],[z;z],[col;col],'facecol','no','edgecol','inte

rp','linewidth',5);  

ax=gca;  

ax.XTick=[];  

ax.YTick=[];  

hold on  

quiver3(x1(end-1), y1(end-1), z(end-1), x1(end)-x1(end-1), y1(end)-

y1(end-1), z(end)-z(end-1),10,'LineWidth',5,'MaxHeadSize',50);  

title('\fontsize{30} b) anti-clockwise spiral')  

  

A-2)  Matlab Codes to calculate Chirality index of a triangle (Figure 6.3).  

%%% program to calculate the relationship between chirality and the 

angles of a triangle with consideration of the mass m1=m2=m3=M/3 in 

each triangle and a2=0.5*a1 %%% 

%%% by Huda Alzahrani 23/1/2018 %%% 

============================================= 

 

 
a1=1;  

th3=0:10:360;  

for n=1:length(th3);  

a2=0.5*a1;  

   

X(:,:,n)=[0,a1,a2*cosd(th3(n))];%x1,x2,x3 of the triangle ABC  

Y(:,:,n)=[0,0,a2*sind(th3(n))];%y1,y2,y3 of the triangle ABC  

  points(:,:,n)=[X(:,:,n);Y(:,:,n)];  

   

   

Area(n) = polyarea(X(:,:,n),Y(:,:,n));%Area(of the angle ABC)  
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      mass=1/length(points(1,:,1));  

ka(n)=0;  

kb(n)=0;  

kc(n)=0;  

kd(n)=0;  

 for m1=1:length(points(1,:,n));  

  for m2=1:length(points(1,:,n));  

    for  m3=1:length(points(1,:,n));  

   

        %         %clockwise condition  

       x2x1=( points(1,m2,n)-

points(1,m1,n))*(points(2,m2,n)+points(2,m1,n));  

       x3x2= (points(1,m3,n)-

points(1,m2,n))*(points(2,m3,n)+points(2,m2,n));  

       x1x3=( points(1,m1,n)-

points(1,m3,n))*(points(2,m1,n)+points(2,m3,n));  

       order=x2x1+x3x2+x1x3;  

        if m1==m2|m1==m3|m2==m3|order<=0  

       ka(n)=ka(n);  

       kb(n)=kb(n);  

       kc(n)=kc(n);  

       kd(n)=kd(n);  

        else  

   

ka(n)=ka(n)+(mass^3)*chirala(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kb(n)=kb(n)+(mass^3)*chiralb(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kc(n)=kc(n)+(mass^3)*chiralc(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kd(n)=kd(n)+(mass^3)*chirald(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

   

  

   

     end      

    end  

  end  

 end   

 kd1(n)=10*kd(n);  

ka1(n)=ka(n)/5;  

end  

   

   

figure  

plot(th3,ka1,'m-.x',th3,kb,'-s',th3,kc,'r--

o',th3,kd1,'b:d','MarkerSize',10,'LineWidth',3)  

legend('Osipov model','1st model','2nd model','3rd model')  

title('Potts models')  

grid on  

   

xlabel('\theta_3 \circ')  

ylabel('K')  

   

 set(gca,'xlim',[0 

360],'XTick',[0:30:360],'FontSize',26,'LineWidth',2)  
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A-3) Matlab Codes to calculate Chirality index of a triangle (Figure 6.4).  

 %%% program to calculate the relationship between chirality and the 

angle of a triangle with consideration of the mass m1=m2=m3=M/3 in 

each triangle. and a2=0.7*a1%%% 

%%% by Huda Alzahrani 2/2/2018 %%% 

============================================= 

 

a1=1;  

th3=0:10:360;  

for n=1:length(th3);  

a2=0.7*a1;  

   

X(:,:,n)=[0,a1,a2*cosd(th3(n))];     %x1,x2,x3 of the triangle ABC  

Y(:,:,n)=[0,0,a2*sind(th3(n))];      %y1,y2,y3 of the triangle ABC  

  points(:,:,n)=[X(:,:,n);Y(:,:,n)];  

   

   

Area(n) = polyarea(X(:,:,n),Y(:,:,n));%Area(of the riangle ABC)  

   

   

   

      mass=1/length(points(1,:,1));  

ka(n)=0;  

kb(n)=0;  

kc(n)=0;  

kd(n)=0;  

 for m1=1:length(points(1,:,n));  

  for m2=1:length(points(1,:,n));  

    for  m3=1:length(points(1,:,n));  

   

        %         %clockwise condition  

       x2x1=( points(1,m2,n)-

points(1,m1,n))*(points(2,m2,n)+points(2,m1,n));  

       x3x2= (points(1,m3,n)-

points(1,m2,n))*(points(2,m3,n)+points(2,m2,n));  

       x1x3=( points(1,m1,n)-

points(1,m3,n))*(points(2,m1,n)+points(2,m3,n));  

       order=x2x1+x3x2+x1x3;  

        if m1==m2|m1==m3|m2==m3|order<=0  

       ka(n)=ka(n);  

       kb(n)=kb(n);  

       kc(n)=kc(n);  

       kd(n)=kd(n);  

        else  

   

ka(n)=ka(n)+(mass^3)*chirala(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kb(n)=kb(n)+(mass^3)*chiralb(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kc(n)=kc(n)+(mass^3)*chiralc(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kd(n)=kd(n)+(mass^3)*chirald(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

   

  

   

     end      

    end  
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  end  

 end   

 kd1(n)=10*kd(n);  

ka1(n)=ka(n)/5;  

end  

   

   

figure  

plot(th3,ka1,'m-.x',th3,kb,'-s',th3,kc,'r--

o',th3,kd1,'b:d','MarkerSize',10,'LineWidth',3)  

legend('Osipov model','1st model','2nd model','3rd model')  

title('Potts models')  

grid on  

   

xlabel('\theta_3 \circ')  

ylabel('K')  

   

 set(gca,'xlim',[0 

360],'XTick',[0:30:360],'FontSize',26,'LineWidth',2)  

  

  

A-4) Matlab Codes to calculate Chirality index of similar triangles (Figure 

6.7).  

  

 %%% program to calculate the relationship between chirality and the 

area of a triangle with consideration of the mass m1=m2=m3=M/3 in each 

triangle.%%% 

%%% by Huda Alzahrani 11/4/2018 %%% 

 
 p1=[0,0];       % the first point(x1,y1) of the triangle ABC  

 p2=[1,0];      % the second point(x2,y2) of the triangle ABC  

 p3=[1,0.7];       % the third point(x3,y3) of the triangle ABC  

X=[0,1,1];%x1,x2,x3 of the triangle ABC  

 Y=[0,0,0.7];%y1,y2,y3 of the triangle ABC  

a1=1:1:10;  

 th3=45;  

 d=0.1;  

 for n=1:length(a1);  

 a2(n)=0.7*a1(n);  

% a triangle with pixliting the sides to many pointts  

   

 x1(:,:,n)=linspace(0,a1(n),20);  

   y1(:,:,n)=zeros(1,20);  

   x2(:,:,n)=linspace(0,a2(n)*cosd(th3),20);  

     y2(:,:,n)=linspace(0,a2(n)*sind(th3),20);  

 x3(:,:,n)=linspace(a2(n)*cosd(th3),a1(n),20);  

 y3(:,:,n)=linspace(a2(n)*sind(th3),0,20);%        

 points(:,:,n)=[x1(:,:,n),x2(:,:,n),x3(:,:,n);y1(:,:,n),y2(:,:,n),y3(:

,:,n)];  

   

   

      mass=1/length(points(1,:,1));  

ka(n)=0;  

kb(n)=0;  

kc(n)=0;  
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kd(n)=0;  

 for m1=1:length(points(1,:,n));  

  for m2=1:length(points(1,:,n));  

    for  m3=1:length(points(1,:,n));  

   

        %         %clockwise condition  

       x2x1=( points(1,m2,n)-

points(1,m1,n))*(points(2,m2,n)+points(2,m1,n));  

       x3x2= (points(1,m3,n)-

points(1,m2,n))*(points(2,m3,n)+points(2,m2,n));  

       x1x3=( points(1,m1,n)-

points(1,m3,n))*(points(2,m1,n)+points(2,m3,n));  

       order=x2x1+x3x2+x1x3;  

        if m1==m2|m1==m3|m2==m3|order<=0  

       ka(n)=ka(n);  

       kb(n)=kb(n);  

       kc(n)=kc(n);  

       kd(n)=kd(n);  

        else  

   

ka(n)=ka(n)+(mass^3)*chirala(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kb(n)=kb(n)+(mass^3)*chiralb(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kc(n)=kc(n)+(mass^3)*chiralc(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kd(n)=kd(n)+(mass^3)*chirald(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

   

   

     end      

    end  

  end  

 end   

end  

   

   

figure  

 plot(Area,ka,'-.x',Area,kb,'-s',Area,kc,'r--

o',Area,kd,'b:d','MarkerSize',10,'LineWidth',3)  

legend('1st model','2nd model','3rd model')  

grid on  

% xlabel('a1')  

 xlabel('Area')  

 ylabel('K')  

   

 set(gca,'FontSize',26,'LineWidth',2)  

   

 hold on   

 figure  

 plot(Area,kc,'-''LineWidth',3)  

%   

 xlabel('Area')  

ylabel('K')  
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A-5) Matlab Codes to calculate Chirality index of a triangle with a constant 

area (Figure 6.8).  

 
%% calculate the chirality of triangles with constant area =1  

%  by Huda Alzahrani 12/5/2018  

  

p1=[0,0];  

p2=[1,0];  

x3=[-10:.5:10];  

for n=1:length(x3);  

p3(:,:,n)=[x3(n),2];  

X(:,:,n)=[0,1,x3(n),0];  

Y(:,:,n)=[0,0,2,0];  

   

 points(:,:,n)=[X(:,:,n);Y(:,:,n)];  

plot(points(1,:),points(2,:),'*r','MarkerSize',20);  

 set(gca,'FontSize',26,'LineWidth',2)  

   

   

Area(n) = polyarea(X(:,:,n),Y(:,:,n));%Area(of the riangle ABC)  

   

   

      mass=1/length(points(1,:,1));  

ka(n)=0;  

kb(n)=0;  

kc(n)=0;  

kd(n)=0;  

 for m1=1:length(points(1,:,n));  

  for m2=1:length(points(1,:,n));  

    for  m3=1:length(points(1,:,n));  

   

        %         %clockwise condition  

       x2x1=( points(1,m2,n)-

points(1,m1,n))*(points(2,m2,n)+points(2,m1,n));  

       x3x2= (points(1,m3,n)-

points(1,m2,n))*(points(2,m3,n)+points(2,m2,n));  

       x1x3=( points(1,m1,n)-

points(1,m3,n))*(points(2,m1,n)+points(2,m3,n));  

       order=x2x1+x3x2+x1x3;  

        if m1==m2|m1==m3|m2==m3|order<=0  

       ka(n)=ka(n);  

       kb(n)=kb(n);  

       kc(n)=kc(n);  

       kd(n)=kd(n);  

        else  

   

ka(n)=ka(n)+(mass^3)*chirala(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kb(n)=kb(n)+(mass^3)*chiralb(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kc(n)=kc(n)+(mass^3)*chiralc(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

kd(n)=kd(n)+(mass^3)*chirald(points(:,m1,n),points(:,m2,n),points(:,m3

,n));  

   

   

     end      
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    end  

  end  

 end   

 ka1(n)=5*ka(n);  

kc1(n)=kc(n)/20;  

kd1(n)=10*kd(n);  

end  

figure  

plot(x3,ka1,'m-.x',x3,kb,'-s',x3,kc1,'r--

o',x3,kd1,'b:d','MarkerSize',10,'LineWidth',3)  

legend('Osipov model','1st model','2nd model','3rd model')  

title('Potts models')  

grid on  

   

 set(gca,'FontSize',26,'LineWidth',2)  

xlabel('a1')  

ylabel('K')  

   

xlabel('x3')  

 

 

A-6) Matlab Codes to calculate Mueller matrix (Figure 7-12).  

% % % Mueller Matrix %%% 
% % % program to find m00, m01,m02, m03 %%% 
% % % Huda Alzahrani 29/12/2020 %%% 
clear all 
format long g; 
format compact; 
fontSize = 20; 

 
 %% Stokes parameters foe the air, the polariser at 0, 20, 40, 60, 80 

I00=fitsread('I00.fits'); 
I02=fitsread('I02.fits'); 
I04=fitsread('I04.fits'); 
I06=fitsread('I06.fits'); 
I08=fitsread('I08.fits'); 
Q00=fitsread('Q00.fits'); 
Q02=fitsread('Q02.fits'); 
Q04=fitsread('Q04.fits'); 
Q06=fitsread('Q06.fits'); 
Q08=fitsread('Q08.fits'); 
U00=fitsread('U00.fits'); 
U02=fitsread('U02.fits'); 
U04=fitsread('U04.fits'); 
U06=fitsread('U06.fits'); 
U08=fitsread('U08.fits'); 
V00=fitsread('V00.fits'); 
V02=fitsread('V02.fits'); 
V04=fitsread('V04.fits'); 
V06=fitsread('V06.fits'); 
V08=fitsread('V08.fits'); 

 
  %% Stokes parameters foe the sample, the polariser at 0, 20, 40, 60, 

80 

Is0=fitsread('Is0.fits'); 
Is2=fitsread('Is2.fits'); 
Is4=fitsread('Is4.fits'); 
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Is6=fitsread('Is6.fits'); 
Is8=fitsread('Is8.fits'); 

 
 %% solving five equations to calculate four of Mueller elements 
syms m00 m01 m02 m03 

  
q1=Is0==m00*I00+m01*Q00+m02*U00+m03*V00; 
q2=Is2==m00*I02+m01*Q02+m02*U02+m03*V02; 
q3=Is4==m00*I04+m01*Q04+m02*U04+m03*V04; 
q4=Is6==m00*I06+m01*Q06+m02*U06+m03*V06; 
q5=Is8==m00*I08+m01*Q08+m02*U08+m03*V08; 
Q=[q1 q2 q3 q4 q5]; 
S = solve(Q,[m00 m01 m02 m03],'ReturnConditions',true); 
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Appendix B 

Calculation of Stokes parameters for dual photoelastic modulator polarimeter: 

(

𝐼′
𝑄′

𝑈′
𝑉′

) = {

𝑚11 𝑚12

𝑚21 𝑚22

𝑚13 𝑚14

𝑚23 𝑚24
𝑚31 𝑚32

𝑚41 𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

}(

𝐼
𝑄
𝑈
𝑉

) = (

𝑚11𝐼 + 𝑚12𝑄 +𝑚13𝑈 +𝑚14𝑉
𝑚21𝐼 + 𝑚22𝑄 +𝑚23𝑈 +𝑚24𝑉
𝑚31𝐼 + 𝑚32𝑄 +𝑚33𝑈 +𝑚34𝑉
𝑚41𝐼 + 𝑚42𝑄 +𝑚43𝑈 +𝑚44𝑉

) 

 

𝑀𝑃𝐸𝑀1 =

{
 
 

 
 
1 0 0 0

0 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (
𝛿1
2
) + 𝑐𝑜𝑠2 (

𝛿1
2
) 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (

𝛿1
2
) − 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿1)

0 𝑠𝑖𝑛(4𝛼)𝑠𝑖𝑛2 (
𝛿1
2
) − 𝑐𝑜𝑠(4𝛼) 𝑠𝑖𝑛2 (

𝛿1
2
) + 𝑐𝑜𝑠2 (

𝛿1
2
) 𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿1)

0 𝑠𝑖𝑛(2𝛼) 𝑠𝑖𝑛 (𝛿1) −𝑐𝑜𝑠(2𝛼) 𝑠𝑖𝑛 (𝛿1) 𝑐𝑜𝑠 (𝛿1) }
 
 

 
 

 

 

𝑀𝑃𝐸𝑀2 = {

1 0 0 0
0 1 0 0
0 0 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛 (𝛿2)
0 0 −𝑠𝑖𝑛 (𝛿2) 𝑐𝑜𝑠 (𝛿2)

} 
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𝑀𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑟 =
1

2
{

1 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 0

𝑐𝑜𝑠(2𝛽) 𝑐𝑜𝑠2(2𝛽) 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 0

𝑠𝑖𝑛(2𝛽) 𝑐𝑜𝑠(2𝛽) 𝑠𝑖𝑛(2𝛽) 𝑠𝑖𝑛2(2𝛽) 0
0 0 0 0

} 

𝑀𝐴𝑀𝑃𝐸𝑀2 =
1

2
 

{

1 cos(2𝛽) sin(2𝛽) 0

cos(2𝛽) 𝑐𝑜𝑠2(2𝛽) cos(2𝛽) sin(2𝛽) 0

sin(2𝛽) cos(2𝛽) sin(2𝛽) 𝑠𝑖𝑛2(2𝛽) 0
0 0 0 0

}{

1 0 0 0
0 1 0 0
0 0 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛 (𝛿2)
0 0 −𝑠𝑖𝑛 (𝛿2) 𝑐𝑜𝑠 (𝛿2)

} 

=
1

2
{

1 cos(2𝛽) sin(2𝛽) 𝑐𝑜𝑠(𝛿2) sin(2𝛽) 𝑠𝑖𝑛 (𝛿2)

cos(2𝛽) 𝑐𝑜𝑠2(2𝛽) cos(2𝛽) sin(2𝛽) 𝑐𝑜𝑠(𝛿2) cos(2𝛽) sin(2𝛽) 𝑠𝑖𝑛 (𝛿2)

sin (2𝛽) cos(2𝛽) sin(2𝛽) 𝑠𝑖𝑛2(2𝛽) 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛2(2𝛽)𝑠𝑖𝑛 (𝛿2)
0 0 0 0

} 

𝑀𝐴𝑀𝑃𝐸𝑀2𝑀𝑃𝐸𝑀1 =

=
1

2
{

1 cos(2𝛽) sin(2𝛽) 𝑐𝑜𝑠(𝛿2) sin(2𝛽) 𝑠𝑖𝑛 (𝛿2)

cos(2𝛽) 𝑐𝑜𝑠2(2𝛽) cos(2𝛽) sin(2𝛽) 𝑐𝑜𝑠(𝛿2) cos(2𝛽) sin(2𝛽) 𝑠𝑖𝑛 (𝛿2)

sin (2𝛽) cos(2𝛽) sin(2𝛽) 𝑠𝑖𝑛2(2𝛽) 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛2(2𝛽)𝑠𝑖𝑛 (𝛿2)
0 0 0 0

}

{
 
 

 
 
1 0 0 0

0 cos(4α) sin2 (
δ1
2
) + cos2 (

δ1
2
) sin(4α)sin2 (

δ1
2
) − sin(2α) sin (δ1)

0 sin(4α)sin2 (
δ1
2
) −cos(4α) sin2 (

δ1
2
) + cos2 (

δ1
2
) cos(2α) sin (δ1)

0 sin(2α) sin (δ1) −cos(2α) sin (δ1) cos (δ1) }
 
 

 
 

 

= {

𝑚11 𝑚12

𝑚21 𝑚22

𝑚13 𝑚14

𝑚23 𝑚24
𝑚31 𝑚32

𝑚41 𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

} 

By using the following trigonometric functions: 
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𝑐𝑜𝑠2(𝑎) =
1 + cos (2𝑎)

2
 

sin(2𝑎) = 2 sin(𝑎) cos (𝑎) 

cos(2𝑎) = cos2(𝑎) − 𝑠𝑖𝑛 2 (𝑎) 

sin(𝑎 ± 𝑏) = sin(𝑎)cos (𝑏) ± cos(𝑎) sin(𝑏) 

cos(𝑎 ± 𝑏) = cos(𝑎)cos (𝑏) ∓ sin(𝑎) sin(𝑏) 

cos[x sin(𝑎)] = 𝐽0(𝑥) + 2∑𝐽2𝑛(𝑥) 𝑐𝑜𝑠(2𝑛𝑎)

∞

𝑛=1

 

sin[x sin(𝑎)] = 2∑ 𝐽2𝑛+1(𝑥) 𝑐𝑜𝑠((2𝑛 + 1)𝑎)

∞

𝑛=0

 

𝑚11 = 1 

𝑚12 = cos(2𝛽) [cos(4α) sin2 (
δ1
2
) + cos2 (

δ1
2
)] + sin(2𝛽) 𝑐𝑜𝑠(𝛿2) sin(4α)sin

2 (
δ1
2
) + sin(2𝛽) sin(𝛿2) sin(2α) sin(δ1) 

= cos(2𝛽) [cos2(2α) − sin2(2α)] [
1

2
−
1

2
𝑐𝑜𝑠(δ1)] + cos(2𝛽) [

1

2
+
1

2
𝑐𝑜𝑠(δ1)] + 2 sin(2𝛽) 𝑐𝑜𝑠(𝛿2) sin(2α) 𝑐𝑜𝑠(2α) [

1

2
−
1

2
𝑐𝑜𝑠(δ1)]

+ sin(2𝛽) 𝑠𝑖𝑛 (𝛿2) sin(2α) sin (δ1) 

=
1

2
cos(2𝛽)cos2(2α) −

1

2
cos(2𝛽) sin2(2α) −

1

2
cos(2𝛽)cos2(2α)𝑐𝑜𝑠(δ1) +

1

2
cos(2𝛽) sin2(2α)𝑐𝑜𝑠(δ1) +

1

2
cos(2𝛽) +

1

2
cos(2𝛽)𝑐𝑜𝑠(δ1)

+ sin(2𝛽) 𝑐𝑜𝑠(𝛿2) sin(2α) 𝑐𝑜𝑠(2α) − sin(2𝛽) 𝑐𝑜𝑠(𝛿2)sin(2α) 𝑐𝑜𝑠(2α) 𝑐𝑜𝑠(δ1) + sin(2𝛽) 𝑠𝑖𝑛 (𝛿2) sin(2α) sin (δ1) 
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=
1

2
cos(2𝛽)cos2(2α) −

1

2
cos(2𝛽)[1 −  cos2(2α)] +

1

2
cos(2𝛽) −

1

2
cos(2𝛽)[1 −  sin2(2α)]𝑐𝑜𝑠(δ1) +

1

2
cos(2𝛽) sin2(2α)𝑐𝑜𝑠(δ1)

+
1

2
cos(2𝛽)𝑐𝑜𝑠(δ1) + sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α) 𝑐𝑜𝑠(𝛿2) − sin(2𝛽) sin(2α)  [ 𝑐𝑜𝑠(2α)𝑐𝑜𝑠(δ1)𝑐𝑜𝑠(𝛿2) − sin (δ1)𝑠𝑖𝑛 (𝛿2) ] 

= cos(2𝛽)cos2 (2α) − cos (2𝛽)  sin2(2α)𝑐𝑜𝑠(δ1)

+ sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α) 𝑐𝑜𝑠(𝛿2) − sin(2𝛽) sin(2α)  [ 𝑐𝑜𝑠(2α)𝑐𝑜𝑠(δ1)𝑐𝑜𝑠(𝛿2) − sin (δ1)𝑠𝑖𝑛 (𝛿2) ] 

= cos(2𝛽)cos2 (2α)− cos (2𝛽)  sin2(2α) [𝐽0(δ10) + 2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω10𝑡)

∞

𝑛=1

]

+ sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α) [𝐽0(δ20) + 2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω20𝑡)

∞

𝑛=1

]

− sin(2𝛽) sin(2α)  [ 𝑐𝑜𝑠(2α) [𝐽0(δ10) + 2∑𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω10𝑡)

∞

𝑛=1

] [𝐽0(δ20) + 2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω20𝑡)

∞

𝑛=1

]

− [2∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω10𝑡)

∞

𝑛=1

] [2∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω20𝑡)

∞

𝑛=1

] ] 

 



102 
 

= cos(2𝛽)cos2 (2α)− cos (2𝛽)  sin2(2α)𝐽0(δ10) − 2cos(2𝛽) sin
2(2α)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

+ sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)𝐽0(δ20) + 2 sin(2𝛽) sin(2α)𝑐𝑜𝑠(2α)∑𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

− sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)𝐽0(δ10)𝐽0(δ20) − 2 sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)𝐽0(δ10)∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

− 2 sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)𝐽0(δ20)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

− 4 sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

∑𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

− 4sin(2𝛽)sin(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=1

∞

𝑛=0

 

= cos2(2α)cos (2𝛽)−  sin2(2α)  𝑐𝑜𝑠(2𝛽)𝐽0(δ10) + sin(2α)sin(2𝛽)  𝑐𝑜𝑠(2α)𝐽0(δ20) − 𝑐𝑜𝑠(2α) sin(2𝛽)sin(2α) 𝐽0(δ10)𝐽0(δ20)

+ 2sin(2α) sin(2𝛽) [1 − 𝐽0(δ10)]𝑐𝑜𝑠(2α)∑𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

+ 2[− sin2(2α)𝑐𝑜𝑠(2𝛽)

+ 𝑠𝑖𝑛(2𝛼) 𝑐𝑜𝑠(2α) sin(2𝛽) 𝐽0(δ20)]∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

 − 4sin(2𝛽)sin(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠 

∞

𝑛=1

∞

𝑛=0

((2𝑛

+ 1)Ω2𝑡)−4 sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

∑𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

−∑𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1
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𝑚13 = cos(2𝛽) sin(4α)sin2 (
δ1

2
)+sin(2𝛽) 𝑐𝑜𝑠(𝛿2) [− cos(4α) sin

2 (
δ1

2
) + cos2 (

δ1

2
)] − sin(2𝛽) 𝑠𝑖𝑛 (𝛿2) cos(2α) sin (δ1) 

= 2cos(2𝛽) 𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α) [
1

2
−
1

2
𝑐𝑜𝑠(δ1)] − sin(2𝛽)𝑐𝑜𝑠(δ2) [cos

2(2α) − sin2(2α)] [
1

2
−
1

2
𝑐𝑜𝑠(δ1)] + sin(2𝛽) 𝑐𝑜𝑠(𝛿2) [

1

2
+
1

2
𝑐𝑜𝑠(δ1)]  

− sin(2𝛽) 𝑠𝑖𝑛 (𝛿2) sin(2α) sin (δ1) 

= cos(2𝛽)𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α)

− cos(2𝛽) 𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α)𝑐𝑜𝑠(δ1) −
1

2
 sin(2𝛽) cos2(2α)𝑐𝑜𝑠(δ2)

+
1

2
sin(2𝛽)cos2(2α)𝑐𝑜𝑠(δ1)𝑐𝑜𝑠(δ2) +

1

2
sin(2𝛽) sin2(2α)𝑐𝑜𝑠(δ1)𝑐𝑜𝑠(δ2) −

1

2
sin(2𝛽) sin2(2α)𝑐𝑜𝑠(δ1)𝑐𝑜𝑠(δ2)

+
1

2
sin(2𝛽)𝑐𝑜𝑠(δ2) +

1

2
sin(2𝛽) 𝑐𝑜𝑠(𝛿1) 𝑐𝑜𝑠(𝛿2)  − sin(2𝛽) sin(2α) 𝑠𝑖𝑛(𝛿1) 𝑠𝑖𝑛(δ2)  

= cos(2𝛽)𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α) − cos(2𝛽) 𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α)𝑐𝑜𝑠(δ1)

+
1

2
sin(2𝛽)𝑐𝑜𝑠(δ2)[1 −  cos

2(2α)] +
1

2
sin(2𝛽)cos2(2α) 𝑐𝑜𝑠(𝛿1) 𝑐𝑜𝑠(𝛿2)  − sin(2𝛽) sin(2α) 𝑠𝑖𝑛(𝛿1) 𝑠𝑖𝑛(δ2)  

= cos(2𝛽)𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α) −cos (2𝛽) 𝑠𝑖𝑛(2α) 𝑐𝑜𝑠(2α) [𝐽0(δ10) + 2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

]

+
1

2
sin(2𝛽)  sin2(2α) [𝐽0(δ20) + 2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

]

+
1

2
sin(2𝛽)cos2(2α) [𝐽0(δ10) + 2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

] [𝐽0(δ20) + 2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

] − 4 sin(2𝛽)sin(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛

∞

𝑛=0

+ 1)Ω1𝑡)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=0
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= 𝑠𝑖𝑛(2α)𝑐𝑜𝑠(2α)cos(2𝛽) − 𝑠𝑖𝑛(2α)cos (2𝛽)  𝑐𝑜𝑠(2α)𝐽0(δ10)

+
1

2
 sin2(2α)sin(2𝛽)𝐽0(δ20)

+
1

2
sin(2𝛽)cos2(2α)𝐽0(δ10)𝐽0(δ20)

+ [ sin2(2α)

+ cos2(2α)𝐽0(δ10)] sin(2𝛽)∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

+[−2𝑠𝑖𝑛(2α) cos(2𝛽)𝑐𝑜𝑠(2α) + sin(2𝛽)cos2(2α) 𝐽0(δ20)]∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)𝐽0(δ10)

∞

𝑛=1

 

+ 2 sin(2𝛽)cos2(2α)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

∞

𝑛=1

 

−4 sin(2𝛽)sin(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)

∞

𝑛=0

∑𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=0

 

 

𝑚14 = −cos(2𝛽) sin(2α) si n(δ1) + sin(2𝛽) 𝑐𝑜𝑠(𝛿2) cos(2α) si n(δ1) + sin(2𝛽) 𝑠𝑖𝑛 (𝛿2)cos (δ1) 

= −2cos(2𝛽) 𝑠𝑖𝑛(2α)∑𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛

∞

𝑛=0

+ 1)Ω1𝑡) +2 sin(2𝛽) cos(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛

∞

𝑛=0

+ 1)Ω1𝑡) [𝐽0(δ20) + 2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

]+2 sin(2𝛽)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=0

[𝐽0(δ10)

+ 2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

] 
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= 2sin(2𝛽) 𝐽0(δ10)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=0

+ 2𝑐𝑜𝑠(2α) sin(2𝛽) 𝐽0(δ20)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)

∞

𝑛=0

− 2 cos(2𝛽) 𝑠𝑖𝑛(2α)∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠

∞

𝑛=1

 (2𝑛Ω1𝑡)

+ 2 sin(2𝛽) cos(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)+2sin(2𝛽)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω2𝑡)

∞

𝑛=0

∑𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

∞

𝑛=0

 

𝐼′ =
1

2
[𝑚11𝐼 + 𝑚12𝑄 +𝑚13𝑈 +𝑚14𝑉] 

 

 

To simplify this equation the retardation amplitudes of the PEMs set where satisfy the condition: 

𝐽0(δ10) = 𝐽0(δ20) = 0 

𝑚12

= cos2(2α)cos (2𝛽)  +2sin(2α) sin(2𝛽) 𝑐𝑜𝑠(2α)∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

+ 2[− sin2(2α)𝑐𝑜𝑠(2𝛽)]∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

 −4sin(2𝛽)sin(2α)∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω1𝑡)∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠 

∞

𝑛=0

∞

𝑛=0

((2𝑛

+ 1)Ω2𝑡)−4 sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α)∑𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1

∑𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω2𝑡)

∞

𝑛=1

−∑𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω1𝑡)

∞

𝑛=1
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= cos(2𝛽)cos2 (2α)− cos (2𝛽)  sin2(2α) [2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω10𝑡)

∞

𝑛=1

]

+ sin(2𝛽) sin(2α) 𝑐𝑜𝑠(2α) [2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω20𝑡)

∞

𝑛=1

]

− sin(2𝛽) sin(2α)  [ 𝑐𝑜𝑠(2α) [2∑ 𝐽2𝑛(δ10) 𝑐𝑜𝑠(2𝑛Ω10𝑡)

∞

𝑛=1

] [2∑ 𝐽2𝑛(δ20) 𝑐𝑜𝑠(2𝑛Ω20𝑡)

∞

𝑛=1

]

− [2∑ 𝐽2𝑛+1(δ10) 𝑐𝑜𝑠((2𝑛 + 1)Ω10𝑡)

∞

𝑛=1

] [2∑ 𝐽2𝑛+1(δ20) 𝑐𝑜𝑠((2𝑛 + 1)Ω20𝑡)

∞

𝑛=1

] ] 

 

And rewrite the equation as four sub-equations: 

𝑰𝑫𝑪 = 𝑔1𝑰 + 𝑔2𝑸+ 𝑔3𝑼 

𝑰𝑸𝑼𝟏 = 𝑔4𝑸+ 𝑔5𝑼 

𝑰𝑸𝑼𝟐 = 𝑔6𝑸+ 𝑔7𝑼 

𝑰𝑽 = 𝑔8𝑽 

7The four sub-equations could be rewritten in matrix form as (Guan et al., 2010): 
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(

𝑰𝑫𝑪
𝑰𝑸𝑼𝟏
𝑰𝑸𝑼𝟐
𝑰𝑽

) = (

𝑔1 𝑔2
0 𝑔4

𝑔3 0
𝑔5 0

0 𝑔6
0 0

𝑔7 0
0 𝑔8

)(

𝑰
𝑸
𝑼
𝑽

) 

Where IDC, IQU1, IQU2, and IV are four different signals that can be measured experimentally by using different lock-in amplifiers, while gi 

(i=1, 2, …..8) are constants dependent on the retardation of the two photoelastic modulators, and also the angles between PEM2 and both PEM1 

and the analyser (α and β) (Guan et al., 2010). 

The Stokes parameters of the entering polarised light can be obtained by calculating the matrix inversion, as follows: 

(

𝑰
𝑸
𝑼
𝑽

) = (

𝑘1 0
𝑘2 𝑘3

0 0
𝑘4 0

𝑘5 𝑘6
0 0

𝑘7 0
0 𝑘8

)(

𝑰𝑫𝑪
𝑰𝑸𝑼𝟏
𝑰𝑸𝑼𝟐
𝑰𝑽

) 

Where ki (i=1, 2, …..8) are eight constants related to gi, which are could be determined experimentally through the calibration process.  

The inverse matrix of the matrix A has the following expression: 

 

Where |A| is the determinant and Ᾰ is the adjugate matrix. The matrix is invertible if the determinant does not equal zero. So, the 

determinant of K matrix should not equal zero: 
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Appendix C 

Conference Contributions: 

1) (poster) H. A. Alzahrani. “Optical Activity in Nanosize Planar Chiral 

Metamaterials”. Methods Fair 2017 photograph competition. Manchester – 1 

November 2017 

2) (poster) H. A. Alzahrani. “Optical Activity by Nanostructure Planar Chiral 

Metamaterials”. 10th Man Met Postgraduate Research Conference 

(MMUPGC18), Manchester, UK, 7 March 2018. 

3) (poster) H. A. Alzahrani. “Nanostructure Planar Chiral Metamaterials”. Salford 

Postgraduate Research Conference (SPARC18), Manchester, UK, 4-5 July 

2018. 

4) (poster) H. A. Alzahrani. “A Study on Chirality and Optical Response in Planar 

Chiral Metamaterials”. The 2018 MMU Science and Engineering Research 

Conference (MMUPGC18), Manchester, UK, 13 September 2018. 

5) (poster) H. A. Alzahrani. “Optical Response by Nanostructure Planar Chiral 

Metamaterials”. 11th Man Met Postgraduate Research Conference 

(MMUPGC19), Manchester, UK, 6 March 2019. 

6) (awarded-winning poster) H. A. Alzahrani, T. H. Shen. “Chirality and Optical 

Activity of 2D Chiral Metamaterials”. Photonic and Optoelectronic Materials 

(POEM2019), London, UK, 9-12 April 2019. 

7) (oral) H. A. Alzahrani. “A Study of Chirality by Stokes Polarimetric Light 

Microscope”. Microscience Microscopy Congress (mmc2019), Manchester, 

UK, 1-4 July 2019. 
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8) (poster) H. A. Alzahrani, T. H. Shen, J. L. Angulo. “A Study of Chirality by 

Stokes Polarimetric Light Microscope”. Microscience Microscopy Congress 

(mmc2019), Manchester, UK, 1-4 July 2019. 

 


