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Abstract
The deployment of domestic smart metering infrastructure in Great Britain provides the
opportunity for identification of home appliances utilising non‐intrusive load monitoring
methods. Identifying the energy consumption of certain home appliances generates
useful insights for the energy suppliers and for other bodies with a vested interest in
energy consumption. Consequently, the domestic smart metering system, which is an
integral part of the smart cities' infrastructure, can also be used for home appliance
identification purposes taking into account the limitations of the system. In this article, a
step‐by‐step description on accessing data directly from the domestic Smart Meter via an
external Consumer Access Device is described, as well as an easy‐to‐implement method
for identifying commonly used home appliances through their power consumption sig-
nals sampled at a rate similar to the rate available by the domestic smart metering system.
The experimental results indicate that the combination of time domain with frequency
domain features extracted either from the 1D/2D Discrete Fourier Transform or the
Discrete Cosine Transform provides improved recognition performance compared to the
case where the time domain or the frequency domain features are used separately.

1 | INTRODUCTION

The aims of the domestic smart metering rollout in Great
Britain were to enable consumers to monitor and control their
energy usage and to assist in the transition of the country to-
wards a low‐carbon economy [1]. The initial target of the UK
government was to install smart metering systems in all houses
and small businesses in Great Britain by the end of 2020 [2].
However, this deadline has now been extended to 2024 [3, 4].
Data from approximately 21 million smart metering systems,
installed in Great Britain [3], are gathered by the energy supply
companies for both SMETS1 and SMETS2. SMETS stands for
Smart Metering Equipment Technical Specifications; SMETS2
systems have advanced features compared to SMETS1 [5, 6].
The deployment of the domestic smart metering infra-

structure has already contributed towards the introduction of
new products and technologies in the energy market such as
the dynamic Time of Use (ToU) tariffs which aim towards
shifting the consumers' higher energy demands to off‐peak
periods, thus, contributing to the stability of the grid [7].
Grid stability will become even more imperative with the

gradual increase in the number of electric vehicles in the
market, thus, monitoring the consumers' energy consumption
is crucial. The motivation for this work is the utilisation of the
domestic smart metering infrastructure to develop a useful
application using power consumption analytics [7]. Specifically,
to develop an end‐to‐end solution for home appliance identi-
fication which would be beneficial for both the consumer and
the energy supply company thus, harnessing the benefits of the
data generated from the domestic smart metering system.
The standard domestic smart metering system consists of

three devices: the electricity meter, the gas meter and the In‐
Home Display (IHD). The IHD provides the consumer with
near real‐time information about their electricity and gas en-
ergy consumption, the corresponding cost, and the amount of
CO2 produced due to the energy usage alongside additional
energy‐related information.
The data generated by each domestic smart metering sys-

tem in Great Britain is gathered by the Data Communications
Company (DCC) [8] and is shared with the energy supply
company (Figure 1, taken from [9]) primarily for billing pur-
poses. However, consumption data, can also be used for
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monitoring purposes, providing insights to customers' energy
consumption patterns as well as for identifying the use of
certain domestic appliances to provide consumers with energy
and cost‐saving advice.
It should be noted that the current domestic smart

metering infrastructure provides the DCC and the energy
supplier with direct access to the consumer's smart metering
data (Figure 1); the consumers can access their data indirectly
through the energy supplier with a 30‐min granularity though.
In order for the consumer to access their data directly and with
granularity higher than 30 min, additional hardware is required.
Thus, recently, ‘external’ Consumer Access Devices (CADs)
have been introduced to the market [9, 10]. External CADs are
paired with the domestic smart metering system in order to
provide the customer with access to their energy‐related data
via the cloud [10]. To avoid confusion, the domestic Electricity
and Gas Smart Meters also incorporate a CAD (‘internal’
CAD) in order to transmit the measured quantities to the
DCC/energy supplier however, the ‘external’ CAD is an
additional hardware device which is paired with the domestic
smart metering infrastructure so that the consumer can access
their energy‐related data directly. External CADs usually use
the Representational State Transfer (REST) Application Pro-
gramming Interface (API) and/or the MQ Telemetry Trans-
port (MQTT) API [11]. Consequently, the consumers, similar
to the energy suppliers, can access and download their energy
and power consumption data for near‐real‐time monitoring as
well as for a variety of applications. The highest data granularity
that the domestic smart metering infrastructure can provide
through either the internal or external CAD is 10 s which is an
important parameter when designing the related algorithms [5].
In brief, taking into consideration on one hand the limita-

tions of the domestic smart metering data in terms of granularity
and on the other hand the opportunity for the consumer to
engage with their data, this work aims to: (i) provide a descrip-
tion on how the consumers can access their data from the

domestic smart metering system via theMQTTAPI through the
external CAD and (ii) present and test an easy‐to‐implement
method for home appliance identification by utilising power
consumption data with granularity similar to the granularity
available by the domestic smart metering system which is 10 s.
The experimental results of the proposed method demonstrate
the potential of utilising the data acquired from the smart meters
not only for applications related to billing, grid stability etc., but
also for classification‐related applications.
Thus, the main contribution of this work is the develop-

ment of an end‐to‐end comprehensive solution for home
appliance identification at no or very low cost utilising the
domestic smart metering infrastructure. Specifically, the elec-
tricity smart meter is paired with an external CAD (provided
freely by certain Energy Suppliers or purchased at a low cost)
enabling the consumers to access their power consumption
data from the CAD's cloud through a light network protocol
such as the MQTT. A novel algorithm is implemented and
tested for the home appliance identification task; similar al-
gorithms have also been used in the field of audio/speech
pattern recognition which, like the power consumption signals,
are one‐dimensional [12]. For the proposed method, features
from the time domain are combined with features from the
frequency domain in order to identify a number of home ap-
pliances which are common in almost every household in the
UK. The largest (peak) values are selected from the time
domain of the power consumption signal and are combined
with coefficients from the frequency domain. The time domain
features (power values) and the frequency domain features are
then introduced to an easy‐to‐implement single hidden layer
Feedforward Neural Network (FFNN). In brief, the experi-
mental results show that the use of the time domain features
provides higher identification rates compared to the rates
reached using the frequency domain features. However, the
highest identification score is achieved when features from
both the time and the frequency domains are utilised.

F I GURE 1 Overview of the end‐to‐end system
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Specifically, for certain home appliances (classes) where the
time domain features underperform, the frequency domain
coefficients compensate for this low performance, indicating
that the two feature sets complement each other.
In order to test the proposed method, 6‐s and 12‐s power

consumption data from the UK Domestic Appliance‐Level
Electricity (UK‐DALE) dataset, which is an annotated pub-
licly available dataset [13, 14], is used to identify eight
commonly used home appliances utilising 24‐h signal signa-
tures for the identification of each device. UK‐DALE provides
6‐s data so, the 12‐s data was derived from the 6‐s dataset by
selecting every other sample. The experimental results acquired
through the 12‐s signals were particularly important because
this sampling period is very close to the 10‐s sampling period
available by the UK domestic smart metering infrastructure.
The rest of the paper is organised as follows: In Section 2,

the literature review on the identification of home appliances is
provided and in Section 3, a description on how the consumers
can access their data through an external CAD is given. Spe-
cifically, a brief overview of the API used is provided alongside
the steps which need to be followed by the consumers to ac-
cess their energy/power consumption data through the
external CAD's cloud service. In Sections 4 and 5, the pro-
posed method for identifying the home appliances alongside
the experimental results is presented and discussed. In Sec-
tion 6, the conclusions and summary of this work are given.

2 | HOME APPLIANCE
IDENTIFICATION USING NON‐
INTRUSIVE LOAD MONITORING

The disaggregation of the domestic smart metering data, also
called non‐intrusive load monitoring (NILM), introduced by
Hart in [15], aims to identify which appliances are being used
by processing the household's aggregated power consumption
signal. In general, home appliance disaggregation is achieved
following the standard pattern recognition procedure utilising a
set of features for identifying each appliance. The selection of
the appropriate features as well as the classification algorithms
depend, amongst other parameters, on the sampling rate of the
aggregated power signal. Generally, features can be extracted
during the transient or steady‐state operation of an appliance
[16, 17]. The features which correspond to the devices' tran-
sient state operation require higher sampling frequencies
compared to the features extracted during the appliance's
steady‐state operation. Steady‐state features are the root mean
square, peak values of the electrical signals, the power factor,
power changes, V‐I characteristic shape features, steady state
signal harmonics, electromagnetic interference signatures etc.
Steady‐state features can also be extracted from the real and
the reactive power. The transient parameters are related to the
duration, shape and size of the current's transient waveform,
the current signal spikes, the response time etc. More generally,
the features used for NILM could be categorized as micro-
scopic or ‘high frequency’ and macroscopic or ‘low frequency’
[17, 18]. Common macroscopic features are the variations of

the real and the reactive power signals, power quality in-
dicators, and the temporal discrete power pulses. The micro-
scopic features are extracted from the frequency domain of the
signal and could be the harmonics of the electrical signals,
from the noise spectrum of the voltage signal, from the signal's
wavelet transform etc.
It is important to mention that the large‐scale deployment

of the domestic smart metering systems over the last decade
has shifted the focus of research from the analysis of higher
sampling rate meter readings (kHz to MHz range) to lower rate
meter readings (sampled at 1–60 s) as well as to very low‐rate
meter readings in the 15–60 min range [19].
It is important to underline that the 10‐s power consump-

tion signal of the domestic smart metering system (SMETS1/
SMETS2) is the real power and thus, features from the reactive
and apparent power, the power factor etc., are not available [5].
Consequently, as mentioned earlier, for the proposed method,
time domain features as well as coefficients from the frequency
domain of the real power consumption signal are utilised. Then,
an easy‐to‐implement Neural Network is used for home appli-
ance identification. The easy‐to‐implement FFNN is one of the
attributes which differentiates this work compared to the ma-
jority of the recently published research in this field where deep
learning (DL) models, namely deep neural networks (DNNs)
and convolutional neural networks (CNNs), are utilised result-
ing in an increased computational cost.
In the remaining part of this section, a review of published

work in the field of NILM is provided starting from two
research works utilising signals sampled at a high rate, then
continuing with publications using signals sampled at a low
rate, which is the primary focus of this work, and closing with
published work using signals of very low rate.
In both [20, 21], two event‐based NILM classification al-

gorithms using high sampled current data are presented. In
both works, image‐like representations of the signals are
developed and then introduced to a CNN for the classification
task. Specifically, from the one‐cycle activation current of each
appliance a weighted recurrence graph is developed in [20] and
the Fryze power theory is used in order to decompose it into
its active and non‐active components and, subsequently, the
2D Euclidean‐distance similarity matrix is used to represent
the decomposed current signal into an image [21]. The
methods presented in [20, 21] are evaluated using the PLAID
dataset, which contains measurements sampled at 30 kHz and
the method in [20] is also tested using LILACD which is an
industrial dataset with three phase data sampled at 50 kHz. In
both works, the recognition rate reached was very high.
A real‐time NILM algorithm was introduced in [22]. In this

work, a super‐state hidden Markov model and a sparse Viterbi
algorithm were developed for disaggregating low and very low
frequency data. The proposed algorithm is appropriate for
disaggregating appliances with complex multi‐state power sig-
natures. The method was tested on 18 loads from the REDD
dataset (1/3 Hz sampling frequency) using the apparent power
signal as the feature and on the AMPds dataset (1/60 Hz
sampling frequency) using the current signal as the feature with
impressive classification accuracy results. Moreover, it is
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important to underline the efficiency of the method as it can run
on an embedded processor. In [23], a feature set consisting of
Mel‐Frequency Cepstral Coefficients (MFCCs), Spectrogram
and Mel‐Spectrogram time‐frequency distribution features is
introduced to a multi‐layer Long Short‐TermMemory recurrent
neural network (RNN) and in [24], the spike histogram—which
is a time‐power distribution evaluated by taking the differences
between consecutive power data points—of the power con-
sumption signal is introduced to different DL architectures
which are compared in terms of their recognition performance.
This last work initiated a research collaboration which resulted
in building the NILM Toolkit which is an open‐source software
incorporating free datasets and metrics in order to assist re-
searchers to develop and validate their data disaggregation al-
gorithms [25]. In [26], a Very Deep One‐Dimensional (1D)
CNN with 13 1D convolutional operations grouped into five
classical convolution layers and three fully connected layers was
implemented for the application of home appliances' power
signature classification. In [27], a three‐layer CNN was devel-
oped for the same application and seven power signals (classes),
sampled at 1 Hz, were introduced to the classifier. In [28], the
WaveNet, which is a DL‐based architecture, is shown to be
better, in terms of handling a long time series, compared to the
CNNs and the RNNs for the task of home appliances power
disaggregation. Another approach was presented in [29], where
a Convolutional Variational Autoencoder, which is a combina-
tion of a Variational Autoencoder and a CNN, was used for
energy disaggregation and also in [30], a 1D CNN RNN was
used for the same task. In [31], the active power and its step
change as well as the reactive power were used as features for
the home appliance classification task. Four commonly used
classifiers namely, Decision Tree, Nearest Neighbor, Discrimi-
nant Analysis and a FFNN were utilised. Moreover in [32], 19
features were extracted from the power consumption signals,
from the appliances' time usage and their location in the
household. A random forest classifier provided the highest
classification accuracy utilising the extracted features. In [33],

features from the home appliances' curves were combined with
occupant‐related behavioural features and the appliances' po-
wer range. A Bayes model was then used for the classification of
seven appliances.
In [34], 15‐min data was acquired from the smart metering

system in order to identify the electric resistance water heater
load. In the same work, it was highlighted that the 15‐min data
available was not adequate for identifying the load and 1‐min
data had to be used instead. Moreover, in [35], 15‐min smart
metering data alongside weather data were introduced to a
random forest classifier for the application of household
classification.

3 | ACCESSING SMART METERING
DATA

This section focuses on the structure of the smart metering
cluster and on a popular API protocol which can be used in
order to access smart metering data using an external
CAD. Specifically, an overview of the smart metering cluster
0x0702 is provided as well as a step‐by‐step description
on accessing the smart metering data using the MQTT API
[36–38].

3.1 | The smart metering cluster

The data acquired from any domestic smart meter is organised
into a standard interface in order to ensure interoperability
among different devices [37, 39]. This interface is common to
the Electricity Smart Metering Equipment (ESME) and the
Gas Smart Metering Equipment (GSME), and is based on the
standardised 0x0702 smart metering cluster which is organised
in four main sections: (i) formatting, (ii) reading information
set, (iii) historical consumption and (iv) meter status [40]; (see
Table 1).

TABLE 1 Structure of the smart metering cluster 0x0702; ZigBee Alliance standard, smart energy profile

Attribute set identifier Attributes Description

Formatting 0x03 Energy consumption and demand
format

Deciphers the energy and demand‐related attributes

Multiplier/divisor Multiplies/divides the received values in order to express them in the selected unit; kWh
and kW for the smart metering case

MPAN Meter Point Administration Number

Smart meter serial number

Energy measurement unit For electricity and gas in kWh

Commodity Electricity or gas

Reading information set 0x00 Current summation delivered Current value of energy delivered to the household

Current maximum demand delivered

ESP historical consumption
0x04

Current day consumption delivered

Instantaneous demand

Meter status 0x02 Status
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Additional information is also included in the cluster such
as the relevant time stamps in Unix and Portable Operating
System Interface (POSIX) formats, the Link Quality Indicator
(LQI) of the Personal Area Network (PAN) etc.
In the smart metering cluster presented in Table 1, one can

observe that the attribute sets which contain dynamic data are
the Reading Information 0x00 set and the Energy Service
Portal (ESP) Historical Consumption 0x04 set. These two sets
contain energy and power‐related information such as the total
energy received by the household, the energy consumption of
the household during the current day and the instantaneous
power demand of the household. The 0x03 and 0x02 attribute
sets contain static data including data formatting, the serial
number of the smart electricity or gas meter, the Meter Point
Administration Number (MPAN) etc.

3.2 | Interfaces for accessing the smart
metering data

The domestic smart metering data can be accessed by the con-
sumer from the cloud via an external CAD in near real‐time.
Commonly used interfaces for accessing data from the CAD's
Cloud are the REST and the MQTT API [11]. Certain energy
supply companies may also provide direct access to the con-
sumer's energy data through their portal although in this case, the
data granularity is much lower (30‐min) compared with the 10‐s
data granularity available through the external CAD [41, 42].
The REST API uses the well‐known HTTP protocol and a

Representation State Transfer software architectural style
whereas, theMQTTAPI uses the TCP/IP protocol and utilises a
publish/subscribe architectural style.Moreover, theMQTTAPI
does not require polling the server for receiving the generated
data [11]. Thus, by using the MQTT API the consumer can
receive their data without the extra step of polling the CAD's
cloud server which makes the MQTTmore appropriate for the
application presented here. In order to process and post‐process
the power consumption/energy data received from the CAD's
cloud server, certain steps need to be taken because the raw data
is in hexadecimal notation, and incorporates UNIX timestamps
etc. (Figure 2). In brief, the smart metering data can be accessed
utilising the MQTT API through a Linux‐based Operating
System using a version of the following code:

mosquitto_sub ‐h XXX.XX.XXX.XX ‐u Username ‐P
Password ‐t ‘XXX/XXX/MAC address’

where,
mosquitto_sub, corresponds to the MQTT subscribe
process,
h, is the hostname, that is, IP of the server where the data
will be accessed from,
u, is the username,
P, is the password,
t, is the message topic which should include the MAC
address of the CAD device.

Thus, every 10 s the user will receive the updated measured
quantities of the cluster presented in Figure 2; an alternative
presentation (organised form) of Figure 2 is presented in
Figure 1a (Appendix). The acquired data can then be uploaded
to a software package for near real‐time processing and post‐
processing purposes. In both Figures 2 and 1a, the MPAN and
the electricity smart meter serial number have been omitted on
purpose.
The most important quantity for the proposed home

appliance identification method is the Instantaneous (power)
demand identified in Table 1 (alongside Figures 2 and 1a);
Attribute Set Identifier 0x04. The instantaneous demand
quantity needs to be converted from hexadecimal to decimal
and then divided by 1000 (3E8 in hexadecimal) as pointed out
in the Attribute Set Identifier 0x03 of Table 1 as well as in
Figures 2 and 1a [40]. After this process has been completed,
the Instantaneous (power) demand will be in kW units.

4 | PROPOSED METHOD FOR HOME
APPLIANCE IDENTIFICATION USING
THE DCT AND THE DFT

In this work, some of the most commonly used home appli-
ances are identified through their 24‐h real power signals,
sampled every 6 and 12 s, utilizing features from both the time
and frequency domains. The home appliance power signals
used for testing the proposed method were taken from the
UK‐DALE dataset.
For the experiments, the largest power values of the signals

were selected from the time domain alongside the largest
magnitude and amplitude coefficients from the 1D and the
2D‐Discrete Fourier Transform (DFT) and the 1D and the
2D‐Discrete Cosine Transform (DCT), respectively, of the
power consumption signals and then introduced to a FFNN.
The reasons behind using the DCT‐based features are as

F I GURE 2 Smart metering cluster/MQTT API (raw form)
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follows: (i) DCT is a real transform and consequently only
calculations of real numbers are required thus, reducing the
computational effort and memory requirement and (ii) DCT is
well‐known for its energy compaction capability meaning that
it can encapsulate most of the signal's energy content in a few
coefficients [43]. For this reason, both the commonly used
DFT as well as the DCT were tested in terms of their feature
extraction capabilities. Furthermore, the 2D versions of the
transforms were also tested to investigate whether they are
more robust, in terms of their recognition performance,
compared to the 1D versions of the same transforms. To apply
the 2D transform on the 1D power signal, the original time
series needs to be reshaped from 1D to 2D. As an example, a
24 h power signal corresponding to the fridge device in its 1D
and 2D representations is depicted in Figure 3a and b,
respectively.
Figure 4 shows the resulting distribution (heatmap) and

histogram graphs of the 2D‐DCT (Figure 4a and b) and the
2D‐DFT (Figure 4c and d) of the 2D signal illustrated in
Figure 3b. It is apparent from the figures that the high intensity
coefficients of the 2D‐DCT and 2D‐DFT transforms are
concentrated in a small area in the upper (Figure 4a) and
middle rows (Figure 4c), respectively. This result was expected,
since the original signal has dominant vertical stripes, as can be
seen in Figure 3b. Note that the area where the largest co-
efficients are concentrated for the 2D‐DCT case (Figure 4a) is
smaller compared to the 2D‐DFT (Figure 4c), which indicates
the DCT's superior compaction capability.

4.1 | DCT and DFT definitions

In this section, the definitions of the 1D and 2D‐DCT and DFT
are summarised. Given an 1D discrete‐time signal x(n) where n
corresponds to the time samples with n = 0, 1, …, N−1 and a
2D discrete‐time signal X(k,l) with k = 0, 1, …,M−1 and l = 0,
1, …, N−1, the mathematical formulas for the 1D‐DCT and
DFT and the 2D‐DCT and DFT, are as follows [43, 44].

1D‐DCT:

yðkÞ ¼ aðkÞ
XN−1

n¼0
xðnÞcos

πð2nþ 1Þk
2N

; k¼ 0; 1;…; N − 1

where

aðkÞ ¼

8
>>><

>>>:

1
ffiffiffiffi
N
p ; k¼ 0

ffiffiffiffi
2
N

r

; k ≠ 0

2D‐DCT:

Y ðk; lÞ ¼ aðkÞaðlÞ
XM−1

m¼0

XN−1

n¼0
�

Xðm; nÞ cos
πð2mþ 1Þk

2M
⋅ cos

πð2nþ 1Þl
2N

�

;

F I GURE 3 Twenty‐four hour power signal of fridge: (a) in 1D and (b) reshaped in 2D
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k¼ 0; 1;…; M − 1; l ¼ 0; 1; …; N − 1

where

aðkÞ ¼

8
>>><

>>>:

1
ffiffiffiffiffi
M
p ; k¼ 0

ffiffiffiffiffi
2
M

r

; k ≠ 0
and aðlÞ ¼

8
>>><

>>>:

1
ffiffiffiffi
N
p ; l ¼ 0

ffiffiffiffi
2
N

r

; l ≠ 0

1D‐DFT:

yðkÞ ¼
1
ffiffiffiffi
N
p

XN−1

n¼0
xðnÞe−j2πnk

N ¼
1
ffiffiffiffi
N
p

XN−1

n¼0
xðnÞ

⋅
�

cos
�

2π
nk
N

�

− jsin
�

2π
nk
N

��

; k¼ 0; 1; …;N − 1

and
2D‐DFT:

Y ðk; lÞ ¼
1
ffiffiffiffiffiffiffiffi
MN
p

XM−1

m¼0

XN−1

n¼0
Xðm; nÞe−j2πðkmMþ

ln
NÞ;

k¼ 0; 1;…; M − 1; l ¼ 0; 1; …; N − 1

4.2 | Dataset

The proposed method for home appliance identification,
which is described in Section 4.3, is tested using the UK‐
DALE dataset [13, 14]. The UK‐DALE dataset was selected,

from among other popular datasets, because it is open, in-
corporates home appliances which are typical in a wide range
of UK households and also, the appliances' power consump-
tion signals have long duration which is necessary for training
the FFNN [45]. Specifically, the UK‐DALE‐2017 version in-
cludes power consumption signals of home appliances from 5
UK homes with a 6‐s sampling period.
In this study, the data of house 1 is used, which covers a

period of 4.3 years starting from 09/11/2012 until 26/04/
2017. To test the proposed method, two sets of experiments
were conducted. One with signals having 6‐s granularity and
the other set of experiments using the same signals however,
the granularity was decreased to 12‐s. The 12‐s granularity was
obtained by downsampling the 6‐s signals by selecting every
other sample thus, reducing the sampling frequency to 1/
12 Hz. The reason behind conducting experiments with the
12‐s sampling period is to simulate a near real‐case domestic
smart metering scenario because, as mentioned earlier, the
highest data granularity acquired from the domestic smart
meters is 10 s.
The classes of appliances which were selected in order to

test the proposed method are presented in Table 2. These
appliances were chosen because they form a group of appli-
ances commonly used in the majority of the UK households.
On purpose, the boiler and the gas oven, which are pri-

marily gas consuming devices, have been incorporated in the
group in order to show the potential of the proposed method
to identify appliances which are not primarily electrical. For the
identification of these gas consuming devices, the power
consumption patterns of their electrical components such as
ignition, fan etc., have been utilised. The meaning of the pa-
rentheses used in the ‘No. of 24 h power signals’ of each class
presented in Table 2 is explained in the following section.

F I GURE 4 Heatmaps and histograms rescaled to [0,1] of the (a and b) 2D‐DCT and (c and d) 2D‐DFT applied on the 2D 24 h signal illustrated in
Figure 3b
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4.3 | Feature sets

The steps followed in order to develop the feature sets which
are introduced to the FFNN are summarised as follows.

4.3.1 | Usage of the 1D‐DCT and the 1D‐DFT

(i) Development of the 24 h power consumption series
dataset: Each one of the power consumption time series
of the selected appliances (Table 2) is segmented into
frames with 24 h duration and 12 h overlapping; each
frame consists of 14,400 or 7200 values depending on the
sampling rate (1/6 Hz or 1/12 Hz).

(ii) Removal of the 24 h signals that correspond to the ap-
pliances' off or standby mode: Following (i), the maximum
power value of each 24 h power consumption signal is
detected and if its power is less than 3W—which usually
corresponds to the consumption of the appliance's remote
signal sensors and their circuits, to miscellaneous LED
status lights, digital clocks, touch‐on button etc.—then,
the signal is deleted. In Table 2, the numbers outside the
parentheses represent the total number of the 24 h power
consumption signals for the 6‐s and the 12‐s sampling
periods for each appliance after steps (i) and (ii) have been
completed whereas, the numbers inside the parentheses
correspond to the total number of the 24 h power con-
sumption signals before the 3W threshold was applied.

(iii) Application of the 1D-DCT and the 1D-DFT on the 24 h
power consumption signals: The 1D‐DCT and the 1D‐
DFT are applied on each one of the 24 h frames.

(iv) Feature set: The feature vector includes: (a) the time
domain features which are the T largest power values and
(b) the frequency domain features which are either: the F
largest absolute value coefficients (real numbers) of the
1D‐DCT, or the F largest magnitude value coefficients
(complex numbers) of the 1D‐DFT from each 24 h signal.
In Section 5, the classification scores are presented
for the cases where feature vectors of maximum length 5

(T + F = 5) and 10 (T + F = 10) are introduced to the
classifier.

4.3.2 | Usage of the 2D‐DCT and the 2D‐DFT

For the 2D‐DCT and the 2D‐DFT cases, the 24 h power
signals are reshaped from 1D to 2D. In this case, the steps for
developing the feature set are organised as follows:

(i)–(ii) Same as for the 1D case.
(iii) Reshape of the power consumption signals from 1D to

2D: The 24 h power time series are reshaped from vectors
to matrices. Specifically, each time series consisting of
14,400 samples (6 s sampling period) is reshaped into a
600 � 24 matrix and each 7200 samples time series (12‐s
sampling period) is reshaped into a 600 � 12 matrix.

(iv) Application of the 2D-DCT and the 2D-DFT on the po-
wer consumption matrices: Apply the 2D‐DCT and the
2D‐DFT on the matrices formed in step (iii).

(v) Features set: Similar to the 1D case, the feature vector
includes: (a) the T largest power values (same time domain
features as in 4.3.1) and (b) either: the F largest absolute
value coefficients of the 2D‐DCT or the F largest
magnitude value coefficients of the 2D DFT. As for the
1D case, feature vectors of size T + F = 5 and T + F = 10
are formed and then introduced to the classifier in order
to evaluate their recognition performance.

4.4 | Evaluation of the proposed method
using the confusion matrix

In this section, a brief description of the confusion matrix
concept is provided, because in Section 5 confusion matrices
will be utilised to demonstrate the accuracy of the proposed
method. The rows of a confusion matrix, for example, in
Figure 5 (usually labelled as the Output Class), correspond to
the predicted class (output) of the classifier whereas, the
columns of the confusion matrix (usually labelled as the Target
Class) correspond to the correct (true) class. Any element
Ci,j—where i and j are the row and column of the confusion
matrix, respectively—corresponds to the number of power
signals which were classified in class i (Output Class) although
they belonged to class j (Target Class). The cells on the diag-
onal of the confusion matrix correspond to the number of
power signals which have been correctly classified.
The classification performance metrics Recall, Precision

and Overall Accuracy can be directly derived from the
confusion matrix. Specifically, Precision, Pk, is the percentage
of the correctly classified power signals in class k divided by
the total number of power signals classified in this class. The
percentages in the cells of the right‐most column of the
confusion matrix correspond to the Precision values of each
class. Recall, Rk, is the percentage of the correctly classified
power signals in class k divided by the total number of power
signals which belonged to class k. The percentages in the cells

TABLE 2 Home appliances dataset

Class/appliance

No. of 24 h power signals (with 12 h
overlapping)

Sampling period

6 s 12 s

1/Boiler 2877 (2954) 2872 (2954)

2/Washing machine 1942 (2715) 1894 (2715)

3/Dishwasher 1423 (2752) 1413 (2752)

4/TV 2419 (2743) 2415 (2743)

5/Kettle 2386 (2621) 2377 (2621)

6/Fridge 2690 (2690) 2690 (2690)

7/Lighting circuit 2695 (2885) 2695 (2885)

8/Gas oven 2524 (2524) 2510 (2524)
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of the last row of the confusion matrix correspond to the
Recall values for each class. The percentage at the bottom right
cell of the matrix corresponds to the overall accuracy which is
the percentage of power signals which have been correctly
classified [43].

5 | EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, the classification results are presented for the
6‐s and 12‐s sampling periods of the 24 h signals, using time
and frequency domain features separately as well as their
combination, utilizing the 1D and 2D‐DCT and DFT as
described in the previous section. Moreover, the generalization
capability of the proposed method is discussed and a com-
parison of the proposed method with similar home appliance
identification methods, is provided.
For the identification process, a FFNN with a single hid-

den layer is used, where the number of its neurons depends on
the length of the feature vector. All process stages and calcu-
lations were performed using MATLAB. The results are
summarized in Tables 3–6. Specifically, the T largest power
values from the time domain and the F largest coefficient
values were selected from the frequency domain where
T + F = 5 for Tables 3 and 5 for a sampling period of 6‐s and
12‐s, respectively and in Tables 4 and 6 the results are

presented for T + F = 10 for a sampling period of 6‐s and
12‐s, respectively. The selected time and frequency domain
features were then introduced to the FFNN for the classifi-
cation part. In the case where the total number of features used
is 5, the hidden layer of the FFNN has 9 neurons while for the
case where the total number of features is 10, the number of
neurons used is 12. The FFNN architecture was implemented
by testing different combinations of input vectors (features) of
various sizes with a different number of neurons in the hidden
layer each time, utilising empirical rules for artificial neural
network design [46].

F I GURE 5 Confusion matrix for T = 10 and
F = 0; 12‐s granularity (Table 6, first row)

TABLE 3 (6‐s granularity) Classification accuracy scores using five
features, the T largest power values and the F largest coefficient values of
the DCT or DFT

T F

Classification accuracy (%)

1D‐DCT 1D‐DFT 2D‐DCT 2D‐DFT

5 0 90.8 90.8 90.8 90.8

4 1 94.5 94.3 94.4 94.4

3 2 94.6 94.9 95.1 94.8

2 3 93.4 93.6 93.9 93.7

1 4 94.7 92.7 91.6 94.3

0 5 83.9 82.4 83.2 83.3

PARASKEVAS ET AL. - 9



In order to confirm the performance and robustness of the
proposed method, the 10‐cross validation resampling tech-
nique was used. All the classification scores presented in this
section correspond to the 10 cross‐validation mean classifica-
tion accuracy of the testing set. The proposed method was
tested using the appliances listed in Table 2.
From the classification results presented in Tables 3–6 the

most important observations could be summarised as follows.
For all cases, the classification rates reached when a combi-
nation of the time domain (power values) and the frequency
domain (coefficients) features are introduced to the FFNN

(rows 2–5 of Tables 3–6) are higher compared to the case
where either only the time domain (row 1 of Tables 3–6) or
only the frequency domain (row 6 of Tables 3–6) features are
used. Another observation is that the corresponding classifi-
cation rates are similar irrespective of the 6‐s or 12‐s sampling
period indicating that, for the power consumption signals, the
information content encapsulated when the signal is sampled
at 6 s is similar to the content encapsulated when the same
signal is sampled at 12 s. Furthermore, as expected, the use of
10 features (Tables 4 and 6) demonstrate in most of the cases a
higher classification rate compared to the corresponding rate
when only five features (Tables 3 and 5) are used. However, the
improvement, in terms of the classification performance, is not
significant, indicating that the time and the frequency domain
features selected are compact and encapsulate the information
efficiently in their largest values. If more than 10 features are
used, the experimental results indicate that they barely improve
the classification accuracy score. Closing, the classification
results show that for the same granularity and for the
same number of frequency domain‐only features (row 6 of
Tables 3–6) namely, 1D/2D‐DFT and DCT coefficients, the
recognition performance is similar.
As mentioned earlier, the classification scores demonstrate

that a combination of both the time and the frequency domain
features always yields better classification scores compared to
the case where the features of either the time or the frequency
domain are used independently. This improvement occurs
because the frequency domain information diversifies the
feature set. One example of the aforementioned general
observation could be demonstrated through the confusion
matrices, where only the time domain (Figure 5 and Table 6
first row), or only the frequency domain (Figure 6 and Table 6
sixth row, 1D‐DCT) or a combination of time and frequency
domain (1D‐DCT) features (Figure 7 and Table 6 third row,
1D‐DCT) with 12‐s granularity are incorporated for the
identification of the home appliances. Specifically, despite the
fact that overall the use of only the time domain features
provides a higher classification score (91.1%; Figure 5)
compared to the case where only the frequency domain fea-
tures are used (86.3%; Figure 6), for certain classes (appliances)
namely: 1 and 8, 3 and 5, 6 and 7, the frequency domain
features perform better, in terms of their discrimination ca-
pabilities. More importantly, the combination of the time with
the frequency domain features provides the highest classifica-
tion score overall (96.3%, Figure 7) compared to the case
where either the frequency or the time domain feature sets are
used separately.
In summary, for the experimental results presented until

now, the power signals tested were from house 1 of the UK‐
DALE dataset because house 1 included the domestic appli-
ances which the authors were interested in identifying, as they
are used by the majority of the UK households [14]. Moreover,
house 1 appliances were monitored for a much longer period
of time compared to the appliances of the other four houses of
the dataset thus, the number of power signals was much higher,
which is important for training the FFNN. In order to further
check, though, the generalisation ability of the trained FFNN,

TABLE 5 (12‐s granularity) Classification accuracy scores using five
features, the T largest power values and the F largest coefficient values of
the DCT or DFT

T F

Classification accuracy (%)

1D‐DCT 1D‐DFT 2D‐DCT 2D‐DFT

5 0 90.5 90.5 90.5 90.5

4 1 94.7 93.7 93.2 93.2

3 2 95.4 95.5 94.3 95.7

2 3 94.6 94.6 93.5 94.5

1 4 92.1 92.7 92.4 93.1

0 5 83.9 83.0 82.9 82.7

TABLE 4 (6‐s granularity) Classification accuracy scores using 10
features, the T largest power values and the F largest coefficient values of
the DCT or DFT

T F

Classification accuracy (%)

1D‐DCT 1D‐DFT 2D‐DCT 2D‐DFT

10 0 93.2 93.2 93.2 93.2

8 2 96.1 95.7 96.0 95.8

6 4 95.9 96.3 96.2 96.1

4 6 95.4 95.6 95.6 95.6

2 8 93.5 94.3 93.7 94.1

0 10 86.3 90.3 86.3 86.2

TABLE 6 (12‐s granularity) Classification accuracy scores using 10
features, the T largest power values and the F largest coefficient values of
the DCT or DFT

T F

Classification accuracy (%)

1D‐DCT 1D‐DFT 2D‐DCT 2D‐DFT

10 0 91.1 91.1 91.1 91.1

8 2 96.0 95.7 95.2 96.3

6 4 96.3 96.1 95.7 96.1

4 6 95.7 95.5 95.8 95.9

2 8 94.6 94.8 94.7 95.6

0 10 86.3 89.9 85.7 86.6
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the authors decided to conduct an additional set of experi-
ments using a new testing set consisting of the power con-
sumption signals of the eight appliances from all five houses.
Note that for the new testing set all five houses had to be
incorporated due to lack of certain classes (e.g. lighting circuit)
as well as the limited number of 24 h power consumption
signals for some of the other seven classes (appliances) from
the other four houses. For this additional set of experiments,
the number of power signals reached 380 per appliance (after
applying the 3W threshold). The classification rates obtained
for this new set of experiments were close to the rates reached
using only house 1. As an example, for 12‐s granularity,
selecting T = 6 and F = 4 which is the equivalent of Table 6,
third row, 1D‐DCT column (96.3%), the rate reached using a
combination of power signals from all five houses for the eight
appliances is 91.7%.
In relation to these results, a useful metric to estimate the

generalisation ability of the proposed method is the General-
isation loss (G‐loss) metric [47] defined as:

G ‐ loss¼ 100 ⋅
�

1 −
ACCu

ACCs

�

%

where ACCs and ACCu stand for accuracy on a ‘seen’ house
and accuracy on an ‘unseen’ house, respectively. ‘Seen’ is the
house whose appliances (power signals) were used to train the

FFNN and test the proposed method in terms of its recog-
nition performance on a ‘known’ dataset and ‘unseen’ is a
house whose appliances were used to test the trained FFNN in
terms of its generalisation ability. In this case, the 96.3%
(0.963) corresponds to the ACCs and the 91.7% (0.917) to the
ACCu which results in a G‐loss of 4.5%, meaning that the
classification accuracy on the unseen house is 4.5% lower
compared to the seen house. The G‐loss would be reduced if
power consumption signals from a wider range of home
appliance brands and models would be used for the training of
the FFNN.
Closing, a comparison of the proposed method, in terms

of its recognition performance, with similar published works is
presented in Table 7. Comparing different methods of home
appliance recognition is not a straightforward task due to the
differences in terms of the datasets selected for the experi-
ments, the different sampling periods and lengths of the signals
used, the different classes (home appliances) tested etc. [21].
Considering these constraints, a summary of related published
research works and a comparison with the proposed method,
are provided in Table 7; the common characteristics of the
works the proposed method was compared with are as follows:
(i) use of real power consumption signals, (ii) use of 24 h power
consumption signatures and (iii) similar sampling period (1 s
up to 60 s). In all four cases, the recognition performance is
similar, however the method proposed here uses a computa-
tionally less demanding and easier to implement classifier, as

F I GURE 6 Confusion matrix for T = 0 and
F = 10; 12‐s granularity (Table 6, sixth row, 1D‐DCT
column)
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well as a lower number of features indicating the robustness of
the features extracted in terms of encapsulating the power
signals' content in an efficient manner. Moreover, non‐power
consumption‐related features such as working schedule, the

appliance's location [32] and the occupant's behaviour [33] are
incorporated in the other methods' feature sets; however, these
features are not available by the domestic smart metering
system which is the focus of this work.

F I GURE 7 Confusion matrix for T = 6 and
F = 4; 12‐s granularity (Table 6, third row, 1D‐DCT
column)

TABLE 7 Comparison of the proposed method with related works

Proposed method Tundis et al. [32] Yan et al. [33] Dash and Naik [26]

Dataset UK‐Dale Tracebase Private UK‐Dale

Data signals 24 h power consumption signals
sampled at 12 s

24 h power consumption
signals sampled at 1 s

24 h power consumption signals
sampled at 1 min

24 h power consumption signals
sampled at 6 s

Feature set (i) 10 features (six largest power
values and four largest
1D‐DCT coefficients;
Table 6)

(ii) 5 features (three largest po-
wer values and two largest
2D‐DFT coefficients;
Table 5)

19 features extracted from the
power consumption signal,
the working schedule and
the appliance's location

Features extracted from the
appliances' feature curve and
power range as well as the
occupants' behaviour

[200�400] feature matrix extracted
from 13 convolution and 3 fully
connected layers (CNN)

No. of
classes/
appliances

8 33 7 8

Classifier FFNN Random forest Bayes model CNN

Classification
accuracy

(i) 96.3% 96.5% 95.6% 97.8%

(ii) 95.7%
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6 | CONCLUSIONS AND FUTURE
PLANS

Approximately 21 million smart meters have already been
installed in Great Britain. The domestic smart metering system,
which is part of the smart cities infrastructure, plays a very
important role in the stability of the grid and the introduction
of new services such as the ToU tariffs, to mention but a few
of the benefits. However, the generated smart metering data
can also be utilised for additional energy‐related applications
such as home appliance identification, thus contributing
further to the development and maintenance of the smart city
infrastructure.
In this work, a step‐by‐step description on how consumers

can access their smart metering data in real‐time using an
external CAD via the MQTT API is described. Moreover, an
easy‐to‐implement and computationally efficient method for
home appliance identification using power consumption signals
which have sampling frequency similar to the sampling fre-
quency available by the UK's domestic smart metering system is
implemented and tested. Specifically, features from the time and
the frequency domain are introduced to an easy‐to‐implement
FFNN. The experimental results suggest that the recognition
rate reaches its highest values, 94%–96%, when features from
the frequency domain (1D‐DFT/DCT and 2D‐DFT/DCT) are
combined with features from the time domain compared to the
case where the time or the frequency domain features are used
separately, indicating the complementary nature of the time and
frequency domain information. The experimental results also
demonstrate the robust compression qualities of the proposed
feature extraction method compared to other similar works.
A server‐side platform version of the proposed home

appliance identification method is currently under develop-
ment in order to test a variety of computationally demanding
time‐frequency distributions such as the Wigner‐Ville, the
Phasegrams [48] and the Continuous Wavelet Transform
scalogram, in terms of their compression qualities alongside
more advanced classification schemes such as the CNNs.
Furthermore, research is also currently being conducted

using amethodwhich is similar to the proposedmethod in order
to identify a household's hot water and space heating con-
sumption. This application is particularly useful for the estima-
tion of a building's heat transfer coefficient (HTC) through the
utilisation of the gas consumption data accessed from the do-
mestic smart metering system via an external CAD [49]. HTC
estimation using domestic smart metering data is currently an
area of particular interest in the field of the built environment.
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APPENDIX

F I GURE 1A Smart metering cluster/MQTT API (organised form)
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TABLE 1A List of abbreviations

Abbreviation Explanation

API Application Programming Interface

BEIS Department for Business, Energy & Industrial Strategy

CAD Consumer access device

CNN Convolutional neural network

DCC Data communications company

DCT Discrete Cosine Transform

DECC Department of Energy & Climate Change

DFT Discrete Fourier Transform

DL Deep learning

DNN Deep neural network

ESME Electricity smart metering equipment

ESP Energy service portal

FFNN Feedforward neural network

GSME Gas smart metering equipment

G‐loss Generalisation loss

HTC Heat transfer coefficient

IHD In‐home display

LQI Link quality indicator

MFCC Mel‐frequency cepstral coefficient

MPAN Meter point administration number

MQTT MQ telemetry transport

NILM Non‐intrusive load monitoring

PAN Personal area network

POSIX Portable operating system interface

REST Representational state transfer

RNN Recurrent neural network

SMETS Smart metering equipment technical specification

ToU Time of use

UK‐DALE UK domestic appliance‐level electricity

1D One‐dimensional

2D Two‐dimensional
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