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ABSTRACT   

Linear and nonlinear stability analyses for the onset of time-dependent convection in a 

horizontal layer of a porous medium saturated by a couple-stress non-Newtonian nanofluid, 

intercalated between two thermally insulated plates, are presented. Brinkman and Maxwell-

Garnett formulations are adopted for nanoscale effects. A modified Darcy formulation that 

includes the time derivative term is used for the momentum equation. The nanofluid is 

assumed to be dilute and this enables the porous medium to be treated as a weakly 

heterogeneous medium with variation of thermal conductivity and viscosity, in the vertical 

direction. The general transport equations are solved with a Galerkin-type weighted residuals 

method. A perturbation method is deployed for the linear stability analysis and a Runge–

Kutta–Gill (RKG) quadrature scheme for the nonlinear analysis. The critical Rayleigh 

number, wave numbers for the stationary and oscillatory modes and frequency of oscillations 

are obtained analytically using linear theory and the non-linear analysis is executed with 

minimal representation of the truncated Fourier series involving only two terms. The effect of 

various parameters on the stationary and oscillatory convection behavior is visualized. The 

effect of couple stress parameter on the stationary and oscillatory convections is also shown 

graphically. It is found that the couple stress parameter has a stabilizing effect on both the 

stationary and oscillatory convections. Transient Nusselt number and Sherwood number 

exhibit an oscillatory nature when time is small. However, at very large values of time both 

Nusselt number and Sherwood number values approach their steady state values. The study is 

relevant to the dynamics of biopolymers in solution in microfluidic devices and rheological 

nanoparticle methods in petroleum recovery. 
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NOMENCLATURE 

PC  Couple-stress parameter, 
2

C

eff H




 

BD  Brownian diffusion coefficient ( 2m s )  

TD  Thermophoretic diffusion coefficient ( 2m s ) 

H  Dimensional layer depth ( m ) 

k  Thermal conductivity of the nanofluid (W/m K) 

mk  Effective thermal conductivity of the porous medium saturated by the nanofluid      

                   (W/m K) 

K Permeability of saturated porous medium ( 2m ) 

Ln  Lewis number  

AN  Modified diffusivity ratio  

BN  Modified particle-density increment 

*p  Pressure (Pa) 

p  Dimensionless pressure, ( ) ( )*

fp K    

TRa  Thermal Rayleigh - Darcy number  

Rm  Basic-density Rayleigh number 

Rn  Solutal (concentration) Rayleigh number  

*t  Time (s) 

t  Dimensionless time, ( )* 2

ft H   

*T  Nanofluid temperature (K) 

T  Dimensionless temperature, 
* *

* *

c

h c

T T

T T

−

−
 

*

cT  Temperature at the upper wall (K) 

*

hT  Temperature at the lower wall (K) 

( ), ,u v w  Dimensionless Darcy velocity components ( )* * *, , mu v w H  (m/s) 

v Nanofluid velocity vector (m/s) 
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Va Vadász number  

( ), ,x y z  Dimensionless Cartesian coordinate ( )* * *, ,x y z H ; [ z is the vertically upward  

 Coordinate] 

( )* * *, ,x y z  Cartesian coordinates 

 

Greek symbols 

f        Thermal diffusivity of the fluid, 2(m/s )  

  Thermal volumetric coefficient ( 1K − ) 

a  Non-dimensional acceleration  

  Viscosity variation parameter  

  Porosity  

  Conductivity variation parameter  

  Viscosity of the fluid (kg/ms) 

  Fluid density (kg/m3) 

p  Nanoparticle mass density (kg/m3) 

  Thermal capacity ratio  

*  Nanoparticle volume fraction  

  Relative nanoparticle volume fraction,
* *

0

* *

1 0

 

 

−

−
  

Superscripts 

*       Dimensional variable 

'        Perturbed variable 

St       Stationary 

Osc       Oscillatory 

Subscripts 

b       Basic solution 

f       Fluid 

p       Particle 
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1. INTRODUCTION 

Non-Newtonian fluids are finding increasing applications in modern microfluidics. They 

feature in droplet generation in microfluidic T-junctions [1], miniaturizing assays passive 

flow control [2] and particle micro-separation techniques [3]. In these applications, minute 

volumes of fluids can be accommodated via a versatile platform at small length scales. 

Engineers are able to design in regimes with very high deformation rates at moderate to 

vanishing Reynolds numbers. Lu et al. [4] have shown that non-Newtonian fluids are much 

more effective in for example inertial microfluidics where larger volumes of fluid samples 

are required at a high throughput. Newtonian fluids are less efficient since they do not 

possess the elastic lift features of non-Newtonian fluids for manipulation of particles of 

smaller size and over an extensive range of flow rates. Viscoelasticity for example has been 

fruitfully utilized in porous media microfluidics [5], cell and particle trapping in 

biomicrofluidics [6] and shear-thinning droplet formation in microfluidic junctions [7]. 

In recent years nano-scale systems have also emerged as a major thrust in advanced 

technological applications (aerospace, medical, energy). Prior to the use of nano-sized 

particles of metals and metal oxides, engineers experimented with millimeter- or micrometer-

sized particles in fluids Although these particles improved the thermal conductivity of the 

fluid, they resulted in other problems such as agglomeration, settling, drastic pressure drops, 

clogging channels and premature wear in channels and other components. Since 

nanoparticles approach the size of the molecules in the fluid, the nano-sized particles have an 

advantage over milli- and micro-sized particles. For example, nanoparticles generally do not 

settle under gravity and this mitigates clogging and wearing of channels, which is particularly 

important in microfluidics. The suspensions of nanoscale particles (either carbon-based e.g. 

silicates or metallic e.g. gold, copper, silver etc) in the base fluids are known as nanofluids 

and were introduced by Choi [8] at Argonne National Energy Labs., USA in the mid-1990s. 

Due to their potential for high rate of heat exchange incurring either little or no penalty in the 

pressure drop, nanofluids have attracted enormous interest from researchers and have been 

exploited in solar energy [9], pharmacodynamics [10], smart coatings [11], nano-lubricants 

[12], petroleum drilling muds [13] and many other industries [14]. The convective heat 

transfer characteristics of nanofluids depend on the thermophysical properties of the base 

fluid and the ultra fine particles, the flow pattern and flow structure, the volume fraction of 
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the suspended particles and the dimensions and the shape of these particles. The utility of any 

particular nanofluid for a heat transfer application can be established by suitably modeling 

the convective transport in the nanofluid as noted by Kumar et al. [15]. The particles are 

different from conventional particles (millimeter or micro-scale) in that they stay in 

suspension in the fluid and no sedimentation occurs. Different concepts have been proposed 

to predict the effective thermal conductivity of the nanofluids and to explain this 

enhancement in heat transfer [16]. Nanofluid dynamics involve four scales: the molecular 

scale, the microscale, the macroscale, and the mega-scale, and an interaction is known to 

take place between these scales [17] which manifests in thermal enhancement properties. 

Important studies in this regard include Zhou and Gao [18], Gao and Zhou [19] and Gao et 

al. [20] in which it has been demonstrated experimentally that the effective thermal 

conductivity increment may also depend on the shape of nanoparticles. Using Bruggeman’s 

model, Keblinski et al. [21] proposed a differential effective medium theory to approximate 

the effective thermal conductivity of nanofluids with non-spherical solid nanoparticles 

considering interfacial thermal resistance across the solid particles and the host fluids. They 

observed that if the shape of nanoparticles deviated greatly from spherical then a high 

enhancement of effective thermal conductivity was attainable. New mechanisms for the 

exceptional transport of thermal energy in nanofluids have been suggested by many 

researchers. Koo and Kleinstreuer [22] observed that the role played by Brownian motion is 

much more vital than the role played by thermophoretic and osmo-phoretic motions. In 

conclusion, on the one hand, some investigators surmise that nanoparticle aggregation plays 

an important role in thermal transport due to their chain shape. However, on the other hand 

other investigators propose that the time-dependent thermal conductivity in the nanofluids 

manifests in a modification in thermal conductivity due to clustering of nanoparticles with 

time, as noted by Karthikeyan et al. [23]. 

Although many studies of laminar and turbulent nanofluid flows have been 

communicated, another area of considerable interest in microfluidics is thermal stability or 

the onset of convection. A seminal summary of Newtonian problems has been provided in the 

monumental treatise of Chandrasekhar [24]. The study of the onset of convection in a porous 

medium layer is known as the Horton-Rogers-Lapwood (HRL) problem [25]. Straughn [26] 

investigated the effect of an anisotropic inertia coefficient in Darcian flows, computing the 
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modification in critical Rayleigh number for the onset of convective motion in a porous layer 

with thermal and solutal effects using both linear instability theory and an energy method for 

nonlinear stability. Non-Newtonian characteristics of nanofluids have been confirmed at 

various volume fractions in many experimental investigations including Anil et al. [27] (in 

heat exchangers  where rheology of Fe2O3, Al2O3 and CuO nanoparticles in aqueous 

carboxymethyl cellulose (CMC) base fluid was studied) and Hussanan et al. [28] (for copper 

metallic nanoparticles in multiple base fluids). Further corroboration of nanofluid rheology 

has been provided by Jang et al. [28]. Several studies of non-Newtonian nanofluid thermal 

instability have been communicated. Agarwal and Rana [30] computed both the linear and 

nonlinear onset of convection in a viscoelastic alumina-ethylene-glycol nanofluid saturated 

densely packed horizontal rotating porous layer heated from below and cooled from above. 

They deployed the Oldroyd-B type viscoelastic fluid and Brinkman porous model and 

assumed local thermal non-equilibrium between three phases (porous matrix, fluid, and 

nanoparticles) and utilized a one-term Galerkin scheme for linear stability and a truncated 

Fourier series for nonlinear analysis. Kang et al. [31] used a power-law shear-thinning model 

to study the onset of convection in rheological nanofluids in porous media, noting that the 

most unstable perturbations are transverse rolls, and both traveling-wave and oscillatory 

modes may occur. They also observed a prominent modification in critical Rayleigh number 

with the increasing power-law index and Péclet number. They also showed that lowering the 

Lewis number may either accelerate or delay the onset of thermal convection, depending on 

the nanoparticle distribution. 

The above studies neglected internal microstructure. In the category of non-

Newtonian fluids, couple stress fluids have distinct features, such as polar effects. In these 

fluids, introduced by Stokes [32], micro-structures become hydrodynamically significant 

when the characteristic dimension of the problem is of the same order of magnitude as the 

size of the micro-structure. Couple stress fluids possess no microstructure at the kinematic 

level and therefore the kinematics of such fluids is totally described using the velocity field 

[33]. They are much simpler to simulate than micropolar, simple microfluids and other 

microstructural liquids e.g. microstretch fluids, which require additional balance equations 

for rotary gyration, angular momentum etc. An excellent review of couple stress (polar) fluid 

dynamics has been provided by Cowin [34]. It is further noteworthy that the micro-structure 
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size is the same as the average pore size and therefore couple stress (polar fluids) are 

appropriate for transport modelling in porous media. The principal effect of couple stresses is 

therefore to introduce a length-dependent effect which is absent in the classical non-polar 

fluid dynamics (Navier- Stokes model). Couple stress fluid dynamics has been implemented 

in an impressive range of studies including squeeze film tribology [35], geological flows 

[36], rotating magnetic membrane oxygenators in medicine [37], spin bioreactors [38], 

propulsion [39], lubrication [40], electrokinetic microfluidics [41], materials processing [42] 

and supercritical coating  heat transfer [43]. Thermal instability in couple stress fluids has 

also garnered some interest in mathematical simulation.  Important studies in this regard 

include Patil and Hiremath [44] who studied natural convection (thermal buoyancy) effects in 

instability of couple stress fluids in a Darcian permeable regime. Nandal and Mahajn [45] 

considered heat generation or absorption effects in the onset of couple stress fluid 

convection. Sunil and Mahajan [46] analysed the global nonlinear stability threshold for 

convection in a couple-stress fluid using linear instability theory, noting that the couple-stress 

fluid is thermally more stable than the Newtonian fluid. Kumar et al. [47] studied rotational 

body force effects on the onset of thermosolutal convection in couple stress fluids. Gaikwad 

et al. [48] considered the influence of cross diffusion on couple stress thermal linear and 

nonlinear instability. The thermal stability of an electrically conducting couple-stress fluid-

saturated porous layer in the presence of magnetic field was investigated by Sharma and 

Thakur [49], in which it was observed that increasing couple stress effect postpones the onset 

of stationary convection. Sunil et al. [50] studied the stability of a superposed couple stress 

fluids in porous medium with magnetic effect, deriving a sufficient condition for the non-

existence of over-stability. The onset of convection in a couple stress fluid saturated porous 

layer in the presence of rotation and magnetic field was studied by Sharma and Sharma [51]. 

Malashetty et al. [52] analysed the hydrodynamic linear stability of a couple stress fluid 

saturated horizontal Darcian porous layer heated from below and cooled from above when 

the fluid and solid phases are not in local thermal equilibrium. Using asymptotic and exact 

methods, they showed that the results of the thermal non-equilibrium Darcy model for the 

Newtonian fluid case may be retrieved in the limit for vanishing couple stress parameter. All 

these studies confirmed the significant influence of couple stresses on convective instability.  
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In the context of nanofluid thermal instability simulation, several approaches are 

available for simulating nanoscale effects. Buongiorno [53] proposed a two-component 

model incorporating the effects of Brownian diffusion and the thermophoresis. However, this 

methodology ignores the influence of volume fraction and cannot be used to simulate 

different nanoparticles. An alternative approach is to ignore Brownian motion and 

thermophoresis and instead focus on the effects of variation of thermal conductivity and 

viscosity with nanofluid particle fraction, utilizing expressions obtained with the 

mathematical theory of mixtures. This approach has been employed by Tiwari and Das [54] 

and is based on Brinkman and Maxwell-Garnetts formulations which are adopted in the 

current study in combination with cross-diffusion effects. 

Thermal instability in rheological nanofluids in porous media, as noted, is a subject of 

some relevance to microfluidic systems. The problem of onset of convection in a porous 

medium layer saturated with Newtonian fluids and non-Newtonian nanofluids has been 

extensively studied in the literature. However, relatively sparse attention has been given to 

the study of onset of convection in a porous medium layer saturated with couple stress non-

Newtonian fluids with supplementary thermophysical effects. Although couple stress 

nanofluid dynamics has been reported in other areas e.g. squeezing flows [55] and Sakiadis 

stretching sheet flows [56], nevertheless it has not been studied in thermal instability in 

porous media. Therefore, motivated by addressing this area of relevance to rheological 

microfluidics, in the present article the onset of thermosolutal convection in a layer of porous 

medium saturated by a couple stress nanofluid sandwiched between parallel plates with 

cross diffusion (Soret/Dufour) effects is analyzed. The impact of couple stress parameter, 

viscosity variation parameter, conductivity variation parameter together with other governing 

parameters on the hydrodynamic stability of the regime is investigated rigorously with 

Galerkin, Shooting quadrature and truncated Fourier series methods. Both linear and weakly 

non-linear stability analysis are presented. Further the non-linear steady and unsteady 

stability analysis is studied in terms of Nusselt and Sherwood numbers. 

 

2.  MATHEMATICAL THERMOSOLUTAL MODEL  

2.1 Conservation equations 
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A coordinate frame in which the z-axis is aligned vertically upwards is employed. A 

couple-stress fluid saturated horizontal porous layer confined between the planes z* = 0 and 

z* = H is examined. Asterisks are used to denote dimensional variables. Each boundary wall 

is assumed to be a perfect thermal conductor. The physical model is shown in Fig. 1. The 

size of nanoparticles is small relative to pore size of the matrix, nanoparticle topology is 

spherical and they are suspended in the nanofluid which avoids their agglomeration and 

deposition on the porous matrix. The couple stress nanofluid is incompressible as is the 

porous matrix. The nanoparticles and couple stress nanofluid (polymer) are uncharged. 

Nanoparticles do not adhere to the nanofluid polymer structure. Nanofluid transport is 

considered in a microchannel system, not a nanofluidic channel. 

     

Fig. 1 Geometric model of a nanofluid couple stress layer in a rigid porous medium 

microfluidic channel  

The temperatures at the lower and upper boundary are taken to be * *

0T T+  and *T .The 

Oberbeck Boussinesq approximation is employed. In the linear stability theory being applied 

here, the temperature change in the fluid is assumed to be small in comparison with *

0T . The 

mass conservation (D’Alembert) equation takes the form: 

* *. 0D =v                                                                                                                                 (1) 

Here, *

Dv  is the nanofluid Darcy velocity. We write ( )* * * *, ,D u v w=v  .  

In the presence of thermophoresis, the conservation equation for the nanoparticles, in the 

absence of chemical reactions, takes the form: 
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1
. .D B T

T
D D

t T


 



  
    

 

  
+  =  + 

  
v                    (2) 

where    is the nanoparticle volume fraction,   is the medium porosity, T  is the 

temperature, 
BD  is the Brownian diffusion coefficient, and 

TD  is the thermophoretic 

diffusion coefficient. Invoking a thermal buoyancy force and adopting the Boussinesq 

approximation and the Darcy viscous-dominated model for a porous medium, then the 

modified momentum equation can be written as follows:  

( )
*

*

D*

1
gD

eff Cp
t K


  



 
= − − − +



v
v         (3) 

Here   is the overall density of the nanofluid, which we now assume to be given by the 

following expression: 

( ) ( )* * *

p 0 T 01 1 T T       = + − − −
 

                   (4) 

where p  is the particle density, 
0  is a reference density for the fluid, and T  is the thermal 

volumetric expansion. The thermal energy (heat conservation) equation for a nanofluid can 

be written as  

( ) ( ) ( )
* *

* * *2 * * *

D m B T *m f p

.
. .

T T T
c c T k T c D T D

t T
    


 



   
+  =  +   + 

  
v               (5) 

The conservation of nanoparticle mass (species) requires that: 

*
* * * *2 * *2 *T
D B* *

1
.

C

D
D T

t T


 




+  =  + 


v                    (6) 

here c is the fluid specific heat (at constant pressure i.e. isobaric conditions), 
mk   is the 

overall thermal conductivity of the porous medium saturated by the nanofluid, and pc is the 

specific heat of the material constituting the nanoparticles.  

Thus, 

(1 )m eff sk k k = + −                                                                                                                  (7) 

where   is the porosity, effk  is the effective conductivity of the nanofluid (fluid plus 

nanoparticles), and 
sk is the conductivity of the solid material forming the matrix of the 

porous medium. 
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We now introduce the viscosity and the conductivity dependence on nanoparticle fraction. 

Following Tiwari and Das [29] we adopt the following formulae, based on a theory of 

mixtures: 

* 2.5

1

(1 )

eff

f



 
=

−
                                                                                                                      (8) 

*

*

( 2 ) 2 ( )

( 2 ) ( )

eff p f f p

f p f f p

k k k k k

k k k k k





+ − −
=

+ + −
                                                                                              (9) 

Here 
fk and 

pk are the thermal conductivities of the fluid and the nanoparticles, respectively. 

Eqn (8) is that derived first by Brinkman [57], and Eq. (9) is the Maxwell-Garnett formula 

for a suspension of spherical particles originally presented by Maxwell [58]. 

In the case where *  is small compared with unity, we can approximate these formulae by: 

*1 2.5
eff

f





= + ,          

*

*

*

( 2 ) 2 ( ) ( )
1 3

( 2 ) ( ) ( 2 )

eff p f f p p f

f p f f p p f

k k k k k k k

k k k k k k k






+ − − −
= = +

+ + − +
                          (10) 

We assume that the temperature and the volumetric fraction of the nanoparticle are constant 

on the boundaries (microfluidic channel plates). Thus, the boundary conditions imposed are: 

* * * * * *

0 00, ,w T T T  = = + =  at * 0z = ,          * * * * *

0 10, ,w T T  = = =  at *z H=             (11) 

We introduce dimensionless variables as follows:  

* * * * 2( , , ) ( , , ) / , /mx y z x y z H t t H = = , 
* * * *( , , ) ( , , ) / , /m f mu v w u v w H p p K  = = , 

* *

0

* *

1 0

 


 

−
=

−
, 

* *

0

*

T T
T

T

−
=


,  

2

C
P

eff

C
H




=                                                                               (12)                                                           

Here CP is the Stokes couple stress (rheological) parameter and 
( )

,
( ) ( )

p mm
m

p f p f

ck

c c


 

 
= = .  

We further define:  

,
eff

f





=  

p

p

f

k
k

k
= ,   s

s

f

k
k

k
= ,     m

f

k
k

k
=                                                                              (13)                                                                                   

From Eqns. (7), (10) and (13), we have: 

* * * * * *

0 1 0 0 1 0

1
1 2.5[ ( )], 1 3[ ( )] (1 )

2

p

s

p

k
k k

k
          

 − 
= + + − = + + − + − 

+  

                    (14)                                                                                             

Then Eqns. (1) and (3) with (4), (5), (2), (11) take the form: 
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. 0 =v                                                                                                                                   (15) 

( )2ˆ ˆ ˆ 1 0a z T z zp Rme Ra e Rn e Cp
t

  
 

+ + − + + −  = 
 

v
v                                                (16) 

2. . .B A BN N NT
T k T T T T

t Ln Ln



+  =  +   +  


v                                                                 (17) 

2 21 1 1
.


+  =  + 


v AN

T
t Ln Ln


 

 
                                                                                      (18) 

0, 1, 0 0, 0, 0, 0 1w T at z w T at z = = = = = = = =                                        (19) 

Here 

=a
Va





, m

B

Ln
D


= ,

2 Pr
=Va

Da


,

2
Pr , ,= =

f

m

K
Da

H





( )* *

0 01 T

T

f m

gK H T
Ra

  

 

− 
= , 

0 0 0(1 )p

f m

gKH
Rm

   

 

  + − = ,

* *

0 1 0( )( )p

f m

gKH
Rn

   

 

− −
= ,

*

* *

1 0

,
( )

T
A

B c

D T
N

D T  


=

−
   

*

1 0( ) ( )

( )

p

B

f

c
N

c

  



 −
=  . 

The parameter a  is the non-dimensional acceleration coefficient, Ln  is a Lewis number, 

Va  is a Vadász number (a porosity modified Prandtl-Darcy number), Pr is the Prandtl 

number, Da  is the Darcy number and 
TRa  is the familiar thermal Rayleigh–Darcy number. 

The new parameters Rm and Rn may be regarded as a basic-density Rayleigh number and a 

concentration (solutal) Rayleigh number, respectively. The parameter 
AN  is a modified 

diffusivity ratio and is somewhat similar to the Soret parameter that arises in cross-diffusion 

(thermo-diffusion) phenomena in solutions, while 
BN  is a modified particle-density 

increment. 

Eqn. (16) has been linearized by neglecting a term proportional to the product of   

and T. This assumption is likely to be valid in the case of small temperature gradients in a 

dilute suspension of nanoparticles. 

 

2.2. Fundamental Solutions 

We seek a time-independent quiescent solution of Eqns. (15) – (19) with temperature and 

nanoparticle volume fraction varying in the z-direction only i.e. a solution of the form: 
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0, ( ), ( ), ( )b b bp p z T T z z = = = =v                                                                                      (20) 

Eqns. (16) - (18) reduce to the following coupled ordinary differential equations: 

0 = b
T b b

dp
Rm Ra T Rn

dz
− − + −                                                                                              (21) 

22

2
0b b b bB A Bd T d dT dTN N N

k
dz Ln dz dz Ln dz

  
+ + = 

 
                                                                            (22) 

2 2

2 2
0b b

A

d d T
N

dz dz


+ =                                                                                                                (23) 

According to Buongiorno [53] this formulation is valid for most dilute nanofluids provided 

( )1 0Ln   −  is large, of the order 510 – 610 , and since the nanoparticle fraction decrement is 

typically no smaller than 310 this means  that  Ln  is large, of order 210 – 310 , while 
AN  is no 

greater than about 10. Using this approximation, the basic solution emerges as: 

zTb −=1  and so b z =                                                                                                         (24) 

 

2.3. Perturbation solution 

We now superimpose perturbations on the fundamental (basic) solution. We write: 

'=v v   , 'bp p p= + ,  'bT T T= + , 'b  = +                                                                       (25) 

Substitution in Eqns. (13)-(18), and linearization by neglecting products of primed quantities, 

leads to the following equations by virtue of Eqn. (24): 

. ' 0 =v                                                                                                                                  (26) 

( )
'

2ˆ ˆ' ' ' 1 ' 0a T z zp Ra T e Rn e Cp
t

  
 
 + − + + −  = 

 

v
v                                                      (27) 

2 2' ' ' '
' ' B A BN N NT T T

w k T
t Ln z z Ln z

    
− =  + − − 

    
                                                           (28)           

2 21 ' 1 1
' 'AN

w T
t Ln Ln




 


+ =  + 


                                                                                       (29)               

' 0w = , ' 0T = , ' 0 =  at 0=z  and at 1=z                                                                            (30) 

It is now possible to approximate the viscosity and thermal conductivity distributions by 

substituting the basic solution expression for , namely that given by Eqn. (24), into Eqn. 

(14). We obtain: 
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( )* * * * * *

0 1 0 0 1 0

1
( ) 1 2.5 ( ) , ( ) 1 3 (1 )

2

p

s

p

k
z z k z z k

k
         

 −   = + + − = + + − + −     +  

       (31) 

It will be noted that the parameter Rm  is just a measure of the basic static pressure gradient 

and is not involved in these and subsequent equations. It is important to recognize that the 

scenario is one where properties are heterogeneous. These are now the viscosity and thermal 

conductivity (rather that the more usual ones, namely permeability or hydraulic conductivity 

and thermal conductivity). Following the methodology of numerous investigators, as 

reviewed in Nield [59], it is assumed that the heterogeneity is weak in the sense that the 

maximum variation of a property over the domain considered is small compared with the 

mean value of that property. 

The six unknowns u , v , w ,p ,T ,     can be reduced to three via operating on Eqn. (27) with 

zê curl curl and using the identity curl curl grad div - 2  together with Eqn.  (26) and the 

weak heterogeneity approximation. The result (after using Eqn.  (31)) emerges as: 

( )2 2 ' 2 2 '( ) ( ) 'a T H Hs z z Cp w Ra T Rn   + −   =  −                                                             (32) 

Here 2

H  is the two-dimensional Laplacian operator on the horizontal plane. 

The differential equations (27), (28), (32) and the boundary conditions (30) constitute a 

linear boundary-value problem that can be solved using the method of normal modes. 

Proceeding with the analysis, we write: 

 

( )   ( )' , ', ' ( ), ( ), ( ) expw T W z z z st ilx imy =   + +                                                              (33) 

The disturbances are expressed in terms of waves with arbitrary amplitude as shown in Eqn. 

(33).  Here s  is a constant to be determined and denotes frequency of the waves and in 

general is a complex quantity 
r is s i s= + .  Hence  ( ), ( ), ( ) rsW z z z e   represents the 

amplitude of the wave   ( )
( ), ( ), ( ) ii s t lx my

W z z z e  + +
. Several cases are of interest: 

Case1.  If 0rs  , then the system is stable for large time otherwise unstable. 

Case2.  If 0rs = , then two considerations arise for ( )0, 0i i is s s=  .  0rs =  is known 

as marginal stable.  The marginal stable curve divides the region into two parts. (a) stable 

region (b) unstable region.  If 0is =  along with 0rs = , the state of the system is stationary 
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and is designated as the neutral stability state.  If 0rs   along with 0rs = , then the state of 

the system is oscillatory with constant amplitude  . 

 If 0rs =  and 0is = , then it may be inferred that the principle of exchange of 

stability holds.  To check whether the system is stable or not for all arbitrary disturbances, 

(note that it is difficult to consider exhaustively all types of disturbances) we select a few 

representative disturbances from which it is possible to generate all types of disturbances 

and then study the stability over these few disturbances.  This process is called normal mode 

analysis which is represented in Eqn. (33) where l  and m  are horizontal wave numbers and 

s  is the frequency.  The graphs displayed whether the system is stable or unstable for the 

parameters being varied. 

 

Insertion of Eqn. (33) into the differential equations produces the following system: 

( ) ( )( ) ( )2 2 2 2 2 2( ) ( ) 0a P Tz s z C D D W Ra Rn      + − − − + −  =                          (34) 

( )2 2 2
( ) 0B A B BN N N N

W k z D D D s D
Ln Ln Ln


 

+ − + − − −  = 
 

                                            (35) 

( ) ( )2 2 2 21 1 1
0AN

W D D s
Ln Ln

 
 

 
− − − − −  = 

 
                                                          (36) 

0, 0, 0W =  =  = at  0z =  and 1z =                                                                              (37) 

where 

dz

d
D   and 2 2 1/ 2( )l m = +                                                                                                   (38) 

Here   is a dimensionless horizontal wave number. For neutral stability the real part of s is 

zero. Hence we now write is = , where   is real and is a dimensionless frequency. 

Employing a Galerkin-type weighted residuals method, an approximate solution to the 

system of Eqns. (34)-(37) is sought. We select the following trial functions (satisfying the 

boundary conditions), , , ; 1,2,3......p p pW p  = . Now we may write. 

W=
1

N

p p

p

A W
=

 , 
1

N

p P

p

B
=

 =  , 
1

N

p P

p

C
=

 =                                                                        (39) 

Substitution into Eqns. (34)– (37), and rendering expressions on the left-hand sides of those 

equations (the residuals) orthogonal to the trial functions, leads to a system of 3N linear 
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algebraic equations in the 3N unknowns , ,p p pA B C , p =1, 2, . . . N.  The vanishing of the 

determinant of coefficients produces the eigenvalue equation for the system. One can regard 

TRa  as the eigenvalue. This enables the determination of the thermal Rayleigh-Darcy 

number 
TRa  in terms of the other parameters. Trial functions satisfying the boundary 

condition (37) can be chosen as: 

sinp p pW p z=  =  = ; p = 1, 2, 3, …                 (40) 

The eigenvalue equation is: 

det M = 0                                                                                           (41) 

where, 

  

11 12 13

21 22 23

31 32 33

M M M

M M M M

M M M

 
 

=  
 
 

                                                                                 (42) 

and, for i, j = 1, 2, …, N, 

( ) ( ) ( )( ) ( ) ( )( )

( )

( )

2 2 2 2

11

2

12

2

13

a P j i a P j iij

T j iij

j iij

M z s z C D W D W z s z C D W W

M Ra W

M Rn W

      





= − + − + + −

= − 

= 

  

( )

( ) ( ) ( )

( )

( )

( ) ( )

( ) ( )

21

2 2

22

23

31

2 2

32

2 2

33

2

1

1

j iij

A B B
j i j i j i j iij

B
j iij

jij i

A
j i j iij

j i j i j iij

M W

N N N
M k z D k z s D

Ln Ln

N
M D

Ln

M W

N
M D

Ln

s
M D

Ln










= − 

 
= −   +   +   + −   

 

= −  

= − 

= −   +  

= −   +   +  

        

Here 

( ) ( )
1

0

.f z f z dz                      (43) 
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In the present case, where viscosity and thermal conductivity variations are incorporated, the 

critical wave number is unchanged, and the stability boundary becomes: 

( )( )( ) ( )
22

2

1 A
T a P

Rn NJ s Rn
Ra J J s s C J J s J

J s Ln Ln

Ln


   

 




  
= + + + + − + −  
    + 
 

γ

                                                                                                                                               (44) 

where 

J  =  2 2( ) + ,  ( )* *

1 01 1.25 ,  = + +
( )* *

1 03 1
(1 )

2 2

p

s

p

k
k

k

  
  

+  −
= + − +  

 + 

              (45)                                                                                                                                                   

Linear stability analysis using the Galerkin method for nanofluids is well documented in the 

literature, see, for example, Kuznetsov and Nield [60, 61] (2010a, b). The detailed 

explanation and methodology for the Galerkin method is given in the book by Finlayson 

[62].  Further in this paper we consider only free-free boundary conditions and the remaining 

two possible conditions such as rigid-rigid and free-rigid conditions are not analyzed.   

The expression for 
TRa  and corresponding minimum value of Raleigh number is 

computed.  Case 1:  When the value of Rayleigh number is less than the value of the 

minimum Rayleigh number, disturbances with the wave number   will be stable.  Case 2:  

When the value of Rayleigh number is equal to the minimum value of the Rayleigh number, 

then the disturbances will become marginally stable.  Case 3:  When the value of Rayleigh 

number exceeds the minimum value of the Rayleigh number, the disturbances will be 

unstable. 

 To understand the onset of convection the following logic is applied: if the Rayleigh 

number is increased by increasing the governing parameters, then this implies that the onset 

of convection is delayed which helps to stabilize the system.  On the other hand, if Rayleigh 

number is decreased by increasing these parameters, then the onset of convection is earlier 

and the system is unstable. The concept of onset of convection is also elucidated in great 

detail in the classical monograph of Chandrasekhar [24]. 

 

We observe that when there is no thermal conductivity variation (that is 1, = as when 

1sk = and 1)pk =  the effect of viscosity variation is to increase the critical Rayleigh number 
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by a factor . The additional effect of thermal conductivity variation   is expressed by 

equation (45). When 1sk = , the maximum value of   is 2.5 ( )* *

1 0 +  which is attained when 

1 = and pk → . 

 It is pertinent to note that the factor  comes from the mean value of  ( )z  over the 

range [0, 1] and the factor   is the mean value of ( )k z  over the same range. This implies 

that when evaluating the critical Rayleigh number, it is a good approximation to base that 

number on the mean values of the viscosity and conductivity which are based in turn on the 

fundamental solution for the nanofluid fraction. 

 

3. LINEAR STABILITY ANALYSIS 

3.1 Stationary Mode 

For satisfaction of the validity of principle of exchange of stabilities (i.e., steady case), we 

have s = 0 ( ). ., 0r i r ii e s s is s s= + = = =  at the margin of stability. For a first approximation 

we take 1N = . Then the Rayleigh number at which the marginally stable steady mode exists 

becomes: 

( ) ( )
2 3

2 2 2 2

2 2

PSt

T A

C Ln
Ra Rn N

      

  

+ +  
= + − + 

 
                                                 (46)      

In the absence of variation of viscosity and thermal conductivity parameters ( )1 1, = = , the 

stationary Rayleigh number given by Eq. (46) reduces to: 

( ) ( )
2 3

2 2 2 2

2 2

PSt

T A

C Ln
Ra Rn N

   

  

+ +  
= + − + 

 
                                                           (47) 

The minimum value of the Rayleigh number St

TRa  occurs at the critical wave number c =  

where 2

c x =  satisfies the equation ( ) ( )2 2 2 22 1 1 0P P PC x C x C  + + − + = . In the absence 

of nanoparticles and couple stress fluid effects (vanishing CP), the stationary Rayleigh 

number Eq. (47) Reduces to 
( )

2
2 2

2

St

TRa
 



+
=  with the critical value being 24St

TRa = = 
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39.48 and with = =3.14C  , which concurs with the classical Newtonian results obtained 

by Horton and Rogers [51]  and Lapwood [9]. 

   

3.2 Oscillatory Mode 

We now set s i= , where ( )( )Im 0r  = = in Eqn. (44) and clear the complex quantities 

from the denominator, to obtain: 

1 2TRa i= +                                                                                                                       (48) 

For the onset of oscillatory convection, 
2 0 =  ( )0i  and this gives a dispersion relation of 

the form (on dropping the subscript i): 

( ) ( )
2

2 2

1 2 3 0b b b + + =                    (49) 

Now Eqn. (48) with 
2 0 =  yields: 

( )2

0 1 2

Osc

TRa a a a= +                               (50) 

where 1 2,b b  and 3b  and 0 1,a a  and 2a  and  
1 and 

2 are lengthy algebraic expressions which 

are omitted for brevity. 

 The oscillatory neutral solutions can be extracted from Eqn. (50). The process is as 

follows: Determine the number of positive solutions of Eqn.  (49). If there are none, then no 

oscillatory instability is possible. If there are two, then the minimum (over 2a ) of Eqn. (50) 

with 2 given by Eqn. (49) gives the oscillatory neutral Rayleigh number. Since Eqn. (49) is 

quadratic in 2 , it can generate in excess of one positive value of 2  for fixed values of the 

parameters Rn, Ln, , , , , ,A a PN C    . However, the present numerical solution of Eqn. (49) 

for the range of parameters considered here gives only one positive value of 2  indicating 

that there exists only one oscillatory neutral solution. The analytical expression for 

oscillatory Rayleigh number given by Eqn. (50) is minimized with respect to the wave 

number numerically, after substituting for 2 (> 0) from Eqn. (49), for various values of  the 

thermophysical parameters in order to elucidate their effects on the onset of oscillatory 

convection. 
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  4. NONLINEAR STABILITY ANALYSIS 

 In order to explore how the cross-diffusion coefficient terms influence the nonlinear 

development of onset of convection in porous layer saturated with nanofluid, it is necessary 

to solve the full nonlinear Eqn. (15)-(18).  However, initially we consider the early stages of 

nonlinear convection, when the basic structure of the convective rolls is still determined by 

the behavior of the linearized solution.  In the neighborhood of the stability boundary, we 

develop the nonlinear analysis in which the amplitudes are no longer small but finite.  For 

simplicity, we consider the case of two-dimensional rolls, assuming all physical quantities to 

be independent of y. Eliminating the pressure and introducing the stream function we obtain: 

( ) 2 4 0a P T

T S
s C Ra Rn

x x
  

 
+  +  + − =

 
                                                                  (51) 

( )

( )
2

,

,

TT
T

t x x z


  
+ =  +

  
                                                                                                 (52) 

2 21 1 1 1 ( , )

( , )

ANS S
S T

T x Ln Ln x z  

   
+ =  +  +

  
                                                                    (53) 

We solve Eqns.  (43)-(45) subjecting them to stress-free, isothermal, iso-nano-concentration 

boundary conditions: 

2

2
0T S

z





= = = =


 at z = 0, 1                                                                                           (54) 

To perform a local non-linear stability analysis, the following Fourier expressions are 

deployed: 

( ) ( ) ( )
1 1

m n

n m

A t sin m x sin n z  
 

= =

=                                                                                         

( ) ( )
1 1

( )cos
m n

n m

T B t m x sin n z 
 

= =

=                                                                                     

1 1

( )cos ( ) ( )
m n

n m

S C t m x sin n z 
 

= =

=                                                                         (55a, b, c) 

Further, we take the modes (1, 1) for the stream function, and (0, 2) and (1, 1) respectively 

for temperature and nanoparticle concentration, leading to: 

 

11( ) ( ) ( )A t sin x sin z  =                                                                                                         
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11 02( )cos( ) ( ) ( ) (2 )T B t x sin z B t sin z  = +                                                                               

11 02( )cos( ) ( ) ( ) (2 )S C t x sin z C t sin z  = +                                                                         (56) 

 

Here the amplitudes
11( )A t ,

11( )B t , 02 ( )B t , 11( )C t  and 02 ( )C t  are functions of time and are to 

be determined from the dynamics of the system.  

The first effect of non-linearity is to distort the temperature and concentration fields 

through the interaction of ,T and , S . The distortion of these fields will correspond to a 

change in the horizontal mean, i.e., a component of the form (2 )sin z will be generated. It is 

obvious that   is minimally represented, since it is the simplest possible form for satisfying 

the boundary condition; it is also the form of   for the stability problem. The amplitude 

11( )A t  is (generally) a function of time and must be determined. The term 

11( )cos( ) ( )B t x sin z   is also a minimal representation for  and is included since it must 

balance the stream function term in the heat transport equation. The term 
02( ) (2 )B t sin z  

represents the minimal representation for the distortion of the mean temperature field. The 

reason for the value 2 in the argument is that the mean temperature field is distorted by the 

convective term   , in the heat equation; since both   and   have components 

proportional to ( )sin z , this will force a (2 )sin z dependence on the mean temperature. 

Similar remarks apply to the concentration field. 

Taking the orthogonality condition with the eigen functions associated with the considered 

minimal model, we have: 

 

2 411
11 11 11 112

( ) 1
( ) ( ) ( ) ( )P

a

dA t
RnC t Ra B t A t C A t

dt
     

 
 = − − −                                                                                            

211
11 11 11 02( ) ( ) ( ) ( )

dB
A t B t A t B t

dt
   = − + +                                                                            

202
02 11 114 ( ) ( ) ( )

2

dB
B t A t B t

dt


 = − +                                                                                       

211 11
11 11 11 02

( )1 1
( ) ( ) ( ) ( )AdC C t N

A t B t A t C t
dt Ln Ln

   
 

  
=− + + +  

  
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2 202
02 03 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

A
dC N a

C t B t A t C t
dt Ln Ln


  



 
= − + − 

 
                                        (57a-e) 

In the case of steady motion 
( )

0i

d
D

dt
= = , (i = 1, 2, .., 5) and we write all 'iD s  in terms of 

11A .Thus we get: 

2 4

1 11 11 11 112

1
( ) ( ) ( ) ( )P

a

D RnC t Ra B t A t C A t     
 

 = − − −                                                                                            

2

2 11 11 11 02[ ( ) ( ) ( ) ( )]D A t B t A t B t  = − + +                                                                               

2

3 02 11 114 ( ) ( ) ( )
2

D B t A t B t


 = − +                                                                                           

2 11
4 11 11 11 02

( )1 1
( ) ( ) ( ) ( )AC t N

D A t B t A t C t
Ln Ln

   
 

  
= − + + +  

  
                                                    

2 2

5 02 02 11 11

1 1
4 ( ) 4 ( ) ( ) ( )

2

AN a
D C t B t A t C t

Ln Ln


  



 
= − + − 

 
                             (58a-e)                           

and  

 

1D  = 2D  =  3D  =  4D  =  5D  = 0                                                                                   (59) 

The above system of simultaneous autonomous ordinary differential   equations   is    solved 

numerically using Runge–Kutta–Gill method. One may also conclude that the trajectories of 

the above equations will be confined to the finiteness of the ellipsoid. Thus, the effect of the 

parameters Rn, Ln, 
AN on the trajectories is to attract them to a set of measure zero, or to a 

fixed point to say. 

 

5. HEAT AND NANOPARTICLE TRANSPORT 

The Nusselt number, Nu is defined as:  

( )Nu t =
Heat transport by (conduction convection)

Heat transport byconduction

+

2

0

2 /

0 0

1
a

B

z

T
dx

z

T
dx

z





=

 
 

 = +
 
 

 





       (60)                                                      
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Substituting expressions (24) and (56) in above equation produces a simpler form for the 

time dependent Nusselt number given by: 

 

02( ) 1 2 ( )Nu t B t= −          (60) 

 

The time dependent Sherwood number (nanoparticle concentration version of Nusselt 

number), Sh is defined similar to the Nusselt number. Following the procedure adopted for 

arriving at Nu(t), one can obtain the expression for Sh(t) in the form: 

 

( )02 02( ) 1 2 ( )) (1 2 ( )ASh t C t N B t = − + −       (61) 

 

6. RESULTS AND DISCUSSION 

The expressions of thermal Rayleigh number for stationary and oscillatory 

convections are given by Eqns. (46) and (50) respectively.  Figure 1a-d shows the effect of 

various parameters on the neutral stability curves for stationary convection with variation in 

one of these parameters. The effect of nanoparticle concentration Rayleigh number Rn is 

shown in Fig. 1a. It is shown that the thermal Rayleigh number decreases with increase in 

nanoparticle concentration Rayleigh number Rn, which indicates that elevation in 

nanoparticle concentration Rayleigh number Rn destabilizes the system. It should be noted 

that the negative value of Rn indicates a bottom-heavy case (nanoparticles settling), while a 

positive value indicates a top-heavy case (nanoparticles rising). The effect of Lewis number 

Ln on the thermal Rayleigh number is shown in Fig. 1b. One can see that the thermal 

Rayleigh number increases with increase in Lewis number, indicating that the Lewis number 

has the opposite effect to nanoparticle concentration Rayleigh number Rn i.e. it stabilizes the 

system. The effect of viscosity ratio   and thermal conductivity ratio   on the thermal 

Rayleigh number is depicted in Figs. 1c and 1d respectively, these figures show that as   

and   increases, 
TRa  increases which indicates that both   and   will stabilize the system. 

The effect of concentration Rayleigh number Rn and Lewis number Ln on thermal Rayleigh 

number 
TRa  for stationary convection exhibits a similar pattern to the earlier results obtained 

by Long Sheu [63], although he employed an Oldroyd-B viscoelastic model which neglects 
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couple stress length effects. Fig.1e shows the effect of couple stress parameter. One can 

witness that the couple stress parameter enhances the stability of the system. In the absence 

of couple stress parameter PC , all the results correspond to the Newtonian nanofluid results 

obtained by Umavathi and Mohite [64].  

Figure 2a-g displays the variation of thermal Rayleigh number for oscillatory 

convection with respect to various parameters. In Fig. 2a it is seen that for negative values of 

Rn (bottom-heavy case) the thermal Rayleigh number decreases as Rn increases which will 

advance the onset of convection. As the Lewis number Ln increases the thermal Rayleigh 

number 
TRa  decreases as seen in Fig. 2b which implies that Lewis number Ln destabilizes 

the system.  
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Fig. 1 Neutral curves on stationary convection for different values of (a) nanoparticle 

concentration Rayleigh number Rn, (b) Lewis number Ln , (c) Viscosity ratio  ,                

(d) conductivity ratio  , (e) couple stress parameter PC . 
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Fig. 2  Neutral curves on oscillatory convection for different values of (a) nanoparticle 

concentration Rayleigh number Rn, (b) Lewis number Ln, (c) modified diffusivity ratio 
AN ,  

(d) Viscosity ratio  , (e) Thermal conductivity ratio  , (f) couple stress parameter PC , (g) 

Vadász number Va. 
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Fig. 3 Variation of Nusselt number Nu with critical Rayleigh Number for different values of 

(a) Nanoparticle concentration Rayleigh number Rn, (b) Lewis number Ln, (c) Viscosity 

ratio  , (d) Thermal conductivity ratio  . 
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Fig. 4 Variation of Sherwood number Sh with critical Rayleigh Number for different values 

of (a) Nanoparticle concentration Rayleigh number Rn, (b) Lewis number Ln,   (c) Modified 

diffusivity ratio 
AN , (d) Viscosity ratio  , (e) Thermal conductivity ratio  . 
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Fig. 5 Transient Nusselt number Nu with time for different values of (a) Nanoparticle 

concentration Rayleigh number Rn, (b) Lewis number Ln, (c) Modified diffusivity ratio 
AN , 

(d) Viscosity ratio  , (e) Thermal conductivity ratio  , (f) Vadász number Va, (g) couple 

stress parameter PC . 
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Fig. 6 Transient Sherwood number Sh with time for different values of (a) nanoparticle 

concentration Rayleigh number Rn, (b) Lewis number Ln, (c) modified diffusivity ratio 
AN , 

(d) Viscosity ratio  , (e) thermal conductivity ratio  , (f) Vadász number Va, (g) couple 

stress rheological parameter PC . 
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Fig. 7 Sherwood number Sh with critical Rayleigh Number for different values of viscosity 

ratio   

The modified diffusivity ratio
AN  decreases with the Rayleigh number, thus showing a 

destabilizing effect on the system (Fig. 2c). The effects of viscosity ratio   and thermal 

conductivity ratio   on thermal Rayleigh number are depicted in Figs. 2d and 2e 

respectively. From these figures it is evident that enhancing   increases the thermal Rayleigh 

number for oscillatory convection thus delaying the onset of convection; however elevation 

in   decreases the thermal Rayleigh number for oscillatory convection thus advancing the 

onset of convection. The effect of couple stress parameter PC  on thermal Rayleigh number is 

depicted in Fig. 2f. Inspection of the profiles indicates that as PC  increases the thermal 

Rayleigh number increases and therefore PC  stabilizes the system. Inspection of the 

definition of 
2

C
P

eff

C
H




=  in Eqn. (12) and its eventual form in the double-diffusive 

modified momentum Eqn. (32) i.e. ( )2 2 ' 2 2 '( ) ( ) 'a T H Hs z z Cp w Ra T Rn   + −   =  −   

indicates that couple stress effect  features as a quartic differential term CP4w in terms of 

the z-direction linear velocity  component. Clearly CP is quadratically inversely proportional 

to a length scale, H. Increasing CP values are known to accelerate the flow with decreasing 
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length effect. This serves to contribute to a momentum modification which encourages a rise 

in thermal Rayleigh number.   The effect of Vadász number Va on thermal Rayleigh number 

is depicted in Fig. 2g. From this figure one can see that as Va increases the thermal Rayleigh 

number decreases and thus larger values of Va destabilize the system. 
2 Pr

=Va
Da


 and 

therefore, increasing this parameter corresponds to greater medium porosity assuming Pr 

(ratio of momentum and thermal diffusivity) and Da (dimensionless scaled permeability) are 

fixed. The effect of concentration Rayleigh number Rn and Lewis number Ln on thermal 

Rayleigh number 
TRa  for oscillatory convection also demonstrate similar results to those 

computed by Long Sheu [63]. The effect of increasing modified diffusivity ratio,
AN , couple 

stress parameter, PC  and Vadász number Va also produce trends similar (but not identical to) 

the results obtained by Malashetty et al. [65] (although in this study cross-diffusion effects 

and variable thermophysical properties were ignored).  

The nonlinear analysis identifies not only the onset threshold of finite amplitude motion 

but also furnishes key details on heat and mass transport characteristics at the boundaries 

(microchannel plates) in terms of Nusselt Nu and Sherwood Sh numbers. Nu and Sh are 

computed as the functions of
TRa , and the variations of these non-dimensional numbers with 

TRa  for different parameter values are depicted in Figs. 3a-d and 4a-e respectively. It is 

apparent that in each case, Sherwood number is always greater than Nusselt number and both 

Nusselt number and Sherwood number start at the conduction state value 1 at the point of 

onset of steady finite amplitude convection. When 
TRa  is increased beyond

T cRa , there is a 

sharp increase in the values of both Nu and Sh. However further increase in 
TRa  will not 

change Nu and Sh significantly. It is to be noted that the upper bound of Nu is 3 (similar 

results were obtained by Malashetty et al. [66]). It should also be noted that the upper bound 

of Sh is not 3 (similar results were obtained by Bhadauria and Agarwal [67]). The upper 

bound of Nu remains 3 only for both clear and nanofluid. However, the upper bound for Sh 

for clear fluid is 3 whereas for nanofluid it is not fixed. In Figs. 3a, 4a we observe that as the 

concentration Rayleigh number Rn increases, the value of Nu and Sh both increase thereby 

showing an increase in the rate of heat and mass transport to the system boundaries (plates). 

Figures 3b and 4b shows that as Lewis number increases both Nu and Sh decreases, which 
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implies that increasing Lewis number (i.e. decreasing nanoparticle species diffusivity) 

suppresses the heat and mass transport to the boundaries. It is also evident that with elevation 

in modified diffusivity ratio
AN , there is no tangible effect induced on the Nusselt number 

distribution, whereas in Fig. 4c we observe that with increasing modified diffusivity ratio
AN  

the Sherwood number is noticeably accentuated (this trend is similar to the results reported in 

Bhadauria and Agarwal [67]. As the viscosity ratio   (Figs. 3c and 4d) and thermal 

conductivity ratio   (Figs. 3d and 4e) increase, both Nu and Sh are depleted  implying that   

and   suppresses the heat and mass transfer to the plates. 

The linear solutions exhibit a considerable variety of behavior in the system, and the 

transition from linear to non-linear convection although relatively complicated provides a 

deeper insight into the thermo-solutal fluid dynamics of the regime. Time-dependent results 

needs to be scrutinized in order to analyze these mechanisms. The transition can be 

appreciated comprehensively by careful analysis of Eqn. (57), whose solution gives a 

detailed description of the two-dimensional problem. The autonomous system of unsteady 

finite amplitude equations is solved numerically using the Runge-Kutta method. The Nusselt 

and Sherwood numbers are evaluated as functions of time t; the unsteady transient behavior 

of Nu and Sh are visualized in Figs. 5a-f and 6a-f respectively. These figures indicate that 

initially i.e. when time is small, large scale oscillations are computed in the values of Nu and 

Sh indicating an unsteady rate of heat and mass transfer from the couple stress nanofluid to 

the boundaries. With subsequent elapse in time, these values approach the steady state 

corresponding to a near convection stage. Figure 5a depicts the transient nature of Nusselt 

number with variation in nanoparticle concentration Rayleigh number Rn. It is observed that 

as Rn increases Nu decreases, thus showing a substantial reduction in heat transfer to the 

boundaries, which corroborates the earlier simulations of Agarwal et al. [68]. From Figs. 5b, 

5d, 5e and 5f we observe that as Lewis number, viscosity ratio, thermal conductivity ratio 

and Vadász number increase, Nu decreases indicating that there is suppression in heat 

transfer to the walls (and therefore heating within the sandwiched layer). The modified 

diffusivity ratio however enhances the heat transfer to the walls as seen in Fig. 5c and 

generates cooling in the sandwich layer.  The couple stress parameter however suppresses the 
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heat transfer to the walls (i.e. exacerbates heating of the sandwich layer) and this pattern 

agrees with earlier computations by Malashetty et al. [65]. 

It is seen from Figs. 6a, 6d, 6e and 6f that as nanoparticle concentration Rayleigh 

number Rn, viscosity ratio  , conductivity ratio   and Vadász number Va increases the 

Sherwood number (concentration Nusselt number) decreases, which implies there is a  

suppression of mass transport. The mass transport is enhanced for Lewis number Ln and 

modified diffusivity ratio 
AN  as seen in Fig. 6b and 6c respectively. The couple stress 

parameter suppresses the heat transport. Hence the heat and mass transport decreases with an 

increase in the values of couple stress parameter which is the similar result obtained by 

Malashetty et al. [65]. The implication is that non-Newtonian couple stress characteristics 

may be exploited to regulate markedly heat transfer in the regime and also to control the 

onset of oscillatory convection, which is not possible with Newtonian fluent media in 

microfluidics. Furthermore, couple stress fluids offer a different mechanism for influencing 

stationary and oscillatory convection modes as compared with other non-Newtonian 

nanofluids (e.g. viscoelastic). In the absence of couple stress parameter PC , all the results for 

all the convection modes correspond to the Newtonian nanofluid results presented earlier by 

Umavathi and Mohite [64].  Figure 7 shows the plots of Sherwood number for variations of 

viscosity ratio   obtained by Umavathi and Mohite [64] and the present work. Excellent 

correlation is achieved confirming the validity of the present computations.  

 

7. CONCLUSIONS 

A comprehensive study has been presented for both linear and non-linear stability 

analysis in a horizontal porous medium saturated by a couple stress rheological nanofluid, 

heated from below and cooled from above, using the Darcy model. The mathematical model 

derived features the effects of Brownian motion along with thermophoresis for nanoscale 

heat and mass transfer. Further the viscosity and thermal conductivity dependence on 

nanoparticle fraction have been addressed mathematically using the approach of Tiwari and 

Das [29]. Linear analysis has been performed using the established normal mode technique. 

However, for weakly nonlinear analysis, a truncated Fourier series representation having 

only two terms is utilized. The basic (fundamental) solution has been computed with a 

Galerkin weighted scheme. A detailed parametric study of the impact of key thermophysical 
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parameters on stationary and oscillatory convection modes has been conducted. Additionally, 

detailed computations have been performed for the influence of control parameters on the 

heat and mass transfer rates to the boundaries. The following conclusions may be drawn from 

the current investigation: 

(i) For the stationary convection mode, increasing Lewis number Ln, viscosity ratio  ,  

thermal conductivity ratio   and couple stress rheological parameter PC  all have a 

stabilizing effect whereas greater nanoparticle concentration Rayleigh number Rn 

destabilizes the system.  

(ii) For the oscillatory convection mode, enhancement in viscosity ratio   and couple 

stress parameter PC  both serve to stabilize the system whereas elevation in 

nanoparticle concentration Rayleigh number Rn, Lewis number Ln, modified 

diffusivity ratio
AN , thermal conductivity ratio  , and Vadász number Va all act to 

destabilize the system. 

(iii) Increasing couple stress non-Newtonian parameter PC  enhances the stability of the 

system for both the stationary and oscillatory convection modes. 

(iv)  For steady finite amplitude motions, the heat and mass transfer to the boundaries 

decreases with an increase in Lewis number Ln, viscosity ratio   and thermal 

conductivity ratio  , whereas heat and mass transfer to the walls increases with 

higher values of nanoparticle concentration Rayleigh number Rn. The mass transfer 

rate increases with larger values of modified diffusivity ratio
AN and Vadász number 

Va. 

(v) The transient Nusselt number and Sherwood numbers both increase with increase in 

Lewis number Ln and modified diffusivity ratio
AN  whereas they are suppressed with 

greater nanoparticle concentration Rayleigh number Rn, viscosity ratio   and thermal 

conductivity ratio  . 

(vi) The heat and mass transfer rates to the boundaries both diminish with an increase in 

the value of couple stress parameter PC . 

(vii)The couple stress parameter PC  stabilizes the system for all convection modes and 

therefore promotes the onset of convection for all modes. 
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(viii)The evolutions in transient Nusselt number and Sherwood number are found to be 

oscillatory for small values of time, t; however, when t becomes very large both the 

transient Nusselt and Sherwood value approach their steady state values. 

(viii) In the absence of couple stress parameter PC , all the results for all convection 

modes reduce exactly to the Newtonian solutions obtained by Umavathi and 

Mohite [64].  

 

The computation methods deployed in the present study have produced stable and valid 

solutions for both linear and nonlinear thermal instability. Future work may extend the 

analysis to higher order corrections to provide a deeper insight. The methodology described in 

the current paper may also be utilized to consider more complex microstructural fluids e.g. 

ferromagnetic [69] and biomagnetic micropolar fluids [70], which are also of relevance to 

modern micro/nanofluidics - efforts in all these directions are underway.  
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