Variation in predicted COVID-19 risk among lemurs and lorises Amanda D. Melin 1.2.3.&*, Joseph D. Orkin 4.&, Mareike C. Janiak 5, Alejandro Valenzuela 4, Lukas Kuderna⁴, Frank Marrone III⁶, Hasinala Ramangason¹, Julie E. Horvath ^{7,8,9,10}, Christian Roos ¹¹, Andrew C. Kitchener ¹², Chiea Chuen Khor ^{13,14}, Weng Khong Lim ^{15,16,17}, Jessica G. H. Lee ¹⁸, Patrick Tan 13,15,17, Govindhaswamy Umapathy 19, Muthuswamy Raveendran 20, R. Alan Harris 20, Ivo Gut ²¹, Marta Gut ²¹, Esther Lizano ⁴, Tilo Nadler²², Dietmar Zinner^{23,24,25}, Minh D. Le ²⁶, Sivakumara Manu¹⁹, Clément J. Rabarivola²⁷, Alphonse Zaramody²⁷, Nicole Andriaholinirina²⁷, Steig E. Johnson¹, Erich D. Jarvis ^{28,29,30}, Olivier Fedrigo ^{28,30}, Dongdong Wu ^{31,32}, Guojie Zhang ^{33,34,35}, Kyle Kai-How Farh ³⁶, Jeffrey Rogers ²⁰, Tomas Marques-Bonet ^{4,37,38,39}, Arcadi Navarro ^{4,37,38}, David Juan ⁴, Paramjit S. Arora 6, James P. Higham 40,41* Department of Anthropology and Archaeology, University of Calgary, Canada Department of Medical Genetics, University of Calgary, Canada Alberta Children's Hospital Research Institute, University of Calgary, Canada Experimental and Health Sciences Department (DCEXS), Institut de Biologia Evolutiva, UniversitatPompeuFabra-CSIC, Barcelona, Spain School of Science, Engineering & Environment, University of Salford, United Kingdom Department of Chemistry, New York University, United States Genomics & Microbiology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, NC, USA Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA Department of Evolutionary Anthropology, Duke University, Durham, NC, USA Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göettingen, Germany Department of Natural Sciences, National Museums Scotland and School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore Singapore Eye Research Institute, Singapore National Eye Centre, Singapore SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore SingHealth Duke-NUS Genomic Medicine Centre, Singapore Health Services, Singapore Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore Department of Conservation, Research and Veterinary Services, Wildlife Reserves Singapore, Singapore CSIR-Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Hyderabad, India Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States Universitat Pompeu Fabra (UPF), Barcelona, Spain. Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate

46 Research, Goettingen, Germany

47	24	Leibniz Science Campus Primate Cognition, Goettingen, Germany						
48	25	Department of Primate Cognition, Georg-August-University, Goettingen, Germany						
49	26	Department of Environmental Ecology, University of Science and Central Institute for						
50	Natura	Vatural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam						
51	27	Life Sciences and Environment, Technology and Environment of Mahajanga, University						
52	of Mahajanga, Madagascar.							
53	28	The Vertebrate Genomes Lab. The Rockefeller University, New York, United States						
54	29	Laboratory of Neurogenetics of Language, The Rockefeller University, New York,						
55	United	States						
56	30	Howard Hughes Medical Institute, Chevy Chase, Maryland, United States						
57	31	State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of						
58	Zoolog	gy, Chinese Academy of Sciences, Kunming, China						
59	32	Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese						
60	Acade	my of Sciences, Kunming, China						
61	33	Villum Center for Biodiversity Genomics, Section for Ecology and Evolution,						
62	Depart	ment of Biology, University of Copenhagen, Denmark						
63	34	China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China						
64	35	Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,						
65	Kunming, China							
66	36	Artificial Intelligence Lab, Illumina Inc, San Diego, CA, USA						
67	37	Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain						
68	38	CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and						
69	Techno	ology (BIST), Barcelona, Spain						
70	39	Institut Català de Paleontologia Miquel Crusafont, UniversitatAutònoma de Barcelona,						
71	Barcel	ona, Spain						
72	40	Department of Anthropology, New York University, United States						
73	41	New York Consortium in Evolutionary Primatology, New York, United States						
74								
75								
76	0							
//	&	Denotes equal contribution						
78								
79								
80	*	Authors for correspondence:						
81								
82	Dr Amanda D. Melin, Department of Anthropology and Archaeology, University of Calgary,							
83	2500 University Drive, Calgary, Alberta T2N IN4, CA							
84	amanda.meiin@ucaigary.ca							
85	рı							
86	Dr James P. Higham, Department of Anthropology, New York University, 25 Waverly Place,							
8/	New YORK, NY 10003, US							
00	Jingnam@nyu.edu							
09								
90 01								
31 02								
92 02								
93								

- 94 Running title: Strepsirrhine ACE2 variation
- 95 Abstract96

97 The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global 98 disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection 99 rates are at their highest point globally and are rising extremely rapidly in some areas due to more 100 infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting 101 enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are 102 also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the 103 Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others 104 exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 105 sequences to date indicate large variation among lemurs and lorises compared to other primate clades 106 despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual 107 strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results and finds 108 additional variability in other strepsirrhine species, and suggests several clades of lemurs have high 109 potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and 110 endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and 111 Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates 112 at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their 113 health should be a conservation priority. All feasible actions should be taken to limit their exposure to 114 SARS-CoV-2. 115 116

- 117 Introduction
- 118

119 On Friday January 15, 2021, the two-millionth human death officially attributed to COVID-19 was 120 documented by the Johns Hopkins University Coronavirus Resource Center (Dong et al., 2020; Santora & 121 Wolfe, 2021). Since this date, the rates of infection by the virus responsible for this disease, SARS-CoV-122 2, have increased in most countries. As we write, we are reaching new global highs in active cases and 123 witnessing the spread of new, more transmissible variants (Mahase, 2020; World Health Organization, 124 2020). As coordinated efforts within and across institutions, countries, and continents seek to identify 125 treatments, develop vaccines, and curb the spread of this highly contagious virus, attention has also turned 126 to the potential risks posed to nonhuman species (Damas et al., 2020; Liu et al., 2021; Melin et al., 2020; 127 Wu et al., 2020). Zoonotic transfer of diseases from humans to nonhuman primates poses a major risk

- 128 given the many physiological and genetic similarities shared within the Order Primates, and is a
- potentially grave risk to already endangered and fragmented populations (Gillespie & Leendertz, 2020).
- 131 In recent studies, the susceptibility of primates and other mammals to potential SARS-CoV-2 infection 132 has been assessed by analysis of the gene sequences that code for the primary viral target, angiotensin-133 converting enzyme-2 (ACE2; Damas et al., 2020; Delgado Blanco et al., 2020; Liu et al., 2021; Melin et 134 al., 2020). Receptor-virus interaction models, including by members of the present authorship, have 135 highlighted the likely susceptibility of many species, especially of apes and monkeys of Africa and Asia 136 (Parvorder Catarrhini); meanwhile, monkeys in the Americas (Parvorder Platyrrhini) are predicted to 137 exhibit lower susceptibility (Liu et al., 2021; Melin et al., 2020). One striking feature of these analyses is 138 the uniformity within these parvorders. Across the identified primary viral binding sites, catarrhines 139 exhibit one set of amino acid residues, and platyrrhines another. Surprisingly, although gene sequences 140 are only publicly available for a few strepsirrhine species (four lemurs and one galago), ACE2 variation 141 in that suborder far exceeds variation present in the rest of the primate taxa examined to date (24 species 142 spanning 21 genera and including tarsiers (1), platyrrhines (6), and catarrhines (14)). Of particular 143 concern is the high sequence similarity at binding sites to human ACE2 of some lemur ACE2 proteins, 144 including aye-ayes (Daubentonia madagascariensis) and Coquerel's sifakas (Propithecus coquereli), 145 which exhibited residues that are far more similar to those of humans and other catarrhines than to those
- 146 present in platyrrhines (monkeys of the Americas; Melin et al., 2020).
- 147
- 148 These findings raise questions about the variability and molecular evolution of the ACE2 gene across 149 Strepsirrhini, as well as about the potential susceptibility to initial infection by SARS-CoV-2 of different 150 species across the suborder. Here, we expand substantially on previous reports of strepsirrhine ACE2 151 variation (Melin et al., 2020). We report 71 ACE2 gene sequences, including 66 from unpublished 152 strepsirrhine genomes, spanning 39 lemuriform and 12 lorisiform species. For residue variants that have 153 not been previously identified and assessed, we model the interactions between the translated ACE2 154 protein and the receptor-binding domain of the SARS-CoV-2 spike protein to predict the susceptibility of 155 species to initial infection by SARS-CoV-2. In doing so, we seek to improve our understanding of ACE2 156 variation and evolution, and to identify which strepsirrhine species are likely to be most at risk from the 157 COVID-19 pandemic. We recognize that disease development, progression and pathogenesis in any given 158 species will also be impacted by factors influencing the efficacy of viral cellular entry and taxon-specific 159 immune responses (Hoffmann et al., 2020; Li et al., 2021; Lukassen et al., 2020). Nonetheless, our hope 160 is that our analysis of the initial susceptibility of different lemur and loris species to SARS-CoV-2

161 infection will help to inform decisions on how best to proceed with strepsirrhine research and

162 management programs.

163

164

165 Methods

166

167 Study Species

168 We examine the *ACE2* gene sequence of 71 individual strepsirrhines - 66 newly sequenced individuals as

169 part of the Primate Variation Genome Consortium (in preparation, Supple. Table 1), plus five obtained

170 from publicly available genomes: *Otolemur garnettii* (Northern greater galago), accession no:

171 XM_003791864.2, gene ID: 100951881; Propithecus coquereli (Coquerel's sifaka), accession no:

172 XM_012638731.1, gene ID: 105805773; *Microcebus murinus* (gray mouse lemur) accession no:

173 XM_020285237.1, gene ID: 105882317; *Eulemur flavifrons* (blue-eyed black lemur), accession no:

174 LGHW01000591.1, scaffold 590 (gene identified via BLAST); *Daubentonia madagascariensis*, (aye-aye)

accession no: PVJZ01006595.1, scaffold 13170, (gene identified via BLAST). In total, we analyze the

176 *ACE2* gene and protein sequences of 51 species (39 Lemuriformes and 12 Lorisiformes) and 19 genera

177 (12 Lemuriformes and 7 Lorisiformes; Table 1, Supple. Table 1). The number of individuals sampled per

178 species ranges from 1-4, with 13 species having at least 2 individuals sampled. The number of samples

per genus ranges from 1-17, with 13 genera having at least 2 individuals sampled (Supple. Table 1). In

180 addition, we model the impact of residues at binding sites recently reported for *Indri indri* ACE2 protein

181 (Damas et al., 2020), adding another genus of lemur to our survey. Detailed statistics for these newly

182 generated genomes will be published upon their full release. *ACE2* gene and protein sequences used in

this study are included in supplementary materials. We confirm that this research followed all applicable

184 laws and regulations of the countries in which it was conducted, that it was approved by all appropriate

185 institutional committees, and that it conformed to the American Society of Primatologists Principles for

- 186 the Ethical Treatment of Non Human Primates.
- 187

188 Gene Alignments

189 We mapped reads from whole-genome sequence (WGS) data to the closest available annotated reference

190 assembly from among the set of partially unpublished (unp.) references (*Daubentonia madagascariensis*,

- 191 (unp.) Galago moholi (unp.), Propithecus coquereli (GCF_000956105.1), Lemur catta (unp.), Loris
- 192 tardigradus (unp.), Microcebus murinus (unp.), Nycticebus pygmaeus (unp.) and Otolemur garnettii
- 193 (unp.). Briefly, after removing adapter sequences using cutadapt, we mapped the reads using bwa mem
- and processed and sorted alignments using samtools. We removed duplicates using biobambam, and

195 added read groups for variant calling using picard. We called variants using GATK4 HaplotypeCaller (v 196 4.1.6) following best practice pipelines (https://gatk.broadinstitute.org). After applying a set of standard 197 hard filters (Supple. Table S2), we extracted the coding regions of ACE2 gene sequences and introduced 198 homozygous alternative calls to create the putative coding sequence of each individual. We extracted and 199 aligned ACE2 gene sequences from the variant callfiles, which were then translated into protein 200 sequences. The consensus sequences were manually inspected and corrected where needed to remove 201 gene-flanking regions. We manually verified the absence of indels and premature stop codons for each 202 individual. We then aligned these 66 amino acid sequences using MAFFT (default settings) with those 203 extracted from publicly available genomes (Melin et al., 2020). The full nucleotide and amino acid 204 alignments used here are provided as tab-delimited text files in the Supporting Information. Following 205 alignment, we examined amino acid sequence variation within and across species along the length of the 206 ACE2 protein, and specifically at the sites that are critical for SARS-CoV-2 binding.

207

208 Variation in ACE2 sequences at critical sites and impact on SARS-CoV-2 binding

209 Our method for identifying critical contact sites between the ACE2 protein and the receptor-binding 210 domain (RBD) of the SARS-CoV-2 spike protein is detailed in (Melin et al., 2020). Briefly, we conducted 211 alanine scanning mutagenesis to assess the contribution of each human ACE2 residue to protein-protein 212 complex formation with the SARS-CoV-2 RBD (Bogan & Thorn, 1998; Kortemme_& Baker, 2002; 213 Massova & Kollman, 1999). Alanine scanning is a commonly used method, and alanine is chosen 214 because it is the smallest residue that may be incorporated without significantly impacting the protein 215 backbone conformation (Kortemme et al., 2004). We defined critical residues as those that, upon mutation 216 to alanine, decrease the binding energy by a threshold value $\Delta\Delta G_{\text{bind}} \ge 1.0$ kcal/mol. Nine sites meet this 217 criterion (Supple. Table 3). To be conservative, we also examined amino acid variation at additional sites 218 that were identified as important by different but complementary methods: cryo EM and X-ray 219 crystallography structural analysis (Lan et al., 2020; Shang et al., 2020; Wang et al., 2020; Yan et al., 220 2020). While some of these sites overlap with the critical sites we identified using alanine scanning, three 221 do not - alanine scanning also identifies these as binding sites, but with $\Delta\Delta G_{bind} < 1.0$ kcal/mol. To be 222 conservative in the present analyses, as in Melin et al. 2020, we added these three sites to our nine sites 223 for a total of 12 critical sites (Supple. Table 3). All computational alanine scanning mutagenesis analyses 224 were performed using Rosetta (Jochim & Arora, 2010; Kortemme et al., 2004; Raj et al., 2013). 225

226 To model how variation in the ACE2 amino acid sequences across species affects the relative binding

- energy of the ACE2/SARS-CoV-2 interaction, we used the SSIPe program (Huang et al., 2020). This
- algorithm mutates selected residues and compares the resulting binding energy to that of human ACE2

bound to the SARS-CoV-2 RBD as a benchmark (PDB 6M0J). We modeled the full suite of amino acid

changes occurring at critical binding sites for all unique ACE2 sequences. We further examined the

231 predicted effect of each individual amino acid change (in isolation) on protein-binding affinity to better

understand each residue's contribution to variation in binding affinity.

233

234 Results

235

236 Variation in ACE2 sequences at critical sites and impact on SARS-CoV-2 binding

237 We examined variation along the length of the ACE2 protein sequence for the 66 newly sequenced 238 individuals and the ACE2 sequences from the five genomes available at NCBI. Sequences are conserved 239 within, but are variable across, strepsirrhine genera. The mean pairwise amino acid sequence identity 240 along the length of the ACE2 protein within genera is 99.25% (mean amino acid substitutions = 5.85). 241 The mean amino acid sequence identity between lemur genera was 91.67%, and between lorisiform 242 genera was 92.72%. When we focused solely on the critical binding sites, the pairwise amino acid identity 243 at binding sites within genera was 100%, indicating an absence of any amino acid variation among 244 species in the same genus in our study. Differences between genera are also present at the critical binding 245 sites (Figure 1), especially among lemurs, where the mean pairwise amino acid sequence identity is 246 83.18%. The mean pairwise amino acid sequence identity at binding sites between lorisiform genera is 247 95.04%.

248

249 We found three novel variants not previously reported for any primate at three critical binding sites: H24 250 (Arctocebus, Perodicticus), F83 (Galagoides), and Q353 (Cheirogaleus). The remaining binding site 251 variation is consistent with previous reports. The combination of residues (E24, T82) previously reported 252 for Eulemur flavifrons, is also found in other species of Eulemur, as well as in Hapalemur, Lemur, and 253 Prolemur. The critical binding site composition found in Indri indri (Damas et al., 2020) is not found in 254 any of the genera we sequenced here. The residues at binding sites 37, 42, 355, and 357 are invariant 255 across all strepsirrhines examined. None of the strepsirrhine ACE2 proteins are modeled to have higher 256 binding affinity to SARS-CoV-2 than the human (catarrhine) form (Table 1A). Among the 12 critical 257 sites, the substitutions causing the starkest drop in viral-receptor binding affinity relative to the human 258 sequence are Y41H and M82N (Table 1B). The former substitution is found in all lorisoids and in 259 sportive, dwarf, mouse, and giant mouse lemurs. The latter substitution is only identified in *Indri indri*, 260 although a different substitution at the same site occurs in all other strepsirrhines (M82T). Other 261 mutations had lesser effects (Table 1B).

262

263 Looking at taxon-specific predictions based on the entire complement of amino acids at critical binding 264 sites, the species predicted to be most susceptible to SARS-CoV-2 infection are in the genera Avahi, 265 Propithecus, and Daubentonia (Table 1A). These taxa differ from humans at only one critical binding 266 site, M82T, which is predicted to lower the binding affinity between the ACE2 receptor and the SARS-267 CoV-2 virus by 5-fold. These genera are followed by species in the genera Eulemur, Lemur, Prolemur 268 and Varecia, which differ in one additional (O24E) substitution, which should further lower the binding 269 affinity by 2-fold. In potentially promising results, we predict that the lorises, galagos, and the dwarf, 270 mouse, giant mouse, and sportive lemurs are far less susceptible to infection than humans. This is 271 primarily due to a Y41H mutation (Figure 2), although additional changes in amino acids at binding sites 272 further lower the affinity between their ACE2 and the RBD of the SARS-CoV-2 spike protein. The 273 decreases in the modeled binding affinity range from 0.9 $\Delta\Delta G$ (kcal/mol) (Avahi, Propithecus, 274 Daubentonia; predicted most susceptible) to 5.0 $\Delta\Delta G$ (kcal/mol) (*Cheirogaleus*, predicted least

- susceptible), relative to human ACE2 (Table 1A).
- 276

277 Discussion

278

279 We report ACE2 gene and protein sequences for 19 genera of strepsirrhine primates, spanning 51 species 280 and 71 individuals, and examine these together with the *Indri indri*_ACE2 protein. We confirm previous 281 reports of the amino acid residue composition at viral binding sites for *Daubentonia*, *Propithecus*, 282 Eulemur, Microcebus, and Otolemur (Damas et al., 2020; Melin et al., 2020). Additionally, we identified 283 three novel variants at the following key binding sites: H24, F8, and Q353. These variants are modeled to 284 be protective, are not found in species reported in the previous analyses of a small subset of strepsirrhine 285 species (Melin et al. 2020), and were also not found among previous analyses of primates more generally. 286 Relative to variation seen in catarrhines and platyrrhines, strepsirrhine ACE2 variation across genera at 287 critical binding sites is remarkably high, especially among lemurs. In addition to reporting new ACE2 288 sequences spanning many strepsirrhine species, we also provide the first examination of intraspecific 289 variation in ACE2 sequences outside of humans and vervet monkeys (Cao et al., 2020; Schmitt et al., 290 2020; Stawiski et al., 2020). Unlike Schmitt et al. (2020), who found an intraspecific polymorphism at a 291 binding site (D30G) that might impact susceptibility of vervets to SARS-CoV-2 at the individual level, 292 we find that ACE2 proteins are highly conserved within species and within genera, at least for the taxa 293 examined. However, our intraspecific and intrageneric sample sizes (maximally n=4 and n=17, 294 respectively) are small, and low-to-moderate levels of variation at ACE2 binding sites might be 295 discovered as sampling increases. Still, our results broadly indicate that members of the same species and 296 closely related species are likely to share similar initial susceptibility to SARS-CoV-2 infection. At higher taxonomic levels, there does appear to be a phylogenetic effect on susceptibility to SARS-CoV-2

298 infection among the strepsirrhines. Within families, there is broad sequence similarity at ACE2 critical

binding sites. Accordingly, all unsampled species in the families Lemuridae and Indriidae are likely to be

- 300 at high risk. The amino acid conservation within the family Cheirogaleidae (*Cheirogaleus, Microcebus,*
- 301 *Mirza, Allocebus*) suggests that members of the genus *Phaner*, not sampled here, are likely at low risk.
- 302 Similarly, we did not sample species in the genera *Sciurocheirus, Euoticus, or Paragalago*, but if they follow
- 303 patterns of variation seen among other members of the family Galagidae (*Galagoides, Galago, Otolemur*) they
- 304 should be at relatively low risk. However, given the difference in risk assessments within some members of
- the same family, e.g., between *Indri* and the other Indriidae (*Avahi* and *Propithecus*), we caution the
- application of risk assessments across genera, especially when we do not have samples for representativespecies.
- 308

309 As with all studies based on predictive modeling, our results require experimental validation and should 310 be interpreted with caution, especially those results which predict that some strepsirrhines might be at 311 lower risk. Additional limitations include that our study examined variation at sites identified to be critical 312 for SARS-CoV-2 viral binding, but did not assess the impact of residues that are not in direct contact with 313 the virus and which may still affect binding allosterically. In addition, we did not examine genetic 314 variation or model the function of the protease (TMPRSS2) that facilitates viral entry post binding 315 (Hoffman et al. 2020), which is anticipated to impact disease progression. We also emphasize that our 316 approach investigates the likely initial susceptibility of species to SARS-CoV-2 infection. The severity of 317 viral infection responses may differ between species and is related to variation in immune and other 318 responses (Lukassen et al., 2020). Nonetheless, the results of *in vivo* infection studies conducted on 319 haplorhine primates and other mammals strongly support the predictions of protein-protein interaction 320 models about the susceptibility of different species to SARS-CoV-2 and the development of COVID-19-321 like symptoms (Blair et al., 2020; Lu et al., 2020; Rockx et al., 2020; Shan et al., 2020; Shi et al., 2020), 322 supporting the applicability of our results. An additional tangible contribution of our study is that it 323 provides novel sequence data that can be used in site-directed mutagenesis to recreate taxon-specific 324 ACE2 proteins for cellular assays (Guy et al., 2005). At the same time, results predicting high 325 susceptibility among a large number of genera are sufficiently alarming as to warrant special care and 326 attention when interacting with these species in wild and captive management settings, including 327 zoological parks, where humans frequently come into contact with vulnerable species (for example, in 328 walk-through lemur exhibits).

329

330 The predictions of our study suggest that, among the strepsirrhines, the lemurs of the families Indriidae, 331 Daubentoniidae, and, to a lesser extent, Lemuridae are likely to be particularly vulnerable to SARS-CoV-332 2 infection. Lemurs are considered to be among the most threatened vertebrates globally, with over 94% 333 of extant species being threatened with extinction (IUCN, 2021; Schwitzer et al., 2014). High rates of 334 deforestation that result from changing land-use patterns coupled with high human population growth are 335 among the most potent threats to lemur populations (Elmqvist et al., 2007; Harper et al., 2007). Besides 336 habitat loss, these human-induced disturbances are exposing wild lemur populations to novel interactions 337 with humans and domestic animals, and in so doing increasing risks of disease outbreaks (Barrett et al., 338 2013). Current knowledge on the disease ecology of wild lemurs suggests that populations that are found 339 in disturbed habitats and those living in areas with a high volume of tourists are at elevated risk of bearing 340 pathogens found in humans, livestock, and other domestic animals (Bublitz et al., 2015; Junge et al., 341 2011; Rasambainarivo et al., 2013). Furthermore, lemurs in general, including many of the larger-bodied 342 species that are predicted to be most at risk of infection by SARS-CoV-2, are highly vulnerable to new 343 diseases because they are considered to be immunologically naïve, and are unlikely to persist through a 344 major epidemic outbreak (Junge, 2007).

345

346 Historically, conservationists in Madagascar have strived to implement integrative conservation programs 347 to protect the biological uniqueness of the island while leveraging the sustainable development of local 348 communities (e.g., Birkinshaw et al., 2013; Corson, 2017; Dolins et al., 2010; Wright et al., 2012). In 349 addition to the considerable conservation obstacles exacerbated by frequent political unrest and extreme 350 poverty (Schwitzer et al., 2014), initiatives in Madagascar now have the concern of a viral pandemic in 351 the human population, which appears likely to pose a direct and serious risk to many lemurs. Recently, 352 there has been an emergence of integrated conservation programs that include a human health component 353 (e.g., Garchitorena et al., 2018; Mohan & Shellard, 2014), a necessary shift in a country with one of the 354 lowest levels of healthcare system financing in the world (Barmania, 2015). This is particularly urgent 355 given that COVID-19 could potentially infect up to 30% of the human population (Evans et al., 2020). 356 Furthermore, Madagascar lacks a legal framework to guide best research practices to limit exposure of 357 lemur populations to diseases (in contrast, for example, to great apes; see Gilardi et al., 2015). It is 358 important that all stakeholders involved in the conservation of lemurs coordinate to draft such guidelines, 359 which should include safeguards against the close contact between people and lemurs that occur as part of 360 the successful and widespread community-based conservation programs. Such a "One Health" approach 361 is especially important during a global pandemic. At a minimum these concerns should be carefully 362 considered for the species identified as most susceptible to SARS-CoV-2. 363

In potentially more promising news, our results indicate that the vulnerability of the lorisoids – and
indeed of many of the small-bodied lemurs (e.g. mouse lemurs) – to SARS-CoV-2 infection may be
substantially lower. Although the lorisoids as a group are more geographically widespread and (in relative
terms) of lower conservation concern than the lemurs, many remain threatened and face critical
challenges to their survival. Their cryptic, nocturnal habits may make the impact of emerging infectious
diseases especially difficult to monitor in wild populations. Nonetheless, a lower predicted susceptibility
to SARS-CoV-2 is a potentially positive result.

371

372 Our results are also likely to be of interest and significance for zoos and captive research facilities around 373 the world that house lemurs, lorises, and galagos. Given the close contact with humans in such 374 environments (often indoors), extra precautions may be necessary, especially when interacting with the 375 likely most at-risk lemurs. These may include many of the measures suggested for those interacting with 376 great ape and other catarrhine populations (Gilardi et al., 2015; Melin et al., 2020), such as: regular testing 377 for SARS-CoV-2, requiring face masks for human researchers and caretakers, imposing quarantines on all 378 individuals ahead of contact, and disinfecting clothes and footwear. The risk of COVID-19 to nonhuman 379 primates has been demonstrated in clinical trials (Lu et al., 2020) and recently exemplified when members 380 of a captive gorilla group tested positive for SARS-CoV-2 after exposure to an asymptomatic keeper and 381 exhibited respiratory symptoms similar to COVID-19 (San Diego Zoo, 2021). It is more difficult to assess 382 the onset of and potential for other symptoms, such as anosmia, but loss of olfactory abilities could be 383 devastating to lemurs and other primates that rely on their sense of smell to communicate, avoid 384 predators, and select foods. Regardless of where species fall in the continuum of potential risk that we 385 have presented here, we stress that it is prudent to take all feasible precautions when interacting with any 386 primate.

387

388 Over the past year, scientists have mobilized with remarkable speed and effectiveness to address the 389 COVID-19 pandemic's impacts on humans, from developing and rolling out new tests, to designing and 390 trialing vaccine candidates. The pandemic also raises major new challenges for field primatologists and 391 other biologists, zookeepers, conservationists, and all those interested in the survival and welfare of 392 primates (Bales, 2020; Douglas et al., 2020; Olival et al., 2020). Conservation efforts have already been 393 severely impeded by the pandemic. National and global lock-downs have made it difficult or impossible 394 for conservationists, primatologists, and wildlife patrol teams to enter their field sites. Governments are 395 preoccupied with efforts to curb the pandemic, and in some cases conservation funding support has been 396 reduced due to financial difficulties and new priorities. While avoiding all contact with wild primates may 397 be ideal from a zoonotic disease containment perspective, it is unlikely to be possible in practice, nor in

the overall interest of their conservation (Reid, 2020; Trivedy, 2020). While we hope that our results will

399 serve to inform conservation efforts, resolving the pressures that have resulted from the pandemic will

400 require input from stakeholders with complementary ethical, scientific, and socioeconomic perspectives.

401 It is our hope that as a community, we can rise to the challenge.

402

403 Acknowledgements

404

405 We thank the people in the Primate Genome Variation Consortium and BGI Primate Reference 406 Consortium for allowing us to publish partial gene information early due to the urgency for COVID-19 407 research. We thank all persons and groups who shared samples for this research, including many samples 408 from the Duke Lemur Center. This is Duke Lemur Center publication #1472. ADM is supported by the 409 Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) and Canada 410 Research Chairs Program. MCJ's postdoctoral appointment is supported by funding from the Natural 411 Environment Research Council (NERC NE/T000341/1). IG and MG acknowledge the support of the 412 Spanish Ministry of Science and Innovation through the Instituto de Salud Carlos III and the 2014–2020 413 Smart Growth Operating Program, to the EMBL partnership and cofinancing with the European Regional 414 Development Fund (MINECO/FEDER, BIO2015-71792-P). We also acknowledge the support of the 415 Centro de Excelencia Severo Ochoa, and the Generalitat de Catalunya through the Departament de Salut, 416 Departament d'Empresa i Coneixement and the CERCA Programme. TMB is supported by funding from 417 the European Research Council (ERC) under the European Union's Horizon 2020 research and 418 innovation program (grant agreement No. 864203), BFU2017-86471-P (MINECO/FEDER, UE), "Unidad 419 de Excelencia María de Maeztu", funded by the AEI (CEX2018-000792-M), Howard Hughes 420 International Early Career, Obra Social "La Caixa" and Secretaria d'Universitats i Recerca and CERCA 421 Programme del Departament d'Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 422 880). PSA thanks the National Institutes of Health (R35GM130333) for financial support.EL is supported 423 by CGL2017-82654-P (MINECO/FEDER,UE). EDJ and OF's contributions were supported by funds 424 from Howard Hughes Medical Institute and the Rockefeller University. Chris Smith drew the images for 425 Figure 1. The authors would like to thank the Veterinary and Zoology staff at Wildlife Reserves 426 Singapore for their help in obtaining the tissue samples, as well as the Lee Kong Chian Natural History 427 Museum for storage and provision of the tissue samples. Finally, we thank two reviewers for quick and 428 constructive comments, and Karen Bales for her supportive editorial oversight. 429 **Author Contributions**

- 430 ADM and JPH designed the study. ADM and JPH wrote the paper with input and edits from JDO, MCJ,
- 431 LK, HR, JR, TMB, SEJ, and PSA. HR led the discussion on implications for lemur conservation in

432	Madagascar. JDO and MCJ conducted genetic analyses with input from ADM. AV, LK, DJ. LK and AN						
433	conducted gene sequence generation and alignment. Samples were provided by JEH, CR, ACK, CCK,						
434	WKL, JGHL, PT, GU, ML, SM, CJR, AZ, and NA. JR, IG, MG, EL, RM, RAH, KK-HF, WD and GZ						
435	contributed to laboratory work, sequencing, genome reference assemblies and bioinformatics. FM ran the						
436	protein-protein interaction and substitution models with input from PSA. All authors have approved the						
437	final submission for publication.						
438							
439	Data Availability Statement						
440	All nucleotide and amino acid sequences used in this study are provided as supplemental text files.						
441							
442	Competing Interests						
443	The authors declare no competing financial or non-financial interests.						
444 445	Literature Cited						
446							
447	Bales, K. L. (2020). Special Issue: Primates and COVID-19. American Journal of Primatology, 82(8),						
448	e23174.						
449	Barmania, S. (2015). Madagascar's health challenges. The Lancet, 386(9995), 729-730.						
450	Barrett, M. A., Brown, J. L., Junge, R. E., & Yoder, A. D. (2013). Climate change, predictive modeling						
451	and lemur health: Assessing impacts of changing climate on health and conservation in Madagascar.						
452	Biological Conservation, 157, 409–422.						
453	Birkinshaw, C., Lowry, P. P., II, Raharimampionona, J., & Aronson, J. (2013). Supporting target 4 of the						
454	Global Strategy for Plant Conservation by integrating ecological restoration into the Missouri						
455	Botanical Garden's conservation program in Madagascar. In Annals of the Missouri Botanical						
456	Garden (Vol. 99, Issue 2, pp. 139–146). https://doi.org/10.3417/2012002						
457	Blair, R. V., Vaccari, M., Doyle-Meyers, L. A., Roy, C. J., Russell-Lodrigue, K., Fahlberg, M., Monjure,						
458	C. J., Beddingfield, B., Plante, K. S., Plante, J. A., & Others. (2020). ARDS and cytokine storm in						
459	SARS-CoV-2 Infected Caribbean Vervets. bioRxiv.						
460	https://www.biorxiv.org/content/10.1101/2020.06.18.157933v1.abstract						

- Bogan, A. A., & Thorn, K. S. (1998). Anatomy of hot spots in protein interfaces. *Journal of Molecular Biology*, 280(1), 1–9.
- 463 Bublitz, D. C., Wright, P. C., Rasambainarivo, F. T., Arrigo-Nelson, S. J., Bodager, J. R., & Gillespie, T.
- 464 R. (2015). Pathogenic enterobacteria in lemurs associated with anthropogenic disturbance. *American*465 *Journal of Primatology*, 77(3), 330–337.
- 466 Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., & Wang, W. (2020).
- 467 Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2
 468 in different populations. *Cell Discovery*, 6, 11.
- 469 Corson, C. (2017). A history of conservation politics in Madagascar. Madagascar Conservation and
- 470 *Development*, *12*(1). https://doi.org/10.4314/mcd.v12i1.
- 471 Damas, J., Hughes, G. M., Keough, K. C., Painter, C. A., Persky, N. S., Corbo, M., Hiller, M., Koepfli,
- 472 K.-P., Pfenning, A. R., Zhao, H., Genereux, D. P., Swofford, R., Pollard, K. S., Ryder, O. A.,
- 473 Nweeia, M. T., Lindblad-Toh, K., Teeling, E. C., Karlsson, E. K., & Lewin, H. A. (2020). Broad
- 474 host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates.

475 *Proceedings of the National Academy of Science*, *117*(36), 22311–22322.

- 476 Delgado Blanco, J., Hernandez-Alias, X., Cianferoni, D., & Serrano, L. (2020). In silico mutagenesis of
- 477 human ACE2 with S protein and translational efficiency explain SARS-CoV-2 infectivity in
- different species. *PLoS Computational Biology*, *16*(12), e1008450.
- 479 Dolins, F. L., Jolly, A., Rasamimanana, H., Ratsimbazafy, J., Feistner, A. T. C., & Ravoavy, F. (2010).
- 480 Conservation education in Madagascar: three case studies in the biologically diverse island-
- 481 continent. *American Journal of Primatology*, 72(5), 391–406.
- 482 Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real
 483 time. *The Lancet Infectious Diseases*, 20(5), 533–534.
- 484 Douglas, I., Champion, M., Clancy, J., Haley, D., Lopes de Souza, M., Morrison, K., Scott, A., Scott, R.,
- 485 Stark, M., Tippett, J., Tryjanowski, P., & Webb, T. (2020). The COVID-19 pandemic: local to global
- 486 implications as perceived by urban ecologists. *Socio-Ecological Practice Research*, 2(3), 217–228.

- 487 Elmqvist, T., Pyykönen, M., Tengö, M., Rakotondrasoa, F., Rabakonandrianina, E., & Radimilahy, C.
- 488 (2007). Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional
 489 context. *PloS One*, 2(5), e402.
- 490 Evans, M. V., Garchitorena, A., Rakotonanahary, R. J. L., Drake, J. M., Andriamihaja, B., Rajaonarifara,
- 491 E., Ngonghala, C. N., Roche, B., Bonds, M. H., & Rakotonirina, J. (2020). Reconciling model
- 492 predictions with low reported cases of COVID-19 in Sub-Saharan Africa: insights from Madagascar.
- **493** *Global Health Action*, *13*(1), 1816044.
- 494 Garchitorena, A., Miller, A. C., Cordier, L. F., Rabeza, V. R., Randriamanambintsoa, M., Razanadrakato,
- 495 H.-T. R., Hall, L., Gikic, D., Haruna, J., McCarty, M., Randrianambinina, A., Thomson, D. R.,
- 496 Atwood, S., Rich, M. L., Murray, M. B., Ratsirarson, J., Ouenzar, M. A., & Bonds, M. H. (2018).
- 497 Early changes in intervention coverage and mortality rates following the implementation of an
- 498 integrated health system intervention in Madagascar. *BMJ Global Health*, *3*(3), e000762.
- 499 Gilardi, K. V., Gillespie, T. R., Leendertz, F. H., Macfie, E. J., Travis, D. A., Whittier, C. A., Williamson,
- 500 E. A., & Others. (2015). Best practice guidelines for health monitoring and disease control in great
- ape populations. Occasional Papers of the IUCN Species Survival Commission, 56.
- 502 https://www.researchgate.net/profile/Thomas_Gillespie/publication/289539319_Best_Practice_Guid
- 503 elines_for_Health_Monitoring_and_Disease_Control_in_Great_Ape_Populations/links/5690000908
- 504aecd716aedcfcd/Best-Practice-Guidelines-for-Health-Monitoring-and-Disease-Control-in-Great-
- 505 Ape-Populations.pdf
- 506 Gillespie, T. R., & Leendertz, F. H. (2020). COVID-19: protect great apes during human pandemics.
 507 *Nature*, *579*(7800), 497.
- 508 Guy, J. L., Jackson, R. M., Jensen, H. A., Hooper, N. M., & Turner, A. J. (2005). Identification of critical
- 509 active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. *The*
- 510 *FEBS Journal*, 272(14), 3512–3520.
- 511 Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D., & Hawkins, F. (2007). Fifty years of
- 512 deforestation and forest fragmentation in Madagascar. *Environmental Conservation*, *34*(4), 325–333.

513	Hoffmann, M.	Kleine-Weber.	H., Schroeder,	S., Krüger, N.,	. Herrler. T	Erichsen, S.,	Schiergens, T. S.	š
		,			,,,	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ A, ~	7

- 514 Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-
- 515 2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease
- 516 inhibitor. *Cell*, 181(2), 271–280.e8.
- 517 Huang, X., Zheng, W., Pearce, R., & Zhang, Y. (2020). SSIPe: accurately estimating protein-protein
- 518 binding affinity change upon mutations using evolutionary profiles in combination with an
- 519 optimized physical energy function. *Bioinformatics*, *36*(8), 2429–2437.
- 520 IUCN. (2021). The IUCN red list of threatened species. Version 2020-3. IUCN Gland, CH, and
- 521 Cambridge, UK. https://www.iucnredlist.org
- Jochim, A. L., & Arora, P. S. (2010). Systematic analysis of helical protein interfaces reveals targets for
 synthetic inhibitors. *ACS Chemical Biology*, 5(10), 919–923.
- 524 Junge, R. E. (2007). Overview on the health and disease ecology of wild lemurs: conservation
- 525 implications. In L. Gould & M. L. Sauther (Eds.), *Lemurs: Ecology and Adaptation* (pp. 423–440).
 526 Springer US.
- Junge, R. E., Barrett, M. A., & Yoder, A. D. (2011). Effects of anthropogenic disturbance on indri (*Indri* indri) health in Madagascar. *American Journal of Primatology*, 73(7), 632–642.
- 529 Kortemme, T., & Baker, D. (2002). A simple physical model for binding energy hot spots in protein–
- protein complexes. *Proceedings of the National Academy of Sciences of the United States of America*, 99(22), 14116–14121.
- Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein-protein
 interfaces. *Science's STKE: Signal Transduction Knowledge Environment*, 2004(219), 12.
- 534 Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X.
- 535 (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
 536 *Nature*, *581*, 215–220.
- 537 Li, J., Guo, M., Tian, X., Wang, X., Yang, X., Wu, P., Liu, C., Xiao, Z., Qu, Y., Yin, Y., Wang, C.,
- 538 Zhang, Y., Zhu, Z., Liu, Z., Peng, C., Zhu, T., & Liang, Q. (2021). Virus-host interactome and

- proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. *Med*,
 2(1), 99–112.e7.
- 541 Liu, Y., Hu, G., Wang, Y., Zhao, X., Ji, F., Ren, W., Gong, M., Ju, X., Li, C., Hong, J., Zhu, Y., Cai, X.,
- 542 Wu, J., Lan, X., Xie, Y., Wang, X., Yuan, Z., Zhang, R., & Ding, Q. (2021). Functional and genetic
- 543 analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. In
- *bioRxiv*. https://doi.org/10.1101/2020.04.22.046565
- 545 Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., Winter, H., Meister, M.,
- 546 Veith, C., Boots, A. W., & Others. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are
- 547 primarily expressed in bronchial transient secretory cells. *The EMBO Journal*, *39*, e105114.
- 548 Lu, S., Zhao, Y., Yu, W., Yang, Y., Gao, J., Wang, J., Kuang, D., Yang, M., Yang, J., Ma, C., Xu, J., Li,
- 549 H., Zhao, S., Li, J., Wang, H., Long, H., Zhou, J., Luo, F., Ding, K., ... Peng, X. (2020). Comparison
- 550 of SARS-CoV-2 infections among 3 species of non-human primates. In *bioRxiv* (p.
- 551 2020.04.08.031807). https://doi.org/10.1101/2020.04.08.031807
- 552 Mahase, E. (2020). Covid-19: UK approves Oxford vaccine as cases of new variant surge. *BMJ*, *371*,
 553 m4968.
- Massova, I., &Kollman, P. A. (1999). Computational alanine scanning to probe protein- protein
 interactions: a novel approach to evaluate binding free energies. *Journal of the American Chemical Society*, *121*(36), 8133–8143.
- Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S., & Higham, J. P. (2020). Comparative ACE2
 variation and primate COVID-19 risk. *Communications Biology*, *3*(1), 1–9.
- 559 Mohan, V., & Shellard, T. (2014). Providing family planning services to remote communities in areas of
- 560 high biodiversity through a Population-Health-Environment programme in Madagascar.
- 561 *Reproductive Health Matters*, 22(43), 93–103.
- 562 Olival, K. J., Cryan, P. M., Amman, B. R., Baric, R. S., Blehert, D. S., Brook, C. E., Calisher, C. H.,
- 563 Castle, K. T., Coleman, J. T. H., Daszak, P., Epstein, J. H., Field, H., Frick, W. F., Gilbert, A. T.,
- 564 Hayman, D. T. S., Ip, H. S., Karesh, W. B., Johnson, C. K., Kading, R. C., ... Wang, L.-F. (2020).

- 565 Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study
 566 of bats. *PLoS Pathogens*, *16*(9), e1008758.
- 567 Raj, M., Bullock, B. N., & Arora, P. S. (2013). Plucking the high hanging fruit: A systematic approach for
 568 targeting protein–protein interactions. *Bioorganic & Medicinal Chemistry*, 21(14), 4051–4057.
- 569 Rasambainarivo, F. T., Gillespie, T. R., Wright, P. C., Arsenault, J., Villeneuve, A., & Lair, S. (2013).
- 570 Survey of *Giardia* and *Cryptosporidium* in lemurs from the Ranomafana National Park, Madagascar.
- 571 *Journal of Wildlife Diseases*, 49(3), 741–743.
- 572 Reid, M. J. C. (2020). Is 2020 the year when primatologists should cancel fieldwork? *American Journal*573 *of Primatology*, 82(8), e23161.
- 574 Rockx, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M. M., Oude Munnink, B. B., de Meulder, D.,
- 575 van Amerongen, G., van den Brand, J., Okba, N. M. A., Schipper, D., van Run, P., Leijten, L.,
- 576 Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J., Drosten, C., ... Haagmans,
- 577 B. L. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate
 578 model. *Science*, *368*(6494), 1012–1015.
- 579 San Diego Zoo. (2021, January 11). Gorilla troop at the San Diego Zoo Safari Park test positive for
- 580 COVID-19. *Press Release*. https://zoo.sandiegozoo.org/pressroom/news-releases/gorilla-troop-san 581 diego-zoo-safari-park-test-positive-covid-19
- Santora, M., & Wolfe, L. (2021, January 15). Covid death toll over 2 million worldwide. *The New York Times*. https://www.nytimes.com/2021/01/15/world/covid-death-news.html
- 584 Schmitt, C. A., Bergey, C. M., Jasinska, A. J., Ramensky, V., Burt, F., Svardal, H., Jorgensen, M. J.,
- 585 Freimer, N. B., Grobler, J. P., & Turner, T. R. (2020). ACE2 and TMPRSS2 variation in savanna
- monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2
 and a potential model for functional studies. *PloS One*, *15*(6), e0235106.
- 588 Schwitzer, C., Mittermeier, R. A., Johnson, S. E., Donati, G., Irwin, M., Peacock, H., Ratsimbazafy, J.,
- 589 Razafindramanana, J., Louis, E. E., Jr, Chikhi, L., Colquhoun, I. C., Tinsman, J., Dolch, R., LaFleur,
- 590 M., Nash, S., Patel, E., Randrianambinina, B., Rasolofoharivelo, T., & Wright, P. C. (2014).

- 591 Averting lemur extinctions amid Madagascar's political crisis. *Science*, *343*(6173), 842–843.
- 592 Shan, C., Yao, Y.-F., Yang, X.-L., Zhou, Y.-W., Wu, J., Gao, G., Peng, Y., Yang, L., Hu, X., Xiong, J.,
- 593 Jiang, R.-D., Zhang, H.-J., Gao, X.-X., Peng, C., Min, J., Chen, Y., Si, H.-R., Zhou, P., Wang, Y.-Y.,
- 594 ... Yuan, Z.-M. (2020). Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in
- 595 Rhesus macaques. *Cell Res.*, *30*(8), 670–677.
- 596 Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020).
- 597 Structural basis of receptor recognition by SARS-CoV-2. *Nature*, *581*, 221–224.
- 598 Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y.,
- 599 Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., ... Bu, Z. (2020).
- 600 Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. *Science*,
- **601** *368*(6494), 1016–1020.
- 602 Stawiski, E. W., Diwanji, D., Suryamohan, K., Gupta, R., Fellouse, F. A., Fah Sathirapongsasuti, J., Liu,
- 503 J., Jiang, Y.-P., Ratan, A., Mis, M., Santhosh, D., Somasekar, S., Mohan, S., Phalke, S., Kuriakose,
- B., Antony, A., Junutula, J. R., Schuster, S. C., Jura, N., & Seshagiri, S. (2020). Human ACE2
- 605 receptor polymorphisms predict SARS-CoV-2 susceptibility. In *bioRxiv* (p. 2020.04.07.024752).
- 606 https://doi.org/10.1101/2020.04.07.024752
- 607 Trivedy, C. (2020). Is 2020 the year when primatologists should cancel fieldwork? A reply. *American*608 *Journal of Primatology*, 82(8), e23173.
- 609 Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang,
- Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using
 human ACE2. *Cell*, 181(4), 894–904.e9.
- World Health Organization. (2020, December 9). WHO Coronavirus Disease (COVID-19) Dashboard.
 https://covid19.who.int/
- 614 Wright, P. C., Erhart, E. M., Tecot, S., Baden, A. L., Arrigo-Nelson, S. J., Herrera, J., Morelli, T. L.,
- 615 Blanco, M. B., Deppe, A., Atsalis, S., Johnson, S., Ratelolahy, F., Tan, C., & Zohdy, S. (2012).
- 616 Long-Term Lemur Research at Centre Valbio, Ranomafana National Park, Madagascar. In P. M.

- 617 Kappeler& D. P. Watts (Eds.), *Long-Term Field Studies of Primates* (pp. 67–100). Springer Berlin
 618 Heidelberg.
- 619 Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C., Tian, S.,
- 620 Du, P., Song, H., Shi, W., Qi, J., Wang, H.-W., Yan, J., Gao, G. F., & Wang, Q. (2020). Broad host
- 621 range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. *Cell*
- 622 *Discovery*, *6*(1), 68.
- Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of
 SARS-CoV-2 by full-length human ACE2. *Science*, *367*(6485), 1444–1448.

625