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Abstract

Models of auditory salience aim to predict which sounds attract people’s attention, and their

proposed applications range from soundscape design to machine listening systems and

object-based broadcasting. A few different types of models have been proposed, but one of the

areas where most of them still fall short is spatial aspects of sound – they usually operate on

mono signals and do not consider spatial auditory scenes. Part of the reason why this is the

case might be that the relationship between auditory salience and position of sound is still not

clear. In addition, methods used to measure auditory salience vary greatly, and authors in the

field do not always use the same definition of salience.

In Part I, this thesis aims to answer questions about the effect of spatial location of sound on

auditory salience. This is done in four different experiments, which are based on previously

published experimental methods but adapted to measure spatial effects. In general, the

combined results of these experiments do not support the hypothesis that the spatial position

of a sound alone influences how salient the sound is. However, they do show that unexpected

changes in position might activate the deviance detection mechanism and therefore be salient.

In addition, an experiment comparing three of the methods used reveals at least two

dimensions of salience, which are measured by different methods to different extent. This

emphasises the importance of carefully considering which experimental methods are used to

measure auditory salience, and also providing a clear definition of what type of salience is of

interest.

Part II demonstrates how spatial position of sound can be incorporated into an auditory

salience model. The results of experiments described in this thesis support the idea that the

basis of auditory salience is the violation of expectations. The surprise caused by a sudden

change in sound position can therefore be modelled by a Kalman-filter-based deviance

detection model, which predicts experimental data discussed above with good accuracy.

Finally, an example is given of how an application of such a model can improve the

performance of a machine learning algorithm for acoustic event detection.
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1
Introduction

1.1. Motivation

Perceptual modelling aims to mimic human responses to external stimuli such as

images and sounds. Some models attempt to faithfully imitate physiology – for

example, the working of a single neuron – but many take a more functional approach,

where it is the final outcome of the system, or the general working mechanism that is

being modelled. The models can span from a full, general model of auditory

processing to more specialised models, which only tackle one aspect of it, such as

sound quality or localisation. The latter group also includes auditory salience, which

aims to detect sounds in the environment which are in some way salient to people.

Such a model has many potential applications: for example, it could be used in

object-oriented broadcasting as an additional layer of meta-data, providing

information about which objects are worth prioritizing. It could also be useful in

machine listening applications, for example, for scene analysis in humanoid robots

(Schauerte et al. 2011) or soundscape quality assessment (Boes et al. 2018). It can also

be applied to improve speech recognition and synthesis (Kalinli and Narayanan 2009)

and it has even been suggested that information about salience can be incorporated

1



Chapter 1. Introduction

into audio data compression algorithms (Kakouros, Rasanen and Laine 2013).

Several auditory salience models have been developed in the last 15 years (starting

with Kayser et al. 2005), but the field is not as developed as that of visual salience

modelling. Part of the reason why auditory salience models are behind their visual

counterparts is that measuring the salience of sounds is not straightforward. In fact,

even the way salience is defined in studies is not always exactly the same – however,

usually, sounds which automatically attract attention are considered salient. In vision,

this is often assessed with eye-tracking, as people’s eyes will automatically turn to

important features in the environment. In hearing, however, determining which

sounds are attended to is more difficult, as there is no clearly visible physical

externalization of auditory attention. This leads researchers to develop and use

various experimental methods. Some of the methods involve asking participants

explicitly to mark salient events or compare salience between two sounds, and others

are based on assumptions such as that detection in salient streams is easier. This lack

of well-established, standard measurement methods makes the design and

assessment of auditory salience models challenging.

One of the areas in which there is still room for improvement is spatial salience

models. Most auditory salience models use a one-channel input and do not take

spatial position of sound sources into account. Yet, spatial hearing has been a field of

study with considerable interest for years, and the benefits of using acoustic signals

from two ears are well known. Binaural hearing enhances stream segregation and

improves speech intelligibility for sources separated in space. Spatial auditory

salience has not been well studied directly either, at least not for locations all around

the listener.

This thesis aims to address the question of the relationship between spatial location of

sound and auditory salience. Does the absolute position of a sound around the

listener influence how salient it is for this listener? Answering this question could

2



Chapter 1. Introduction

help create better salience models and enhance our understanding of the types of

sounds which attract attention.

Four experiments were designed specifically to study whether spatial position of a

sound influences its salience. Different methods are used that address this question

from slightly different angles, some prioritizing low-level, automatic attention

orienting, while others include other related phenomena, such as perceptual load and

violation of expectations. Violations of expectations, in particular, tend to attract

people’s attention, so how expectations are built and what they are about is important

for salience. Automatic attentional orienting is in fact related to a deviance detection

mechanism in the brain. These processes can be also described in terms of prediction –

what does not fit the prediction, is going to be salient. Some recent auditory salience

models have successfully adopted these principles.

1.2. Outline of the thesis

The thesis is organised in two parts.

Part I focuses on measuring spatial auditory salience. Chapter 2 gives an overview of

the literature on auditory salience and methods used to measure it. It discusses the

ways in which salience has been defined in the literature, and how different

experimental methods relate to these definitions. The following four chapters describe

experiments designed to study spatial auditory salience. Chapter 3 describes an

oddball detection experiment, in which participants detected a shortened

inter-stimulus interval within two competing auditory streams. Their response times

and accuracy are recorded to test auditory salience in a well-controlled setting.

Chapter 4 presents a more ecologically valid experiment in which participants are

asked to report their attention in real-time. The experiment in Chapter 5 tackles

3



Chapter 1. Introduction

auditory salience under perceptual load, and tests it in a dual-task scenario. Chapter 6

describes a distraction experiment, in which implicit expectations about the

distractors’ sound type and spatial position are manipulated to elicit surprise. The

data collected in these experiments include behavioural responses such as task

accuracy and response times, as well as measurement of pupil dilation, which have

been previously used to study salience. Finally, three of the methods used here are

directly compared in a perceptual experiment described in Chapter 7 to ascertain

whether their outcomes correlate with each other.

Part II aims to apply results from Part I to improve models of auditory salience.

Chapter 9 provides a literature review of auditory salience models and a background

on the computational and perceptual principles on which some of the more recent

models are based, including prediction and deviance detection. Then, Chapter 10

illustrates how spatial information can be added to such a model to predict some of

the experimental results described before. An application of a prediction-based model

is described in Chapter 11, where it is shown to improve an acoustic event detection

algorithm.

Finally, Chapter 13 provides a general discussion of both the experimental results in

Part I and the modelling efforts in Part II, and how the experimental data can be used

to inform the models.

1.3. Contributions

The work in this thesis has contributed the following knowledge to the field:

• Experimental data suggests that the absolute spatial location of a sound alone

does not modulate its salience.

• Pupil dilation responses are sensitive to unexpected changes of spatial position

4



Chapter 1. Introduction

of a sound in a distraction experiment.

• Experimental methods used to measure auditory salience vary on two

dimensions, indicating that they measure different aspects of salience.

• A model based on deviance detection can successfully predict pupil dilation

responses to broken expectations about spatial location and type of sound.

5



Part I.

Measuring auditory salience
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2
Literature review

2.1. What is auditory salience?

The term “salience” (or “saliency”) has become more widely used in the area of

auditory modelling relatively recently, after Kayser’s translation of a visual saliency

map into the auditory domain (Kayser et al. 2005). The original visual saliency map

proposed by Itti and Koch (2001) codes the global “conspicuity” of all locations in the

visual field and emphasises “interesting or conspicuous’ locations.

There is no single, universally accepted definition of auditory salience. Out of the

publications which have discussed the topic over the last 15 years, not many have

offered a clear definition of what exactly is meant by “salience”. One of the few

exceptions were Tordini, Bregman and Cooperstock (2015), who proposed that:

A sound is salient, i.e., belongs to the foreground, when its selection in a

complex scene is ‘as easy’ as its detection in isolation, i.e., over silence.

In a more recent publication, Tordini, Bregman and Cooperstock (2016) suggest there

are in fact two types of salience: sensory and perceptual. Sensory salience describes

7



Chapter 2. Literature review

Figure 2.1.: An auditory perception framework reproduced from Tordini, Bregman and Cooper-

stock 2016. Note that this framework also includes top-down processes in the form of a feed-

back going from higher cognitive processes down to sounds and onsets.

how noticeable a sound event is in relation to its local neighbourhood, while

perceptual salience operates on streams and describes how likely they are to become

foreground. Thus, they work on short and long time scales respectively. This concept

is illustrated in Figure 2.1.

Even though some authors writing about salience equate it with bottom-up attention

or a cognitive mechanism (Slaney et al. 2012; Rodríguez-Hidalgo, Peláez-Moreno and

Gallardo-Antolín 2017), most agree that salience is in fact a property of sound.

Explanations of what exactly that property describes vary, but they seem to revolve

around a few common points:

A salience is the ability to attract attention (or the likelihood that a sound will

attract attention); salient sounds can be noticed without a conscious decision to

focus on them (or even “without attention”), and people have difficulty ignoring

them (e.g. Tsiami et al. 2016; Zhao et al. 2019)

B salience is the extent to which sounds (perceptually) stand out from the

environment or their neighbours, how much they “pop out”; distinctiveness;

8



Chapter 2. Literature review

being easy to notice and detect, conspicuous (e.g. De Coensel and Botteldooren

2010; Liao et al. 2015; Tang and Cox 2018)

C salience is the “novelty and uniqueness, deviating from the background”, how

much a sound differs from its surroundings or the contrast between the sound

and its surroundings; how much it deviates from regularities preceding it; its

rarity in relation to the recent and long-term past (e.g. Tsuchida and Cottrell

2012; Tordini, Bregman and Cooperstock 2016)

D salience describes the sound’s importance and relevance; salient sounds are

informative and interesting (e.g. Botteldooren and De Coensel 2009;

Rodríguez-Hidalgo, Peláez-Moreno and Gallardo-Antolín 2018)

The four points describe similar but not necessarily identical concepts. Arguably, A is

what most auditory salience models aim to achieve – to predict which sounds will

grab attention. It does not necessarily explain where auditory salience comes from

(what does it take to attract attention?), but it can be useful for experimental

paradigms, as long as one is able to detect when a sound has been attended to.

Point B also describes the perceptual effects of salient sounds – they stand out, are

easy to notice and detect. This point relates to segregating sounds from their

environment, or perceptual organisation. Of course, it is easy to see that A and B are

related – sounds that stand out will often attract attention, and it is possible to

interpret a lot of experimental paradigms through both lenses. In fact, some studies

do mention more than one of the above points (e.g. Kayser et al. 2005; Huang and

Elhilali 2017; Filipan et al. 2016a). However, this point is not the same as attention –

for example, that a sound is easy to detect does not necessarily mean it will draw

one’s attention when one is not actively trying to detect it.

In some studies, salience is described not in perceptual or attentional terms, but by the

properties of the sounds – as in point C. This includes mentions of salient sounds

being different from the environment, deviating from patterns, being rare. While all of

9
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these statements are in general true – these types of sounds tend to be salient – it

seems to be more of a description of what makes a sound salient, rather than a

definition of what salience is. Again, there is a close relationship between points B and

C – sounds stand in the environment because they deviate in their features from the

sounds preceding and surrounding them. The difference here is that the former refers

to perception, whereas the latter – to stimulus features.

Finally, as in point D, some studies describe salience with words such as “important”,

“relevant”, “informative” or “interesting”. These relate to the idea that the brain

monitors the environment and choses the parts which might potentially be important

or relevant for further processing. However, these descriptors are all rather vague,

and would each require further clarification.

How one decides to define auditory salience has implications for what type of method

should be used to measure it. The following section will discuss some of the methods

and show how they relate to the different definitions.

2.2. Testing auditory salience

There is no single agreed upon paradigm of testing auditory salience, and a variety of

different methods have been proposed in the literature. This section presents

behavioural testing methods grouped according to which definition of salience they

fit best and explains some of the perceptual mechanisms behind each of the methods.

Examples are also given of how physiological measurements can be used to infer

auditory salience.

10
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2.2.1. Human judgements

Perhaps the most straightforward way of testing whether a sound is salient is asking

human subjects directly. For example, in an annotation task, Kim et al. (2014) asked

participants to manually mark “interesting” sounds in a recording of a scene. Another

type of experiment which involves human judgement is a comparison of two sounds

(or scenes) in terms of their salience or “interestingness” (Kayser et al. 2005;

Duangudom and Anderson 2007; Tsuchida and Cottrell 2012; Zhao et al. 2019). This

type of experiment has the advantage of being able to sort test sounds from least to

most salient. The downside is the subjectivity of the word “salient” or “interesting”,

which can have different meanings to different people. These types of experiments

would most likely measure attention as defined by point D in the previous section.

2.2.2. Attention

Another type of experiment is based on the definition of salience being the ability to

attract attention (point A in Section 2.1). Although attention has been extensively

studied by philosophers, psychologists and neuroscientists for many years, it is not at

all obvious how to define it. Since James (1890) wrote “every one knows what

attention is”1 , it has been described as a filter (Broadbent 1958), searchlight (Fritz et al.

2007), biased competition (Duncan 2006), and precision (Heilbron and Chait 2017). In

general, it is a process or a group of processes, which prioritises some sensory inputs

over others. It consists of bottom-up (involuntary) and top-down (voluntary)

1He continues: “It is the taking possession by the mind, in clear and vivid form, of one out of what

seem several simultaneously possible objects or trains of thought. Focalization, concentration, of

consciousness are of its essence. It implies withdrawal from some things in order to deal effectively

with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained

state which in French is called distraction, and Zerstreutheit in German.”

11
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processes.

Bottom-up processes cause an automatic attentional shift towards a salient event even

when the person’s focus is elsewhere – it is independent of the task that they might be

performing. This attentional orienting might be brought about by different

characteristics of sound, both low- and high-level. In general, attentional orienting is

often caused by a violation of expectations built based on previous auditory inputs. It

is important to stress that it does not depend on the frequency of occurrence of the

sound as such or if it is novel, but rather on whether the sound matches the

expectation (Parmentier et al. 2011; Vachon, Hughes and Jones 2012). For example,

Nöstl, Marsh and Sörqvist (2012) demonstrated that the degree of attentional capture

depends on how far the deviant sound is from the expected sound, not from the

previous sound (local change). The brain is able to track complex and even abstract

types of regularities and detects when input deviates from them. This predictive view

of perception is discussed in more detail in Section 9.4.

Top-down selective attention can be consciously deployed by the listener to enhance

perception of sound. Some studies indicate that this enhancement might in fact take

place as low in the auditory system as the cochlea, by showing attentional effects on

otoacoustic emissions (Giard et al. 1994; Maison, Micheyl and Collet 2001; Walsh,

Pasanen and McFadden 2015), but other studies do not find this effect (Avan and

Bonfils 1992; Michie et al. 1996; Timpe-Syverson and Decker 1999). It has, however,

been repeatedly shown that attention enhances relevant sound representation in the

brain (Alain, Arnott and Dyson 2014). Some also argue that the modulation goes

beyond a simple gain-like enhancement and influences sharpening of relevant neural

tuning curves (Kauramäki, Jääskeläinen and Sams 2007).

Attention can be directed to sound features such as frequency, timbre or location. For

example, Kidd et al. (2005) found that providing listeners with a cue about the target

speaker location significantly improved keyword identification compared to when no

12



Chapter 2. Literature review

cues were present. It has been found that both top-down and bottom-up orienting of

attention to the position of a sound improved its localisation (Spence and Driver 1994).

Also, Best et al. (2006) showed that attending to two spatially separated sources comes

at a cost compared to streams in the same location, which suggests spatial attention

might work as a “spotlight”, similarly to vision. Even though it is possible to pay

attention to features of sound such as pitch, there is strong indication, that in fact,

attention operates on auditory objects (Shinn-Cunningham 2008). This would be

consistent with the role of selective attention in vision, where it is believed to be

object-based – e.g. Duncan (1984) found that it is easier to make judgments about two

properties of the same object, than about properties of two different objects.

Furthermore, Best et al. (2008) andBressler et al. (2014) have shown that selective

auditory attention is enhanced by object continuity. This view is also supported by

brain imaging studies, which have shown the same brain activity independently of

which one of two features of an auditory object was attended (Zatorre, Mondor and

Evans 1999).

Tracking auditory attention in real-time is not a straightforward task. Whereas in

vision, tracking of automatic eye movements can be used, no such moving organ

exists for hearing, and determining what a person is listening to is much more

difficult. There have, however, been some attempts. For example, Huang and Elhilali

(2017) use self-reporting, but avoid some of the ambiguity of other survey-based

methods by asking participants explicitly to indicate where their attention is, and to

do so in real time. This is somewhat analogous to gaze tracking in visual salience

studies, but a less direct representation of the phenomenon, as it also involves

conscious tracking of one’s attention.

Attention tracking in audition can also be attempted with distraction experiments, in

which it is assumed that salient sounds cause automatic attentional orienting away

from the main task and therefore impair performance. However, there are at least two
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things that need to be taken into account when using distraction experiments to

measure attention.

First, it has been suggested in the duplex-mechanism theory of distraction (Hughes

2014) that there are in fact two separate processes that can cause distraction:

attentional orienting and interference-by-process. The first type comes about when a

sound draws attention away from the main task for a brief moment, causing slower

responses. The second, on the other hand, arises when the sounds interfere with the

type of brain processing which is needed for the particular task. It is usually

demonstrated in a serial recall task, in which participants are asked to memorise the

order of items presented to them visually. In this task, the subjects’ response is

significantly impaired by a sequence of tones or vowels which change from one to

another – the so-called changing-state effect. However, if participants are asked to

memorise visual items but not in any specific order, this effect disappears. Differences

in pupil dilation responses also indicate that the two types of distraction are

underpinned by different mechanisms (Marois, Marsh and Vachon 2019). These

findings suggest that not all distraction can be attributed to attention, and any

experimental methods need to take this into account.

Additionally, distraction effects might vary with the difficulty of the task and its

perceptual demands. According to the load theory (Lavie 1995) the brain has a limited

perceptual capacity, and until it reaches its limits, all sounds – task relevant or not –

will be processed fully. This processing of all information until the capacity limit is

reached is obligatory, therefore, if a task does not fill it, there will be some degree of

automatic distraction from irrelevant input. However, once capacity is reached – for

example, by a task with high perceptual load – no more input (whether auditory or

visual) will be processed and no distraction will occur. However, Eltiti, Wallace and

Fox (2005) argue that in fact distractor salience might be more important than

perceptual load. In a visual experiment, they modulated distractor salience by making
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it more or less similar to the target, and the target salience by making it larger than

other, neutral items on the display. They argue that it is the decrease in distractor

salience by increasing the number of items on a screen – as is often done in perceptual

load experiments – that minimises distraction, rather than the lack of free perceptual

capacity. Santangelo, Olivetti Belardinelli and Spence (2007) found a suppression of

attentional spatial orienting to cued locations in high load conditions, compared to

low load.

In general, measuring auditory attention is not a straightforward task. In addition,

attention operates on many levels and it is not clear at which level we should be

measuring it. Compare the automatic orienting in distraction with experiments

relying on self-reporting of attention: some of the bottom-up attentional orienting

might occur without reaching conscious awareness, or be brief enough that

participants would not report it. However, for participants to report attending to a

sound, they have to not only be aware of it, but also aware of their own attention,

which is much more high-level.

2.2.3. Detection

Some studies rely on the detection definition of salience (point B). For example,

participants might be asked to detect a sound in noise (Kayser et al. 2005) or to detect

whether a sound clip contains a salient event (Kaya and Elhilali 2014). Another

paradigm is based on oddball detection – pointing out a stimulus which is different

from a series of standard, regular ones, often in the presence of competing streams.

Response time and detection rate are the indication of stimulus salience (e.g. Tordini

et al. 2013; Southwell et al. 2017).

A few conditions must be fulfilled for a sound to be successfully detected: first, it has

to be audible – over the hearing threshold and not masked by other sounds; second, it
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has to be separated from any background, or form a separate auditory object; finally, it

has to be attended to, either consciously in a top-down manner, or through automatic,

bottom-up attentional orienting.

There has been debate about the nature of the relationship between attention and

auditory object formation. One view is that attention is strictly necessary for stream

segregation. For example, Carlyon et al. (2001) played series of A-B-A tones, which

over a span of several seconds tend to separate into two streams A and B. The

participants would hear the tones in one ear, while their attention was directed to the

other ear for the first 10 seconds. After that time, they would switch attention to the

tones and asked for a stream segmentation judgement. If attention was not required

for streaming, one would expect to see a 10-seconds-long streaming build-up on the

tones causing the separation into A and B streams, but no indication of this was

found.2 Also, Shamma, Elhilali and Micheyl (2011) argue that attention facilitates

stream segregation by binding together relevant features. Sussman et al. (2002)

presented experimental participants with a repeating pattern of 5 tones (4 of the same

frequency and one “deviant”) and manipulated the listeners’ attention with a task

which required them to focus either on the tones’ frequency, or on the pattern as a

whole. They have shown that Mismatch Negativity (MMN), a brain potential

associated with novel stimulus, is not evoked in response to the deviant tone when

listeners follow tones as a pattern, as opposed to focusing on their frequency. This

may be a proof of attention influencing grouping.

A different hypothesis is that stream segregation happens pre-attentively, and

attention is only used to select which object becomes foreground (Bregman 1990).

Indeed, there is proof that some information is processed in an unattended stream –

2Note that Macken et al. (2003) offer different explanations for the results of Carlyon et al. (2001),

for example, that the auditory memory task might have influenced participants’ pre-attentive pro-

cesses.
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for example, in a classic dichotic listening task, Moray (1959) showed that people will

notice when their name appears in an unattended stream. The kind of high-level

processing needed to recognise a name would not be possible without some kind of

stream segregation. Macken et al. (2003) offer a paradigm for studying the role of

attention in streaming, based on the disruptiveness of unattended sound, which they

call the “irrelevant sound effect”. In their experiments, the level of disruptiveness of

task-irrelevant (unattended) tones in a visual memory task follows a pattern expected

if streaming on those tones had taken place. Also, Masutomi et al. (2015) showed that

segregation based on repetitions is not affected by attention. Interestingly, Deouell

et al. (2007) also showed that people with unilateral neglect, who are not aware of any

sounds on their left side, still experienced the scale illusion (Deutsch 1975), which

relies on grouping of sounds from both ears.

Figure 2.2.: The hierarchical decomposition model from Cusack et al. (2004). By aiding group-

ing, selective attention helps separate auditory scene into more objects.

Most likely, selective attention enhances stream segregation, particularly in complex

environments, but is not necessary for it to happen (Shinn-Cunningham and Best
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2015). Cusack et al. (2004) offer a hierarchical model of grouping, in which attention

adds more detail to the representation of a scene – for example, it lets the listener

divide a band into separate instruments (see figure 2.2). They replicated the work of

Carlyon et al. (2001) in a series of detailed experiments, but noted that their results

suggest that some basic streaming still takes place pre-attentively.

2.2.4. Physiological methods

Other than behavioural experiments, physiological measures can be used for

determining the salience of sounds. For example, Liao et al. (2015) showed a

connection between pupil dilation responses (PDR) and sound salience measured as

subjective judgements. Indeed, there is some evidence that pupil dilation corresponds

to the attentional orienting response (Marois et al. 2018). For example, Marois, Marsh

and Vachon (2019) compared distraction caused by attentional orienting and

interference-by-process, and found pupil dilation responses to the former, but not the

latter. Liao et al. (2016) also showed that pupil dilation responses to deviant sounds

are not modulated by top-down attention.

However, Zhao et al. (2019) did not find a relationship between pupil dilation

responses and subjective salience ratings and suggested that pupil dilation might

represent a later stage of salience processing. Also, Huang and Elhilali (2017) reported

that although pupil dilation responses corresponded to changes in acoustic features of

the stimuli, they did not always correspond to a behavioural response (self-reported

attention).

In more general terms, pupil dilation is a response to changes in allocation of

cognitive resources. In a literature review of 146 studies, Zekveld, Koelewijn and

Kramer (2018) identified various external and internal factors which influence PDR to

auditory stimuli, including automatic and intentional attention, increased task
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demands, emotional valence, and an individual’s hearing status. Pupillometry has

been used to determine listening effort with focused attention (Koelewijn et al. 2015),

and has been shown to respond to different levels of informational masking

(Woodcock et al. 2019). Marois, Marsh and Vachon (2019) found an overall increase in

pupil dilation to changing-state compared to “static” stimuli, which could indicate

increased listening effort.

There is also evidence to suggest that auditory salience modulates inhibition of

microsaccades – small, rapid eye movements (Zhao et al. 2019). Furthermore, Frith

and Allen (1983) suggested ways in which skin conductance could be used to study

the level and direction of attention. In addition to skin conductance response,

Stekelenburg and Van Boxtel (2002) also showed inhibition of heart rate, respiration

rate and depth, and electromyographic (EMG) activity of lower facial muscles in

response to novel auditory stimuli.

The effects of involuntary, bottom-up attention can also be seen in event-related brain

potentials (ERPs), specifically a negative N1, which is automatically evoked by novel

sounds, and positive P300 (with P3a and P3b subcomponents), related to involuntary

orienting towards a salient stimulus. Additionally, Mismatch Negativity (MMN) is an

ERP difference wave between response to an oddball and regular auditory stimulus,

and it is believed to reflect pre-attentive novelty detection. In contrast to P300, it is

present even if the listener expects a deviant sound. It has been suggested that MMN

and P300 represent two different time scales of auditory prediction and novelty

detection (Wacongne et al. 2011). While MMN, present at about 200 ms, is a reaction

to short-term novelty detection, P300, present at 250-400 ms after stimulus and

requiring conscious attention (Chennu et al. 2013), represents unexpected changes in

longer-term patterns.
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2.3. Salient features

There currently is no single list of features which make a sound salient

(Shinn-Cunningham and Best 2015). Most researchers agree that loudness is

important for salience (Liao et al. 2015; Tordini, Bregman and Cooperstock 2016;

Huang and Elhilali 2017). Tordini, Bregman and Cooperstock (2016) argue that after

loudness, the most important salience features are tempo (faster patterns are more

salient) and brightness (“darker” sounds are more salient). Kaya and Elhilali (2014)

also showed effects of pitch and intensity on salience – interestingly, they found

higher pitched sounds to be more salient. It has also been suggested that roughness

may play a part, with rougher sounds being more salient (Zhao et al. 2019).

Although this thesis is only concerned with lower-level characteristics of sound, there

certainly are higher level features and processes that influence salience. For example, a

person’s own name has the ability to attract attention even when they are focused on a

task (Wood and Cowan 1995). Sounds associated with strong emotions can also have a

larger attention-grabbing effect (Vuilleumier 2005). Deviations in sound category have

also been shown to cause auditory distraction (Vachon, Marsh and Labonté 2019).

A recent study investigated brain responses to deviance in different features: timbre,

pitch and intensity of notes in a melody, during a visual task in high and low load

condition (Kaya, Huang and Elhilali 2020). They compared the same note when it

matched and did not match the melody on one or more of the features (in and out of

context) and found multiple interactions between the features.

2.3.1. Spatial salience

Although localisation of sounds has been thoroughly studied, not much is known

about how the spatial position of a sound affects its salience, and auditory salience or
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attention experiments with sounds positioned all around the listener are rare. Most

studies of cross-modal spatial attention, for example, have presented stimuli in the

frontal plane (Spence, Lee and Van der Stoep 2020).

There are other known spatial effects in auditory perception. For example, a right-ear

advantage has been shown for speech stimuli, and there is debate whether it can be

explained primarily by the specialisation of the left hemisphere in processing speech,

or by attentional biases (Hiscock and Kinsbourne 2011). On the other hand, some have

shown a left-ear disadvantage for non-speech irrelevant sound (meaning, sounds on

the left cause greater distraction) to a task that involves serial recall (Hadlington,

Bridges and Darby 2004) but not necessarily other memory-related tasks (Hadlington,

Bridges and Beaman 2006), for distracting sounds with changing-state characteristics.

In a change detection experiment, moving target sounds originating on the left hand

side (-60°) were detected faster than those originating +20° to the right (Peck et al.

2018). On the other hand, in an audio-visual distraction experiment, sounds on the

right were more distracting than on the left (Corral and Escera 2008). An interesting

rear-to-front cueing effect has also been observed – auditory stimuli on the side of a

visual target enhanced responses to the target both when they were in front and rear.

In other words, for example – sounds at 45° and 135° both caused attentional

orienting to the right (Lee and Spence 2015).

Finally, it is known that changes in spatial location of the auditory stimulus can cause

distraction (Chan, Merrifield and Spence 2005; Roeber, Widmann and Schröger 2003) –

i.e. a sound coming from an unexpected location will be more distracting than one

coming from an expected location. This has been shown by modifying spatial position

(which was task-irrelevant) of a stimulus in a distraction experiment with an auditory

task (Roeber, Widmann and Schröger 2003). Also, in a word recognition experiment,

irrelevant words which changed location randomly between trials were more

distracting than those coming from one location (Chan, Merrifield and Spence 2005).

21



Chapter 2. Literature review

This effect has also been shown with a visual task and auditory stimulus (Corral and

Escera 2008) – in an even/odd classification task, a sound coming from an unexpected

location was more distracting than one coming from an expected one. What is more,

the effect seemed to increase with increased spatial separation.

2.4. Summary

This chapter provided a review of the literature on the measurement of auditory

salience. No single definition of auditory salience exists, but the most common way to

describe it is as the ability of a sound to attract attention. The experimental methods

in the literature also vary, from surveys to methods based on detection and competing

streams. In the following chapters, four different experimental approaches are

described, each investigating auditory salience from a slightly different perspective.
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3
Automatic attentional orienting

3.1. Introduction

In this chapter, an experiment is described which was designed to test spatial auditory

salience in a well-controlled experimental setting. The aim was to find out if any

particular location is likely to automatically attract auditory attention than other

locations.

3.2. Method

This experiment is based on the Segregation of Asynchronous Patterns (SOAP)

paradigm (Tordini et al. 2013). The approach assumes that two perceived auditory

streams will compete for attentional resources, and as a result one of them will

become foreground, and the other will be background. If no arbitrary top-down effects

are in place, a more salient stream will win the competition and be the foreground.

The main assumption here is that it will be easier to detect changes in the foreground

(more salient) stream.
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Figure 3.1.: The original SOAP paradigm, reproduced from Tordini et al. (2013).

In the original SOAP experiment, two sound patterns were presented to the left and

right ears through headphones (see Figure 3.1). Both streams were patterns consisting

of short birdsong excerpts separated by constant inter-stimulus interval (ISI). A

crucial part of the design is to make sure that the two patterns are asynchronous, to

avoid creating a rhythm which could be morphed into a single object. The

participants’ task was to detect a change in ISI in one of the streams, without being

told which stream to attend. According to the SOAP framework, they should be

statistically more likely to attend to, and detect changes in, the more salient stream.

The SOAP framework was extended in this experiment to include spatial effects. The

participants were seated in an acoustically treated listening room, surrounded by six

loudspeakers as in Figure 3.2. The stimuli were short noise bursts, either high- or

low-pass filtered at 2 kHz. The sounds were designed so that there is no overlapping

spectral content, to ensure easy stream segregation. Each pattern contained only one

type of stimuli and lasted for 6 seconds. The regular inter-stimulus interval was 250

ms, and the shortened one – 80 ms. Instead of simply left and right, sound patterns

arrived at the listener from 2 out of 6 locations around them. The participants were

asked to detect a shortened ISI and indicate whether it occurred in the high or low

frequency pattern.

To ensure asynchrony, one of the two patterns always included shorter stimuli than
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Figure 3.2: Loudspeaker set-

up in the listening room.

the other (150 versus 200 ms). This resulted in one pattern sounding faster than the

other (which is referred to here as fast tempo).

Independent variables were then: sound location (6 target stream location, each with 5

remaining background stream locations), frequency (high and low), and tempo (fast

and slow). Each participant was exposed to all conditions in a full-factorial design,

which resulted in 120 trials per person.

Before the main experiment, participants completed a short training session and a

baseline test, where only one pattern was present at one time. Information from this

baseline condition was later used to determine acceptance windows for each person

(see Section 3.3).

19 volunteers took part in the experiment, all with self-reported normal hearing,

average age 30.4, 4 female, 18 right-handed. Data collected included response time

and accuracy.
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3.3. Results

3.3.1. Response times

Time elapsed from the end of the shortened ISI to button press was recorded as

response time (RT). Only correct responses were taken into account. RT distributions

differed quite significantly between participants (see Figure 3.3).

Data was analysed with a Generalised Linear Mixed Model, using the lme4 package

(Bates et al. 2015) in R (R Core Team 2019), with location, frequency, and tempo as

fixed effects, and participant as random effect. A model including frequency-tempo

and frequency-location interactions was used as it gave the best fit, based on the

Akaike information criterion (Akaike 1974). GLMMs have a few advantages that are

important in this case: they can deal with missing data (incorrect responses are not

used, so there are no data points for them), they let the researcher specify response

distribution, and can take into account baseline differences between groups (in this

case: participants). Lo and Andrews (2015) argue that GLMMs are the preferred

method of analysing reaction time data (rather than, e.g. tranformations to normality

and ANOVA), and suggest an identity link function and either an inverse Gaussian or

gamma distribution. In this analysis, an inverse Gaussian with an identity link was

used and a similar method is used for analysing response time data throughout this

thesis. The results are shown in Table 3.1.

The results indicate that there are significant interactions: frequency-tempo and

frequency-location. A post-hoc analysis of contrasts with a Tukey p-value adjustment

(using the emmeans package in R – Lenth 2019) shows that, for low frequency noise,

there are no significant differences between locations. However, for high frequency

stimuli, there are significant differences between some pairs of locations: back and

front (MD = −0.10, p = 0.001), back and right-front (MD = −0.11, p = 0.0003), and
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Figure 3.3.: Response times of individual participants. The box-plots show medians, 25th and

75th percentiles of response times. Black: main experiment, blue: baseline experiment (not

available for participant number 10)

back and right-back (MD = −0.09, p = 0.006). Figure 3.4 shows estimated mean

response times for locations vs frequency. For high frequency stimuli, response times

were also on average 67 ms lower for fast compared to slow patterns (p < 0.0001).

Figure 3.5 shows the interaction plot for frequency vs tempo.

As could be expected from the differences in average RT between participants, the
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Figure 3.4.: Response time marginal means with 95% confidence intervals estimated from the

model in Table 3.1, for different locations. Left: low frequency, right: high frequency.

random effect for participants varied quite significantly (standard deviation of about

100 ms). By including ’participant’ as a random effect and allowing the intercept to

vary across participants, each individual is in effect assigned a different baseline

response time.

3.3.2. Accuracy

Accuracy data was binary: each response was either correct or incorrect. Following

the analysis in Tordini et al. (2013), to discard late responses, a personalised

acceptance window was calculated based on the baseline condition. The goal was to

remove guesses and only consider correct responses where a participant was

attending the target stream. In the experiment by Tordini et al. (2013), statistics of
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Figure 3.5: Response time mar-

ginal means with 95% confid-

ence intervals estimated from the

model in Table 3.1, for different

noise frequency and tempo.

baseline response times (such as the 90th percentile) were used directly to set the

upper limit for each participant. However, in the experiment described here, mean

differences between baseline and main conditions were rather large, and for some

participants response distributions from those two conditions did not even overlap

(see Figure 3.3). This could be due to increased cognitive difficulty of the main task

compared to the task by Tordini et al. (2013) – perhaps making high/low frequency

judgements requires more decision time than the more natural left/right judgements.

However, the baseline data can still be used to discard late responses if those cognitive

effects are nullified by aligning baseline and main time response distributions so that

they medians are equal. The baseline condition should still be easier and have fewer

late responses, because attention is always directed towards the target stream (which

is an ideal condition). Therefore, responses within a time window corresponding to

that of the baseline condition should indicate cases in which participants were

actually attending the target stream.
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Based on this, the baseline and main distributions were time aligned so that their

medians were equal, and then the upper limit of the acceptance window was set at the

95th percentile of the baseline data (for an example see Fig. 3.6). All responses outside

of this window were considered incorrect. This procedure caused on average 27% of

each participant’s correct responses to be marked as incorrect. For one participant

baseline data was not available, so they were discarded from this analysis (leaving

N=18).

Figure 3.6.: Effect of applying acceptance window for participant 12.

Left: original baseline (grey) and main (purple) distributions of response times. Middle: shifted

baseline distribution. Dashed lines represent distribution medians.

Right: influence of acceptance window length on the resulting proportion of correct responses.

Red solid lines show the acceptance window upper limit used.

Again, a GLMM was fitted, in this case with a binomial distribution and logit link

function, which is appropriate for a dichotomous response variable. Fixed and

random effects in the model were the same as in RT analysis above. Results are similar

to those obtained from analysis of reaction times, with two significant interactions:

frequency/tempo and frequency/location (see Fig. 3.7).

Reflecting a result from response times, for high frequency sounds, participants were

2.3 times (p < 0001) more likely to be correct for fast rather than slow patterns, while
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Figure 3.7.: Probabilities of correct response (with 95% confidence intervals) estimated from

the model in Table 3.2, for different spatial locations and stimulus frequency.

for low frequency noise the difference was not statistically significant. Tordini,

Bregman and Cooperstock (2016) also found that oddball inter-stimulus intervals

were more often correctly detected in faster streams.

Finally, further analysis of the location-frequency interaction reveals that, for high

frequency noise, the rear location was significantly less likely to get a correct response

than 4 other locations: front (OR = 2.3, p = 0.007), right-front (OR = 1.97, p = 0.045),

right-back (OR = 2.3, p = 0.007), left/front (OR = 2.23, p = 0.010).
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Fixed effects Est. [s] SE t value p-value

(Intercept) 0.844 0.031 27.67 < 0.0001 ***

Location 2 0.021 0.026 0.83 0.408

Location 3 −0.005 0.025 −0.20 0.839

Location 4 −0.037 0.024 −1.53 0.125

Location 5 −0.027 0.024 −1.12 0.261

Location 6 −0.033 0.024 −1.37 0.171

Tempo (fast) 0.002 0.014 0.13 0.898

Frequency (high) −0.007 0.026 −0.25 0.801

Tempo:Frequency −0.007 0.020 −3.40 0.0007 ***

Location2:Frequency −0.030 0.034 −0.88 0.378

Location3:Frequency 0.014 0.034 0.40 0.693

Location4:Frequency 0.139 0.036 3.91 < 0.0001 ***

Location5:Frequency 0.062 0.034 1.82 0.069

Location6:Frequency 0.060 0.034 1.77 0.078

Random effect: Participant

Number of groups 19

Standard deviation 0.104

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3.1.: Results of a GLMM model on response time data (link function: identity, family:

inverse Gaussian). Formula used in the model: RT ∼ 1 + Location + Tempo + Frequency +

Tempo∗Frequency + Location∗Frequency + (1 | Participant)
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Fixed Effects Est. SE Z value p-value

(Intercept) 1.05 0.241 4.36 < 0.0001 ***

Location 2 −0.41 0.235 −1.76 0.079

Location 3 −0.47 0.235 −1.98 0.048 *

Location 4 0.03 0.243 0.12 0.903

Location 5 0.09 0.245 0.37 0.713

Location 6 0.06 0.244 0.25 0.807

Tempo (fast) −0.00002 0.138 0.00 1.000

Frequency(high) −0.28 0.263 −1.08 0.280

Tempo:Frequency 0.82 0.197 4.14 < 0.0001 ***

Location2:Frequency 0.26 0.341 0.76 0.446

Location3:Frequency 0.47 0.343 1.35 0.176

Location4:Frequency −0.86 0.341 −2.53 0.011 *

Location5:Frequency −0.58 0.344 −1.69 0.091

Location6:Frequency −0.09 0.349 −0.26 0.794

Random effect: Participant

Number of groups 18

Standard deviation 0.655

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3.2.: Mixed effects generalized linear regression results on accuracy data (distribution:

binomial, link function: logit). The estimates shown are on the log scale. Formula used in the

model: Correct∼ 1 + Location +Tempo+Frequency +Tempo∗Frequency + Location∗Frequency

+ (1 | Participant).
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3.4. Summary

The experiment described in this chapter tested auditory salience in an oddball

detection paradigm, in which two streams of repeating stimuli were used. High

frequency sounds were found to be less accurately detected when they were behind

the listener, than when they were in front. An interaction was also found between

stimulus frequency and pattern tempo. These results are discussed in light of existing

research in Chapter 13.

34



4
Higher level attention

4.1. Introduction

One of the shortcomings of the experiment in Chapter 3 was that the stimuli were

simple, synthetic sounds. Although this allowed for straightforward manipulation of

the sound, it could be argued that the perception of and responses to those stimuli do

not accurately represent everyday listening situations. The goal of the second

experiment was to test spatial salience in a more ecologically valid scenario.

4.2. Method

The experimental procedure was inspired by Huang and Elhilali (2017), who tested

salience of sound events in two competing scenes. The participants heard one scene in

each ear, and were asked to continuously indicate which one they were focusing on.

For that, they used a mouse and a visual interface like in Figure 4.1.

A similar procedure was used here, but with stimuli arriving from different locations
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Figure 4.1: Graphical interface used in the ex-

periment of Huang and Elhilali (2017). Parti-

cipants were asked to move their mouse to the

left or right area, depending on which scene

they were attending to.

all around the listener instead of just left and right. Additionally, it can be argued that

the situation would be more realistic if competition for attention was between sound

events, rather than full scenes, presented dichotically. Therefore, different locations in

this experiment did not correspond to different scenes, but rather to events. Similarly

to Huang and Elhilali (2017), the participants were asked to indicate, in real time, to

which location in the scene their attention was directed. To do that, they used a

joystick, and no visual display was provided, partly to avoid forcing participants to

focus their attention on a display in front of them. Participants were allowed to move

their heads slightly, but were reminded to indicate the location of the sound in

relation to the room, rather the direction they were facing.

The experiment by Huang and Elhilali (2017) used recordings of different types of

existing sound scenes. However, using recordings of full scenes would make

manipulation of experimental variables difficult, so here the scenes were designed

from individual sounds instead. They consisted of a steady background and two

types of events: distractors and targets. The experiment checked how often

participants paid attention to targets, while responses to distractors were not analysed

(they were effectively treated as part of the background). The position in time of

distractors was randomised but was the same for all participants. The position of

targets was randomised for each participant separately, in an attempt to average out
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any interactions between specific distractors and targets.

The experiment was a full-factorial repeated-measures design with the following

independent variables:

• loudness (2 levels)

• spectral centroid (2 levels)

• location (4 levels)

• semantic category (3 levels)

• background (2 levels)

This results in 96 different conditions. Because habituation to a particular sound might

make it less salient (as it is less surprising), it was crucial not to use the same stimulus

more than once. For this reason, 96 different sound events were used as targets.

Because this design relies on accurate localisation of targets, a baseline experiment

was conducted directly after the main experiment, with the same target stimuli and

the same reproduction method, but with no background or distractors. The

participants were asked to indicate which direction each target was coming from, as

soon as they heard it, and to return to the centre after the sound was over. This

allowed collection of baseline data which indicated individual localisation accuracy.

4.2.1. Reproduction system

The stimuli were reproduced over a 2nd order ambisonic system, using the Higher

Order Ambisonic Library Matlab toolbox (Politis 2016). The reproduction system was

8 loudspeakers arranged in an octagon, at ear-level (see Fig. 4.3). The background was

not ambisonic but rather an 8-channel signal sent directly to the loudspeakers. All

sounds were reproduced with 44100 Hz sampling frequency.
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4.2.2. Target sounds

Targets were short clips from recordings of real-world sounds (from Font, Roma and

Serra (2013), BBC Sound Effects Library (2018) and Xeno-canto (n.d.)), on average 3

seconds long. Time spacing between consecutive stimuli varied randomly from 2 to 4

seconds. The stimuli belonged to three different semantic categories, which were

determined based on the soundscape taxonomy established in a sorting experiment

by Bones, Cox and Davies (2018). The categories were: nature (subcategory: animals),

people (subcategory: voices, which did not include speech), and manmade (subcategory:

industrial). All target sound clips used in this experiment are listed in Appendix A.

The spectral centroid represented an objective measure of the perceived brightness of

the sound, and was calculated as:

SC =
∑N

n=1 f (n)Y(n)

∑N
n=1 Y(n)

(4.1)

where Y(n) is the amplitude of the nth bin of the spectrum, and f (n) is the centre

frequency of that bin. To avoid any artefacts that come with filtering, and the risks of

unnatural sounding stimuli, sound spectra were not manipulated directly. Instead,

sound events were chosen so that their spectral centroid falls within one of two

groups: 1000-2500 Hz or 4000-5500 Hz. Recordings were chosen not to have

significant background noise that could influence the value of the spectral centroid.

The short-term loudness of sound was calculated using the Dynamic Loudness Model

(Chalupper and Fastl 2002) available through the PsySound3 toolbox in Matlab

(Cabrera et al. 2008). Rennies, Verhey and Fastl (2010) found this model equally good

as the loudness model for time-varying sounds by Glasberg and Moore (2002), and

’slightly better’ for spectrally varying sounds. It is also significantly more time

efficient. As an indication of the loudness of each sound, the maximum of

time-smoothed short-term loudness was used (STL window = 2 ms, smoothing

window = 100 ms). Sound level was manipulated to create two levels with loudness
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Figure 4.2.: Stimuli used in the experiment. Database corresponds to two stimuli groups, used

with different backgrounds. Colors indicate one of the three semantic categories. Recordings

were chosen to fall within the two spectral centroid levels, and then their loudness was manip-

ulated, while keeping the pairs of brightness groups as similar as possible.

means 8.4 and 14.4 sones, and standard deviation of 0.2 sones. These two levels

correspond to the loudness of a 1kHz tone at about 70 and 78 dB SPL. Each sound was

assigned to either one of the two levels in a way that minimised mean and variance

differences between brightness levels. Fig. 4.2 shows all targets on the

loudness-brightness spectrum.

Targets were positioned in one of four 30° areas (cones in Figure 4.3a) around the

listener: front, back, right and left. The exact location of stimuli varied randomly

within these areas. The choice of cone width was guided by a trade-off: on one hand,

it would be best to avoid the borders between areas (e.g. 45° front/right border),

where small localisation errors would be more problematic. On the other hand, from

the perspective of scene realism, the cones should be wide enough so that the targets

do not always appear at the exact same location. Additionally, 10° cones around the
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front and back locations were excluded (see Figure 4.3a). The location of each target

was determined randomly for each participant, while keeping the number of targets

in each area equal. Elevation was always the same, at approximately ear level.

(a) Grey areas show cones where target

sounds were localised

(b) Loudspeaker positions; distractors and

background were played from all loud-

speakers.

Figure 4.3.: Target locations and experimental setup.

4.2.3. Scenes

Participants were presented with two different sound scenes, each about 5 minutes

long, each with a different background sound and distracting events. Targets were

divided into 2 balanced groups (this is represented by different shapes in Figure 4.2)

and each group was played over one of the backgrounds. The 2 targets/backgrounds

combinations, as well as the order of the scenes, were randomised between

participants.

In the first scene (“speech”), the background was steady babble noise with distracting
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louder speech excerpts, recorded by Al Noori, Duncan and Li (2017). The speech was

present in all 8 loudspeaker channels, with an equal number of male and female

speakers in each channel. The speech clips were 5 seconds long, with on average 2

seconds of silence in-between, in each channel. Most of the time, there was more than

one talker present at the same time, but never in the same channel. The speech was in

9 different languages and participants were asked about their knowledge of these

languages in a questionnaire after the test (12 reported no knowledge of these

languages whatsoever, 5 – knowing a few words in one of them, 1 – knowing a few

words in 6 of them; no one reported knowing any of the languages well). The speech

was originally recorded with 16000 Hz sampling frequency. For reference, the

spectrum of the “speech” background is shown in figure 4.4.

Figure 4.4.: Spectrograms of the “speech” background. Each row represents one channel. The

horizontal axis represents time in seconds, and the the vertical axis shows frequency in Hz.

The other scene (“nature”) had a steady wind sound as background, and distracting

sound events from the semantic category “nature”, but different subcategories than
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the targets: 48 were sounds of insects, 32 – leaves and branches, and 16 – water, all

spread evenly across all 8 loudspeaker channels. These distractors were distributed

over the background in a similar manner as the target events, with one or two

distractors present at any given time, and 2-4 s breaks in-between. Some, but not all

distractors overlapped with targets. Average background loudness was 4.3 sones, and

average distractor loudness was 11 sones. The spectral range of distractors was quite

wide, ranging from 780 Hz to 13600 Hz (median: 4838 Hz). Figure 4.5 shows the

spectrum of this background.

Figure 4.5.: Spectrograms of the “nature” background. Each row represents one channel. The

horizontal axis represents time in seconds, and the the vertical axis shows frequency in Hz.
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4.3. Results

15 volunteers took part in the experiment, 8 male and 7 female, mean age = 28.3, 13

right-handed and 2 left-handed.

4.3.1. Data preprocessing

Figure 4.6 shows an example of raw data collected from the joystick movements of

one of the participants in the baseline experiment.

A target event was considered attended to (a "hit") if, within a certain time window

(acceptance window), the joystick was in the quadrant of the event. Thus, two things

needed to be decided: limits of the acceptance window and the size of each quadrant.

Both were determined from the baseline experiment.

No participants responded within the first 400 ms of any event, so this value was

chosen as the lower limit of the acceptance window. We assume this to be the

minimum time required for the cognitive and motor functions necessary to give a

response in this setting. The upper limit of the window was set to 2 s, with which all

participants were very close to their best localisation performance. A longer window

could overlap with subsequent targets, and a shorter one would miss a larger portion

of the attended events.

The joystick area was divided into quadrants, each including one of the areas where

targets were present, and also allowing for localisation errors around these areas

(analysis quadrants were 90° wide, while target areas – only 30°). Because participants

were instructed to keep the joystick in the centre if they were unsure what they were

listening to, this area had to be removed from analysis. Analysis of joystick

movements in the baseline experiment showed that the result is not very sensitive to
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the size of the central area (until it becomes close to the size of the whole joystick area).

Figure 4.6 shows the chosen centre area and response quadrants.

Figure 4.6: Raw joystick move-

ment data for one of the baseline

experiment participants. Each dot

is one joystick position sampled

at regular time intervals. The

dots are partly transparent, so

the darker the region, the more

data points there are. Solid black

lines show how the space was

divided into quadrants and the

centre area.

4.3.2. Localisation errors

Average localisation accuracy in the baseline experiment varied from 68% to 100%

between participants, indicating that, despite removing direct front and back locations

from playback, localisation errors were still an issue. This accuracy was different for

different sound locations, on average: 79% for the front, 81% for the back, and 99% for

left and right. As was expected, the main difficulty lied in localising sounds

positioned in the front and back, while sounds on the left and right were localised

almost perfectly. The data were analysed with Generalised Linear Mixed Model

(GLMM) regression, with a binomial distribution and logit link (a mixed logistic

regression). Using participant as a random variable made it possible to analyse

experimental conditions isolated from differences between participants. The statistical
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model confirmed that none of the other factors (loudness, brightness, category) had an

effect on localisation accuracy – see Table 4.1.

Fixed effects Est. SE Z p-value

(Intercept) 1.88 0.37 5.02 <0.0001 ***

Channel - right 4.09 0.72 5.67 <0.0001 ***

Channel - back 0.16 0.20 0.81 0.416

Channel - left 4.79 1.01 4.76 <0.0001 ***

Loudness - loud −0.14 0.20 −0.70 0.483

Brightness - high 0.02 0.20 0.10 0.920

Category - manmade −0.24 0.24 −0.99 0.322

Category - nature −0.24 0.24 −0.99 0.322

Background - nature −0.14 0.20 −0.70 0.483

Random effect: Participant

Number of groups 15

Standard deviation 0.98

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.1.: Mixed effects generalized linear regression results on localisation accuracy data in

the baseline experiment (distribution: binomial, link function: logit). The estimates shown are

on the log scale. Formula used in the model: Correct ∼ 1 + Channel + Loudness + Brightness +

Category + Background + (1 | Participant).

These localisation errors will likely influence the main experiment responses as well.

The following section discusses how these these errors could be disentangled from

effects of attention and distraction.

4.3.3. Main experiment

The total percentage of target sounds attended varied among participants, with an

average of 64% and a standard deviation of 10%.
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To study the effects of experimental variables on the hit/miss responses, data from the

baseline and main experiments were pooled together, forming a new variable in the

analysis – experiment type. By looking at interactions between the experiment type

and other variables, it can be seen if adding distracting sounds – in other words,

introducing attentional effects – had an effect on any of these variables.

Again, a Generalised Linear Mixed Model (logit link, binomial distribution) was fitted

with participant as a random effect, and 2-way interactions between the experiment

type and the other independent variables (loudness, brightness, location, category

and background type). The results are shown in Table 4.3. Wald tests reveal significant

interaction effects between experiment type and loudness, and between experiment

type and location.

Analysis of contrasts confirms that participants were 1.7 times more likely to attend to

loud than to quiet targets in the main experiment (p < 0.0001), while no effect is

observed in the baseline. This is to be expected, as louder sounds will be more salient,

but loudness should not affect localisation.

Comparison of contrasts between different locations shows the same significant

differences for main and baseline experiments: front/right, front/left, back/right,

back/left. These differences appear to be mainly due to localisation errors. All of

these effects, however, are smaller for the main experiment than the baseline. The

effect of experiment type on responses to different locations can be seen on Figure 4.7.

Clearly, the ’hit rate’ in the main experiment is generally lower than in the baseline,

because in the former, participants were not asked to attend to target sounds and

there were distractors. The general trend looks similar in both experiments, with more

’hits’ to the sounds on the right and left, and fewer for front and back.

To see if there were any interactions between independent variables, the main

experiment data was analysed separately from the baseline data. A GLMM model
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Figure 4.7.: Responses to sounds in different positions for the baseline localisation experiment

(left panel) and the main experiment (right panel). Boxplots show the medians, 25th and 75th

percentiles of hit scores calculated for a particular condition and for each participant.

Figure 4.8.: Probability of attending to sounds in different positions in the main experiment

estimated from the model in Table 4.2, split by brightness of the sound. Error bars show 95%

confidence intervals. Based on model in Table 4.2.
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with the best fit based on the Akaike information criterion (AIC) included one

interaction: location/brightness (see Table 4.2). The model indicated that brightness

significantly changed responses to front and back locations. Analysis of contrasts

shows that in the main experiment, although no significant differences were found for

low brightness targets in front and back, there is a significant difference between high

brightness targets presented in front and back locations, with sounds in front being

more salient – see Figure 4.8.

Fixed effects Est. SE Z p-value

(Intercept) −0.89 0.23 −3.89 <0.0001

Location - right 1.76 0.25 7.12 <0.0001 ***

Location - back 0.41 0.22 1.85 0.064

Location - left 1.66 0.24 6.81 <0.0001 ***

Brightness - high 0.62 0.22 2.83 0.005 **

Loudness - loud 0.55 0.12 4.54 <0.0001 ***

Category - manmade 0.32 0.15 2.14 0.033 *

Category - nature 0.22 0.15 1.47 0.142

Background - nature 0.29 0.12 2.41 0.016 *

Location-right:Brightness −0.59 0.35 −1.68 0.094

Location-back:Brightness −1.03 0.31 −3.31 0.001 **

Location-left:Brightness −0.32 0.35 −0.92 0.357

Random effect: Participant

Number of groups 15

Standard deviation 0.43

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.2.: Coefficient estimates, standard errors, Z statistics and p-values of the interactions

in a GLMM model (binomial distribution, logit link function) fitted with main experiment data.

The estimates shown are on the log scale. Model formula: Correct ∼ 1 + Channel + Brightness

+ Loudness + Category + Background + Channel∗Brightness + (1 | Participant).

The model also confirms a significant main effect of loudness (p < 0.0001), and
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suggests that there is a significant effect of background type, with higher probability

of attending to targets in the nature background. This is perhaps not surprising, as

compared to speech, the nature background was more sparse, with less activity from

sound sources. Figure 4.9 shows both of these effects.

(a) Effect of loudness (b) Effect of background type

Figure 4.9.: Probability of attending to target sounds in the main experiment, based on model

in Table 4.2. Error bars show 95% confidence intervals.

There are significant differences between sound categories, with the

manmade/industrial category being more likely to be attended to than the

muman/voices category. Note, however, that after a Tukey p-value correction, none of

the pairwise contrasts between the three categories are statistically significant. A

difference between categories could point to an influence of semantic meaning on

salience. However, it is worth keeping in mind that, while the targets were balanced

on the loudness and brightness scales, there might be other acoustic properties of the

sounds which vary between the categories.
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Fixed effects Est. SE Z p-value

(Intercept) 1.66 0.29 5.38 < 0.0001

Channel - right 3.91 0.72 5.42 < 0.0001 ***

Channel - back 0.15 0.19 0.77 0.444

Channel - left 4.61 1.01 4.56 < 0.0001 ***

Loudness - loud −0.12 0.19 −0.66 0.509

Brightness - high 0.02 0.19 0.09 0.925

Category - manmade −0.22 0.23 −0.93 0.351

Category - nature −0.22 0.23 −0.93 0.351

Background - nature 0.12 0.19 0.66 0.509

Experiment - main −2.02 0.31 −6.50 < 0.0001 ***

Experiment:Background 0.17 0.22 0.74 0.458

Category-manmade:Experiment 0.53 0.28 1.93 0.054

Category-nature:Experiment 0.43 0.28 1.57 0.116

Brightness:Experiment 0.11 0.22 0.51 0.613

Loudness:Experiment 0.68 0.22 3.01 0.003 **

Location-right:Experiment −2.43 0.74 −3.27 0.001 **

Location-back:Experiment −0.25 0.25 −1.03 0.302

Location-left:Experiment −3.11 1.03 −3.03 0.002 **

Random effect: Participant

Number of groups 15

Standard deviation 0.51

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.3.: Coefficient estimates, standard errors, Z statistics and p-values of the interac-

tions in a GLMM model (binomial distribution, logit link function) including ’experiment’ as

a variable (main vs baseline). Note that the main purpose of this model is to show how

the main experiment interacted with other variables. The estimates shown are on the log

scale. Model formula: Hit ∼ 1 + Channel + Loudness + Brightness + Category + Back-

ground + Experiment + Channel∗Experiment + Loudness∗Experiment + Brightness∗Experiment

+ Category∗Experiment + Background∗Experiment + (1 | Participant)
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4.4. Summary

The experiment described in this chapter tested auditory salience under a natural

listening situation, in which participants reported their attention in real time. Loud

sounds and sounds in the category industrial were found to be more salient. An

interaction was also found between brightness of a sound and its spatial location.

Further discussion of these results can be found in Chapter 13.
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5
Salience with perceptual load

5.1. Introduction

As discussed in Chapter 2, the salience of an auditory stimulus can interact with the

perceptual load of the listener. When the load is low, it is likely that the majority of

sounds, even if not very salient, will be noticed. On the other hand, when the load is

high, and the listener has little free perceptual capacity, only the most salient stimuli

will emerge. Therefore, it is possible that some salience differences are difficult to

detect at low load levels. The following chapter investigates if any spatial salience

effects arise with sufficiently high perceptual load.

This chapter describes a dual-task experiment in which participants were asked to

perform two simultaneous tasks, prioritizing one of them (the primary task), while

responses to the secondary task gave an indication of how salient the stimuli involved

in the secondary task were. The higher stimulus salience, the easier it should be to

detect it, even while engaged in the primary task.

Duangudom and Anderson (2013) proposed using an auditory dual-task experiment

to determine the salience of the secondary stimulus, which was varied by changing
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the strength of an amplitude modulation of the sound. In their case, the primary task

involved counting low tones in a stream of high and low ones, and the secondary task

was a detection task among interferers. While these authors varied the salience of the

stimulus, here, it is the difficulty of the primary task that was varied, which

influenced perceptual load under which participants are. It is expected that increasing

perceptual load will make the target stimulus more difficult to detect. The two

research questions asked in this chapter are:

1. Does the secondary target position influence how likely it is to be detected in a

dual-task experiment, regardless of perceptual load?

2. Does increasing perceptual load lead to some differences in salience emerging

between different spatial positions?

5.2. Method

The experiment was based on the method of Remington and Fairnie (2017), but

changed to better reflect natural listening conditions. It is an auditory dual-task

paradigm, where the primary task is to identify which one of the two known sounds

is present in a scene (potentially among other irrelevant sounds), and the secondary

task is a detection of a known stimulus.

The primary target stimuli were recordings of a motorcycle and a lorry, and one of

them (but only one) was present in all of the scenes. The participants completed a

training session before the experiment to make sure they could consistently

differentiate between the two targets. Perceptual load was manipulated by adding

task-irrelevant sounds: a plane, a drill, a dog barking, a bus and a train. There were 4

perceptual load conditions: 1, 2, 4 or 6 simultaneous sounds (including the primary

target sound). All of these sounds were 3 s long and loudness-equalised.
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In addition to this, 50% of the trials included a distinctive sound of an ice-cream van

melody, which served as the secondary target. The level of this secondary target was

adjusted individually between a few different sound levels (below or at the level of

other sounds), so that it was the lowest sound level at which their performance for the

secondary task only was at least 90%. This allowed for a level of normalisation to

individual ability to detect the secondary target.

Scenes were reproduced over a 2nd order Ambisonic system, and the stimuli were

placed around the listener as shown in Fig. 5.1, and on the same vertical level. Note

that none of the sounds, including the secondary target, ever spatially overlapped

with other sounds.

Figure 5.1.: Spatial positions of primary and secondary targets. If there were fewer than 6

primary sounds present, their locations were chosen randomly.

Trials were presented in blocks, and each block only contained trials from one

perceptual load level. The order of the blocks was randomised and reverse

counterbalanced (e.g. if a participant heard the block with 2 sounds first, followed by

1, 6 and 4, they then heard them these blocks again in reverse order: 4, 6, 1, 2).

The participants sat in an acoustically treated room, surrounded by loudspeakers, and
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in front of a screen and a keyboard. On each trial, a 3 s long sound scene was

presented, and a message on the screen instructed the participant to respond, as

quickly as possible, if they heard a motorcycle or a lorry. They responded by pressing

one of two buttons on a keyboard (each of the two buttons had a sticker with an image

of either a motorcycle or a lorry). As soon as they pressed the button, the sound clip

was stopped. Then, the second screen was shown, asking whether an ice-cream van

sound was present or not. The screen stayed visible until the participant responded

with a button press, at which point the experiment continued with the next trial.

Participants were informed in advance of the two tasks, and had a chance to practice

each one separately and both together. They were instructed that the primary task was

more important and they should prioritize it. Finally, after the main experimental part,

each participant performed a short “control” experiment, in which they listened to the

same scenes, but were only performing the detection task (ice-cream van sound).

In addition to gathering behavioural responses and response times, pupil dilation

responses were also measured. Introducing a physiological measure can offer a more

direct way of measuring responses to sounds, which bypasses the need for conscious

behavioural responses from participants. Pupil dilation responses have also been

established as a measure of cognitive effort, so they could help to confirm the effect of

adding sound sources on perceptual load.

25 volunteers took part in the experiment, mean age 24.8 (ranging between 18 and 46).

Pupil dilation was measured for 15 participants.
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5.3. Results

5.3.1. Behavioural data – increasing set size

First, it was important to confirm the assumption that increasing the number of

sounds in a scene (i.e. increasing the set size variable) would cause an increase in

participants’ perceptual load. This can be done by analysing how increasing the set

size changed task performance in the primary task.

Fig. 5.2 shows the response times and the proportion of correct responses in the

primary task. There is a clear increase in response times and a decrease in the

proportion of correctly identifying the primary target, which suggests that increasing

the number of sounds in a scene did increase perceptual load for participants. This is

confirmed by a Generalised Linear Mixed Model (GLMM), with response times (in

milliseconds) as a dependent variable, participant as a random variable, and set size as

an independent discrete variable with 4 levels, as shown in Table 5.1. An analysis of

contrasts with a Tukey p-value correction reveals that response times for all pairs of

set sizes were significantly different from each other (all p < 0.0001). A mixed-effects

logistic regression with correct primary task response as the outcome variable

(correct/incorrect), participant as a random variable, and set size as a discrete

independent variable, shows a very similar pattern (see also Table 5.1). Analysis of

contrasts, with a Tukey adjustment, shows that task performance for all pairs of set

sizes, except between set size 1 and 2, was significantly different (p < 0.0001). Based

on this, it can be concluded that increasing the number of sounds in a scene caused a

significant, gradual increase in perceptual load, manifested as increased task difficulty.

Fig. 5.3 (in black) shows participants’ performance in the secondary task. Each data

point in the box plots represents the proportion of correct responses in the specific set

size for one participant (therefore the variance represents variability between
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Figure 5.2.: Response times and proportion of correctly identified targets in the primary task.

participants). Similarly to the primary task, there is a steady decline in the secondary

task performance as perceptual load increases.

To ensure that the perceptual load effects, and not just energetic masking influenced

secondary target detection, secondary (detection) task performance in the main

experiment was compared to the control experiment, where participants only

performed the detection task. As can be seen in Fig. 5.3 (in grey), proportion correct

for the detection-only trials shows a slight decline from size 2 onwards, suggesting

that there may have been some masking effects for the two larger set sizes. A

mixed-effects logistic regression with participant as a random effect, set size and

experiment (detection-only/dual-task) as independent variables, and the detection task

response outcome (correct/incorrect) shows a significant interaction between the two

independent variables (see Table 5.2). This confirms that introducing the primary task

significantly decreased secondary (detection) task performance, and therefore that a

significant portion of this set size effect can be attributed to effects other than energetic

masking.
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Dependent variable:

Proportion Correct RT [ms]

Fixed effects Est. SE z value Est. SE t value

(Intercept) 4.37 0.27 16.33 *** 2197.6 14.5 151.54 ***

Set size 2 −0.48 0.22 −2.18 * 363.2 11.6 31.26 ***

Set size 4 −1.65 0.19 −8.54 *** 962.7 12.3 78.38 ***

Set size 6 −2.19 0.19 −11.66 *** 1403.7 11.7 120.52 ***

Random effect: Participant

Number of groups 25 25

Standard deviation 0.99 229.2

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.1.: GLMM regression results for two outcome variables of the primary task: proportion

correct (binomial distribution, logit link function) and response times (inverse gaussian distri-

bution, identity link function). The estimates of the binomial model shown are on the log scale.

Set size was treated here as a categorical variable. Model formulas (identical except for the

dependent variable): PC/RT ∼ 1 + SetSize + (1|Participant).

5.3.2. Behavioural data – target position

Fig. 5.4 shows the proportion of correct detections of the secondary target for different

target positions. In order to analyse the effect of the position of the secondary target,

target position, which is in effect a circular variable, was transformed into its sine and

cosine components, representing the target’s positioning on the left/right and

front/back axis, respectively (see Fig. 5.5). Thanks to this, the target position, which is

a circular variable, can be incorporated into the statistical models in a more

meaningful way than if it were 6 separate categorical levels. It should also make the

interpretation of any interactions much more straightforward.
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Figure 5.3.: Secondary task performance in the control (detection task only) and main (dual-

task) experiment. Left pane shows the summary of task performance for each participant, and

the right pane the overall estimated probability of detecting the secondary target, with 95% con-

fidence intervals. Although the control test shows a slight decline, the decrease in the dual-task

condition is significantly larger.

A mixed-effects logistic regression model was used with the response to the secondary

task (correct/incorrect) as the dependent variable, participant as a random variable,

and independent variables: set size, sin(position) and cos(position). Finally, 2-way

interactions between set size and the two positional variables, sin(position) and

cos(position), were included, to see if any positional effects are modulated by

perceptual load. The results of this model are shown in Table 5.3. 1

1Note that this statistical analysis only uses the trials with the secondary target present, because for

other trials “target position” is meaningless. This means there are only true positives and false

negatives – one can measure sensitivity but not specificity.
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Fixed effects Estimate 95% CI SE z value p-value

(Intercept) 4.36 [ 3.87, 4.88] 0.26 16.95 <0.001 ***

Set size −0.33 [−0.42,−0.24] 0.05 −7.15 <0.001 ***

Experiment – main −0.56 [−1.04,−0.11] 0.24 −2.38 0.017 *

Set size:Experiment −0.13 [−0.23,−0.03] 0.05 −2.59 0.010 **

Random effect: Participant

Number of groups 25

Standard deviation 0.70

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.2.:Results of a GLMMmodel (binomial distribution, logit link function) on the secondary

task performance. Estimates are on the log scale. Set size was modelled here as a continuous

variable. Model formula: SecondaryCorrect ∼ 1 + SetSize + Experiment + SetSize ∗ Experiment

+ (1 | Participant)

The model shows a significant interaction between set size and sin(position), but not set

size and cos(position). This suggests that increasing perceptual load modulated target

detection on the left-right axis, but not front-back. More specifically, a

Johnson-Neyman analysis (Johnson and Neyman 1936) reveals that the slope of

sin(position) is significant for set size values smaller than 2.6 and larger than 7.8. At set

sizes 1 and 2, therefore, participants detected the target more often when it was on the

right, but this effect disappeared at set sizes 4 and 6. For the lowest set size, target on

the right was about 2 times more likely to be detected as target on the left, and for

set size = 2, this ratio was 1.7. Fig. 5.6 shows the Johnson-Neyman plot and estimated

probabilities for all tested set sizes and a range of sin(position) values.

As mentioned before, there was no significant interaction between set size and

cos(position). However, because a regression model with interactions does not show

main effects for the variables involved in interactions – but rather their conditional
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Figure 5.4.: Proportion of correctly detecting if secondary target is present or not, for different

set sizes and secondary target positions (NA – trials with no secondary target).

Figure 5.5: Positions of the secondary target

and their corresponding sine and cosine values.

Positive sine values indicate positions to the

right of centre, and negative – to the left. Posit-

ive cosine values represent positions in front of

the listener, negative – in the rear.
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Interaction model Main effects model

Fixed effects Est. SE z-value Est. SE z-value

(Intercept) 3.82 0.25 15.46 *** 3.83 0.25 15.54 ***

SetSize −0.45 0.03 −15.21 *** −0.45 0.03 −15.40 ***

sin(Position) 0.45 0.19 2.41 * 0.45 0.19 2.41 *

cos(Position) −0.19 0.19 −0.99 −0.33 0.07 −4.41 ***

sin(Position):SetSize −0.10 0.04 −2.43 * −0.10 0.04 −2.43 *

cos(Position):SetSize −0.03 0.04 −0.84

Random effect: Participant

Number of groups 25 25

Standard deviation 0.996 0.995

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.3.: Results of GLMM models (binomial distribution, logit link function) with and without

the interaction term between cos(Position) and the set size variable. The dependent variable

in both was correct/incorrect response in the secondary task, estimates are on the log scale.

Note that in the main effects model cos(position) represents a main effect, while in the in-

teraction model, it shows a conditional effect (when SetSize = 0). Interaction model for-

mula: SecondaryCorrect ∼ 1 + sin(Position) + cos(Position) + SetSize + sin(Position)∗SetSize +

cos(Position)∗SetSize + (1 | Participant). Main effects model formula: SecondaryCorrect ∼ 1 +

sin(Position) + cos(Position) + SetSize + sin(Position)∗SetSize + (1 | Participant).

effects, here: when set size = 0 – it is not possible based on this model alone to

determine whether there is a main effect of cos(position). Therefore, another logistic

regression model is fitted, identical but without the non-significant interaction (also

shown in Table 5.3). The result indeed shows a significant main effect of cos(position),

which suggests that in general, the secondary target behind the participant was 1.9

times more likely to be detected than the target in front of them.
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Figure 5.6.: Left: estimated probabilities of detecting the secondary target for different set sizes

and target positions on the left-right axis (-1 is most to the left, and 1 is most to the right). Right:

a Jonhson-Neyman plot for the interaction between set size and sin(position). Sin(position) has

a statistically significant positive slope for set sizes below 2.6. Shaded areas show 95% confid-

ence intervals.

To summarise, these results indicate that in this dual-task experiment, the secondary

target was easier to detect when it was behind the listener than when it was in front,

and this effect was not modulated by perceptual load. In addition, at the two lowest

load levels, participants were more likely to detect sounds on the right than sounds on

the left, and this effect disappeared with increased perceptual load.

5.3.3. Pupillometry

Pupil dilation responses (PDR) was recorded using the Pupil Labs eye-tracking

headset and software (Kassner, Patera and Bulling 2014). Before a statistical analysis,

the raw recorded pupil dilation data were pre-processed following a method

described in Kret and Sjak-Shie (2019). The procedure was as follows:
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1. Remove values with confidence < 0.6. Each measurement point recorded by

Pupil Labs has a confidence value, which represents the quality of the

measurement.

2. Remove values outside of the valid range of pupil sizes: smaller than 1.5 mm

and larger than 9 mm.

3. Detect blinks based on a speed filter and remove corresponding data points.

4. Detect outliers via residuals analysis and remove corresponding data points.

5. Resample data to 1000 Hz and interpolate missing data points, where a group of

missing values is not larger than 500 ms. For larger groups, set these data points

to invalid.

6. Smooth data out by low-pass filtering at 4 Hz.

7. If data were recorded for both eyes, choose the eye with a larger fraction of valid

data points.

8. Then, cut pupil dilation recordings into segments, which start at the beginning

of each trial (sound scene) and last 4 s.

9. For each trial, a baseline pupil dilation level was calculated as the average

dilation for 200 ms before the trial start.

10. Set trials with more than 30% of invalid data points as not valid and removed

from the dataset.

11. Finally, calculate mean and maximum dilation for each valid segment.

Fig. 5.7 shows the average PDR for all 4 set sizes, and the shaded area shows the time

segment over which statistics (mean, maximum) were calculated.

A linear mixed-effects model with set size as independent variable (see Table 5.4)

shows that, compared to set size 1, there is an increase in neither peak nor mean PDR

for set size 2, however, set sizes 4 and 6 cause a significantly larger PDR. An analysis

of contrasts shows that there is no significant difference between mean PDR for set

sizes 4 and 6 (p = 0.652), however there might be a difference between peak PDR for
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Figure 5.7: Averaged pu-

pil dilation responses for

all participants and differ-

ent set sizes, aligned to

start of trial. Shaded area

shows the segment over

which mean and peak

PDR were calculated.

these set sizes (p = 0.039). Generally, there seems to be an increase in PDR with

increasing set size, but it’s not as linear and gradual as observed in behavioural

performance metrics.

As in the previous section, an analysis of target position on PDR was performed.

Mixed-effects linear models with cos(position) and sin(position) on mean and peak PDR

show that there is no interaction between the positional variables and any of the set

sizes (see Table 5.5). There is also no main effect of either sin(position) or cos(position)

on mean or max PDR. 2

In this experiment, there was no effect of target sound position on pupil dilation

responses, regardless of perceptual load.

2Note that because of the evident lack of a linear relationship between set size and PDR, set size is

coded in these models as a discrete variable with 4 levels.
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Dependent variable:

Mean PDR Peak PDR

Fixed effects Est. [mm] SE z-value Est. [mm] SE z-value

(Intercept) 0.800 0.045 17.64 0.981 0.061 15.97

Dilation baseline −0.191 0.008 −23.16 *** −0.153 0.011 −13.36 ***

Set size 2 0.002 0.010 0.17 0.005 0.014 0.37

Set size 4 0.063 0.010 6.05 *** 0.083 0.014 5.80 ***

Set size 6 0.050 0.010 4.85 *** 0.044 0.014 3.07 **

Random effect: Participant

Number of groups 15 15

Standard deviation 0.13 0.17

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.4.: Results of two Linear Mixed Models, with mean PDR (left column) and peak PDR

(right column) as outcome variable. Model formulas: PDR∼ 1 + PupilBaseline + SetSize + (1|Par-

ticipant).
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Interaction model Main effects model

Fixed effects Est. [mm] SE z-value Est. [mm] SE z-value

(Intercept) 0.801 0.053 15.01 *** 0.799 0.05 15.01 ***

Dilation baseline −0.187 0.011 −16.61 *** −0.186 0.011 −16.61 ***

SetSize 2 −0.017 0.014 −1.19 −0.017 0.014 −1.18

SetSize 4 0.048 0.014 3.34 *** 0.048 0.014 3.34 ***

SetSize 6 0.039 0.015 2.69 ** 0.039 0.015 2.69 **

sin(Position) −0.004 0.014 −0.27 −0.005 0.007 −0.65

cos(Position) 0.0002 0.014 0.01 −0.0002 0.007 −0.03

sin(Position):SetSize 2 −0.005 0.020 −0.25

sin(Position):SetSize 4 −0.005 0.020 −0.27

sin(Position):SetSize 6 0.007 0.020 0.33

cos(Position):SetSize 2 −0.011 0.020 −0.57

cos(Position):SetSize 4 0.013 0.020 0.65

cos(Position):SetSize 6 −0.003 0.020 −0.17

Random effect: Participant

Number of groups 15 15

Standard deviation 0.12 0.12

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.5.: Results of two mixed linear models, in which the outcome variable was mean PDR,

with andwithout interaction termswith the set size variable. Note that in themain effectsmodel

sin(position) and cos(position) represent main effects, while in the interactionmodel, they show

conditional effects (when SetSize = 0). Interactionmodel formula: MeanPDR∼ 1 +PDRBaseline

+ SetSize + sin(Position) + cos(Position) + sin(Position)∗SetSize + cos(Position)∗SetSize + (1 |

participant). Main effects model formula: MeanPDR ∼ 1 + Baseline + SetSize + sin(Position) +

cos(Position) + (1 | participant)
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5.4. Summary

This chapter described a dual-task auditory experiment designed to test spatial

auditory salience under different levels of perceptual load, which was manipulated by

changing the difficulty of the primary task. Behavioural responses to the secondary

task revealed small, but statistically significant effects of spatial position of the target.

In particular, an effect which was not diminished by perceptual load, and therefore

could perhaps be attributed to stimulus salience, indicated that target sounds

positioned behind the listener were about 2 times more likely to be detected than

those in front.

These results are discussed in Chapter 13.
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6
Context and expectations

6.1. Introduction

As discussed in Chapter 2, distraction happens – at least partly – when one’s attention

is involuntarily drawn away from a task by an irrelevant stimulus. In other words,

auditory deviants cause attentional orienting away from the primary object of focus,

which causes distraction. Therefore, if salience is defined as the ability to draw

attention, it can be assumed that sounds which cause more distraction are more

salient.

A classic distraction experiment involves subjecting participants to a stream of sounds,

most of which are repeating and predictable – standards – and a small percentage are

different and unexpected – deviants. Distraction by deviant sounds has been

demonstrated in visual, audio-visual and auditory experiments. Usually, the

distraction is measured as prolonged response times on a task. Deviant sounds also

elicit brain responses such as MMN (deviance detection) and P3a (attention switch).

For example, in a distraction experiment with an auditory task, deviant frequency

tones elicited both MMN and P3a, whereas MMN was present even when the task
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was ignored (deviance detection worked but there was not attention switching)

(Schröger, Giard and Wolff 2000).

These types of paradigms can be described as creating expectations for the listener

(standard sound) and breaking them (deviant sound), which causes automatic attentional

orienting, manifesting as distraction. These expectations can be about different

characteristics of the stimulus. Originally, most distraction experiments were based on

a visual task and auditory distractor. For example, a visual classification test

(even/odd) with auditory distractors (tones or noise) (Parmentier et al. 2011), or a

visual recognition test (left and right arrows) and repeating tone patterns as

distractors (Nöstl, Marsh and Sörqvist 2012).

Schröger and Wolff (1998) proposed a fully auditory paradigm for measuring

distraction, where two different dimensions of the same sound serve as target and

distractor. In their experiment, the target was length of the sounds (short or long), and

the distraction was caused by unexpected changes in pitch. This paradigm was later

adapted to spatial location instead of pitch (Roeber, Widmann and Schröger 2003), so

that the standard sound was always in the same location (left or right of the listener),

and occasional deviants in the other one. Indeed, when tones appeared in an

unexpected location, this caused distraction. Also, in a word recognition experiment,

irrelevant words which changed location randomly between trials were more

distracting than those coming from one location (Chan, Merrifield and Spence 2005).

This chapter describes an experiment which was designed to test spatial auditory

distraction in a more natural listening scenario. To do this, rather than short repeating

sounds, a continuous stream of a natural sound is used, which means that

expectations are built not over the whole experiment – like in most of the studies

described above – but over shorter periods of up to 10 seconds. After the expectation

has been created, a “distracting” sound is played, which either agrees with or violates

it in terms of its spatial location (see Fig. 6.1 for an illustration of a single trial).
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Figure 6.1: Building blocks of a

single trial: context sound or a

period of silence, followed by a

distractor sound played simultan-

eously with the target speech.

If a sound suddenly changes its position, two things might happen in the listener’s

brain: 1) the spatial continuity of that particular sound stream breaks, 2) a sound is

recognised to have appeared in an unexpected location (against spatial expectation).

Both of these can be thought of as surprising, hence distracting. Therefore, this

experiment attempts to answer the following questions:

1. Can the spatial distraction effect be measured with more natural stimuli and

shorter expectation build-up?

2. If attentional orienting occurs, is it due to breaking stream continuity or a sound

appearing in an unexpected location, or both? If both, how do these effects

compare?

6.2. Method

In the experiment, participants were sitting in a room surrounded by loudspeakers,

and were instructed to perform a simple task based on auditory stimuli. They heard a

voice saying either “up” or “down” and were asked to press either the upward or the

downward arrow respectively.

In some cases, a distracting sound was played at the same time as the target speech.

71



Chapter 6. Context and expectations

The distractor was played simultaneously with the target, rather than just before like

in similar visual-task-based experiments, in order to avoid temporal cueing effects.

Having a cue about when the target arrives could improve performance and cancel

out distraction effects compared to the baseline no-distraction condition.

In some of the distracting scenarios, the distractor and target were preceded by a few

(between 3.7 and 11.1) seconds of “context” sound. The context could either match or

not match the distractor on two variables: spatial location and type of sound.

There were six conditions altogether:

A no distraction

B silence followed by a single distracting sound

C1 context sound followed by a distracting sound, where the context matches the

distractor in location and type

C2 context sound followed by a distracting sound, where the context matches the

distractor in location but not type

D1 context sound followed by a distracting sound, where the context matches the

distractor in type but not location

D2 context sound followed by a distracting sound, where the context does not

match the distractor in neither location nor type

Figure 6.2 shows example scenarios for each of the six conditions.

The sounds were spatially distributed in four positions around the listener: 45°

(front-right), 135° (back-right), 225° (back-left) and 315° (front-left). Crucially, the

context and distracting sounds were never in the same spatial position as the target.

This was done to minimise any energetic masking effects and facilitate auditory

stream separation.

Each trial started with a 1 s-long narrow-band noise burst, always in the same spatial
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position as the target. The purpose of the noise was to a) mark the beginning of a new

trial, and b) guide participants’ attention to where the target was going to be, in order

to minimise the cost of initial switching of attention and the search for the target

stream (see Kidd et al. (2005)).

The context stimuli were bird songs, chosen at random from a list of 37 recordings,

their length varying from 3.7 to 11.1 seconds (mean: 7 s). The matching distractors

(conditions C1, D1) were 200 ms long excerpts of bird song. Each context sound had a

corresponding matching distractor, so that they sounded like one continuous

recording. The non-matching distractors (conditions C2, D2) were 200 ms non-bird

sounds picked randomly out of a list of 32 (e.g. dog barks, car horn, water drop). The

distractor in condition B could be either from the bird, or the non-bird list. A full list

of all recordings used and their sources is available in Appendix B.

Experimental design was full factorial, 6 conditions x 24 possible spatial

configurations of target, context and distractor.

Participants were also asked to wear the Pupil Labs eye-tracking headset (Kassner,

Patera and Bulling 2014), which measured dilation of their pupils as they were

performing the task. As discussed in Chapter 2, pupil dilation responses have been

associated with unexpected sounds and automatic attentional orienting, which can

help determine the salience of each experimental condition.
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Figure 6.2.: Examples of context/distractor/target combinations for each of the experimental

conditions. Note that each panel only shows one possible combination of the stimuli positions

– in the experiment, the positions were balanced and radomised.
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6.3. Results

36 volunteers took part in the test, mean age 26 (min: 18, max: 60). Two participants

were over 50 years old, but their responses did not seem to differ in any significant

way from other participants (see Fig. 6.3).

The data was analysed in two main ways, to investigate:

• effect of condition – to see if introducing the different types of stimuli causes

distraction,

• effects of location and type of sound on distraction.

The first one is a straightforward comparison between the six conditions. In the

second, the data from conditions A and B is discarded, because they did not include

the context sound. For the remaining data, two variables are considered, Location and

Type (of sound), which can be either 1 (change from context to distractor) or 0 (no

change). Each of the four conditions – C1, C2, D1, D2 – can be assigned a distinct

combination of variables location and type. Specifically:

• C1: Location = 0, Type = 0

• C2: Location = 0, Type = 1

• D1: Location = 1, Type = 0

• D2: Location = 1, Type = 1

For an illustration, see Fig. 6.2.

6.3.1. Behavioural responses

The mean proportion of correct responses was 99%, with only two participants

responding correctly in fewer than 96% of trials. Response times were recorded as the
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time from the beginning of the target word to button press. The average response time

across participants was 850 ms with standard deviation of 110 ms. Only one

participant had a significantly larger average response time than the others (and 85%

accuracy). Their low accuracy likely comes from exceeding the 2s period during

which responses were collected after each trial. A decision was made to exclude the

outlier participant from further analysis, as such long response times suggest they

might not have been following the instructions to respond as quickly as possible.

Figure 6.3 shows all participants response times and accuracies, with the shaded areas

marking 2 standard deviations from the mean on each axis. Fig. 6.4 shows individual

response time distributions for the remaining 35 participants.

Figure 6.3: Mean response

times and accuracy in the

test – each dot represents

a participant. Shaded areas

show 2 standard deviations

from the mean on each axis.

Blue dots are participants

over 50 years old.

For all response times analyses in this section, generalised linear mixed models

(GLMM) were used, with the inverse Gaussian distribution and identity link function,

and participant as a random variable.
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Figure 6.4.: Individual participants’ response times. Boxplots show the median, 25th and 75th

percentile of each participants’ response times. Dots show the individual responses (the darker

the are, the more responses there are).

The results show that introducing the various distractors had a significant effect on

the response times. Results of a GLMM model with context length and different

conditions as predictors is shown in Table 6.1 and Fig. 6.5. Compared to condition A

(no distraction), conditions C2 (different sound), D1 (different location), and D2

(different sound and location) caused a significant increase in response times.

Somewhat surprisingly, condition B (single distractor) was not significantly different

from A. Condition C1 (context sound, no violated expectations) seems to have a

similarly non-significant effect as B (no context sound, violated expectations).

In addition, the length of time between the beginning of the trial and the target

(context length) had a significant effect on the responses. With each 1 s increase in

context length, response times decreased by approximately 3 ms. To find out if this

effect was present only for context sounds, or also when the target was preceded by
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Fixed effects Est. [ms] SE t value p-value

(Intercept) 871.89 30.43 28.65 < 0.0001 ***

Context length [s] −3.00 0.63 −4.77 < 0.0001 ***

Condition B 7.42 4.41 1.68 0.093

Condition C1 8.20 4.40 1.86 0.062

Condition C2 9.60 4.37 2.20 0.028 *

Condition D1 10.24 4.38 2.33 0.020 *

Condition D2 12.39 4.39 2.82 0.005 **

Random effect: Participant

Number of groups 35

Standard deviation 33.50

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6.1.: GLMM results on response time data (identity link, inverse Gaussian distribution).

Model formula: RT ∼ 1 + ContextLength + Condition + (1|Participant).

Figure 6.5: Estimated effects of

different variables on response

times and their 95% confidence

intervals based on the model in

Table 6.1.

silence, a GLMM regression model with an ContextLength*ContextType interaction was

analysed, where ContextType was either ’sound’ (conditions C1, C2, D1, D2) or

“silence” (conditions A and B), and the outcome variable was response time (in
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milliseconds). The interaction was not significant (Est. = 0.4, p = 0.78), suggesting

that the effect of “context length” was independent of whether an actual context

sound was present or not.

To test if there were significant effects of Type and Location on response times, as

described in the previous section, a GLMM was analysed with these two variables as

main effects, and one with an interaction between them. Neither the interaction

(p = 0.935), nor the main effects (location: p = 0.439, type: p = 0.670) were

statistically significant.

Finally, GLMM regression is used to investigate if there are any differences between

responses to different spatial position of the distractor. The model’s dependent

variable is response times (in ms), and independent variables context length and the

four possible distractor spatial positions. A post-hoc analysis of contrasts found no

significant differences between any of the positions (see Tables 6.2 and 6.3).

Est. [ms] SE t value p-value

(Intercept) 878.68 22.05 39.85 <0.0001 ***

ContextLength [s] −3.04 0.62 −4.91 <0.0001 ***

Position: front-right 0.78 3.64 0.21 0.83

Position: back-right 4.19 3.63 1.16 0.25

Position: back-left 0.70 3.62 0.19 0.85

Random effect: Participant

Number of groups 35

Standard deviation 33.53

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6.2.: Mixed-effects generalised linear regression results with response time as the de-

pendent variable and distractor spatial position as one of the independent variables. Model

formula: RT ∼ 1 + ContextLength + Position + (1 | Participant).

79



Chapter 6. Context and expectations

front-left front-right back-right back-left

front-left 1.00 0.66 1.00

front-right 0.78 1.00

back-right 0.77

Table 6.3.: P-values from a post-hoc comparison of response times for different distractor loc-

ations. P-value adjustment: Tukey method for comparing a family of 4 estimates.

6.3.2. Pupil dilation

First, pupil dilation data was pre-processed following the same procedure as in

Chapter 5, with code adapted from Kret and Sjak-Shie (2019), with the exception of

how dilation segments were selected. Here, the pupil dilation recordings were cut

into segments between 500 ms and 2 s after the onset of the target speech.

Only participants with at least 50% valid trials were included in the pupil dilation

analysis. It is difficult to determine the exact reason for missing data in each case, but

most likely the majority of it was due to a poor fit of the headset. In this case, there is

no reason to believe these missing data points are not random and in any way

correlated with the experimental variables. A mixed-effects logistic regression model

confirms that the Condition variable was not able to predict whether a trial is valid or

not (compared to condition A, B: p = 0.59, C1: p = 0.93, C2: p = 0.53, D1: p = 0.46,

D2: p = 0.65; none of the post-hoc pairwise contrasts were statistically significant).

Similarly to response times, first, the effects of the Condition variable on PDR are

analysed, using a mixed-effects linear model with Participant as a random variable.

Pupil dilation baseline and context length are also included as independent variables.

The results are summarised in Table 6.4 and Fig. 6.6

The results for mean and peak PDR reveal a very similar pattern. In the remainder of
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Dependent variable:

Peak PDR Mean PDR

Fixed effects Est. [mm] SE t value Est. [mm] SE t value

(Intercept) 0.93 0.07 13.80 *** 0.70 0.05 12.93 ***

Baseline −0.11 0.01 −11.25 *** -0.11 0.01 −13.24 ***

Context Length −0.01 0.003 −2.02 * -0.01 0.003 −2.36 *

Condition B 0.08 0.02 3.80 *** 0.07 0.02 3.55 ***

Condition C1 0.003 0.02 0.14 0.02 0.02 0.87

Condition C2 0.08 0.02 3.82 *** 0.08 0.02 4.03 ***

Condition D1 0.04 0.02 2.01 * 0.04 0.02 2.11 *

Condition D2 0.08 0.02 3.83 *** 0.07 0.02 3.89 ***

Random effect: Participant

Number of groups 19 19

Standard deviation 0.19 0.14

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6.4.:Results ofmixed-effects linear regression on peak andmeanpupil dilation responses.

Model formulas: PDR ∼ 1 + DilationBaseline + ContextLength + Condition + (1 | Participant).

this chapter, only mean PDR results will be discussed. Pupil dilation baseline is a

significant predictor: the larger the baseline, the smaller the dilation during the trial.

Context length is also significant, with increased length related to smaller PDR.

Changing the experimental condition had an effect on pupil dilation. More

specifically, conditions B, C2, D1, and D2 were significantly different from the control

condition A, and C1 was not. A post-hoc analysis of contrasts (with Tukey p-value

adjustment) reveals statistically significant differences between conditions A and B

(MD = −0.068, p = 0.005), A and C2 (MD = −0.077, p < 0.001), A and D2

(MD = −0.074, p = 0.001), C1 and C2 (MD = −0.060, p = 0.02), and C1 and D2

81



Chapter 6. Context and expectations

Figure 6.6: Estimated effects of

mean PDR from a mixed-effects lin-

ear regression model (Table 6.4) and

corresponding 95% confidence inter-

vals.

(MD = −0.058, p = 0.03).

Next, a mixed-effects model with Location and Type shows no significant interaction

between the two variables. When analysing main effects, there is a significant effect of

Type on mean PDR, but not of Location – see Table 6.5. Fig. 6.7 shows the estimated

mean PDR for both variables. An analysis of peak PDR shows the same pattern, with

no significant interaction (p = 0.139), no main effect of Location (p = 0.127), but a

main effect of Type (p < 0.001).

Figure 6.7: Estimated mean pupil dila-

tion responses for conditions with

the same/changing location and the

same/changing sound type, based on

the interaction model in Table 6.5. The

model shows a significant effect of

sound type but not location, and no

interaction.
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Main effects model Interaction model

Fixed effects Est. [mm] SE t value Est. [mm] SE t value

(Intercept) 0.60 0.05 11.04 *** 0.59 0.05 10.86 ***

Baseline −0.09 0.01 −9.87 *** −0.09 0.01 −9.87 ***

ContextLength −0.004 0.003 −1.31 −0.004 0.003 −1.31

Location 0.01 0.01 0.95 0.02 0.02 1.47

Type 0.05 0.01 4.15 *** 0.06 0.02 3.73 ***

Location:Type −0.03 0.02 −1.13

Random effect: Participant

Number of groups 19 19

Standard deviation 0.132 0.131

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6.5.: Effects of Location and Type on mean PDR. The model on the right shows that

an interaction between these two variables is not significant, however, it does not show main

effects (but rather, conditional effects). The model on the left shows main effects of Location

(not significant) and Type (significant). Main effects model formula: PDR∼ 1 + DilationBaseline

+ ContextLength + Location + Type + (1 | Participant), interaction model formula: PDR ∼ 1 +

DilationBaseline + ContextLength + Location + Type + Location∗Type + (1 | Participant)

Finally, similarly to behavioural responses, a linear mixed-effects model with dilation

baseline, context length, and spatial position as independent variables and mean PDR as

dependent variable found no significant differences between the different spatial

positions (see Tables 6.6 and 6.7).
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Est. [mm] SE t value p-value

(Intercept) 0.738 0.054 13.55 <0.0001 ***

Baseline −0.111 0.008 −13.19 <0.0001 ***

ContextLength −0.006 0.003 −2.31 0.02 *

Position: front-right 0.023 0.016 1.47 0.14

Position: back-right 0.008 0.016 0.51 0.61

Position: back-left 0.020 0.016 1.28 0.20

Random effect: Participant

Number of groups 19

Standard deviation 0.141

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6.6.: Mixed-effects linear regression results with average pupil dilation as the dependent

variable and distractor spatial position as one of the independent variables. Model formula:

MeanPDR ∼ 1 + PupilBaseline + ContextLength + Position + (1 | Participant).

front-left front-right back-right back-left

front-left 0.46 0.96 0.58

front-right 0.78 1.00

back-right 0.87

Table 6.7.: P-values from a post-hoc comparison of mean pupil dilation different distractor loc-

ations. P-value adjustment: tukey method for comparing a family of 4 estimates.
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Chapter 6. Context and expectations

6.4. Summary

The experiment described in this chapter tested the effects of breaking expectations

about spatial location and type of sound. Even though introducing distracting sounds

did increase response times compared to a no-distraction condition, no effects of

changing location or type of sound on behavioural responses were found. However,

introducing a new sound to the scene did cause significantly larger pupil dilation

responses than when the same sound continued throughout the scene. No main effect

of changing spatial location of sound was found. However, a condition in which

spatial continuity of a stream was broken, showed a small increase in pupil dilation

compared to the control condition.

A discussion of these results can be found in Chapter 13.
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7
Comparison of methods

7.1. Introduction

In the previous chapters, perceptual experiments designed to test the effects of

location of sound on auditory salience were described. As there is no standard testing

method for auditory salience, four different methods were used in this thesis, each of

which addressed the question from a slightly different perspective.

In Chapter 2, different ways in which salience has been defined in the literature were

discussed. Out of the four most common ways, three could be used as a basis for

experiments: salience in terms of attention (“the ability to grab attention”), detection

(“standing out”) and relevance (or importance). Experiments reported in Chapters 4

and 6 are both based on attention. The experimental method used in Chapter 3 was

described as based on detection in the original paper, but could also be explained in

terms of attracting attention. The experiment in Chapter 5 was based on detection.

The Chapter 5 experiment showed results not entirely consistent with the other

experiments, and it is possible that the different results come from it being based on a

different definition of salience. However, even though all three attention-based
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experiments showed a lack of a spatial effect, this cannot really be used to claim that

they all measure exactly the same phenomenon. In fact, there are reasons to think

there are differences in what type of “salience” each of them tests. For one, they

function on different levels of attention. The method used in Chapter 6 (distraction)

relies on attentional orienting, which is low-level, automatic, and could potentially

even be subconscious. On the other side of the spectrum, in the Chapter 4 experiment

(self-reporting), the sounds are picked up not only if they cause attentional orienting,

but also if they are consciously noticed, and cause the participant to point towards

them. This is a much higher level process. Additionally, although no instructions

about what to listen to were given in the self-reporting experiment, it allowed for

possible effects of top-down attention and personal preference. In the distraction

experiment, the participants’ attention was focused on the speech, so the effects of

top-down attention should not play a role.

A more direct comparison of these methods, which could determine if they do in fact

measure the same type of salience, would be useful. To address this issue, an

experiment which compares the three attention-based methods was conducted.

7.2. Method

The experiment consists of three parts, each employing one of the methods used in the

experiments described in Chapters 3, 4 and 6. The same stimuli were tested with each

method to allow for direct comparisons of salience metrics produced by each method.

The stimuli were a subset of the short sounds used by Zhao et al. (2019), who

conducted a large-scale online survey, asking participants to compare salience

between two sounds. On this basis, they were able to sort 18 sounds from the least to

most salient. Out of these, 10 were selected for this study, spread over the salience
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Figure 7.1.: Spectrograms of the stimuli used in the comparison experiment.

scale. Their spectrograms are shown in Fig. 7.1. The sounds were all 500 ms long and

RMS equalised.

In this experiment the more basic, non-spatial versions of each method were used,

and the test was conducted using headphones. This allowed the methods to be

simplified and avoid any additional effects brought about by spatialisation. The three

parts of the experiment are described below.

The first part, real-time self-reporting, was done in a very similar way to the original

experiment by Huang and Elhilali (2017), and corresponds to the experiment in

Chapter 4. Participants heard one scene in their left ear and one scene in their right

ear, and were asked to indicate – in real time – which one they were listening to. They

did this by moving a mouse cursor on a screen, which was divided into 3 areas: left

for the left scene, right for the right scene, and the middle for none, both or undecided

(see Fig. 7.2a). Four sound scenes were picked from the ones used by Huang and

Elhilali (2017) (trimmed to 30 seconds) and up to 3 of the 10 stimuli were picked
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randomly to be inserted into each scene. To spread the stimuli over the duration of the

scene, each one was placed in one of three 10-second ranges, and the position within

the ranges was randomised. Participant’s mouse movements during the scene

presentation was collected.

(a) Part 1 – self-reporting (b) Part 2 – distraction

Figure 7.2.: Graphical interfaces for the first two experimental parts. There was no visual inter-

face for the third part (oddball).

The second part, distraction (Chapter 6), was a visual task with auditory distractors.

On each trial, an image of an arrow pointing either up or down was displayed (see

Fig. 7.2b). The task was to press the up or down arrow on the keyboard in response to

the visual stimulus as quickly as possible. Simultaneously with the arrow, a sound

was played: the standard was a 500 ms long 440 Hz tone (90% of trials), and the

deviant distractors were the stimuli described above (10% of trials). Each distractor

stimulus was played twice, which gives a total of 20 distractors randomly inserted

among 180 standards. Response times to the stimuli were measured as a proxy for

salience (the larger response times – the larger the distraction – the more salient the

sound).

The third part, SOAP, was again very similar to the original by Tordini et al. (2013)

and corresponds to the experiment in Chapter 3. The regular stimuli were 500 ms

long, and shortened versions (378 ms) of the stimuli were made using Audacity, in

order to ensure asynchrony (sounds were shortened without affecting pitch). Regular
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inter-stimulus interval was 250 ms, and the task was to detect a shortened

inter-stimulus interval (80 ms) and indicate whether it was in the right or left ear, by

pressing left or right arrow on the keyboard. Response accuracy (the larger, the more

salient the sound) and response times (the larger, the less salient) were measured.

The three parts were all presented in one sitting (about 30 minutes in total), always in

the same order, as described above: self-reporting, distraction, oddball detection. The

particular order was based on trying to avoid participants’ inhibition to the stimuli as

much as possible. It was assumed that it was most crucial for the self-reporting

experiments that the participants had not heard the sounds before. The oddball

experiment was placed last, because its method involved multiple repetitions of the

stimuli.

7.3. Results and discussion

7.3.1. Data pre-processing

In the first part, to calculate a salience score from mouse movements for each stimulus,

first, scores were assigned to each measurement point over the duration of the

stimulus, so that score of 1 means the scene was attended (cursor in the matching

area), −1 – the opposite scene was attended, 0 – neither (cursor in the middle). Then,

the scores were summed over the duration of the stimulus (500 ms) and the score was

divided by the number of measurement points in the 500 ms range, so that it is in the

range between −1 and 1. Additionally, a hit rate was calculated – each stimulus was

assigned a 1 when it was reported and 0 when it was not, then these were averaged

for each stimulus. While the hit rate metric only measured how often a stimulus was

attended, the “score” could also give an indication of the average period of time over

which it was attended.
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For part 2, response times (RT) were used. All RTs were above 200 ms. Correct

response rate was at least 96% for all participants, on average 98%.

For part 3, response times and correct response rate (hit rate) were recorded. Because

response times in the SOAP paradigm are the only metric used here which is expected

to have a negative correlation with salience, to facilitate comparison with other metrics,

these response times were transformed to response speed (speed = 1/RT). The average

hit rate was 67% and varied between participants from 49% to 88%.

Response times generally tend to show significant differences between participants.

Each participant’s median response times in part 2 (distraction method) were

compared with their response times and hit rate in part 3 (oddball method). Both of

these show clear correlations, with Pearson’s coefficients of 0.77 and -0.75 respectively

(see Fig. 7.3). This means that a participant with generally lower scores and longer RTs

in the oddball detection method, tended to also have long RTs in the distraction

method. To avoid this effect obscuring the differences between stimuli, response times

and speed were normalised by subtracting an individual’s median response.

11 volunteers participated in the test. Fig. 7.4 shows the metrics obtained from each of

the methods for each stimulus. The stimuli are sorted from most to least salient

according to Zhao et al. (2019).

7.3.2. Statistical analysis

To summarise, 5 metrics of salience were obtained from the three methods described

above: self-reporting score, self-reporting hit rate, distraction response time, oddball

detection hit rate and oddball detection speed. All of these are expected to show

higher values for more salient sounds. To allow for comparison between these metrics,

they were aggregated per stimulus. For response times and speed, the median was
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Figure 7.3.: Individual average RTs and hit rates. Pearson’s correlation coefficient for Distraction

and SOAP RTs: 0.77, for Distraction RT and SOAP hit rate: −0.75.

calculated, and the mean for hit rates and scores. Figure 7.5 shows how the metrics

correlate with each other and with the salience scores from Zhao et al. (2019).

Perhaps unsurprisingly, the self-reporting score and hit rate – calculated from the

same mouse movement data – show a very high correlation. There is also reasonably

high positive correlation between the distraction response times and the oddball hit

rate, and between the oddball hit rate and response speed – although the latter

perhaps smaller than expected, given that they are both obtained from the same

experimental method. Additionally, both the self-reporting metrics and the SOAP

response speed seem to correlate with the salience scores from Zhao et al. (2019). The

weakest correlation appears to be between the self-reporting metrics and oddball

metrics. In general, the correlation matrix suggests two clusters of metrics: 1) the

self-reporting metrics, 2) the oddball and distraction metrics, with the Zhao et al.

(2019) score showing some correlation with both of these clusters.

To further investigate how the different metrics of auditory salience interact, a
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(a) Self-reporting score (b) Self-reporting hit rate (c) Distraction response time

(d) SOAP hit rate (e) SOAP response speed

Figure 7.4.: Scores obtained in the 3 experimental parts for each stimulus. Boxplots show the

median, 25th and 75th percentile of scores calculated per participant.

Principal Component Analysis (PCA) was performed, with data again aggregated per

stimulus. The Kaiser-Meyer-Olkin measure of sampling adequacy for the dataset was

0.6 and Bartlett’s test for sphericity p-value = 0.003. These indicate that the dataset can

be considered for factor analysis.

The analysis was performed using the FactoMineR package in R (Lê, Josse and

Husson 2008), and the obtained components are summarised in Table 7.1. Based on

the eigenvalues, the first two components were chosen for further exploration, which

cumulatively explain 80% of the variance in the data. To facilitate interpretation of
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Figure 7.5: Matrix of Pear-

son’s correlation coeffi-

cients between all 5 sa-

lience metrics and the

scores from Zhao et al.

(2019). Asterisks show

correlation coefficients

with p-value < 0.05.

dimensions in the data, a varimax rotation of the two components was performed .

Fig. 7.6 shows the two resulting dimensions before and after rotation.

Comp1 Comp2 Comp3 Comp4 Comp5 Comp6

Eigenvalue 3.16 1.63 0.78 0.31 0.08 0.04

Percentage of variance 52.71 27.18 12.92 5.17 1.40 0.62

Cumulative % of variance 52.71 79.89 92.80 97.98 99.38 100.00

Table 7.1.: Dimensions found in the Principal Component Analysis.

What can be seen in the plots of the variables is that the metrics obtained from the

self-reporting and oddball experiments seem to be orthogonal on the first two

dimensions. The self-reporting metrics load almost exclusively on the first component,

while the oddball metrics load mainly on the second. The distraction response times
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Figure 7.6.: Results of a PCA analysis on the tested metrics. Top panel shows the active vari-

ables (salience metrics) and supplementary variables (acoustic features) on the first two com-

ponents. The plot on the left shows the original principal components, while the plot on the

right shows the two components after a varimax rotation. The bottom plot shows the individu-

als (stimuli) on the rotated components. The number of the stimulus corresponds to the Zhao

et al. (2019) salience score, with 1 being the most, and 10 the least salient.
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also load more strongly on the second dimension than the first. This suggests that

there are important differences in the salience metrics obtained from the experimental

methods tested here. A possible interpretation of the two rotated components is that

the first one represents higher-level, conscious ’seek’ processes, while the second – a

lower-level, autonomous reaction. Interestingly, the Zhao et al. (2019) scores seem to

be in the middle, loading onto both components to a similar extent. Therefore, this

metric might in fact be interpreted as a sum of the self-reporting and oddball and

distraction scores, perhaps measuring a combination of both high-level and

autonomous attentional processes.

The bottom panel of Fig. 7.6 shows the position of each of the stimuli on the two

rotated components. Note that the number assigned to the stimuli corresponds to the

Zhao et al. (2019) salience score, with 1 being the most, and 10 the least salient of the

stimuli according to that scale. While sounds 8 and 9 are low on both dimensions,

stimulus 10 is very low on the second dimension (dominated by the lower-level

experimental methods) but does not seem to contribute to the first (high-level) one at

all. On the other hand, the most salient stimulus according to Zhao et al. (2019) (“car

alarm”) contributes to both dimensions, but the second most salient (“drill”) is loaded

mostly on the first, dominated by self-reporting. The sound which is most salient on

both dimensions seems to be stimulus 4 (“trumpet”). It is worth noting that while the

stimuli used here span a range on the salience metric of Zhao et al. (2019), they might

all be salient to some extent, as they are all distinct sound events which have been

selected for an experiment studying exactly that. In addition, the dataset does not

include any anchor points, such as sounds which would not be expected to cause any

attentional response, therefore it would be difficult to judge salience of these stimuli in

absolute terms.

To provide additional information about the dimensions found, the following acoustic

features which have been associated with auditory salience were calculated for each
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stimulus:

1. loudness, which has been shown multiple times to be a strong salience feature

(Kim et al. 2014; Liao et al. 2015; Huang and Elhilali 2017); it was obtained from

the model for varying sounds (Glasberg and Moore 2002) implemented in the

Loudness Toolbox (Genesis 2009);

2. brightness, represented by the spectral centroid, has also been suggested as a

strong feature (Tordini, Bregman and Cooperstock 2016), calculated here with

Matlab’s spectralCentroid function;

3. roughness has also been associated with high salience (Zhao et al. 2019; Arnal

et al. 2015); roughness was extracted using the MIR Toolbox (Lartillot and

Toiviainen 2007), which computes dissonance between peaks of the spectrum;

furthermore, roughness values reported by Zhao et al. (2019) were added, who

obtained them from Modulation Power Spectra (MPS), as a contribution of high

frequency temporal modulations in the MPS;

4. rate and scale, as measures of temporal and spectral modulations respectively,

are included after Huang and Elhilali (2017), who found them to be important in

explaining events attended by participants; they were calculated using the NSL

Auditory-Cortical Matlab Toolbox (2008).

All features have been calculated in Matlab, over short time-windows and averaged

per stimulus. These features were added as supplementary variables and are also

shown in Fig. 7.6 (in blue).

The feature which shows the highest correlation with any of the dimensions is

loudness, which loads highly on the second component, suggesting it mainly affects

lower-level salience mechanisms. It also seems highly correlated with the oddball hit

rate and response speed. In the original experiment by Tordini, Bregman and

Cooperstock (2016), calculated loudness was the second most correlated with oddball

responses, even after initial perceptual loudness matching of the stimuli.
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Rate, a measure of temporal modulation, also seems to correlate, however less

strongly, with the second component, and with the distraction response times.

Spectral centroid shows a negative correlation with the second component, suggesting

that the oddball detection metrics were higher for sounds with low spectral centroid.

This is in agreement with what Tordini, Bregman and Cooperstock (2015) found with

the oddball detection SOAP paradigm, although the experiment in Chapter 3, where a

similar method was used, did not show a significant effect of the spectral centroid.

Roughness calculated from the Modulation Power Spectrum correlates well with the

salience metric from Zhao et al. (2019), as was reported in their paper. However,

roughness measured by averaging the dissonance between spectrum peaks does not

correlate with either of the dimensions.

In general, the features tested here seem to correlate more with the second component,

which supports the idea of it representing lower-level salience processes. In other

words, the automatic attention-grabbing properties are more related to low-level

acoustic features, while the higher-level switching of attention towards a sound of

interest might rely on other, higher level characteristics, such as semantic meaning or

emotional connotations.

Naturally, the selection of features presented here is in no way complete in the sense

of the information available to the brain when analysing the auditory environment.

Also, the selection of stimuli is not a representative sample in terms of the extent of

these features.

7.4. Conclusions

The lack of a broadly agreed-upon and standardised method of testing auditory

salience is still a barrier on the way to developing new auditory salience models. Here,
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the three methods used in previous chapters were compared: oddball detection,

self-reporting and distraction, and a previously published salience score based on a

large-scale ratings-based survey.

What emerges from this comparison is that metrics derived from these methods do

not all correlate with each other. In fact, no correlation at all was found between the

self-reporting and oddball detection metrics, and very low correlation between

self-reporting and distraction.

A PCA analysis suggests that two independent components underlie these metrics:

one higher-level, more conscious, measured by the self-reporting method, and the

other lower-level, more automatic, which is represented by the oddball detection and

distraction methods. Interestingly, the salience scores from Zhao et al. (2019) seem to

fall between the two, seemingly capturing both aspects of salience.
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Summary

Part I of this thesis discussed methods of measuring auditory salience and what effect

spatial position of sound has on salience. Four experiments conducted to study these

effects are summarised in Table 8.1. An oddball detection experiment described in

Chapter 3 tested low-level auditory salience, with short noise bursts as stimuli.

Oddball inter-stimulus-intervals in high frequency noise patterns were less likely to be

detected if the pattern was behind the listener. The experiment described in Chapter 4

tested auditory salience in a more ecologically valid listening scenario. Participants

heard recordings of sound events and reported their attention in real-time. Similarly

as in the oddball experiment, sounds with high brightness were attended to less when

they were behind the participants. The effects of perceptual load were evaluated in a

dual-task detection experiment described in Chapter 5. The results suggest a small

advantage for detecting sounds to the right in low perceptual load conditions, and

behind the listener independent of perceptual load. The experiment in Chapter 6

studied effects of expectations of type and location of sound on auditory salience.

Violations of spatial expectations were shown to elicit pupil dilation responses –

however the effect was smaller than for violations of expectations about sound type.

All of the results above are discussed in light of current research in Chapter 13.
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Ch. Experimental

method

Stimuli Tested positions Main result

3 oddball detection

(Segregation of

Asynchronous

Patterns)

high- and

low-pass filtered

noise bursts

slower detection in

the back for

high-pass filtered

noise bursts

4 real-time attention

tracking

environmental

sound recordings

high spectral

centroid sounds in

the back attended to

less than those in

the front

5 detection in a

secondary task

environmental

sound recording

(ice-cream van)

target easier to

detect when behind,

compare to the front

6 distraction in an

auditory

classification task

environmental

sound recordings

breaking spatial

continuity causes a

pupil dilation

response

Table 8.1.: Summary of experiments described in Chapters 3 to 6.
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Finally, the comparison experiment in Chapter 7 inspected results obtained from three

of the methods in response to the same stimuli, and compared them to a previously

published salience score. A PCA revealed at least two different dimensions of salience

on which these metrics are: lower-level automatic salience, which correlates with

acoustic features of sound, and higher-level salience, likely influenced by other

characteristics, such as meaning and emotions.
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Modelling auditory salience

103



9
Literature review

9.1. Introduction

The goal of auditory salience modelling is to predict which sounds will attract the

attention of the listener, and to what extent.

There are a few different ways in which such a model can be built. For example, the

input to the model might be a recording of a sound scene, or multiple recordings of

auditory objects present in a scene. The output might be a salience score over time or

a single score for each object, indicating how attention-grabbing it is compared to

other objects (see Figure 9.1). In this chapter, auditory salience models published so

far will be reviewed, and perceptual principles, which can provide a baseline for

salience modelling, will be discussed.
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Figure 9.1.: Example auditory salience model structure.

9.2. Review of models

First attempts to model auditory salience were directly inspired by the concept of a

visual salience map (Koch and Ullman 1985; Itti, Koch and Niebur 1998). Kayser et al.

(2005) used this framework in audition by performing a spectro-temporal analysis of a

sound signal and effectively treating the resulting spectrogram as an image. From it,

three salience features – intensity, temporal structure and frequency structure – were

calculated at four different spectrotemporal scales. Maps representing different scales

were combined and normalised. Finally, maps from all three features were combined

together to create a single salience map. This process is illustrated in Figure 9.2.

This approach was a simple adaptation of a known visual model to the auditory

domain, yet it failed to take into account the differences between auditory and visual

domains, such as the temporal nature of sound. Sound is one-directional and with

short- and long-term dependencies which are crucial to perception, including the

perception of salience. For example, Kaya and Elhilali (2017) suggest that a sudden

start of loud noise could potentially be more salient than when the reverse happens –

a sudden silence after a loud noise. In other words, the way sound scene has been

building up to a particular point in time will influence the expectation of future sound
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Figure 9.2.: Step-by-step computation of an auditory salience map. From Kayser et al. 2005.

events. Moreover, a spectrogram, as a representation of sound intensity in time and

frequency, does not contain phase information. Filipan et al. (2016b) demonstrated

that a phase modification distinctively audible to human listeners was not visible on a

spectrogram and hence not picked up by a classic salience map algorithm.

Despite its limitations, Kayser’s model was an inspiration for other researchers who

modified it in various ways: added more relevant auditory features 1 (Kalinli and

Narayanan 2007) and a biologically-inspired cortical model (Duangudom and

Anderson 2007), or used a one-dimensional temporal salience score instead of a

two-dimensional map (Kaya and Elhilali 2012).

1These were pitch and orientation features, which simulate responses to moving ripples – dynamic

broadband sounds, with a modulated spectrum.
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A different approach to modelling salience is to calculate it from signal statistics.

Tsuchida and Cottrell (2012) adapted a visual SUN model (Salience Using Natural

Statistics) and based their model on short- and long-term (life-long) sound statistics,

which serve as prior information about the characteristics of natural sounds.

Schauerte et al. (2011) introduced a model based on auditory Bayesian surprise,

similar to the visual model by Itti and Baldi (2009). It calculates surprise as the

Kullback-Leibler divergence between prior and posterior probabilities of the incoming

signal’s frequency spectrum. The probabilities were initially modelled as Gaussian

distributions, however, the authors later modified their approach by using Gamma

distributions instead (Schauerte and Stiefelhagen 2013). More recently,

Rodríguez-Hidalgo, Peláez-Moreno and Gallardo-Antolín (2018) proposed a salience

model based on Bayesian log-surprise calculated over multiple time scales. After

determining the Kullback-Leibler divergence for (Gaussian) signal distributions at

two consecutive time steps, they use the logarithm of it as the salience score. The time

scales, or memory spans, dictate the time windows over which distribution means

and variances are calculated. Salience scores from 5 time scales ranging from 680 ms

to 3.4 s are then combined into one score. They tested their model in an acoustic

detection task and concluded it outperforms baseline models, including a saliency

map (Kalinli and Narayanan 2007) and log-surprise without the memory aspect.

Kaya and Elhilali (2014) proposed a predictive-coding model in the form of a Kalman

filter as a deviance detector (see Figure 9.3). The model also includes interactions

between features, and it was the first model not to be based on a vision equivalent.

Another biologically-inspired class of models is based on neural networks (Wrigley

and Brown 2004; Boes et al. 2012).

Attention models which go beyond salience usually also include a stream competition

mechanism which is influenced by both top-down and bottom-up effects, often with
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Figure 9.3.: Principle of a deviance detector based on predictive coding, from Kaya and Elhilali

2013

inhibition-of-return, which slowly decreases the salience of an event or stream over

time (De Coensel and Botteldooren 2008; De Coensel and Botteldooren 2010; Boes et al.

2012). Other approaches model top-down attention as a form of weighting: for

example, of neural network parameters (Wrigley and Brown 2004) or of features

(Kalinli and Narayanan 2009). Also, Carlin and Elhilali (2015) proposed a model for

attentional modulation of spectro-temporal receptive fields, which can operate both

on features and objects. Various types of auditory salience models are summarised in

Table 9.1.

Almost all auditory salience models only use one-channel recordings of a scene or

one-channel signals representing each object separately. Wrigley and Brown (2004)

take two-channel input, but they only use it to extract binaural pitch which helps with

harmonic grouping, and no spatial information is taken into account. They also

allowed for allocation of attention to each ear separately, but not to a specific location.

The models which used separate signals for each object (De Coensel and Botteldooren

2008; De Coensel and Botteldooren 2010) do not take location of the objects into

account.
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Authors BU principle TD principle Features Input Output

De Coensel and Bottel-

dooren 2008

PD attention

switching

mechanism

- object

signals

level of atten-

tion per object

Kayser et al. 2005 SM - intensity, frequency con-

trast, temporal contrast

1-ch signal spectrotemporal

salience map

Duangudom and Anderson

2007

SM - output of a cortical

model (global energy,

temporal and spectral

modulations)

1-ch signal spectrotemporal

salience map

De Coensel and Bottel-

dooren 2010

SM competition

mechanism

intensity, spectral con-

trast, temporal contrast

object

signals

0/1 switch per

object

Kaya and Elhilali 2012 SM - envelope, spectrogram,

rate, bandwidth, pitch

1-ch signal temporal sali-

ence score

Kalinli and Narayanan 2009 SM-based gist

features

task-

dependent

bias

intensity, frequency and

temporal contrast, FM

slope, pitch variations

1-ch signal prominent syl-

lable detection

Tsuchida and Cottrell 2012 P/B - cochleagrams (reduced

to 2-3 dimensions with

PCA)

1-ch signal spectrotemporal

salience map

Schauerte et al. 2011;

Schauerte and Stiefelhagen

2013

P/B - spectrogram 1-ch signal salience score

Rodríguez-Hidalgo, Peláez-

Moreno and Gallardo-

Antolín 2018

P/B - spectrogram 1-ch signal salience score

Kaya and Elhilali 2014 predictive

coding

- envelope, harmon-

icity, spectrogram,

bandwidth, temporal

modulation

1-ch signal temporal sali-

ence likelihood

Wrigley and Brown 2004 NN weighting pitch 2-ch signal spectrotemporal

attentional

stream

Boes et al. 2012 NN competition

mechanism

intensity, time contrast,

frequency contrast

1-ch signal neuron activity

Kim et al. 2014 linear filter - loudness 1-ch signal salience detec-

tion

Table 9.1.: Summary of models. Bottom-up principle types: PD – time domain peak detection,

SM – salience map, P/B – probabilistic and/or Bayesian, NN – neural networks
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9.3. Incorporating spatial information

The results described in Part I suggest that spatial location as such might not play a

big role in determining salience of sounds. However, it is still worth keeping track of

it, as it can be susceptible to the same expectation rules which affect other features.

How can spatial location then be incorporated into auditory models?

Because the field of visual attention modelling is more developed, it is worth looking

at which parts of it could be applied to auditory attention, or how to translate

principles and ideas from one into the other. To do this, one needs to consider

similarities and differences between the two modalities. Of special interest here would

be finding a visual equivalent of the role spatial location plays in auditory processing.

One of the main differences between vision and audition is how space and time are

processed. In vision, spatial information is derived directly from retinal image – visual

information such as colour and intensity is in its essence spatially coded. This is in

contrast to audition, where basic coding is tonotopic, and spatial information needs to

be derived from the difference between signals incoming to left and right ear.

What analogies can then be drawn between visual and auditory dimensions? Kubovy

(2017), in his Theory of Indispensable attributes (TIA), compared visual location to

auditory frequency. He defines indispensable attributes as those that are necessary for

perception of multiple objects, and argues that in vision space is such an attribute,

while in audition it is frequency. He goes further to claim that ”attention is allocated

to pitch, not to location”, which negates the existence of spatial auditory attention

entirely. TIA has faced some criticism from the scientific community (e.g. Handel

1988). A study performed by Neuhoff (2003) has shown that changes in pitch are not

at all necessary for formation of auditory objects, which contradicts the idea of

frequency as an indispensable attribute. Also, as mentioned in Chapter 2, spatial cues
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increase performance in an auditory task, which indicates the ability to direct auditory

attention to space.

Perhaps the most interesting analogy for this research has been proposed by Shamma

(2001), who described how some architectures and computational algorithms used in

vision may also be used to explain certain auditory phenomena. One of the proposed

analogies is between binaural azimuthal localisation and binocular depth perception.

They both operate on the basis of comparing input received by two sensory organs

(ears or eyes), and by doing so add an extra dimension to our perception. In fact, as

the author notices, algorithms designed to determine interaural time differences and

spatial disparities between binocular images are fundamentally identical.

In light of this theory, it would be worth considering different ways in which depth

has been incorporated into visual salience models. In fact, most of them concentrate

on 2-dimensional vision, similarly to how their auditory counterparts focus on

non-spatial hearing. Existing 3D visual salience models have been divided by Wang

et al. (2013) into:

• depth-weighting models, which assume that salience differs with depth, so each

spot on a 2D salience map is assigned a different weighting depending on

corresponding depth,

• depth-salience models, which calculate depth salience maps based on

depth-related features and combine them with 2D salience maps,

• stereo-vision models, biologically plausible, which incorporate stereoscopic

perception processing directly.

Figure 9.4 illustrates this classification.

In audition, the analogy to the first type of models would be assigning each horizontal

location a different salience weighting. In light of the results of the experiments

carried out in the previous chapters, this strategy might not be feasible, as there is no

111



Chapter 9. Literature review

Figure 9.4.: Comparison of depth-weighting and depth-salience models, from Wang et al. 2013

indication of different weights for different locations. An analogy to the second type

of visual models would require calculating auditory salience features derived from

spatial properties of sound. These could for example be unexpected changes in sound

location or a form of spatial contrast. Biologically inspired attempts could incorporate

binaural localization models (such as Lindemann 1986; Breebaart, Par and Kohlrausch

2001; Dietz, Ewert and Hohmann 2011) or some form of extension of neural networks

like in Bruce and Tsotsos (2005).

This thesis will propose a way in which spatial information can be added to a

deviance detection-based auditory salience model as a new feature. There is evidence

that models based on prediction and Bayesian principles might correspond to how the

brain processes information. These principles are reviewed below.

9.4. Perceptual principles

Let us now consider attention in a probabilistic framework of perception – how the

brain uses Bayesian principles, prediction and summary statistics – as it can serve as a
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basis for auditory salience models.

9.4.1. Bayesian brain

Many cognitive and perceptual processes can be thought of in terms of inference – for

example, given the light received by the eyes, what is the object in front of the

observer (or how fast is it moving)? Note that in most cases, sensory input is just one

type of data available. Another source of information is the knowledge the observer

has about the world, or has gathered in recent observations (e.g. what objects are

likely to be present in the particular situation, or basic laws of physics which govern

movement). This problem might have more than one possible answer and the most

likely one has to be selected. A framework that can describe these kinds of processes

well is Bayesian inference, and it has in fact been argued that humans often do behave

like optimal Bayesian observers (Knill and Pouget 2004).

Bayesian inference determines the probability of a hypothesis based on incoming data.

In Bayes’ theorem, this would be the probability of a certain hypothesis A given the

event (data) B happened, which is related to a) the probability of acquiring data B

under hypothesis A (the likelihood), and b) the probability of hypothesis A itself (the

prior).

Take an example of determining the source of incoming sound. Auditory input was

received by a listener and the listener would like to know whether this sound was

produced by a tiger. With Bayes’ theorem, this probability could be determined as

follows:

P(tiger|sound) =
P(sound|tiger)P(tiger)

P(sound)
(9.1)

So, the probability that the listener heard a tiger, given the received auditory input, is

equal to how likely this input is to have come from a tiger, times the probability that

there would be a tiger around to produce that sound. The denominator is a
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normalising factor and does not depend on the hypothesis. This equation could be

evaluated over many different potential sources (hypotheses) to find the most likely

one. This naturally implies that the brain operates on probabilities rather than

deterministic values, something Knill and Pouget (2004) call a Bayesian coding

hypothesis.

Elhilali (2013) has proposed Bayesian inference as a framework which unifies

bottom-up and top-down effects on sound perception. In this framework, bottom-up

effects are built up from the auditory input (data), while top-down processes such as

attention are the priors. Wolmetz and Elhilali (2016) presented a Bayesian model of

auditory scene analysis which distinguishes between attention-driven (top-down) and

context-driven (bottom-up) priors, which they tested with behavioural data obtained

from a cued detection task with informative and uninformative cues. In a similar

manner, Whiteley and Sahani (2012) proposed a model of perception where attention

is not strictly a prior, but acts in a similar way on the inference (the classic prior is still

there and can be influenced by the data). In this model, it is assumed that the

perceptual representation is an approximation of the sensory input and the role of

attention is to locally refine this approximation in the area of interest (notice the

similarity with the hierarchical model of grouping by Cusack et al. (2004) and the

evidence for attention tuning perception, described in Chapter 2).

9.4.2. Predictive coding

In 1999, Rao and Ballard proposed that the visual cortex is organised in terms of

predictive coding: with predictions propagating down the neural hierarchy, and

precision errors propagating upwards, as feedback. This idea has proven quite

influential in neuroscience and has since gathered substantial evidence (Friston 2018).

Prediction error, the difference between prediction and sensory input, can be used in
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Bayesian inference to refine priors (Aitchison and Lengyel 2017). In essence, at each

point in time, first a prediction is obtained based on past input and priors (i.e. what is

the likely next input given a hypothesis about the latent source of the input), then that

prediction and current input are compared to get prediction error, and finally this

error is used to correct the prior (probability of the hypothesis). Aitchison and

Lengyel (2017) argue however that predictive coding has the potential to serve other

purposes in the brain as well, and should be seen as a general “neural motif”.

Heilbron and Chait (2017) reviewed evidence for predictive coding in the auditory

cortex, examining animal and human brain imaging studies. They conclude that a

generative (predictive) nature of the auditory cortex is likely, and neural activity

seems to represent prediction error. For example, they point to evidence from

responses to omission, which show brain activity recorded in response to sounds

omitted in a sequence. These occur only when subjects do not expect the gap, and are

very similar to responses to actual stimuli. Heilbron and Chait (2017) also argue that

suppression of responses to repetitive stimuli might actually be caused by improved

prediction rather than adaptation or neural fatigue. Brain imaging provides evidence

that predictive coding is hierarchical (Wacongne et al. 2011; Heilbron and Chait 2017).

Attention is likely to act on all these different levels (time scales).

In the predictive coding framework attention is sometimes seen as the process of

optimising precision (Friston 2009) – weighting of the prediction error in order to

enhance response to the stimuli of interest. While on the bottom-up level, precision is

based on input reliability, top-down it can be directed towards a specific input (as

expectation of reliability or higher confidence in the attended input). Chennu et al.

(2013) investigated how top-down attention and expectation interacts with different

levels of bottom-up stimuli-based predictability. They concluded that attention to

sound enhanced local prediction error, but expectation about the patterns attenuated

it. However, Heilbron and Chait (2017) concluded that the empirical evidence for a
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relationship between attention and predictive precision is not very strong in audition.

9.4.3. Summary statistics

The probabilistic view of perception fits well with the evidence that the brain stores

statistical information about sound, particularly the evidence coming from research

on sound textures.

McDermott, Schemitsch and Simoncelli (2013) conducted a texture discrimination

experiment to study if summary statistics are used in the perception of artificially

generated auditory textures. They found that when discriminating between excerpts

from two different textures (with different statistical properties), increasing the

excerpt’s length enhanced performance, as expected, because more information was

available. However, for differentiating between two exemplars of the same texture,

increasing the length actually worsened performance. This is consistent with the idea

of the brain storing summary statistics – as more input comes in, the statistics of the

same type of texture will converge to very similar values. They propose that there are

two parallel processes: 1) sequential encoding of input, and 2) summary statistics

calculated over time. As the sequential buffer is replaced with more recent input, only

the statistical representation remains available. Interestingly, they note that it is

possible that both processes are in fact the same process but on two ends of a

spectrum of temporal scales.

McWalter and McDermott (2018) further investigated this accumulation of statistical

information. They presented participants with two generated textures: one with a

change of signal statistics (“step” texture) and one with constant statistics (“morph”),

and asked which one of these was more similar to a reference texture, presented

immediately afterwards. The key here was the direction of the change in the step and

at which point it occurred: assuming the perceptual temporal integration window is
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longer than the second part of the step, the first part will influence (bias) the similarity

ratings. They showed that the beginning of the step did indeed bias the ratings in the

predicted direction, even though participants were instructed to make judgements

based on the endpoint of the step texture. The effect was bigger for more variable

textures, suggesting that the brain integrates signal statistics over time windows

which vary with texture variability. A possible explanation is that different statistics

have different integration windows (e.g. slow vs fast modulations). Additionally, they

found that breaking texture continuity by introducing a silent gap near the change

significantly reduced this bias. However, when a louder excerpt was inserted instead

of the gap (which would not be expected to break the continuity), it did not influence

the judgements. This indicates that this statistical accumulation operates on sound

streams.

In behavioural and brain imaging experiments, Skerritt-Davis and Elhilali (2018)

showed that higher order statistics (covariance between successive inputs) about

stochastic sound sequences are tracked by the brain. They used sequences of tones for

which entropy increased or decreased midway through the sequence. The

participants’ task was to detect that change. The authors proposed a Bayesian model

which can explain the experimental results, but only when higher order statistics are

included. The model maintains multiple hypotheses about the state of the auditory

scene and uses prediction error to weight them according to incoming evidence.

9.4.4. Salience in a Bayesian framework

If one sees salience as rarity or novelty (Tsuchida and Cottrell 2012), it can be naturally

linked to violating expectations in Bayesian inference and to the prediction error

directly.

Itti and Baldi (2009) proposed a definition of surprise which states that an input is
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surprising if it changes our belief about the world (the prior, or the model), and so the

surprise can be measured as the distance between the posterior and the prior. They

show that surprise, based on Kullback-Leibler divergence between posterior and prior,

was able to predict human gaze in natural recordings better than other metrics,

including visual salience metric. They conclude that Bayesian surprise attracts

attention. Huang and Elhilali (2017) also emphasise the importance of short- and

long-term context for salience.

Some auditory salience models, especially more recent ones, draw inspiration from

these theories of perception, and use input statistics or Bayesian surprise to predict

novelty – for example, the Kalman filter-based model by Kaya and Elhilali (2014),

which will be used in Chapters 10 and 11. The following section gives a short review

of the Kalman filter.

9.5. Kalman filter

The Kalman filter is a tool that can be used for estimating the state of a linear system

from noisy measurements and some existing knowledge about that system. It is a

recursive algorithm, which at each iteration: 1) predicts (updates) an a priori estimate

of the system state, and 2) corrects this prediction according to a measurement,

obtaining an a posteriori estimate.

Take a process which can be described by a linear equation:

xk = Axk−1 + wk (9.2)

where xk is the state of the process at iteration (time step) k, and w is the process noise,

which is normally distributed with covariance matrix Q.

The matrix A, which describes how process states change in consecutive steps, as well

118



Chapter 9. Literature review

as the variance of the noise described by Q are both known, but the actual state of the

system is not directly available. However, some noisy measurements can be obtained

from the process. They can be related to the actual state by matrix H and

measurement noise v (again, with normal distribution and covariance R):

zk = Hxk + vk

Knowing measurements z, as well as matrices A and H, the Kalman filter will try to

estimate the process state x. For iteration k, the prediction step of the filter calculates

a priori predictions of the next state and error simply from what it knows about the

system and the previous estimation:

x̂-
k = Ax̂k−1 (9.3)

P-
k = APk−1AT + Q (9.4)

Note that x̂-
k is the a priori estimate of the process state xk, while x̂k−1 is the a posteriori

estimate of the state xk−1. Similarly, P-
k is the a priori covariance of estimate errors,

while Pk−1 is the a posteriori error covariance (calculated for iteration k− 1).

Following the prediction, Kalman gain is calculated, which weights the a priori

prediction versus measurement, based on the measurement error covariance R and

the estimate error covariance P. In the proposed model, the measurement error is kept

constant (for each feature), so in practice, as the estimate error gets smaller, the

estimate is weighted higher (treated as more reliable), and the measurement is

weighted less. The Kalman gain is:

Kk = P-
kHT(HP-

kHT + R)−1 (9.5)

Next, in the correction step, the a posteriori state estimate and error are calculated
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from the noisy measurement zk, a priori estimates, and Kalman gain:

x̂k = x̂-
k + Kk(zk − Hx̂-

k) (9.6)

Pk = (I − KkH)P-
k (9.7)

Figure 9.5 summarises the algorithm.

Figure 9.5.: Kalman filter steps.

Notice that the term zk − Hx̂k in Eq. (9.6) represents the difference between actual

measurement and its prediction (and it is weighted by Kalman gain). This term is

called the model innovation and will represent surprise in the model.

9.6. Summary

Bayesian inference can serve as a model for auditory salience. The brain constructs

models of the environment and predicts future inputs. If the actual input is different

from the prediction, it is surprising – salient, and therefore attracts attention.
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An example of a model based on this principle is the one by Kaya and Elhilali (2014),

which uses Kalman filters to track regularities in acoustic features. The Kalman filter

represents most of the ideas described in Section 9.4 – it predicts future input based on

present input and the model, it updates the model according to the prediction error,

and it weights the model versus data depending on variance of the input (however, it

operates on discrete values rather than probabilities).

The following chapters will demonstrate how spatial information can be used in such

a model and give an example practical application. In Chapter 10, a way of

incorporating the spatial location of a sound into a salience model will be proposed

and it will be shown that such a model can successfully predict experimental results.

In Chapter 11, an example application of a salience model will be presented, which

combined with a machine learning technique can enhance the detection of

environmental sounds in audio recordings.
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Predicting spatial surprise

This chapter will show how a Kalman-based salience model can produce data similar

to the pupil dilation results of the distraction experiment described in Chapter 6.

The model described here was based on the work of Kaya and Elhilali (2014), who

model the Mismatch Negativity (MMN) brain response with predictive coding

implemented as multiple Kalman filters, which track changes in feature streams. The

choice of this model is based on the relevance of predictive coding in human

perception, and how well it relates to surprise and novelty (see Section 9.4.2).

10.1. Features

A practical model of salience requires some form of a feature extraction block.

However, here, this stage was omitted for a few reasons. Firstly, what is proposed

here is not a full, practical model, but rather a general example which aims to

demonstrate how a model based on principles described in the previous chapter can

match experimental data. Secondly, even after a lot of careful consideration about

feature extraction details and parameters, that step is likely to add some amount of
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noise – coming from both algorithm error (e.g. in localisation algorithms) and the

sub-optimal choice of features (as there are many possible ones to chose from).

Instead, this model will work on optimal features with not too much noise, to focus on

demonstrating the principles of the salience model.

Figure 10.1.: Illustration of the location and type features (L – location, T – type). Value of L

reflected the actual distance between context and distractor (1 or 2). In condition B, the value

for L is quite arbitrary: a sound appears in a new location, but there is no location context as

such.

Therefore, the variables used in the Distraction experiment will be used as features

directly – namely, spatial location and type of sound. These were represented

symbolically, in a way which shows the match and mismatch between context and

distractor sounds over time. Figure 10.1 shows how each experimental condition was

modelled. The type variable for the duration of the context was either 0 or 1, and for

the distractor, either 1 (matching type) or 2 (non-matching). The location variable was

always 0 for the duration of the context, and for the distractor, either 0, 0.5 or 1,

depending on the spatial separation between the two. In the distractor-only condition
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(B), the location variable for the distractor was chosen to be 0.5. The length of context

and distractor sounds corresponded to the actual ones in each trial. Gaussian noise

with standard deviation 0.05 was added to these to make them more realistic and

allow for some algorithm errors, which would normally occur with noisy data.1 The

amount of noise added is arbitrary, but – as will be described below – the model has a

parameter which represents the noise covariance of the input. By adjusting it to match

the noise in the features, the model can be made to work with a range of different

noise levels.

Figure 10.2: Example of how the sali-

ence score was calculated. Top: arti-

ficial feature (sound type) with added

noise; the context builds an expecta-

tion of a sound of one type (value 1),

but in the last 200 ms, the sound type

is changed (value 2). Bottom: out-

put of the salience model; the single-

number score is the maximum over

the duration of the distractor – here,

the grey area.

1Note that the features are noisy, but if averaged over time, they are always correct (no feature extrac-

tion error).
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10.2. Deviance detection

10.2.1. Initialisation

As in Kaya and Elhilali (2014), in the model described here multiple Kalman filters

run in parallel on the same feature stream. To determine the number of filters at the

start of an audio recording, clustering is performed on the first 500 ms of each feature

stream and a Kalman filter is initialised for each of the resulting clusters.

While Kaya and Elhilali (2014) used k-means clustering, in the proposed model

Gaussian Mixture Models were used instead, as they gave better results in estimating

clusters from simulated feature streams. The advantage of Gaussian Mixture Models

is that, apart from the cluster centres, they can also estimate a full covariance matrix

for each cluster. This allows for non-spherical clusters and clusters of different shapes

(see Figure 4.2). The number of clusters to be initialised was determined by

minimising the Akaike information criterion (AIC), with the maximum of 4.

10.2.2. Kalman parameters

Each initialised Kalman filter tracks its separate regularity stream within a feature

vector. The state of this ”process” (as described in Section 9.5) is coded as a matrix

containing a feature value and the difference between the last two consecutive feature

values (equation 10.1). Taken together with the system matrix A shown below, this

means that at any point in time, the feature vector is expected to continue changing in

the same manner it has most recently changed.

Xn =

 xn

xn − xn−1

 , A =

1 1

0 1

 (10.1)
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(a) (b)

Figure 10.3.: Examples of two simulated feature streams, with colours indicating the result of

GMM clustering. Each point represents one feature value at a time n, and colours show how

theywere assigned to one of two clusters. Notice that in panel b), the two clusters have different

shapes – something that a k-means algorithm could not correctly deal with.

The matrix relating Xn to the ”measured” signal value zn is: Hn =
[
1 0

]
, which

means each incoming feature value is a direct representation of the first element (xn)

of the process state matrix.

The measurement and system noise covariance matrices are as follows:

Q =

σ2
w 0

0 σ2
b

 , R = σ2
v (10.2)

where the variances are empirically chosen for each feature.

As in Kaya and Elhilali (2014), following the clustering stage, the state and covariance

matrices are initialised based on the last two feature values. For each cluster, a filter

initialised at step n has the following starting estimates:
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X̂-
n =

zn−1 + (zn−1 − zn−2)

zn−1 − zn−2

 (10.3)

P̂n =

5σ2
v + 2σ2

w + σ2
b σ2

w + 3σ2
v + σ2

b

σ2
w + 3σ2

v + σ2
b 2σ2

v + σ2
w + 2σ2

b

 (10.4)

If a new feature value is not correctly predicted by any of the currently running filters,

a new filter is initialised with the same initial estimates as above. The decision

whether to start a new filter is based on the following threshold:

|zn − HX̂-
n| ≤ 2

√
P[1] + σ2

v (10.5)

The left side of Eq. (10.5) is the model innovation, while the right side equals two

standard deviations of the innovation (the innovation covariance matrix being

S = HPHT + R = P + R). P[1] indicates the first element of the matrix P. If a filter is

accurate, the innovation error will be low (and the estimate error will be low, as

measurement noise is constant), and smaller changes will initialise new filters. Note

that this is slightly different from Kaya and Elhilali (2014), who specify the left side of

Eq. (10.5) as: |zn − HAX̂n|, which in effect measures the difference between the

feature value zn and the estimated measurement value at the following step, n + 1.

Once this threshold is exceeded, a new filter is initialised and an MMN spike is

produced, with amplitude equal to the innovation – the bigger the difference between

the prediction and the actual value, the bigger the surprise. If a filter has not correctly

predicted any feature values for 100 ms, it is closed.

10.3. Results

The artificial features – location and type – are fed into the Kalman-based salience

model, as described previously in this chapter. The outcome scores from both
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variables are then summed together. As a result, for each trial, a salience score is

obtained over the time of the trial. Because the pupil dilation responses were

measured as a response to the distractor sound, the single number output from the

model is the maximum of the salience score for the duration of the distractor (see

Figure 10.2).

Figure 10.5 shows the modelled and actual measurement data for each condition.

Note that much of the variability in the experimental data was due to participants’

variation in pupil dilation range, however these individual differences were not

modelled here. Figure 10.6 shows medians of the pupil dilation responses plotted

versus the median calculated salience scores. The modelled values correlate very well

both with mean PDRs (Pearson correlation coefficient = 0.95) and peak PDRs

(Pearson correlation coefficient = 0.98).

Figure 10.5.: Left panel: measured peak pupil dilation responses (in mm), right panel: modelled

salience scores. Boxplots show the median, 25th and 27th percentile of the responses and

modelled scores for all experimental trials.

To confirm that the model outputs can predict the experimental data, a simple linear
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Figure 10.6.: Correlation of themedianmodelled salience scores withmedian peak (right panel)

and average (left panel) pupil dilation responses, in millimetres.

regression was used with the modelled salience score for each experimental trial as a

fixed effect. The effect of the salience score was statistically significant both for

outcome variable peak pupil dilation (Est. = 0.069, p < 0.0001) and mean pupil

dilation response (Est. = 0.069, p = 0.0001).

10.4. Summary

A simple way to extend an auditory salience model to include spatial information was

presented in this chapter. Spatial position of sounds was used as a feature which was

tracked by a deviance detection model. This allowed for detection of unexpected

changes in spatial position and predicted pupil dilation responses obtained in an

experiment described in Chapter 6 well. The results shown in this chapter will be

further discussed in Chapter 13.
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Example application – AED

To further test the applicability of the Kalman-based salience model as described in

Section 10.2, it was used in an Acoustic Event Detection task (AED). The goal of AED

is to automatically find sound events and estimate their position in time in an audio

signal. The salience model was combined with a Non-negative Matrix Factorization

(NMF) model (Sobieraj, Rencker and Plumbley 2018). Non-negative Matrix

Factorization is a machine learning method based on dictionary learning. The

resulting method works for AED on weakly labelled data, that is, data for which we

do not have exact information of when the interesting sound occurs, but just a tag of

which sounds are present in a given audio excerpt.

The structure of the model is shown in Figure 11.1. The sound signal is analysed in

frames in parallel by the salience and NMF models. In principle, the salience model

should detect onsets of any interesting events, regardless of whether they are the

target in the task. Therefore, its output is combined with the NMF output, which can

differentiate between target and non-target events.
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Figure 11.1.: Structure of the model combining NMF with auditory salience.

11.1. Kalman-based salience model

The Kalman-based salience model was the same as described in Chapter 10, except for

an added feature extraction stage. Six features were extracted using the

pyAudioAnalysis library (Giannakopoulos 2015), with a 64 ms window: energy,

energy entropy, spectral centroid, spectral rolloff, spectral entropy and zero-crossing

rate. Each feature extracted from the signal is tracked by one or multiple Kalman

filters simultaneously.

This process produces vectors of salience spikes si (one from each feature). The

resulting salience score for frame n is obtained by applying feature-specific and
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between-feature weights and summing the resulting vectors, as follows:

s(n) = ∑
i∈[1,N]

si(n)

wi + ∑
j∈[1,N],j 6=i

wij max
k∈[−1,1]

sj(n + k)

 . (11.1)

The weights wii and wij used in Eq. 11.1 were trained with a constrained logistic

regression, where the binary output variable was the presence of an event in an audio

file, predictor values were the mean si for each feature, and the weights were

constrained to be positive. Recordings of 30 seconds are used for training.

The salience score s(n) per frame is computed for each test sample, forming a vector s,

which is then normalised to its maximum. Finally, in the last step, s is multiplied by

the output of the NMF to create the final result, indicating a possible event onset.

The combined model was evaluated on rare event detection using only weakly

labeled data from the audio recordings of the TUT Rare Sound Events 2017, which

were provided for Task 2 of the DCASE2017 challenge (Mesaros et al. 2017). The

dataset consists of around 100 isolated sound examples for three target classes:

gunshot, baby crying and glass breaking, together with background audio which is part

of the TUT Acoustic Scenes 2016 dataset (Mesaros, Heittola and Virtanen 2016).

11.2. Results and discussion

Table 11.1 presents the results of the evaluation on the test set. For comparison,

alongside the proposed method, the results for each of the NMF and salience models

separately are shown. In the salience model, an event was detected for every frame in

which the salience score exceeded 50% of the maximum salience score in that test

recording.

The F-score (which takes into account both precision and recall of the model) of the
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Event type
Proposed NMF Salience

ER F1 ER F1 ER F1

Gunshot 0.76 65% 0.80 64 % 1.45 36%

Glass breaking 1.07 46% 1.23 41% 1.12 54%

Baby crying 1.04 36% 1.07 37% 1.71 32%

Table 11.1.: Evaluation results on detection of events of different types. Error Rate (ER) and F-

score (F1) are reported for the proposed method, NMF only and Salience model only. Lowest

ER and highest accuracy for each target sound are shown in bold.

combined method ranges between 36% and 65% depending on the sound class, and

the error rate is between 1.04 and 0.76. The total performance of the combined model

aside, it is interesting to look at ways in which the salience model brings a benefit or

outperforms the NMF model.

First, the difference that the salience model makes is not the same for all sound classes.

The results show that adding the auditory salience model to the NMF detector

improves its performance for gunshot and glass breaking events, but not the baby

crying event, for which it decreases the error rate, but does not improve the F-score,

suggesting a low hit rate.

The reason for this difference in performance for different event classes may be that

the first two – gunshot and glass breaking – usually have sudden onsets, while the last

one – baby crying – can start rather slowly. The salience model is designed to detect

sudden changes in features, but will adapt to changes that are too slow. While this

property makes it useful in some types of backgrounds (see below), it also means that

it might not be suited for events which develop slowly, or might need a larger frame

window for them.

Looking closer at individual sound recordings, there were a number of cases where
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Figure 11.2.: Results for a gunshot event over a residential area background, with a loud car

passing in the first half of the file. Top row: H1 matrix from the NMFmodel. Bottom left: salience

model output s. Bottom right: final output of the model, from which an event is detected for any

value larger than 0. Red dashed line shows the position of the target event. Even though it was

correctly recognised by the salience model, the combined models do not detect it.

the salience model was able to detect an event when the NMF was not. This is also

evident from the fact that the salience model outperforms both the NMF and the

proposed method for the glass breaking event. One situation where the salience

model presents an advantage is when the background noise significantly but slowly

increases in level – e.g. a train passing (see Figure 11.2). Because a Kalman filter-based

model is not sensitive to sudden feature changes, it is able to adapt to this

background, and only flag a detection when changes in feature values correspond to

new, “surprising” events. It also seems to perform well in loud cafeteria-type

backgrounds (see Figure 11.3).
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Figure 11.3.:Results for a gunshot event over a cafe/restaurant background. Top row: H1 matrix

from the NMF model, before and after binarization. Bottom left: salience model output s, after

normalization. Bottom right: final output of the model, from which an event is detected for any

value larger than 0. Red dashed line shows the position of the target event, which was correctly

recognised by the salience model, but not the NMF model.

11.3. Summary

This chapter described an example of a practical application of an auditory salience

model based on deviance detection. The model was combined with a method based

on Non-Negative Matrix Factorization and used to detect events in acoustic signals. It

improved performance of the algorithm on sound events with sudden onsets and

noisy backgrounds.
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Summary

Part II discussed modelling of spatial auditory salience.

Models based on prediction and deviance detection in particular correspond well

with known mechanisms of salience. Chapter 9 reviewed these mechanisms and

different approaches to modelling auditory salience. None of the models take spatial

information of the sound into account in their salience calculations.

Chapter 10 showed that adding information about spatial location of sound to a

model based on Kalman filters can predict pupil dilation responses to breaking spatial

expectations.

Then, in Chapter 11, an application of a deviance-detection model was shown, where

it was used to improve acoustic event detection performance of a Non-Negative

Matrix Factorization algorithm.
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General discussion
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Discussion

13.1. Auditory salience and spatial location

Part I of this thesis describes perceptual experiments designed to test the effect of the

location of a sound on auditory salience. As there is no standard testing method for

auditory salience, four different methods were used, each of which addressed the

question from a slightly different perspective. The results suggest that the spatial

position of sound, alone, does not directly affect its salience. In this section, the

evidence for this claim will be discussed in the context of low-level and high level

salience, the effects of loudness, perceptual load, and expectations.

Low- and high-level salience

The experiment in Chapter 3 used an oddball detection method, based on that used by

Tordini et al. (2013), but modified to include six spatial locations around the listener.

The stimuli used in this experiment were band-pass filtered noise. The results showed

no difference between participants’ responses to different locations when the stimuli

were low frequency noise. However, for high frequency stimuli, responses were
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significantly slower (about 100 ms) for target sounds behind the listener, compared to

sounds in front or on the right. Participants were also about twice as likely to be

incorrect in detecting the oddball for rear rounds. These results suggest that spatial

salience might be related to the spectral content of the sound. For high frequency

noise, sounds in the back appear to be less salient than those in the front, whereas no

such effect exists for low frequency noise.

One of the shortcomings of the oddball experiment was that the stimuli were simple,

synthetic sounds. Although this allowed for straightforward manipulation of the

sound, it could be argued that the perception and responses to those stimuli does not

accurately represent everyday listening situations.

Chapter 4 tested auditory salience in a self-reporting experiment in a more

ecologically valid environment, where top-down attention also played a role.

Participants listened to recordings of real-life sound events and reported their

attentional focus in real-time. As expected, participants paid attention to louder

sounds more often, which is in agreement with other studies on salience of loudness

(Kaya and Elhilali 2014; Huang and Elhilali 2017). The results also suggest an

interaction between brightness and location of sound – there is a small decline in

salience of sounds arriving from behind the listener, but only for high brightness

sounds.

Because natural sounds were used as targets, other factors not taken into account in

the design could influence the results, especially participant-specific subjective effects,

such as personal experience or an emotional reaction to a sound. For example, one

participant noted that they thought they paid more attention to sneezing and

coughing sounds, as they instinctively wanted to avoid a source of viruses and

bacteria. There is also evidence to suggest that emotional environmental sounds can

influence spatial attentional orienting by causing attentional avoidance (orienting

away) from taboo or emotionally negative sounds presented to the left side (Bertels
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et al. 2013).

Loudness

Both the oddball detection and the self-reporting experiments show a similar

interaction between sound location and its spectral content – specifically, only sounds

with high brightness (including high-pass noise) are less salient when they are behind

the listener, than when they are in front. Fig. 13.1 shows a comparison of these results:

the data points are probabilities of a correct response (oddball experiment) and

attended event (self-reporting experiment), but it is assumed here that they both

represent how likely people are to attend to sounds which are in a particular location

around them. Note that both the high and low-pass noise stimuli had spectral

centroid values outside of the range of the natural sounds used here (spectral centroid

of the low noise: 812 Hz, high noise: 13691 Hz, natural sounds: 1000-5500 Hz). Still,

they show a similar pattern.

These results could likely be explained by loudness differences. Pinna-shadowing can

affect the loudness of high frequency or broadband sounds arriving from behind the

listener, and this decrease in loudness can make these sounds less salient. Sivonen and

Ellermeier (2006) measured loudness for different locations around the listener (only

on the left, however, as they assumed symmetry), shown in Figure 13.3. Their results

show lower sensitivity from the back for 5 kHz sounds, and almost no difference for

400 Hz and 1000 Hz sounds (third-octave noise bands), consistent with the results of

the salience experiments. However, they also found higher sensitivity to sounds

arriving from the side, which was not seen here.
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(a) Oddball detection experiment (b) Self-reporting experiment

Figure 13.1.: Estimated probabilities that a sound was attended to, for front and back location

vs frequency or brightness from the two first experiments, with 95% confidence intervals.

Figure 13.3: Directional loudness sensitivit-

ies at 65 dB SPL. Reproduced from Sivonen

and Ellermeier (2006).

Perceptual load

The experiment in Chapter 5 tested auditory salience in a dual-task experiment, in

which perceptual load was manipulated by adding sound sources to the scene.
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Salience was determined from participants’ performance on the secondary task,

which was detection of a known stimulus.

Firstly, the results show a main effect of front/back position on detection of the

secondary target (p = 0.00001). The targets behind the listener were 1.4 times more

likely to be detected than the ones in front, and this effect was independent of

perceptual load. In addition, in low perceptual load conditions, participants were

more likely to detect targets located to their right side, than to the left (p = 0.02, odds

ratio at set size 1 = 2, at set size 2 = 1.7). This effect, however, disappeared at higher

perceptual load levels. The expectation before performing the experiment was that,

because at high perceptual load levels only the most salient sounds are noticed,

increasing the load could perhaps reveal some auditory salience differences which are

otherwise missed. However, the interaction that was found is the opposite –

increasing perceptual load diminished an apparent spatial effect. It could point

towards a right-ear advantage which is only available with free perceptual capacity.

Usually however, a right-ear advantage is associated with speech stimuli (Marsh,

Pilgrim and Sörqvist 2013) and there have even been arguments for a left-ear

advantage for non-speech sounds (Hadlington, Bridges and Darby 2004). These

left/right advantages have often been attributed to brain pathways and faster

processing of certain type of stimuli in one of the hemispheres and there is evidence

that speech and melody are processed in different hemispheres (Albouy et al. 2020).

However, it has also been argued that the right ear advantage is accounted for by

attention (Hiscock and Kinsbourne 2011). These results differ from results of

experiments described in Chapters 3 and 4 – this will be discussed later in this chapter.

There is also a question of whether the strategy participants used to perform the tasks

could change the interpretation of the results. The assumption was that they would

focus mostly on the primary task, and only detect the secondary task when they had

free perceptual capacity, or when the target was sufficiently salient. However, there is
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a possibility that, instead, they first decided which primary target was present, and

then switched their attention fully to the secondary task. If this was indeed the case,

increasing the number of sound sources might not really correspond to a decrease in

free perceptual capacity. It would still likely cause increased task difficulty, simply

because after spending more time on the primary task, there was less time left to find

the secondary target. An attempt to prevent participants from adopting this strategy

was to instruct them to respond as quickly as possible, and to stop the sound clip as

soon as they responded. The previously published non-spatial version of this

experiment (Remington and Fairnie 2017) avoided this problem by using very short

stimuli (100 ms), but this was sacrificed to make the experiment closer more

ecologically valid. At least three different ways of explaining dual-task interference

have been proposed: capacity limitations, bottleneck (task-switching) and processing

“cross-talk” between tasks (Pashler 1994).

Expectations

Chapter 6 explores spatial auditory salience in the context of surprise and

expectations. Participants performed an auditory task in 6 different experimental

conditions: the baseline condition with no distracting sounds, a single distractor

condition, and 4 conditions with different combinations of a context sound followed

by a distractor (with matching or non-matching location, and matching or

non-matching sound type). The results show that introducing various distraction

conditions affected both response times and pupil dilation responses (PDRs),

compared to the no-distraction baseline. However, each of these two response metrics

was affected differently by the experimental conditions.

Pupil dilation data show clear, statistically significant responses to all the conditions

in which a new sound was introduced to the environment, regardless of context type.
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The effect is very similar in size to one reported in previous studies: 0.08 mm (Marois,

Marsh and Vachon 2019). Changing the location of a sound between context and

distractor, when the type of sound was the same, had a smaller, but significant effect

(around 0.04 mm). This can be interpreted as a response to breaking the listener’s

expectations about what sound sources are in the environment and, to a smaller

degree, about their spatial position.

Notably, the condition which breaks both expectations does not seem to evoke a larger

response than the condition which breaks only one (type). The average pupil size

baseline for all trials in the experiment was 4.5 mm, which was just over half of the

maximum of pupil dilations (Mathôt 2018), so it is unlikely that the total range of

possible dilations was exceeded. On the other hand, the mean pupil dilation response

in these two conditions was 0.47 mm, which might be close to the upper limit of

task-evoked PDRs, which are typically in the order of 0.1 to 0.5 mm (Winn et al.

2018).1 However, if this pattern in results is not simply an artefact of the pupil dilation

range, it could mean that effects of breaking multiple expectations are not necessarily

additive. In this particular situation, one could argue that a new sound in a new

location is simply not more surprising than a new sound in an expected location,

because there was nothing in this scenario that would lead participants to believe that

sounds will always only come from one location (in fact, in the real world, this is

almost never the case). The implication of this would be that spatial auditory

expectations are mostly built with relation to specific sound streams (the bird is likely to

continue singing on my right), rather than with relation to locations in space (it is unlikely

that any sounds will come from my left). Changing location of a sound is therefore only

relevant (salient) if it breaks continuity of an otherwise consistent stream.

1This response is much larger than the 0.08 mm expectation-breaking effect reported earlier, because

it includes any potential responses to the task – for example, processing the target, deciding on the

response, deciding on which button should be pressed etc.
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Crucially, when no expectations are violated (a distractor matches context in both

location and type), the pupil dilation response is no different than in the baseline

condition, where only the target sound was present. In other words, a distracting

sound which is a continuation of a previously heard, predictable stream did not elicit

a pupil dilation response, even though it was presented at the same time as the target.

This confirms that the significant PDRs recorded for other conditions did not simply

reflect processing of additional auditory information.

Response times show a less clear picture. All three conditions in which there was a

mismatch between context and distractor were significantly different from the

no-distraction condition, but an analysis of contrasts shows no significant difference

between them. The condition with context matching the distractor in both location

and type was not significantly different from the no-distraction condition. Somewhat

surprisingly, neither is the distractor-only condition, where there was no context

sound.

Clearly the behavioural responses have a different pattern from the pupil dilation

responses. In trying to understand where these differences originate, it might be

worth looking more closely at responses to a condition for which the difference

between response times and pupil dilation was perhaps most interesting: the

distractor-only condition. The initial prediction was that a single sound preceded by

silence will be very distracting, as it clearly breaks expectations about the environment.

This prediction, however, was only confirmed in PDR, but not behavioural data.

Let us compare this distractor-only condition with the condition in which neither

location nor type match between context and distractor. It can be argued that they

both break spatial expectations in a similar way, with a sound appearing in a new

spatial location, and they both introduce a new sound to the environment. The main

difference between them is the presence or absence of the context sound. It is possible

that it is this presence of the context sound that makes sounds more distracting and
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increases response times, but has no effect on pupil dilation responses. A hint towards

the greater importance of the context for response times than for pupil dilation is also

the larger and more consistent effect of context length on the former. One reason for

this could be that breaking expectations from a sound (context) causes larger

behavioural distraction than breaking expectations from silence (no context). In fact, a

distinction has been made in the literature between initial orienting response – to the

first stimulus in a sequence – and change orienting response – when an aspect of an

existing stimulus sequence changes (Näätänen and Gaillard 1983). However, larger

PDRs have previously been found to the change OR, than the initial OR (Steiner and

Barry 2011), which was not confirmed in this experiment. A different, simple way of

explaining this is that the mere presence of a context sound distracts participants and

slows them down, perhaps by involuntarily drawing their attention to itself – even

though participants were informed about the location of the incoming target word.

This could then cause a response delay by having to switch attention back from the

context sound to the target, which may not be reflected in the pupil dilation responses.

Finally, no effect of the absolute spatial position of the distractors on neither

behavioural responses or pupil dilation responses was found. This result is consistent

with the results of experiments described in Chapter 3 and Chapter 4.

Summary

Three of the experiments discussed above suggest that location of sound around the

listener does not modulate auditory salience. However, the experiment in Chapter 5

indicated that sounds behind the listener might be more salient than those in front.

What are possible explanations for the discrepancy in the experimental results

between the dual-task and other experiments?

The cause likely lies with the different methods used. This difference could indicate
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that something about the detection task in the dual-task experiment from Chapter 5

makes it fundamentally different from the experiments in Chapters 3, 4 and 6, and it

measures a different perceptual or cognitive process. Therefore, these spatial effects

might arise not due to salience, but to a mechanism only present in the dual-task case.

When the definitions of salience described in Chapter 2 are considered, the three

experiments use methods that are closer to the “attentional” definition of salience,

while the dual-task experiment might be closer to the ’detection’ definition. However,

the distinction is not absolutely precise and there could be arguments for explaining

some of the experiments in terms of both attentional orienting and detection. It is also

possible that the reason is not due to the detection task itself, but to the dual-task

paradigm, which was unique to the experiment in Chapter 5. Even though the

distraction experiment (Chapter 6) was similar, as participants’ main focus was also

on something unrelated to the stimuli, they were still only performing one task, as the

stimuli were not relevant.

It is worth noting that the effect sizes for these spatial effects were rather small, and it

is possible that they arose due to chance. To be sure, the results would need to

replicated in a spatial dual-task experiment. Taken together, the evidence from the

four experiments does not support the idea that spatial position modulates auditory

salience.

Although the literature on the salience of sounds in the rear is lacking, an argument

could be made for a benefit to noticing sounds that are behind the person, outside of

the field of view. Being alerted to these sounds, allows the person to turn their head

and use vision to investigate. It has indeed been shown that orienting attention to a

sound enhances visual processing in that location (Spence 2010). On the other hand,

one could argue that the result suggesting that no particular spatial location is more

salient than any other is not at all surprising, especially in the view of the ’Bayesian

brain’ theory (described in Chapter 9). If one views salience as the violation of
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expectations, sounds are only salient in a context, when they do not agree with the

listener’s predictions. Therefore, a sound in a particular location can only be salient if,

according to the listener’s mental model, it is not likely to appear there. The results of

the distraction experiment reported in Chapter 6 are indeed in agreement with this

view of the brain and more specifically of auditory processing. In this experiment, no

particular location on its own caused a larger or smaller reaction than other locations.

On the other hand, there was a small but significant pupil dilation response to a

sound unexpectedly changing its spatial position, suggesting that violations of spatial

expectations are salient. Still, this response was smaller than that to a new sound – i.e.

changing expectations about which sound is present in the scene.

13.2. Measuring auditory salience

An experiment which compared three different measurement methods confirmed that

they are likely to respond differently to effects of low- and high-level salience.

Additionally, pupil dilation responses have been measured to spatially unexpected

sounds in a distraction experiment, which supports the effectiveness of physiological

methods for measuring auditory salience.

Behavioural methods

The problem of determining the most appropriate methods of measuring auditory

salience remains open. In this thesis, four different paradigms were used to investigate

the issue. Each method was different and had its own advantages and potential issues.

Table 13.1 gives an overview of the differences and similarities between the methods.

In each experiment, participants performed a different task. The goal of the oddball

detection task in Chapter 3 was to detect a shorter inter-stimulus interval in one of
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Chapter 3 Chapter 4 Chapter 5 Chapter 6

Task oddball detection self-reporting detection

(secondary)

classification

Stimuli

relevance

relevant relevant relevant not relevant

Salient

sounds will...

...be attended to

more often

...be attended to

more often

...be easier to detect ...cause automatic

attentional orienting

Collected

metrics

RT (speed), hit rate hit rate hit rate, pupil

dilation

RT, pupil dilation

Localisation not required required and can be

an issue

not required not required

Stimuli noise natural sounds natural sounds natural sounds

Energetic

masking

unlikely possible possible (for high

load levels)

unlikely

Top-down

effects

minimal significant minimal minimal

PCA loadings

Dim. 1 0.06/0.01 0.99 – 0.26

Dim. 2 0.87/0.88 0.03 – 0.72

[speed/hit rate]

Table 13.1.: Comparison of experimental methods developed and used in this thesis. Task is

the task on which performance is evaluated. PCA results are from the comparison experiment

in Chapter 7.

two competing streams. Because of the streams’ asynchrony, it was very difficult – if

not impossible – to follow both simultaneously, so the inter-stimulus difference was

only evident once a stream was attended to. Therefore, the participant would

statistically detect more oddballs, and detect them quicker, in the stream which was

more often attended to, and therefore – more salient. In the self-reporting experiment

in Chapter 4, participants were free to point towards a sound which attracted their

attention in real time. The stimuli’s position in time relative to the background sounds
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was randomised. The idea is, again, that more salient sounds will attract attention

more often. These two experiments fit with the “attentional” definition of salience

discussed in Chapter 2. The experiment in Chapter 5, where perceptual load was

modulated, was a dual-task experiment, in which salient sounds were assumed to be

more often detected in the secondary task. It could be thought of more as based on a

“detection” definition of salience. Finally, the method in the distraction experiment in

Chapter 6 differs from the previous ones in that the stimuli being tested were not

actually relevant to the participants’ task. Instead, they pulled their attention away

from the task. The more salient sounds will be more “successful” at causing this

attentional orienting and result in longer response times. This is, again, close to the

“attentional” definition of salience.

All of the experiments were based on existing mono or stereo-based methods, and

extended to include more spatial positions. They utilised various positions around the

listener, including behind them. Arguably, this type of a paradigm allows for a more

ecologically valid listening situation than many of the other salience or attention

experiments, which tend to be performed over headphones or a loudspeaker in front

of the listener (as discussed in Chapter 2). After all, in the real world, sounds do arrive

at the listener from all possible locations, and auditory phenomena such as spatial

release from masking are only possible when sounds are spatially separated.

Another benefit is that multiple sounds can be presented simultaneously and – as long

as they are spatially separated – spatial release from masking helps reduce energetic

masking effects. In the distraction experiment (Chapter 6) spatial separation between

two sounds presented simultaneously was always at least 90°, in the oddball detection

experiment (Chapter 3) – 60°, and in the dual-task experiment the minimum distance

was 30°. However, in the self-reporting experiment (Chapter 4), it was possible for

two simultaneous sounds to be spatially overlapping.

Although spatialisation of these experimental methods has its clear benefits, it is
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worth noting that it also comes with certain problems and limitations. For example, in

classic dichotic experiments, the standard way of presenting competing sound

streams is through headphones. This allows for complete separation of the two

channels which facilitates easy stream segregation. In addition, when an experiment

with dichotic presentation requires a participant to respond by choosing one of the

streams – for example, an oddball task like Tordini et al. (2013), or a free-listening

experiment like Huang and Elhilali (2017) – the usual way is to indicate the left or

right ear, usually by pressing a button on the left or right side. This straightforward

ear-button mapping makes the response intuitive, and with streams being completely

separated in the left and right headphone, the task should not pose a challenge.

However, with the streams in more positions, some more difficult to localise than the

extreme left and right (Blauert 1997), an analogous way of pointing to a selected

stream is not as straightforward, and can significantly increase average response

times. The self-reporting experiment described in Chapter 4 confirmed that

localisation errors can be a significant issue, even when all the sounds were

concentrated around front/back and left/right axes. This makes interpretation of

responses in such an experiment difficult.

The experiment in Chapter 3, which used an oddball detection method, attempted to

avoid the localisation problem altogether. In it, participants were asked to

differentiate between two types of stimuli, and instead of the location of the stream,

indicate which stimulus stream was built of (e.g. high frequency or low frequency

noise). This is less intuitive than indicating left/right – also because it requires

remembering which button to press for which stimulus – and requires prior training.

In order not to make the task more difficult (which could introduce more errors), the

oddball detection experiment described in Chapter 3 used stimuli which were very

simple – noise bursts. This, however, reduced environmental validity. A way of

making the task a bit more intuitive could be to use speech (words or just vowels), but
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this also limits the types of characteristics of sound which can be tested. In general,

this approach only lets the researcher test limited types of stimuli, and usually

requires prior training. Therefore, from the point of view of localisation errors, a

distraction experiment like in Chapter 6 or a dual-task detection (Chapter 5) might be

better, as they do not require the participants to explicitly localise any sounds.

Apart from presenting stimuli around the listener, another aspect adding to the

ecological validity was that all experiments, except for the oddball detection

(Chapter 3), used recordings of real-world sounds as stimuli. This is perhaps

especially an improvement in the distraction experiment (Chapter 6), as many of the

distraction methods in the literature use the standard sound/deviant sound

paradigm, where the standard is a simple sound such as a tone repeated regularly.

The experiment in Chapter 6 introduced a paradigm in which the standard sound

instead develops continuously, in a natural way, over time.

Although all of these methods are based on previously published salience and

attention research, the comparison analysis described in Chapter 7 shows that not all

of the methods measure the same phenomenon. The non-spatial equivalents of

methods used in Chapters 3, 4 and 6 were compared by running them each with the

same stimuli. A Principle Components Analysis of the results shows at least two

different dimensions of salience, each correlated with different methods. Chapter 7

gave a detailed discussion of the PCA results. In general, the two dimensions seem to

describe low-level and high-level aspects of salience. Attention has been shown to

operate on multiple levels, from the most basic, local changes in signal characteristics,

to more global deviations in patterns (Chennu et al. 2013). In addition, on this higher

level sounds can be salient because of their meaning (Moray 1959) or emotional

content (Thierry and Roberts 2007).

Of the experiments in this thesis, the self-reporting one in Chapter 4 is most likely to

be affected by top-down attention and higher-level characteristics of sound, such as
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meaning, or emotional connotations. This also means that it will capture more

variation in which sounds different people find salient. The other three experiments

either kept the participant’s top-down attention focused on something unrelated to

the stimuli (Chapters 4 and 6), or used only two types of simple stimulus, and made

sure that the type of stimulus was balanced across all other conditions (in case a

participant had a preference for one over the other). The experiment in Chapter 6 can

most likely measure the lowest-level attentional orienting out of the four methods,

because in it, the stimuli are irrelevant to the task, and there is no benefit of attending

to them at all. Participants might even actively try to block them out, so they attract

attention in a truly automatic way. Brain responses to “oddball” (deviant) stimuli

have been recorded even in sleep (Atienza, L. Cantero and Gómez 1997), so it is

known to be a very low-level process.

These results can not determine if any of the methods is more “correct” for measuring

salience. Instead, what they underline is that salience, defined as the ability to attract

attention, is complex, and different measurement methods will capture its different

aspects. This is something that should therefore always be taken into account when

interpreting results of auditory salience experiments. As the comparison study was

limited in scope, with the number of data points relatively small and certainly

unrepresentative of all possible methods, a more comprehensive analysis of available

auditory salience measurement methods would be beneficial for the field.

Pupil dilation responses

In addition to behavioural metrics, such as response times or task accuracy, pupil

dilation responses (PDR) have been collected for two of the experiments (Chapters 5

and 6). Interestingly, the PDRs did not agree entirely with behavioural data.

Chapter 5 found an effect of spatial position of the target sound in behavioural data
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(detection accuracy), but not for pupil dilation responses. Perhaps even more

importantly, while behavioural task performance clearly decreased with increasing

perceptual load, the pupil dilation responses show a different pattern. While task

accuracy decreased in a close to linear manner with each sound source added to the

scene, PDRs were similar for set sizes 1 and 2, significantly larger for set size 6, and

the largest for set size 4. Therefore, pupil dilation failed to reflect the increased

perceptual load in a gradual manner.

It is possible that this reflects a property of pupil dilation. As PDRs for set size 6 were

significantly smaller than for set size 4, it is unlikely to be a simple ceiling effect on

dilations. There is evidence that pupil dilation responses might decrease for very

difficult conditions, such as high SNRs in a speech-in-noise test (Wendt et al. 2018),

possibly demonstrating some level of disengagement from a task which becomes too

challenging. This might be the effect observed in these data. It is also worth noting

that it is not straightforward to interpret pupillometry for this experiment because of

the inconsistent timing of the trials. Not only would the sound clip stop when the

participant responded to the first question, making each trial a different length, but

also there is no way of knowing the moment in which a participant notices the

secondary target. It is possible that more subtle effects got lost in the noise.

On the other hand, in the distraction experiment (Chapter 6) the measured pupil

dilation revealed participants’ automatic responses to unexpected stimuli, which were

not apparent in their behavioural performance. This indicates that physiological

metrics – such as pupil dilation – might reveal salience effects not present in

behavioural responses. As they are automatic, they will not be susceptible to

participant errors and have the potential to give more objective measurements. Also,

because any behavioural responses include effects of cognitive and motor processes

associated with making decisions about a response and physically responding (e.g.

pressing a button), they are likely to be more noisy. Other researchers have also found
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differences between behavioural responses and pupil dilation responses. Marois and

Vachon (2018), for example, recorded significant PDR to deviant sounds, but not an

effect in performance in a reading comprehension task, and suggest that “the PDR

may be a more sensitive attention-capture index than behavioural measures”.

Pupil dilation has been previously measured to various auditory stimuli, including

unpredictable or infrequent events (Zekveld, Koelewijn and Kramer 2018). However,

although distraction to location deviants has been demonstrated in behavioural task

performance and brain responses (Roeber, Widmann and Schröger 2003; Corral and

Escera 2008), it has not been previously shown in pupil dilation. The experiment

presented in Chapter 6 demonstrates that this effect can also be detected with pupil

dilation responses.

13.3. Implications for modelling

The problem of not having consistent auditory salience ground truth still exists and

will be an issue for attempts to develop and assess reliable auditory salience models

(Kaya and Elhilali 2017) until some form of standard testing is established in the field.

Modelling attempts based on ground truth collected with different experimental

methods might well give very different results.

Violation of expectations

The results described in this thesis, in particular in Chapter 6, support the idea of

modelling salience as a deviation from prediction. Such a model will usually consist

of two crucial parts: prediction of the incoming input, and comparison between the

prediction and the actual input. Often, this will be accompanied by building some

form of an internal model of the environment and updating that model as new input
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emerges. The models will also often have a way of accounting for the degree of

confidence in the prediction (or how accurate it is).

In Chapter 10, an example of such a model was described, based on multiple Kalman

filters, and it was shown that it can predict experimental data from Chapter 6 with a

correlation coefficient above 0.9. In Chapter 11, an application of the

Kalman-filter-based model was presented, where it is combined with a Non-negative

Matrix Factorization (NMF) algorithm for acoustic event detection. Adding this

salience module improved the performance of the NMF for two sound classes: the

more impulsive “gunshot” and “glass breaking”, but not for the more gradually

evolving “baby crying”. It also outperformed NMF in recordings with background

noise which was at a high level, but changing slowly. In general, the deviance

detection-based salience module was able to adapt to slowly changing environments,

and only flag events when sound features changed suddenly.

Other models based on this principle have been proposed, particularly more recently,

for example ones which calculate Bayesian surprise – the difference between prior and

posterior probabilities of the input (Schauerte et al. 2011), or the log-surprise as the

difference between predicted input distributions at two consecutive steps

(Rodríguez-Hidalgo, Peláez-Moreno and Gallardo-Antolín 2018). Tsuchida and

Cottrell (2012) used a similar approach by calculating signal statistics and comparing

them to each new frame (see also Kaya and Elhilali 2017 for a discussion). Bayesian

surprise models have also been used for acoustic event detection (Schauerte and

Stiefelhagen 2013; Rodríguez-Hidalgo, Peláez-Moreno and Gallardo-Antolín 2018).

However, this is not always the approach developers of salience models take. The

classic saliency map of Kayser et al. (2005) – following the visual equivalent of Itti,

Koch and Niebur (1998) – used a center-surround differentiation method, which finds

areas on the spectrogram that locally differ from their surroundings, by subtracting

spectrograms calculated with coarser time scales from the finer ones. This allows it to
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find discontinuities in features (temporal and frequency contrast). However, although

this approach finds discontinuities in features, it only works at the most local level,

and does not have the prediction component in it. And, as Kaya and Elhilali (2017)

point out, these models ignore the fact that time is directional, and there is temporal

build up from the past to the future.

Some models first calculate acoustic features such as loudness (Kim et al. 2014) or

pitch (Kaya and Elhilali 2012), while other determine salience straight from

spectrograms (Kayser et al. 2005) or results of modelled peripheral auditory

processing (Tsuchida and Cottrell 2012). Although almost all models agree on using

some sort of an energy or loudness representation, other features are less clear. There

are studies in the field which focus on trying to identify the most important salience

features (Kaya and Elhilali 2014; Tordini, Bregman and Cooperstock 2016). However,

considering the Bayesian principles, the question of which features exactly make

sounds salient might not be as relevant as having a general deviance detection

mechanism, which operates on multiple features. From what is known about the way

the brain processes auditory information, it is likely that the salience mechanism

utilises whatever information is available to it, or the most useful features. Therefore,

if there is not enough variation in the preferred feature, it will find deviations in other

features which can trigger the salience mechanism.

Furthermore, some inconsistencies in experimental results could potentially be

explained in the Bayesian paradigm. Take brightness, for example – there have been

studies which argue that brighter sounds are more salient that darker ones (Huang

and Elhilali 2017), and there have been ones claiming the opposite (Tordini, Bregman

and Cooperstock 2016). Perhaps these differences could be explained by different

expectations, or context, against which the stimuli were set. For example, the study by

Tordini, Bregman and Cooperstock (2016) used bird song recordings – could there be a

general expectation for bird sounds to sound bright? This kind of an expectation
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could make darker bird songs more surprising.

What many of these prediction-based models still lack, is a way to detect deviations in

more complex or abstract patterns or rules. For example, Schröger et al. (2007) found

mismatch negativity (MMN) brain responses to violations of an abstract rule (“second

tone in a pair has a frequency 26% higher than the first”) even when participants were

ignoring the sounds. The type of model used in this thesis would not really be able to

deal with this problem. Some have addressed the issue of different timescales of

attention – for example, the multiple Kalman filters used by (Kaya and Elhilali 2014)

are meant to work on different timescales, but they are not – by design – able to detect

repeating patterns or complex rules.

Finally, the Bayesian framework allows for convenient inclusion of individual

differences in how people perceive – and react to – salient sounds. Some people may

have a lower salience threshold than others, making them more distractable. Looking

at it through a Bayesian perspective: some people may put more emphasis on their

internal models (or priors) and need very strong data for them to be affected. Others

may adjust their models more easily when they receive external data, which will make

them pay more attention to it. This “sensitivity” aspect is key in personalisation of

models but poses a significant challenge when universal modelling of experimental

data is attempted.

Spatial models

Even though the absolute spatial position of sound is not likely to impact its salience

directly, it is still worth developing models which take it into account. For example, if

a salience model is to be included in an object-oriented broadcasting system, it would

be beneficial for the model to have access to each sound object’s location information.

As mentioned earlier in this chapter, there are properties of sound which change with
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location and are known to influence salience – perhaps most notably – loudness. If a

model is not using a recording from a head and torso simulator (or in-ear

microphones), it might miss the subtle but important differences in loudness between

sounds in different positions. Tracking sound positions and taking them into account

in both salience and loudness calculations may therefore be beneficial.

Additionally, as shown in the literature (Chan, Merrifield and Spence 2005; Roeber,

Widmann and Schröger 2003) and confirmed by the experiment in Chapter 6,

deviations in sound location can be salient, which means that location should be

included in a salience model’s deviation detection algorithm. In Chapter 10, spatial

location information was added to a Kalman filter-based model by adding it as a

tracked signal feature. It was shown to be able to predict the results of the

experimental data from Chapter 6. There is actually some evidence that the brain

automatically and continuously tracks spatial location of sounds – Deouell et al. (2006)

demonstrated the mismatch negativity (MMN) brain response in reaction to changes

in spatial location which was proportional to the degree of the spatial deviation.

The Kalman filter model described in Chapter 10 was able to detect salient,

unexpected changes of spatial location of sound. Specifically, the modelled salience

score for each experimental condition correlated well with measured pupil dilation

responses. Although binaural signals have been used in salience models to aid

grouping (Wrigley and Brown 2004), the model developed in this thesis is the first

model which derived salience directly from sound location information.

It is however a simple, conceptual-level model. It did not include a feature extraction

module and the values of the type and location features used were based on an

educated guess, and could be argued to be rather arbitrary. The final stage of

combining salience scores from both features was also simplified. A more

comprehensive model would perhaps require a form of training to determine the

extent to which deviations in location influence salience, compared to deviations in
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other features. The results of experiments in this thesis suggest that the location feature

was less important than the type feature. This type feature might however be explained

by a number of different characteristics – not only changes in the spectral content of

the sound, or even its temporal envelope, but also higher-level brain processes

categorizing a sound as a new sound source.

13.4. Summary

The results of the experiments presented in this thesis indicate that spatial position of

sound does not directly influence its salience. This means that, for example, the

specific positioning of auditory alarm signals around the listener might not be

important. However, a sound unexpectedly changing its spatial location is likely to

attract attention. In addition, as loudness does tend to modulate salience, it is

important to keep in mind how it might change with spatial location.

Therefore, keeping information about spatial location of sounds in the environment

can be useful in auditory salience models. For example, it can be used in a

deviance-detection-based model as a feature, in which any unexpected changes are

identified as salient. The work presented in this thesis emphasises the importance of

spatial auditory models, and advocates for auditory salience models based on

deviance detection and prediction.

Finally, obtaining reliable ground truth for model training and assessment is crucial,

but not straightforward for auditory salience models. The lack of standard

measurement methods, or available testing datasets, means that models based on

different experimental methods might in fact predict different aspects of auditory

salience. The comparison of experimental methods described in this thesis identified

two relevant dimensions of salience – one correlated with the more automatic and
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low-level experimental methods, and the other with higher-level ones.
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14
Conclusions

This thesis addressed the problem of measuring and modelling spatial auditory

salience. Different methods of defining and assessing auditory salience were

discussed in Chapter 2. There is no consensus in the literature about which methods

are best to use, or how exactly auditory salience is defined, but it is often described as

the ability of sounds to attract attention. The remaining chapters of Part I used four

different experimental methods to investigate how spatial position of a sound

influences auditory salience.

Experimental data suggests that the absolute spatial location of a sound alone

does not modulate its salience. The experiments described in Chapters 3, 4 and 6,

each based on a different method, found no effects of spatial location of sound on

auditory salience. However, unexpected changes in spatial position of an auditory

stream did evoke pupil dilation responses in a distraction experiment. This confirms

previous reports from the literature that breaking expectations about spatial position

of a sound causes an attentional response.

Experimental methods used to measure auditory salience vary on at least two

different dimensions of salience, indicating that they measure different aspects of
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salience. The experiment in Chapter 7 compared methods based on oddball detection

in competing streams, real-time self-reporting, and distraction, and compared them

with published salience scores. The analysis found that the methods occupy a

two-dimensional space of salience, where one dimension can be interpreted as more

low-level, and the other high-level, with potential top-down influences. Additionally,

it was shown that pupil dilation responses can be measured to sounds

unexpectedly changing their spatial position. In a distraction experiment described

in Chapter 6, pupil dilation responses revealed reactions to broken expectations which

were not apparent in behavioural task performance data.

Part II explored how the spatial location of sound can be used to improve auditory

salience models. Chapter 9 discussed methods of modelling salience, with emphasis

on approaches based on prediction and expectations.

It was shown in Chapter 10 how spatial location information can be incorporated

into a deviance detection-based model and successfully predict pupil dilation

responses to broken spatial expectations. Sound location changing in time was used

as a feature in a model based on Kalman filters, which detects unexpected deviations

as salient.

In light of the findings described above, it is important for future research to more

carefully define what is meant by “salience”. When designing and performing

auditory salience experiments, one should consider which attentional level is being

measured by the chosen experimental method. Where practical, pupil dilation should

be considered as a measurement method, since the work described in this thesis

provides one more data point in support of it being sensitive to auditory salience.

The definition is also important to clarify for auditory salience models, and which

type of salience is of interest depending on the model’s intended application.

Additionally, the spatial position of sounds and how it changes over time should be
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considered in these models. Taking into account the spatial position can also be

beneficial because salience might be influenced by features of sound which do vary

with spatial position, such as loudness.

14.1. Further work

In future work, it would be interesting take a step further and study the relationship

between salience and the continuous movement of sound sources. While it has been

shown that sounds moving towards the listener tend to be more salient than those

moving away (e.g. Baumgartner et al. 2017), the effects of other types of movement

are less clear. Different aspects of movement such as direction, speed, starting and end

position could be considered. It would be particularly interesting to see if the results

confirm predictions from a Kalman filter-based model, which would be likely to mark

fast movements as salient and ignore slow movement, but would not necessarily

differentiate between directions or starting points.

Additionally, there is certainly more work that could be done on modelling. A model

could be developed with spatial position as one of the features, and crucially, with a

module which integrates it with other features in a manner which reflects ground

truth data. This would require designing experiments which can reveal the relative

importance of spatial position compared to other features. How the deviance

detection mechanism utilizes different features could also be investigated in more

general terms, for example, whether the general mechanism is more important than

the particular features of sound which it utilizes.

Finally, in this thesis, it was assumed salience is independent of localisation, as it was

defined and treated as a property of sound. However, it could also be argued that any

potential assignment of salience to a particular spatial location happens not outside of
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the head but inside – that it is the brain that assigns importance to one position over

another. To this end, it would be interesting to see if salience depends not on location

but rather localisation of a sound. This could be done, for example, by designing

experiments in which the same sound stimuli are both localised and assessed on their

salience.
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A
Sound recordings used in the
free-listening experiment

Table A.1.: Sound clips used in database 1. In some cases, more than one clip has been taken

from the same audio file.
No FileSource FileID Category Event L [sone] SC [Hz] Len. [s]

1 Freesound 151213 people/voices cough 17.6 4071 0.92

2 Freesound 211197 people/voices cough 22.3 4019 3.20

3 Freesound 251489 people/voices cough 22.9 4904 0.72

4 Freesound 109759 people/voices laughter 22.6 4096 5.00

5 Freesound 59460 people/voices laughter 17.9 4554 2.18

6 Freesound 156844 people/voices sneeze 17.3 4534 1.65

7 Freesound 369297 people/voices sneeze 17.4 5424 0.46

8 Freesound 156843 people/voices sneeze 22.5 5364 0.35

9 Freesound 187104 people/voices voice 22.6 1546 0.30

10 Freesound 353925 people/voices voice 17.2 1456 4.00

11 Freesound 85292 people/voices cough 22.7 2132 1.36

12 Freesound 79769 people/voices laughter 17.3 2398 4.87

13 Freesound 79775 people/voices laughter 17.9 1731 2.38

14 Freesound 270301 people/voices scream 22.3 2264 1.14

15 Freesound 54505 people/voices sneeze 22.5 1725 2.02

185



Appendix A. Sound recordings used in the free-listening experiment

Table A.1.: Sound clips used in database 1. In some cases, more than one clip has been taken

from the same audio file.
No FileSource FileID Category Event L [sone] SC [Hz] Len. [s]

16 Freesound 34783 people/voices yawn 17.8 1922 2.65

17 Freesound 27880 manmade/industrial bike horn 22.7 4259 0.42

18 Freesound 239030 manmade/industrial car horn 22.9 4430 0.32

19 Freesound 54086 manmade/industrial car horn 17.7 4744 2.58

20 Freesound 106486 manmade/industrial car engine 17.9 4133 5.00

21 Freesound 195451 manmade/industrial car engine 22.3 4364 5.00

22 Freesound 96519 manmade/industrial car engine 17.3 4302 4.70

23 Freesound 196139 manmade/industrial car horn 22.3 2056 0.62

24 Freesound 175855 manmade/industrial car horn 22.7 2071 2.42

25 Freesound 22882 manmade/industrial can engine 17.4 1983 5.00

26 Freesound 50454 manmade/industrial car engine 17.9 2479 2.73

27 Freesound 50661 manmade/industrial car engine 17.3 2391 5.00

28 Freesound 106015 manmade/industrial car engine 17.6 1085 4.42

29 Freesound 186938 manmade/industrial car engine 22.4 2430 2.85

30 Freesound 240671 manmade/industrial car engine 22.6 1233 5.01

41 Freesound 374 manmade/industrial door lock 22.2 5490 4.95

42 BBC SFX CD5-17 manmade/industrial car horn 17.4 5273 1.84

31 Freesound 38560 nature/animals birds 22.1 4627 2.17

32 Freesound 72547 nature/animals birds 22.3 5038 5.00

33 Freesound 159609 nature/animals birds 17.7 4411 4.44

34 Freesound 196251 nature/animals cat 17.2 4254 3.35

35 Freesound 146964 nature/animals cat 22.8 1965 5.01

36 Freesound 110389 nature/animals dog 22.4 1611 0.34

37 Freesound 30344 nature/animals dog 17.7 1336 4.69

38 Freesound 157695 nature/animals dog 17.3 1659 4.75

39 Freesound 180256 nature/animals dog 22.3 1536 4.57

40 Freesound 192236 nature/animals dog 18.0 2097 4.43

43 BBC SFX CD6-31 nature/animals robin 22.7 4166 1.36

44 BBC SFX CD6-31 nature/animals robin 17.3 4991 2.01

45 BBC SFX CD6-40 nature/animals cockatoo 17.8 4779 1.93
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Appendix A. Sound recordings used in the free-listening experiment

Table A.1.: Sound clips used in database 1. In some cases, more than one clip has been taken

from the same audio file.
No FileSource FileID Category Event L [sone] SC [Hz] Len. [s]

46 BBC SFX CD6-06 nature/animals cat 22.9 4419 2.83

47 xeno-canto XC155713 nature/animals crow 22.7 2414 2.68

48 xeno-canto XC155713 nature/animals crow 17.5 2420 1.74

Table A.2.: Sound clips used in database 2
No FileSource FileID Category Event L [sone] SC [Hz] Len. [s]

49 Freesound 221518 people/voices sneeze 25.5 4174 3.34

50 Freesound 108017 people/voices cough 25.2 1988 5.02

51 Freesound 119450 people/voices laughter 14.8 2103 1.13

52 Freesound 254869 people/voices crying 15.3 2221 7.52

53 Freesound 411924 people/voices whistle 24.9 1203 0.85

54 Freesound 53663 people/voices cough 24.8 4123 3.30

55 Freesound 328892 people/voices sneeze 15.4 4840 2.89

56 Freesound 382906 people/voices laughter 14.9 1680 2.39

57 Freesound 270301 people/voices scream 24.6 2182 1.44

58 Freesound 119102 people/voices sneeze 15.0 4569 0.63

59 Freesound 34783 people/voices yawn 15.2 1625 4.32

60 Freesound 132295 people/voices whistle 14.5 4607 3.34

61 Freesound 118104 people/voices sneeze 24.7 4701 2.59

62 Freesound 194533 people/voices sneeze 25.1 5455 2.81

63 Freesound 156844 people/voices sneeze 15.4 4448 4.92

64 Freesound 411638 people/voices whistle 25.3 2235 0.65

65 Freesound 174840 manmade/industrial car horn 25.5 4432 1.86

66 Freesound 18527 manmade/industrial car engine 15.0 1190 5.00

67 Freesound 331542 manmade/industrial car horn 15.1 4015 3.14

68 Freesound 243783 manmade/industrial car engine 15.0 2430 5.00

69 Freesound 148398 manmade/industrial car engine 14.7 2018 3.99

70 Freesound 119455 manmade/industrial car engine 24.9 4085 3.67

71 Freesound 175846 manmade/industrial car horn 24.6 1893 2.78
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Appendix A. Sound recordings used in the free-listening experiment

No FileSource FileID Category Event L [sone] SC [Hz] Len. [s]

72 Freesound 243773 manmade/industrial car engine 15.3 2214 5.00

73 Freesound 50455 manmade/industrial car engine 25.3 1989 2.92

74 Freesound 38682 manmade/industrial car engine 14.8 4193 4.94

75 Freesound 125520 manmade/industrial car horn 25.2 2036 4.89

76 Freesound 174840 manmade/industrial car horn 15.3 4824 2.02

77 Freesound 83465 manmade/industrial car horn 24.6 5356 0.50

78 Freesound 351421 manmade/industrial car engine 24.9 1867 3.96

79 BBC SFX CD5-02 manmade/industrial car driving 15.1 5393 2.96

80 BBC SFX CD5-05 manmade/industrial motorcycle 25.2 4537 4.86

81 Freesound 96950 nature/animals crow 15.2 2100 4.35

82 Freesound 100038 nature/animals birds 24.7 4657 3.35

83 Freesound 214759 nature/animals cat 25.2 2076 3.11

84 Freesound 214759 nature/animals cat 14.9 2143 4.92

85 Freesound 242414 nature/animals dog 24.8 1940 1.08

86 Freesound 191687 nature/animals dog 14.9 1643 4.50

87 Freesound 138344 nature/animals crow 15.4 4015 5.01

88 Freesound 130034 nature/animals cat 25.3 5245 3.00

89 Freesound 257839 nature/animals birds 24.9 4017 5.00

90 Freesound 207124 nature/animals dog 25.2 1184 5.00

91 Freesound 212454 nature/animals dog 15.4 1811 4.10

92 BBC SFX CD6-07 nature/animals dog 24.7 2383 2.50

93 BBC SFX CD6-31 nature/animals robin 14.8 4807 1.45

94 BBC SFX CD6-09 nature/animals dog 25.3 4311 1.46

95 BBC SFX CD6-42 nature/animals parakeet 14.9 5336 2.44

96 xeno-canto 402795 nature/animals bird 15.0 4243 2.23
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B
Sound recordings used in the distraction
experiment

The following recordings were used to create stimuli for the experiment in Chapter 6.

Most stimuli were short excerpts of these recordings. In some cases, more than one

clip has been taken from the same audio file.

File source File ID Sound type

Birdsong recordings (context and distractors)

Xeno-canto 62259 Canada goose

Xeno-canto 130583 Willow tit

Xeno-canto 135492 Black-headed grosbeak

Xeno-canto 183650 Blyth’s reed warbler

Xeno-canto 199077 Common redshank

Xeno-canto 285296 Common whitethroat

Xeno-canto 330250 Willow warbler

Xeno-canto 362008 Boreal owl

Xeno-canto 371426 Great tit

Xeno-canto 379910 Black-naped monarch
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Appendix B. Sound recordings used in the distraction experiment

File source File ID Sound type

Xeno-canto 380355 Great tit

Xeno-canto 400921 Common blackbird

Xeno-canto 402795 Great tit

Xeno-canto 402994 Great tit

Xeno-canto 433102 Pavonine cuckoo

Xeno-canto 433343 Pavonine cuckoo

Xeno-canto 443004 Rattling cisticola

Xeno-canto 451797 Planalto tapaculo

Xeno-canto 463248 Sardinian warbler

BBC SFX Library / CD6-Animals & Birds 31 Robin

FreeSound 72547 birdsong

FreeSound 242490 birdsong

Other recordings (distractors)

BBC SFX Library / CD6-Animals & Birds 03 Cat

BBC SFX Library / CD6-Animals & Birds 07 Dog

BBC SFX Library / CD6-Animals & Birds 08 Dog

BBC SFX Library / CD6-Animals & Birds 09 Dogs barking

BBC SFX Library / CD6-Animals & Birds 17 Hen

BBC SFX Library / CD6-Animals & Birds 30 Donkey

BBC Sound Effects 07022498 Crash: teapot broken

BBC Sound Effects 07058028 Chopping tree

BBC Sound Effects 07058171 Canned drink opened

BBC Sound Effects 07063116 Walking

BBC Sound Effects 07065075 Bottle put onto shelf

BBC Sound Effects 07070149 Clock

BBC Sound Effects 07074124 Chains rattling

BBC Sound Effects 07074131 Clock cartoon

BBC Sound Effects 07074135 Cork pop
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Appendix B. Sound recordings used in the distraction experiment

File source File ID Sound type

FreeSound 103995 Knock

FreeSound 115920 Clapping

FreeSound 151212 Cough

FreeSound 197435 Clapping

FreeSound 100032 Dog

FreeSound 114587 Dog

FreeSound 9032 Dog

FreeSound 12654 Water drop

FreeSound 50623 Water drop

FreeSound 156026 Frog

FreeSound 15689 Frog
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