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ABSTRACT:
The effect of additive white Gaussian noise and high-pass filtering on speech intelligibility at signal-to-noise

ratios (SNRs) from �26 to 0 dB was evaluated using British English talkers and normal hearing listeners. SNRs

below �10 dB were considered as they are relevant to speech security applications. Eight objective metrics were

assessed: short-time objective intelligibility (STOI), a proposed variant termed STOIþ, extended short-time

objective intelligibility (ESTOI), normalised covariance metric (NCM), normalised subband envelope correlation

metric (NSEC), two metrics derived from the coherence speech intelligibility index (CSII), and an envelope-

based regression method speech transmission index (STI). For speech and noise mixtures associated with intelli-

gibility scores ranging from 0% to 98%, STOIþ performed at least as well as other metrics and, under some

conditions, better than STOI, ESTOI, STI, NSEC, CSIIMid, and CSIIHigh. Both STOIþ and NCM were associated

with relatively low prediction error and bias for intelligibility prediction at SNRs from �26 to 0 dB. STI per-

formed least well in terms of correlation with intelligibility scores, prediction error, bias, and reliability. Logistic

regression modeling demonstrated that high-pass filtering, which increases the proportion of high to low fre-

quency energy, was detrimental to intelligibility for SNRs between �5 and �17 dB inclusive.
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I. INTRODUCTION

Speech communication can be impaired in adverse condi-

tions such as those involving interfering noise, excessive

reverberation, and distortion of the transmission channel. To

estimate the magnitude of the impairment, the signals acquired

before and after transmission or processing are compared,

either by human listeners or by means of an algorithm. Such an

algorithm needs to be effective across a range of signal-to-

noise ratios (SNRs) and should take into account the non-

stationarity of speech—and some maskers—such that human

listeners can use speech information “present in the dips.”1

In general, the literature considers objective methods to

assess speech intelligibility that are relevant to the field of

speech enhancement, where the aim is to obtain a high percent-

age of intelligible words with SNR � �10 dB using natural

noise sources such as babble or cafeteria noise. However, in

the field of speech security, where there is a need to assess the

risk of only a few words being intelligible when overheard or

covertly intercepted, typically, the aim is to identify percent-

age correct word scores that are <20%.2 This tends to occur

when SNR < �10 dB, and in this paper SNRs are considered

down to�26 dB. For speech security situations where masking

noise is required, a noise source such as road traffic or a nearby

conversation is not reliable, as there is no control over the

time-varying amplitude, and there is the risk of a substantial

lull. For this reason, electronic or mechanical sources of sta-

tionary noise can be considered, and as an example of such a

source, white Gaussian noise (WGN) is used in this paper

(N.B. WGN can be more effective than speech-shaped noise in

reducing the recognition of consonants).3 In this paper, several

speech intelligibility algorithms are considered, most of which

use short-time methods to account for dip listening.

Various objective methods proposed for predicting

speech intelligibility in additive noise are based on SNR

estimates, such as the articulation index4 (AI), the speech

intelligibility index5 (SII), and the speech transmission

index6 (STI). AI performs well for signals corrupted by

additive, stationary noise4 but is not able to account for the

effects of reverberation, non-stationary noise, and nonlinear

or time domain distortion (e.g., peak clipping or reverbera-

tion). According to ANSI S3.5,5 SII can be used in cases of

additive noise or linear filtering but not in cases of fluctuat-

ing maskers or nonlinear distortion such as dynamic enve-

lope compression. Not only AI and SII, but also STI, are

unsuitable in conditions involving (strongly) fluctuating

maskers and nonlinear processing, such as spectral subtrac-

tion noise reduction methods (e.g., see Houtgast et al.6)

Further, these metrics are not sensitive enough to distinguish

between merely audible and intelligible speech signals at a

very low SNR. Gover and Bradley7 found that some words
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from the Institute of Electrical and Electronics Engineers

(IEEE) sentences8 could be identified at values of AI and

SII equal to 0, while all STI values below 0.3 are classified

as indicating “bad” intelligibility.9

Since the introduction of SNR-based methods, research

has focused more on correlation, covariance, and coherence

methods. There has also been a movement toward using

speech as a test signal (rather than, for example, modulated

noise), which permits real-time intelligibility prediction.

Speech-based SII and STI methods based on signal correla-

tion/covariance include the normalised covariance met-

ric10,11 (NCM, also termed CSTI) and the coherence SII12

(CSII), which is based on the SII but replaces the SNR with

the signal-to-distortion ratio (SDR). Of the large number of

measures considered by Ma et al.13 for intelligibility predic-

tion with signals created at 0 or 5 dB SNR, NCM and CSII

with signal-dependent band importance weightings per-

formed best.

The short-time objective intelligibility metric (STOI)

was developed by Taal et al.14 and is a correlation-based

metric used to quantify the intelligibility benefits of time-

frequency masking algorithms [e.g., ideal time-frequency

segregation (ITFS)] and other nonlinear enhancement tech-

niques. STOI values are converted to predicted speech intel-

ligibility scores via a logistic (sigmoid) function.14 Mean

STOI scores have been used, in practice, as a standalone

measure of the relative effectiveness of a speech enhance-

ment algorithm (e.g., Kolbæk et al.15 and Hsu et al.16). This

requires that STOI can accurately and reliably predict intel-

ligibility before and after noise reduction. It has been stated

in publications that STOI varies between zero and one (e.g.,

Hsu et al.16). Taal et al.14 claimed only that STOI had “a

monotonic relation with speech intelligibility” and that the

aim was “not necessarily to predict absolute intelligibility

scores” (p. 2126); no claim was made that STOI should vary

between zero and one. However, the use of a full range from

zero to one can be advantageous for ease of interpretation,

for example, when intelligibility scores are unavailable. In

evaluating STOI for noisy signals, Taal et al.17 found that

for speech from the Dantale II corpus, which comprises only

one female talker, when degraded by four noise types, STOI

values close to 0.4 were associated with intelligibility scores

of 0%. This indicates that a range of zero to one is not used.

Other studies also show that STOI rarely falls below 0.3,

even for signals associated with 0% intelligibility scores,

and where SII, NCM, and CSII are zero (see, e.g., Tang

et al.18). Taal et al.14 found that for Dantale II speech

degraded by speech-shaped noise (SSN), at SNRs above

�10 dB, the magnitude of overestimation increased with

increasing degradation for this noise type.

STOI was defined by Taal et al.14 to include a normal-

isation procedure to compensate for global level differences

and a clipping procedure to put an upper bound on the sensi-

tivity to severely degraded time-frequency (TF) units. In

subsequent investigations or extensions of STOI, the clip-

ping procedure has often been removed. For implementation

with cochlear implants, Taal et al.19 introduced a simplified

version of STOI for which one of the simplifying steps was

to remove the clipping procedure. However, no comparison

of the approach with and without clipping was provided.

Lightburn and Brookes20 derived a binary mask for speech

enhancement by maximising STOI, for which they also

removed the clipping procedure on the basis that clipping

was “very rare in the stochastic noise case” (p. 5079).

Andersen et al.21 modified STOI for use with binaural

speech and removed the clipping procedure on the basis that

this did not appear to significantly impair the prediction per-

formance for Taal et al.19 For modulated noise maskers,

Jensen and Taal22 developed the extended short-time objec-

tive intelligibility metric (ESTOI) to improve STOI perfor-

mance for highly fluctuating or modulated noise sources and

stated that it discards the clipping procedure. ESTOI is

based on energy-normalised short-time spectrograms that

are decomposed into orthogonal one-dimensional subspaces

that are important for intelligibility. Kolbæk et al.15 used a

deep neural network to maximise an approximation to STOI

for which the clipping procedure was not used on the basis

that empirical observations from previous studies19–22 indi-

cated that omitting clipping tended not to affect the perfor-

mance of STOI. These studies did not provide any

comparison of results with and without clipping. Hence, in

this paper, STOI is assessed alongside a proposed variant,

STOIþ, which does not use the normalisation and clipping

proposed by Taal et al.,14 to identify whether this variant

would have a lower prediction error and metric bias, and

better metric reliability, than the original STOI for low mix-

ture SNRs and WGN. The justification for the proposed var-

iant is discussed further in Sec. II C 1.

It is beneficial to test metrics on data sets other than

those used in their development. For STOI, most evaluations

have considered speech from a single speaker of Danish,14

Dutch,23 American English,24 or Mandarin25 (and therefore

a single gender, although it differed between the languages).

Van Kuyk et al.26 found that amongst the speech intelligibil-

ity metrics they considered, including STOI, SII, and NCM

with signal-dependent band importance functions, a form of

CSII termed CSIIMid and ESTOI tended to perform poorly

when applied to data sets that were not used in their devel-

opment. For Dantale II speech degraded by four types of

noise, including SSN and car interior noise, STOI and

speech intelligibility in bits (SIIB) obtained higher correla-

tion coefficients than other metrics. STOI tends to outper-

form more commonly used objective metrics for ITFS-

processed speech but performs less well for unprocessed

noisy speech (at least for noise that is non-stationary) and

less well for modified or synthetic speech.27

In speech security, there is usually a need to assess

worst-case scenarios. One potential scenario is speech pro-

duced in the presence of background noise, which leads to a

flattening of spectral tilt that can reliably increase speech

intelligibility compared to speech produced in quiet (e.g.,

Lu and Cooke28). This is likely to be due to release from

energetic masking at mid to high speech frequencies

(1–4 kHz). Lu and Cooke28 mixed speech with speech-
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shaped noise at SNR¼�9 dB and used filtering to produce

an artificial reduction in spectral tilt that led to an increase

in intelligibility for native listeners, when compared to

unmodified speech. For speech mixed with WGN, a high-

pass filter (HPF) can improve speech intelligibility relative

to unmodified speech by increasing the proportion of high to

low frequency energy for signals presented at the same

global SNR;29,30 however, previous studies focused on SNR
� �10 dB. Therefore, in this paper, the opportunity is taken

to assess the effect of high-pass filtering over a wider range

of SNRs down to �26 dB.

In the current study, speech signals are mixed with

WGN at low mixture SNRs and presented to listeners with

and without flattening of the spectral tilt. In total, eight inva-

sive metrics are evaluated for the intelligibility prediction of

noisy speech: STOI, STOIþ, ESTOI, two forms of CSII

(CSIIHigh and CSIIMid), NCM, the normalised subband enve-

lope correlation metric31 (NSEC), and a speech-based STI

method32 (hereafter termed STI). The main aim is to com-

pare STOI with a variant, STOIþ, for speech mixed with

WGN at SNRs between �26 and 0 dB and to determine how

these metrics compare with other well known measures, par-

ticularly in the context of speech security. This range of

SNRs is used to give percentages of words correctly identi-

fied ranging from 0% up to almost 100% to evaluate metric

behavior over the whole intelligibility score range. A sec-

ondary aim is to determine whether a HPF that decreases the

spectral tilt without a strong attenuation of low frequencies

(f< 300 Hz) improves the intelligibility of speech mixed

with WGN at signal-to-noise ratios between �26 and 0 dB.

To be able to make more defensible claims about British

English speech in general and to provide more information

about the intelligibility score-metric logistic function, which

is advantageous for prediction, this study uses speech from

12 talkers (rather than the typical 1–3) with an equal gender

split and 9 SNRs (rather than the typical 3–5).

Section II outlines the experimental procedures, includ-

ing a brief discussion of how the proposed STOI variant,

STOIþ, differs from conventional STOI. Section III reports

the effects of SNR, spectral tilt flattening, and talker gender

on intelligibility scores and the performance of metrics in

estimating those scores. In Sec. IV, the reasons for the varia-

tion in outcomes of spectral tilt flattening and the relative

performance of STOI and STOIþ and the other metrics are

discussed.

II. EXPERIMENTAL PROCEDURES

A. Speech signals

1. Speech recordings

Twelve talkers (six male, six female) between 21 and

47 yrs of age were recorded in an anechoic chamber using a

0.5 in. Br€uel & Kjær (B&K) (Nærum, Denmark) type 4190

microphone at 1 m on axis, a B&K type 2669 preamplifier,

and a B&K LAN-XI type 3050 front end with a B&K time

data recorder. The sampling frequency for the recordings

was 65.536 kHz. The talkers were native British English

speakers with an accent similar to Received Pronunciation

(Standard Southern English).

Talkers produced the IEEE sentences,8 which form 72

word lists in total (where each list comprises ten sentences),

in a pseudo-random order. Before the recording session, the

talkers were asked to “speak normally as you would in

everyday conversation” to elicit a normal vocal effort,

where vocal effort is defined as the equivalent continuous

A-weighted sound pressure level (SPL) of speech measured

at a distance of 1 m in front of the mouth, i.e., on axis. If the

talker hesitated or made an error, s/he repeated the sentence.

These recordings are freely available for download in the

ARU speech corpus.33

2. Signal processing

All speech recordings were initially filtered with a high-

pass finite impulse response (FIR) filter using a Kaiser win-

dow method to remove energy below 60 Hz and low-pass

filtered to attenuate energy above 9 kHz (predominantly

electrical background noise). These signals are termed non-

HP-filtered (where HP refers to high-pass).

In subsequent processing, a HPF was used to flatten the

spectral tilt. The filter was designed to obtain desired ampli-

tudes of zero and one at normalised frequencies between

zero and one (Nyquist), with an approximately linear rela-

tionship between amplitude and normalised frequency. This

was carried out with the MATLAB filter command firpm to

give a 10th order optimal equiripple, linear-phase FIR filter

using the Parks–McClellan algorithm (weights set to unity).

To illustrate the effect of this filter, the long-term average

speech spectra (calculated using MATLAB
34) based on ten

word lists are shown in Fig. 1, before and after the applica-

tion of the filter. Talker fundamental frequencies were as

low as approximately 70 Hz for males and 130 Hz for

females; at and above these frequencies, one-third octave

band levels of the speech were at least 10 dB above back-

ground noise.

To create the noisy speech signals and present these sig-

nals to listeners with a Nyquist frequency of 12 kHz, first,

WGN was generated with a sampling frequency of 24 kHz,

and the speech signals were downsampled to the same sam-

pling frequency. Second, the active speech levels of all

speech signals (non-HP-filtered and HP-filtered) were equal-

ised using the procedure in ITU-T P.56.35 Finally, these

speech signals were mixed with a pseudo-randomly selected

segment of the WGN at nine SNRs ranging from �26 to

0 dB. The additive WGN was gated on and off 1 s before

and after the speech signal.

B. Listening tests

Forty-eight untrained listeners (24 male, 24 female)

aged between 19 and 49 yrs (l¼ 27.8 yrs, r¼ 8.2 yrs) took

part in the experiment. No listeners had been exposed previ-

ously to the speech material. All listeners used British

English as a first language and reported having a good
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spelling ability. Their hearing thresholds were tested accord-

ing to ISO 8253–136 and did not exceed 20 dB hearing level

(HL) between 125 and 8 kHz. The tests were conducted in a

sound-attenuated booth. The background noise at the

entrance to the ear canal during testing was estimated to be

22 dB LAeq using the B&K type 4100 head-and-torso

simulator (HATS) wearing circumaural headphones

[Beyerdynamic (Heilbronn, Germany) DT770 Pro] con-

nected to the PC. Diotic presentation of the stimuli used a

playback system comprising the same headphones con-

nected to a PC running MATLAB code with a custom GUI.

The audio output of the system was calibrated using the

HATS with type 4189 microphones in each ear canal.

Subjects chose their preferred listening level as 70 or 75 dB

LAeq. Twenty-eight listeners chose a playback level of 70 dB

LAeq, while 20 chose a level of 75 dB LAeq. In the familiar-

isation stage, listeners heard one clean sentence and four

noisy sentences at SNRs equal to 0, �5, �8, or �11 dB.

Sentences were selected at random. Listeners heard at least

one sentence from each of the four talkers assigned to that

listener. These sentences were later presented in the full test,

as the experimental design required 720 unique sentences.

Two female and two male talkers were randomly allo-

cated to each of the 48 listeners in such a way that each

talker was allocated to eight female and eight male listeners.

For each talker, one word list was used per SNR and filter

(HPF, non-HPF) combination. Signals were presented in a

randomised order. Each listener participated in a total of 72

listening conditions (4 talkers � 9 SNRs � 2 filter

conditions).

Listeners were asked to identify as many words as pos-

sible in each sentence. They had approximately 15 s after

the sentence had played to enter the words they heard into

the GUI text box and were able to correct their spelling dur-

ing this time. Listeners were allowed to pause the test at any

time and were offered a break of up to 5 min after every

�30 min. Tests were completed in approximately 2 h includ-

ing breaks. The ability to pause the test at any time and the

randomised presentation order that ranged from “easier”

sentences (e.g., 0 dB SNR) to “harder” sentences (e.g.,

�26 dB SNR) was intended to reduce the likelihood of any

fatigue.

Listener responses were scored according to the number

of words identified correctly. Scores were expressed as the

percentage of words identified correctly in each word list,

which comprised ten sentences. After Robinson et al.,2

homophones and some alternative spellings were allowed,

according to the following rules: (a) ignore punctuation such

as apostrophes, (b) allow homophones, (c) allow either

American English or British English spelling, and (d) allow

certain misspellings. Regarding (d), words were judged to

be correct when two words were identified as one when per-

mitted in modern British English, e.g., “should not” could

be given as “shouldn’t”; “cannot” was identified as “can’t”;

some regular plurals were provided in singular form and

vice versa, e.g., “desk” could be given as “desks”; some reg-

ular verbs conjugated with “-s” or “-ed” were missing the

suffix, e.g., “asks” could be “ask,” “baulked” could be

“baulk”; nouns with a possessive “’s” suffix were missing

the suffix, e.g., “pirate’s” could be given as “pirate”; an

FIG. 1. Long-term average speech spectra from ten word lists per talker gender and filter condition before (left) and after (right) the application of the HPF.

The six talkers are shown in gray, with the average of those talkers shown as a thick black line. Note that individual talkers vary by up to 24 dB across the

frequency range, and whilst the HPF flattens the spectra, this variation remains with or without the HPF.
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initial “a-” was missing and the result was a word, e.g.,

“account” could be given as “count”; an initial “h” was

inserted if the result was a word, e.g., “air” could be given

as “hair,” and “man” was identified as “men” and vice versa.

While scoring was automated, results were carefully moni-

tored by the authors. These rules were appropriate in the

security context, where the interest is in identifying as few

as one or two words and identifying the root of the word

may be sufficient for a breach. After Robinson et al.,2 the

words “a” and “the” were considered to have negligible

information content and were therefore removed from the

analysis. The article “an” occurs very rarely and so was not

removed.

All listening tests received prior approval from the

University of Liverpool Committee on Research Ethics.

C. Implementation of metrics

In this section, metrics are introduced that consider a

clean signal, x, and a degraded or processed signal, y, where

m and j are used to denote frame and frequency band,

respectively, and n denotes the short-time region of the sig-

nal. Furthermore, M, J, and N denote the total number of

frames, number of bands, and number of frames within a

region, respectively. Metric indices were averaged over the

ten sentences within each IEEE word list.

1. STOI and STOI1

STOI is based on the correlation between the envelopes

of clean and degraded speech signals (10 kHz sampling rate)

decomposed into regions that are approximately 386 ms (30

samples) in length. As described by Taal et al.,14 the output

of STOI, d, takes values �1< d � 1 but is in practice non-

negative and has a monotonic relationship with speech intel-

ligibility scores. Signals x and y are divided into Hanning

windowed frames with 50% overlap, and where the energy

of each x frame is more than 40 dB below the maximum

clean speech energy, both the x frame and the corresponding

y frame are discarded. Subsequently, a short-time discrete

Fourier analysis is undertaken, where the frequency bins are

grouped into 15 one-third octave bands with centre frequen-

cies from 150 to 3800 Hz. Within each frequency band and

region, the degraded signal energy is normalised and

clipped. Normalisation is performed to compensate for

global level differences, which are assumed to have a lim-

ited effect on intelligibility.14 As mentioned, clipping is per-

formed to limit the sensitivity of the model toward severely

degraded or noise-only time-frequency units—according to

Taal et al.14—and place a lower bound on the SDR. This

was determined by Taal and colleagues to be optimal for

their noisy and ITFS-processed speech corpus on the basis

of results for the Dantale II corpus, which used one female

Danish talker. Subsequently, the correlations between sig-

nals in each band and each region are calculated, and the

correlation coefficients are averaged to obtain d. In this

paper, STOI was calculated using publicly available code

from Taal et al.14

After short-time Fourier transformation of x and y,

short-time (386 ms) temporal envelopes in each band and

frame are denoted Xj,m and Yj,m, where each short-time

region has a length N¼ 30. A short-time region of the clean

speech signal can be represented in vector notation as

Xj;m ¼ ½Xj m� N þ 1ð Þ; Xj m� N þ 2ð Þ;…;Xj mð Þ�T .

The normalisation factor, a, is calculated for each

region and band as shown in Eq. (1),

aj;m nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

m�Nþ1

Xj;m nð Þ2

Xm

m�Nþ1

Yj;m nð Þ2

vuuuuuuut : (1)

Yj,m(n) is multiplied by a to obtain normalised Y0j;m nð Þ,
which can be represented as Xj;m=Yj;mYj;m nð Þ; where k � k
indicates the l2 norm. Y0j;m nð Þ is then clipped to obtain

Yj;mðnÞ using Eq. (2), where b¼�15 dB,

Yj;m nð Þ ¼ min Y0j;m nð Þ; 1þ 10�
b
20

� �
Xj;m nð Þ

� �
: (2)

This means that any Y0j;m that comprises values close

to zero in any band, j, will result in Yj;mðnÞ
¼ 1þ 10�b=20ð ÞXj;m nð Þ. Taal et al.14 state that clipping is

performed to place a lower bound on the SDR at �15 dB,

where SDR is defined as

SDRj;m nð Þ ¼ 10log10

Xj;m nð Þ2

Y0j;m nð Þ � Xj;m nð Þ
� �2

 !
: (3)

The correlation between the signals in each frame and

band is given by

dj;m ¼
Xj;m � lXj;m

� �T Y j;m � lY j;m

� �
kXj;m � lXj;m

k kYj;m � lY j;m
k

0
@

1
A; (4)

where lXj;m
�ð Þ and lYj;m

�ð Þ are sample averages of the vectors

Xj,m and Yj;m. When clipping is not performed, normalisation

has no effect on the correlation coefficients.

STOIþ was calculated as in the case of STOI but without

normalisation and clipping. The effect of the normalisation and

clipping procedure at the level of the 386 ms region is illus-

trated in Fig. 2 for global SNRs of 0 and �20 dB. For

SNR¼ 0 dB, there is only a small increase in the intermediate

correlation coefficient after clipping. However, for SNR
¼�20 dB, the intermediate correlation coefficient changes

from 0.02 before clipping, indicating no correlation, to 0.54

after clipping, indicating a moderate positive correlation.

Given such findings, one motivation of this paper is to assess

whether removing the normalisation and clipping procedure

reduces the prediction error for additive WGN and low SNRs.

For STOI and STOIþ, correlation coefficients were

averaged over all J bands and M frames for all possible

386 ms regions to obtain the final value, d, as given by
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d ¼ 1

JM

X
j;m

dj;m: (5)

As the relationship between STOI-based measures and

intelligibility scores is monotonic, as mentioned, and in

order to predict absolute intelligibility, STOI-based values

were converted to mapped values via a logistic function.

This linearises the relationship between STOI-based mea-

sures and intelligibility scores and therefore allows the

reporting of linear correlation coefficients and the determi-

nation of the prediction error distribution. The logistic

function maps the variable d (representing STOI or

STOIþ) with the free parameters, a (slope) and b (centre),

as follows:

f dð Þ ¼ 100

1þ exp ad þ bð Þ : (6)

Free parameter values a and b were derived from the

data under each filter and gender condition using a non-

linear least squares procedure with starting values

derived from Taal et al.14 In all cases in this paper,

mapping was performed by means of the lsqcurvefit
function in MATLAB.

2. ESTOI

Jensen and Taal22 proposed ESTOI as a measure to

improve on STOI in the case of highly modulated noise

sources, but also to work well under other noise conditions.

Like STOI, ESTOI operates within a 384 ms analysis region

on amplitude envelopes of clean and degraded signals, but

as mentioned, it does not use the clipping procedure.

Publicly available code was used in this study.22 Signals are

passed through a one-third octave filterbank, and temporal

envelopes are extracted in each frequency band. The result-

ing row- and column-normalised short-time envelope spec-

trograms are decomposed into orthogonal one-dimensional

subspaces, which are assigned intelligibility scores.

Intermediate intelligibility scores derived from these sub-

space intelligibility scores are averaged to obtain the final

intelligibility index, d. ESTOI is mapped using the logistic

function given in Eq. (6). For details of the procedure, see

Jensen and Taal.22

3. NCM

NCM was calculated using publicly available code.37

This measure is based on apparent SNRs within frequency

FIG. 2. Examples showing the effect of the normalisation and clipping procedures in STOI on a clean speech vector, Xj(n), together with a normalised,

Y0 j(n), and clipped, �Y j(n), degraded speech vector in one frequency band, j: (a) SNR¼ 0 dB and (b) SNR¼�20 dB. The intermediate correlation coefficient,

dj,m is reported before and after normalisation and clipping for both SNRs.
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bands that are calculated on the basis of the squared normal-

ised covariance—hence, correlation—between the enve-

lopes of x and y. The covariance in each frequency band is

used to derive an apparent or modulation signal-to-noise

ratio (aSNR), which is treated in the manner of SNR values

in the STI method to derive a final, band-weighted value,

0�NCM � 1.

Signals x and y are bandpass filtered into 20 frequency

bands with centre frequencies ranging from 335 to 6910 Hz

with eighth-order Butterworth filters. The signal envelopes

are extracted with the Hilbert transform and smoothed by

low-pass filtering and downsampling to 32 Hz to limit enve-

lope modulation frequencies to �16 Hz. In each frequency

band, j, the aSNR of the entire envelope is calculated using

aSNRj ¼ 10log10

rj
2

1� rj
2

 !
; (7)

where rj is the normalised covariance between xj and yj. The

remaining calculations are consistent with the standard STI

procedure. The aSNR is clipped to values 615 dB to obtain

the transmission indices. Using (interpolated) standard

ANSI S3.55 weighting for short passages, the sum of the

weighted values is divided by the sum of the weights to

obtain the final NCM value of between 0 and 1. Logistic

mapping was performed after Taal et al.14 using Eq. (6).

4. NSEC

Boldt and Ellis31 developed NSEC based on the correla-

tion of the envelopes of the original speech and the degraded

speech after time-frequency decomposition, equalisation of

energy in frequency bands, amplitude compression, and

Direct Current (DC) component removal. In this implemen-

tation, the energy envelopes are derived with a 16 channel

gammatone filterbank with centre frequencies from 80 Hz to

8 kHz, equally spaced on the equivalent rectangular band-

width (ERB) scale, and with a window length of 0.08 s with

a 50% overlap.

With STOI, the irrelevance to intelligibility of high

energy regions of y where x is low in energy is accounted

for by removing these regions before calculating the correla-

tion. In the case of NSEC, the same issue is addressed by

normalisation, by dividing by the Frobenius norm of x and y
[see Eq. (2) in Boldt and Ellis31]. Hence, NSEC is bounded

between zero and one. The original mapping function pro-

posed by Boldt and Ellis is given as

f xð Þ ¼ 1

1þ expððb� xÞ=aÞ : (8)

However, Taal et al.17 obtained better performance

with the following equation, which was applied in this

paper:

f xð Þ ¼ 100

1þ axþ bð Þc : (9)

For details of the NSEC algorithm, see Boldt and

Ellis.31

5. CSII

CSII was originally developed for predicting the speech

intelligibility of peak- or centre-clipping distortions, such as

those associated with hearing aids.12 CSII assesses the

coherence of the clean and degraded/processed signals on

the basis of the magnitude squared coherence function. In

later work, CSII was separated into three, separate indices,

CSIIHigh, CSIIMid, and CSIILow, based on the root mean

square (rms) level of the signal envelope.38 The CSIIHigh

index is associated with segments at or above the overall

rms level of the signal, the CSIIMid index is associated with

segments at or up to 10 dB below the same level, and the

CSIILow index is associated with segments from 10 to 30 dB

below the level. Each Hanning windowed frame of the sig-

nal envelopes is assigned to one of the three amplitude

regions. CSIILow and CSIIMid are combined linearly and

transformed with a simple logistic function to derive a

fourth measure, termed I3. In this paper, the short-time CSII

implementation developed by Loizou37 was used, in which

CSII was averaged over short-time segments of 30 ms in

length with a 25% window skip rate. In addition, the critical

band weighting function of NCM and CSII was set to ANSI

S3.5 weighting, as the masker is stationary.

Preliminary testing indicated that CSIILow performed

poorly and CSIII3 performed no better than CSIIMid and so

were not considered further in this paper. The best fitting

nonlinear function was found for CSIIHigh and CSIIMid mea-

sures from the following set: the original function used for

STOI, as shown in Eq. (6); the second function provided by

Taal et al.,39 as shown in Eq. (10); and a linear fit,

f xð Þ ¼ 100

1þ axþ bð Þc : (10)

The prediction error indicated that Eq. (6) tended to per-

form as well as or better than these alternatives. Hence, the

same logistic model was fit to CSIIHigh and CSIIMid as to

STOI, STOIþ, ESTOI, and NCM.

6. Speech-based STI

The envelope regression-based approach to the speech-

based STI developed by Payton and Shrestha32 and derived

from earlier work by Ludvigsen et al.10 and Goldsworthy

and Greenberg11 and implemented in the AARAE toolbox

for MATLAB (Cabrera et al.40) were used in this paper.

Signals x and y are filtered by a bank of six sixth-order

Butterworth octave band filters with centre frequencies from

125 Hz to 4 kHz. To extract the 8 kHz band, a sixth-order

Butterworth HPF is used with a cutoff frequency of 6 kHz.

For each frequency band, j, the intensity envelopes of x and

y are extracted and downsampled to reduce the computation

time. For each octave band, a modulation metric is calcu-

lated on the basis of a comparison of the intensity envelopes
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with a rectangular window length set to 1 s and a 75% over-

lap and where the output, MODj, is normalised by the term

lxj=lyj. When using such a window length (which is ade-

quate for stationary noise), STI derived by this method

approaches the values derived from the “true” STI and the

long-term STI method derived using the magnitude cross-

power spectrum.32 The aSNR is calculated as in Eq. (7) but

replacing the term rj
2 with MODj. Subsequently, as in

NCM, the aSNR is clipped to values 615 dB to obtain the

transmission indices. Finally, the overall STI value is calcu-

lated as a weighted sum of these transmission indices, where

the weights and redundancy correction factors are as speci-

fied in IEC 60268–16.41 For the intelligibility scores pre-

sented in this paper, there was no clear improvement in

correlations between predicted and measured scores when

using the 90th percentile rather than the mean STI results,

so the mean results are reported in this paper (cf. Opsata

et al.42) However, their environments differed in that they

were reverberant, with low background noise.

D. Evaluation procedures

Objective measures were compared on the basis of sum-

mary statistics such as minimum and maximum value, correla-

tion coefficients, estimates of the prediction error, and

estimates of metric bias and reliability. The distribution of met-

ric values relative to intelligibility scores was also considered.

The figures of merit included Pearson’s product-moment

(q) and Kendall’s tau (s) correlations between the metrics and

intelligibility scores and the standard deviation of the predic-

tion error (re). A significant difference in metric performance

can be expressed in terms of non-overlapping confidence inter-

vals for q. After Ma et al.,13 the standard deviation of the pre-

diction error was calculated using

re ¼ rd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
; (11)

where rd is the standard deviation of the intelligibility scores in

a given condition. Figures of merit, q and re, were applied to

the mapped objective scores (with the exception of STI), while s
is rank based and therefore independent of the mapping.

Metric bias and reliability were calculated after

Hilkhuysen et al.43 To compute metric bias, b, both per

SNR and across SNRs, the measured scores, v, were sub-

tracted from the corresponding predicted scores, w.

Similarly, the mean bias, b, was calculated using

b ¼ 1

C
�
XC

i¼1

wi � við Þ; (12)

where C is the number of measured scores.

Predicted scores were mapped metric values for all met-

rics other than STI, and unmapped metric values for STI,

multiplied by 100 if a fraction. In boxplots of the prediction

bias for each metric, the interquartile range, indicated by the

length of the box, and the length of the box whiskers, which

extend to approximately 6 2.7r for a normal distribution,

indicate the reliability of the predictions, with smaller boxes

and shorter whiskers indicating higher reliability. The posi-

tion of the box plus whiskers indicates overall prediction

bias, with positions above the zero line indicating metrics

that overpredict intelligibility and positions below the zero

line indicating underprediction.

Logistic regression models were fitted via the glm func-

tion in R software44 (version 3.5.1) to the word recognition

scores expressed as the number of words correctly identified

(“successes”) and the number of words incorrectly identified

(“failures”) and with talker gender, and SNR and filter con-

dition and their interaction, as fixed effects. The resulting

logistic regression model can be described as follows:

logit pð Þ ¼ b0 þ b1SNRþ b2Filter þ b3Gender

þ b4SNR � Filter þ e; (13)

where p is a probability, SNR is treated as a discrete variable,

Filter indicates filter condition (non-HPF¼ 0, HPF¼ 1), and

Gender indicates talker gender (male¼ 0, female¼ 1). The

reference levels were SNR¼�17 dB (justified by the results in

Sec. III A), non-HPF, and male. As nested model comparisons

using likelihood ratio tests indicated that there was an interac-

tion of SNR and filter and therefore to provide statistical infor-

mation about the effects of the filter at each SNR, it was

necessary to limit the number of SNR levels to be included in

the model (due to complexity of interpretation and limited

space). As median intelligibility scores at SNR < �17 dB were

close to zero, only SNR levels equal to or greater than �17 dB

were included. The Tukey method was used to conduct post
hoc pairwise tests of SNR and filter. Adjusted p values were

calculated using the Bonferroni method. Random effects were

not incorporated into the model for reasons of interpretability

(i.e., so that the coefficients did not have an interpretation con-

ditional on the random effects). Note that the reduced range of

SNRs from �17 to 0 dB is used only in the logistic regression

model, unless stated otherwise.

III. RESULTS

A. Intelligibility scores

Intelligibility scores computed as percentages of words

correctly identified per wordlist for a given talker and lis-

tener combination are shown in Fig. 3. These scores extend

from 0 to 98% to allow investigation of the relationship

between each metric and intelligibility score over the full

range of scores in Sec. III B. For SNRs between �26 and

�8 dB, the median scores are �20%, which is the region of

particular interest for speech security. The 50% speech

reception threshold (SRT) is �4.1 dB for male talkers and

�4.7 dB for female talkers in the non-HPF condition and is

�3.8 dB for male talkers and �3.3 dB for female talkers in

the HPF condition. In the non-HPF condition, the maximum

percentage of words correctly identified is 4.5% (three

words) at �20 dB SNR and 11% (eight words) at �17 dB

SNR. Even at SNRs of �26 and �23 dB, words were identi-

fied in the non-HPF condition: 1.6%, or one word.
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A logistic regression model is fitted for WGN mixed

with non-HP-filtered and HP-filtered speech with effects of

SNR, filter, and talker gender and the interaction of SNR

and filter (see Table I). Model coefficients (described in

Table I as estimates) are log odds. The p values indicate the

probability of obtaining the observed effect (or larger) under

a null hypothesis. The model output indicates that

SNR¼�17 dB is associated with reduced log odds of identi-

fying a word correctly compared with higher SNRs, as

would be predicted. At SNR¼�17 dB, the log odds are

approximately �2.05 when speech is HP-filtered relative to

non-HP-filtered, i.e., the odds of identifying a word correctly

decrease by about 87%. The log odds are 0.05 when the

speech is produced by a female vs a male talker, i.e., the

odds of identifying a word correctly increase by about 5%.

The approximate R2 derived from the full model deviance

and the null model deviance is 0.80, or 80%.

A likelihood ratio test of nested models with and with-

out the interaction of SNR and the filter HPF condition was

significant (p < 0.0001). To evaluate the interaction, post
hoc Tukey tests were run with p values adjusted for the

number of comparisons. In this context, the concern is

whether at a given SNR there is an effect of the HPF. At all

SNRs considered in the model except 0 dB, the log odds of

identifying a word correctly are lower in the HPF condition

than in the non-HPF condition, with the log odds decreasing

as the SNR is lowered. The result for SNR¼�17 dB has

already been reported. At SNR¼�14 dB, the log odds

decreased by 1.48 [standard error (SE)¼ 0.10, z¼�15.32, p
< 0.0001)]; at SNR¼�11 dB, the log odds decreased by

0.78 (SE¼ 0.05, z¼�17.11, p < 0.0001); at SNR¼�8 dB,

the log odds decreased by 0.45 (SE¼ 0.03, z¼�15.45, p
< 0.0001); and at SNR¼�5 dB, the log odds decreased by

0.24 (SE¼ 0.03, z¼�9.70, p < 0.0001). At SNR¼ 0 dB,

there is no difference between filter conditions (p¼ 1). In

sum, the HPF does not improve the intelligibility of speech

mixed with WGN at �17� SNR � 0 dB.

B. Objective intelligibility metric results

In Fig. 4, the relationship between each metric and intelli-

gibility score is shown per talker gender for the non-HPF filter

and HPF filter conditions. With the exception of STI, the fitted

lines derive from the logistic functions described in Sec. II C.

The values for the free parameters a and b—and c for

NSEC—are provided in the Appendix. A linear fit is assumed

for STI as indicated for sentence material in ISO 9921.45 For

the purposes of illustration, the fitted lines extend to zero and

one for all metrics except STI. The prediction bounds provide

the interval with a 95% level of confidence for a single intelli-

gibility score given a single metric value. Note that when the

slope of the fitted line is relatively steep, as in the case of STOI

and CSIIMid, the bounds associated with predicting an intelligi-

bility score from a single metric value may be relatively wide.

Descriptive statistics on the different metric values are

given in Table II to accompany the scatterplots (Figs. 5–8)

of the metrics by intelligibility scores. In these plots, the fitted

lines represent the best nonlinear least squares fit given the

logistic functions described in Sec. II C, with the exception of

FIG. 3. (Color online) Boxplots of words correctly identified by SNR and filter condition. At each SNR, the left- and right-side box and whisker correspond to

male and female talkers, respectively. At SNRs below �17 dB, at least one word was identifiable in the non-HPF condition but not in the HPF condition. At SNRs

between�8 and 0 dB, the whiskers (6 2.7r assuming a normal distribution) cover a range of words correctly identified of at least 40% in both filter conditions.

TABLE I. Logistic regression model output for WGN mixed with non-HP-fil-

tered and HP-filtered. The interaction of SNR and filter is discussed in Sec. III A.

Estimate SE z p

(Intercept) �4.66 0.09 �51.06 <0.0001

�14 dB SNR 1.58 0.10 15.71 <0.0001

�11 dB SNR 2.69 0.09 28.41 <0.0001

�8 dB SNR 3.73 0.09 40.09 <0.0001

�5 dB SNR 4.54 0.09 49.01 <0.0001

0 dB SNR 5.72 0.09 61.39 <0.0001

Filter HPF �2.05 0.27 �7.71 <0.0001

Gender female 0.05 0.01 3.10 <0.001
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STI. Figure 5 shows the scatterplots for STOI and STOIþ.

Although intelligibility scores extend from 0 to 98%, STOI

and STI cover a range of 0.52 and 0.56, respectively. This is

not problematic if mapping functions are always used

between the metric and the words correctly identified.

However, for some indicators, such as STI, there is an expec-

tation that a simple intelligibility rating (e.g., “bad,” “fair,”

“excellent”) can be assigned to values between zero and one.

STOI has the highest minimum value of 0.34, whereas the

lowest value for all other metrics is zero, or close to zero. In

contrast, STOIþ has the largest range (0–0.83) of all metrics

considered. Accordingly, STOIþ is associated with shallower

slopes and a lower sigmoid centre than STOI. The slope is

similar or slightly steeper for HP-filtered than non-HP-filtered

speech. ESTOI and NCM results are shown in Fig. 6, with

NCM displaying a clear discontinuity for female speech in

the region of intelligibility scores of 75%. ESTOI starts at

zero and covers a range of 0.62. Both NCM and NSEC

(shown in Fig. 9) metrics have a range from 0 up to �0.75,

which is similar to that of STOIþ and CSIIHigh.

Comparing CSIIHigh and CSIIMid in Fig. 7, the former

covers a wider range of values and therefore is associated

with shallower slope values. CSIIHigh varies from 0 to 0.77,

while CSIIMid only covers a range from 0 to 0.36. CSIIMid

has a discontinuity in the data for values from 0.21 to 0.22;

this is most evident for non-HP-filtered speech. STI, shown

in Fig. 8, extends to only 0.56, which corresponds to a 100%

sentence score and an intelligibility rating of “fair” for the

original STI method (see ISO 992145).

Figures of merit are reported in Table III for each met-

ric per talker gender and filter condition. All correlation tests

were significant at p < 0.001. For non-HP-filtered male

speech, the 95% confidence intervals for q overlap for

STOI, STOIþ, NCM, and NSEC for male talkers non-HP-

filtered speech, while NSEC has a higher q than ESTOI,

CSIIHigh, CSIIMid, and STI. STOIþ and NCM also outper-

form STI. For HPF male speech, NSEC has a higher q than

STOI and ESTOI, while NSEC, STOIþ, and NCM have a

higher q than CSIIHigh and STI. However, q is less useful in

identifying differences in the other situations. For non-HP-

filtered speech, the highest Kendall’s s occurs with NCM

and NSEC for male talkers and STOIþ, NCM, and CSIIHigh

for female talkers. The lowest prediction error occurs with

NSEC for male talkers and NCM for female talkers. For

the HPF condition, the highest Kendall’s s value occurs

with NCM, NSEC, and CSIIMid for male talkers and NCM

for female talkers. The lowest prediction error for male

talkers occurs with NSEC and for female talkers with

STOIþ. Across all conditions, STOIþ is associated with a

lower prediction error than STOI, and in all conditions

except female non-HPF, STOIþ is associated with a lower

prediction error than ESTOI.

FIG. 4. Relationship between metrics and measured intelligibility scores in the (a) non-HPF and (b) HPF conditions per talker gender. These are shown with

95% prediction bounds, which, apart from STI, vary across the range of metric values. For fitted lines that have intelligibility scores close to 0%, the upper

prediction bound tends to be higher in the non-HPF condition.

TABLE II. Summary of metric statistics for the non-HPF and HPF conditions.

Metric Minimum Median Mean Maximum Interquartile range Range

STOI 0.34 0.50 0.54 0.87 0.18 0.52

STOIþ 0 0.20 0.27 0.83 0.36 0.83

ESTOI 0 0.13 0.18 0.62 0.25 0.62

NCM 0 0.14 0.21 0.76 0.33 0.76

NSEC 0 0.24 0.28 0.75 0.37 0.75

CSIIHigh 0 0.21 0.25 0.77 0.30 0.77

CSIIMid 0 0.04 0.09 0.36 0.12 0.36

STI 0.01 0.10 0.15 0.56 0.20 0.56
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In case the inclusion of large numbers of intelligibility

scores at or close to zero affected relative metric perfor-

mance, this comparison of metrics was repeated using only

SNRs from �17 to 0 dB (these values being identical to the

logistic model SNR values). Relative performance was

nearly identical with the exception that STI performance

tended to improve slightly in the non-HPF filter condition.

However, it was still amongst the worst performers. NSEC,

NCM, and STOIþ were associated with the lowest predic-

tion error across both analyses.

Prediction bias and reliability (as described in Sec. II D)

is shown for each metric across talkers and SNRs in Fig. 9.

For these experimental conditions, bias is typically positive,

with the exception of STI, in which case the interquartile

range spans zero. In the non-HPF condition, NSEC and

especially STI are shown to be relatively unreliable for pre-

diction purposes, as indicated by the large interquartile

ranges, while for both male and female talkers, STOIþ is

associated with the lowest median and mean bias, although

STOI, ESTOI, NCM, NSEC, and CSIIHigh are also associ-

ated with relatively low median bias. In the HPF condition,

NSEC and CSIIHigh are associated with the lowest median

and mean bias, CSIIMid and STI with the highest mean bias,

and CSIIMid with the highest median bias. ESTOI bias is

also relatively high. STI is least reliable for prediction (i.e.,

it has the largest interquartile range), and NCM is most

reliable. Overall, regarding bias and reliability, performance

tends to be poorest for STI, NSEC, and CSIIMid in the non-

HPF condition and STI and CSIIMid in the HPF condition.

As the SNR decreases from �17 to �26 dB, the differ-

ences between the metrics in prediction bias increase: pre-

diction bias is particularly large for CSIIMid and STI, which

overpredict intelligibility. In the case of STOI, there is less

reliability at SNR < �17 dB than for other metrics.

IV. DISCUSSION

A. Effect of SNR and high-pass filtering of speech on
intelligibility scores

The results confirm that the intelligibility of noisy

speech decreases as a sigmoidal function of mixture SNR.

The maximum score is 98% with or without HPF, and at

SNR¼ 0 dB, scores exceeded 80%. In the context of speech

security, the acceptable percentage of words that are cor-

rectly identified tends to be between 0 and 20%. In this

work, the median intelligibility scores achieve or exceed

20% at SNR¼�8 dB, which confirms the need to extend the

evaluation of metrics to SNRs below �10 dB.

It was noted that even at SNRs of �26 and �23 dB,

words were identified in the non-HPF condition: 1.6%, or

one word. In a security context, these low percentages

require consideration. These words occurred near the

FIG. 5. (Color online) Scatterplots of STOI and STOIþ by intelligibility scores with fitted lines deriving from the rotationally symmetric logistic function

per talker gender (males, upper; females, lower). Markers represent average metric values over the ten sentences within each IEEE word list.

1356 J. Acoust. Soc. Am. 149 (2), February 2021 Simone Graetzer and Carl Hopkins

https://doi.org/10.1121/10.0003557

https://doi.org/10.1121/10.0003557


beginning of the sentence within a noun phrase in subject

position in the relevant sentences and are monosyllabic, so

they take prominence/stress in British English, which is

cued by loudness and length. These factors, local SNR and

duration, are likely to have allowed the listeners to obtain

“glimpses” of these words in the presence of the competing

white Gaussian noise.

One aim of the study was to determine whether the HPF

improves the intelligibility of speech for SNR < �10 dB.

Recall that the HPF flattens the speech spectrum but does not

strongly attenuate low frequencies (f < 300 Hz), unlike the tra-

ditional high-pass Butterworth filter method (e.g., Skowronski

and Harris30) In this study, a logistic regression model and

associated post hoc tests indicate that when SNR¼ 0 dB, there

is no reliable effect of the HPF on speech intelligibility.

Likewise, median intelligibility scores close to zero for SNR
< �17 dB indicate that the HPF has no effect at these SNRs.

However, the HPF is detrimental to speech intelligibility for

�17< SNR < �5 dB. These results suggest that, when speech

is mixed with WGN at these global SNRs, the local SNR is

not sufficiently improved by the HPF at higher speech frequen-

cies, i.e., within the range of the second and third formants, to

increase intelligibility for the average listener.

As suggested in Sec. I, the HPF increases the energy in

the mid- to high-frequency range (1–4 kHz) relative to the

low frequency range (less than 1 kHz). An increase in the

proportion of speech energy in the mid- to high-frequency

range relative to the low frequency range is known to

increase intelligibility in noise. However, WGN masks the

mid- and high-frequency components of speech, and the ear

integrates more noise energy per auditory band at higher fre-

quencies than at lower frequencies for this noise type.

Hence, at relatively low SNRs (SNR < 0 dB), the HPF does

not provide an intelligibility benefit.

Skowronski and Harris30 found that their high-pass fil-

ter improved speech intelligibility at SNR¼�10 dB for 6 of

their 16 speakers. However, they used speech materials that

consisted of closed sets of two, four, or ten confusable items

rather than open sets, as in the current study. Hence, an SNR

of �10 dB in their study is not equivalent to the same SNR

in the current study.

B. Evaluation of intelligibility metrics

For the purposes of speech security, the fitted curve for

a metric should ideally have a slowly rising exponential

curve from the point at which the intelligibility score is

zero, leading to a shallow slope for the linear region where

there are intermediate intelligibility scores. In addition,

narrower prediction bounds are preferred. These require-

ments are satisfied by STOIþ, NCM, NSEC, and CSIIHigh,

of which NSEC has the lowest upper prediction bound

FIG. 6. (Color online) Scatterplots of ESTOI and NCM by intelligibility scores with fitted lines deriving from the rotationally symmetric logistic function

per talker gender. Markers represent average metric values over the ten sentences within each IEEE word list.

J. Acoust. Soc. Am. 149 (2), February 2021 Simone Graetzer and Carl Hopkins 1357

https://doi.org/10.1121/10.0003557

https://doi.org/10.1121/10.0003557


FIG. 7. (Color online) Scatterplots of CSIIHigh and CSIIMed by intelligibility scores with fitted lines deriving from the rotationally symmetric logistic func-

tion per talker gender. Markers represent average metric values over the ten sentences within each IEEE word list.

FIG. 8. (Color online) Scatterplots of NSEC and speech-based STI by intelligibility scores with fitted lines deriving from a rotationally symmetric logistic

function and a simple linear function, respectively, per talker gender. Markers represent average metric values over the ten sentences within each IEEE

word list.
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when the metric is zero (see Fig. 4). The prediction bounds

for these metrics tend to be narrowest for the linear region

and widest where intelligibility scores are below 20%; in

contrast, STI (with a non-sigmoidal fit) has relatively uni-

form prediction bounds across the range of metric values.

When comparing metrics on the basis of summary statis-

tics and the distribution of metric values relative to intelligibil-

ity scores, STOI has one of the smallest ranges and the highest

minimum value (0.34). ESTOI, CSIIMid, and STI also have rel-

atively small ranges (see Table II). In contrast, STOIþ varies

from 0 to 0.83. Of course, higher STOI and STOIþ values

would be expected to occur when SNR > 0 dB.

Under some experimental conditions, Payton and Shrestha32

found that their STI ranged from zero to one. However, in this

study, STI did not exceed 0.56. This discrepancy may be due to

the fact that they evaluated their method only at SNR¼ 0 dB,

whereas the current study uses SNR� 0 dB.

NCM and CSIIMid have clear discontinuities in the dis-

tribution when plotted against measured intelligibility scores

(Figs. 6 and 7). Discontinuities are potentially problematic

for prediction; strict monotonicity is preferable, such that

inverse mapping from metric values to intelligibility scores

can be performed. However, these discontinuities occur

where intelligibility scores are >20%; hence, for speech

security, they are less problematic.

STOIþ, NCM, and NSEC tend to perform better on the cho-

sen figures of merit than CSIIHigh, CSIIMid, and STI (Table III).

Regarding prediction bias and reliability, while all metrics tended

to have a positive bias, the bias tends to be largest for CSIIMid and

STI and lowest for STOIþ in the non-HPF condition and largest

for CSIIMid and lowest for NSEC in the HPF condition (Fig. 9).

In general, STOIþ, ESTOI, NCM, NSEC, and CSIIHigh perform

well in terms of median bias. However, NSEC and STI are shown

to be least reliable for prediction purposes.

Overall, the proposed method, STOIþ, performs at least

as well as the other metrics considered here and, under some

conditions, better than STOI, ESTOI, STI, NSEC, CSIIMid,

and CSIIHigh. STOIþ and NCM are shown to be associated

with the lowest prediction error and bias and the greatest

reliability for intelligibility prediction for WGN maskers at

SNRs from �26 to 0 dB. Both of these metrics use a wide

range of values between zero and one and are robust to

high-pass filtering. The speech-based STI method used in

this paper appears to be less suitable for SNRs below 0 dB.

V. CONCLUSIONS

An assessment is made of two short-time methods to evalu-

ate the intelligibility of speech mixed with white Gaussian noise

over a wide range of SNRs from �26 to 0 dB. These are STOI

and a variant, STOIþ, which are compared with ESTOI, NCM,

NSEC, CSIIHigh, CSIIMid, and speech-based STI. This study

extends previous comparisons of STOI and STOI-based metrics

with other invasive intelligibility metrics by using speech from 12

talkers, 6 male and 6 female, rather than the typical 1–3, and 9

SNRs, rather than the typical 3–5.

While the normalisation and clipping procedures have

been discarded in several published studies, no comparison of

FIG. 9. (Color online) Prediction bias and reliability for the eight different metrics across talkers and SNRs for non-HPF (left) and HPF (right) conditions.

The bias is typically positive, except for STI, which is also the least reliable for prediction.
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results with and without these procedures has been made previ-

ously. In this paper, it has been shown that normalisation and

clipping increase STOI prediction error and reduce metric reli-

ability when speech is mixed with white Gaussian noise at low

global SNRs. When compared with STOI, ESTOI, CSIIHigh,

CSIIMid, NSEC, and speech-based STI, both NCM and STOIþ
perform well for speech mixed with white Gaussian noise at

SNRs from �26 to 0 dB—with or without high-pass filtering of

the speech signal—in terms of prediction error, prediction bias,

and reliability. In this study, logistic regression modeling dem-

onstrated that high-pass filtering, which increases the proportion

of high to low frequency energy, was detrimental to intelligibil-

ity for SNRs between �5 and �17 dB (inclusive). Whilst the

results for NCM and STOIþ indicate their suitability for pre-

diction, the upper bound for a 95% level of confidence is

�20% when these metrics are in the range 0–0.2; hence, future

work could investigate potential approaches to reduce this

uncertainty for the purpose of speech security. Future work

could also consider the efficacy of the metrics evaluated in this

paper for speech that is mixed with additive noise and enhanced

by means of mask-based algorithms.
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APPENDIX

See Table IV for logistic free parameter values for all

metrics except NSEC and STI. See Table V for logistic free

parameter values for NSEC.

TABLE III. Figures of merit for objective metrics for male and female talkers. For q, CIl indicates the lower bound of the 95% confidence interval, while

CIu indicates the upper bound of the same. Boldface is used to indicate the better performing metric(s) within a given condition.

Males Females

q (CIl-CIu) s re q (CIl-CIu) s re

Non-HPF STOI 0.91 (0.90–0.92) 0.74 10.97 0.92 (0.91–0.93) 0.75 10.87

STOIþ 0.92 (0.91–0.93) 0.76 10.54 0.93 (0.92–0.94) 0.77 10.16

ESTOI 0.90 (0.88–0.91) 0.74 11.67 0.93 (0.92–0.94) 0.76 10.15

NCM 0.92 (0.91–0.93) 0.77 10.46 0.94 (0.93–0.94) 0.77 9.75

NSEC 0.93 (0.92–0.94) 0.77 9.96 0.93 (0.92–0.94) 0.76 9.94

CSIIHigh 0.90 (0.88–0.91) 0.75 11.74 0.93 (0.92–0.94) 0.77 10.45

CSIIMid 0.90 (0.89–0.91) 0.75 11.39 0.92 (0.91–0.93) 0.76 10.81

STI 0.89 (0.87–0.90) 0.75 12.09 0.91 (0.90–0.92) 0.76 11.46

HPF STOI 0.95 (0.94–0.95) 0.73 8.50 0.96 (0.95–0.96) 0.70 7.73

STOIþ 0.95 (0.95–0.96) 0.75 8.02 0.96 (0.96–0.97) 0.75 7.30

ESTOI 0.94 (0.94–0.95) 0.74 8.64 0.96 (0.95–0.96) 0.75 7.76

NCM 0.96 (0.95–0.96) 0.76 7.81 0.96 (0.96–0.97) 0.76 7.43

NSEC 0.96 (0.96–0.97) 0.76 7.12 0.96 (0.95–0.96) 0.75 7.91

CSIIHigh 0.92 (0.91–0.93) 0.72 10.16 0.96 (0.95–0.96) 0.74 7.92

CSIIMid 0.95 (0.95–0.96) 0.76 7.87 0.92 (0.91–0.93) 0.74 10.27

STI 0.94 (0.93–0.94) 0.75 9.35 0.93 (0.93–0.94) 0.75 9.58

TABLE IV. Free parameters for the logistic mapping of STOI, STOIþ, ESTOI, NCM, CSIIHigh, and CSIIMid with 95% confidence intervals.

Males Females

a b a b

Non-HPF STOI �15.15 (–15.99 to �14.32) 10.83 (10.25–11.41) �15.58 (–16.42 to �14.74) 11.01 (10.44–11.59)

STOIþ �8.73 (–9.21 to �8.26) 5.20 (4.93–5.47) �9.12 (–9.59 to �8.65) 5.33 (5.06–5.60)

ESTOI �10.41 (–11.01 to �9.80) 4.37 (4.13–4.61) �11.21 (–11.78 to �10.65) 4.72 (4.50–4.95)

NCM �8.10 (–8.51 to �7.69) 4.02 (3.83–4.21) �8.68 (–9.09 to �8.26) 4.33 (4.13–4.52)

CSIIHigh �9.18 (–9.71 to �8.65) 4.85 (4.58–5.11) �9.89 (–10.40 to �9.38) 5.24 (4.98–5.50)

CSIIMid �15.79 (–16.61 to �14.98) 3.21 (3.06–3.36) �16.03 (–16.83 to �15.23) 3.32 (3.17–3.47)

HPF STOI �15.33 (–16.00 to �14.66) 10.28 (9.84–10.71) �18.32 (–19.11 to �17.53) 11.78 (11.29–12.27)

STOIþ �8.65 (–9.01 to �8.29) 4.48 (4.30–4.66) �9.89 (–10.29 to �9.50) 4.58 (4.40–4.75)

ESTOI �11.06 (–11.55 to �10.56) 4.00 (3.84–4.16) �13.48 (–14.05 to �12.91) 4.27 (4.10–4.44)

NCM �8.25 (–8.59 to �7.92) 4.04 (3.89–4.20) �8.95 (–9.31 to �8.59) 4.09 (3.93–4.24)

CSIIHigh �10.08 (–10.62 to �9.54) 4.71 (4.48–4.95) �12.17 (–12.71 to �11.62) 5.17 (4.95–5.39)

CSIIMid �17.09 (–17.75 to �16.43) 3.51 (3.39–3.64) �17.35 (–18.23 to �16.47) 3.53 (3.37–3.69)
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