
Open Access. © 2021 A. Khalid et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
License

Open Comput. Sci. 2021; 11:262–274

Research Article

Adnan Khalid, Qurat ul Ain, Awais Qasim*, and Zeeshan Aziz

QoS Based Optimal Resource Allocation and
Workload Balancing for Fog Enabled IoT
https://doi.org/10.1515/comp-2020-0162
Received Nov 21, 2019; accepted Jul 19, 2020

Abstract: This paper is aimed at efficiently distributing
workload between the Fog Layer and the Cloud Network
and then optimizing resource allocation in cloud networks
to ensure better utilization and quick response time of the
resources available to the end user. We have employed a
Dead-line aware scheme to migrate the data between cloud
and Fog networks based on data profiling and then used
K-Means clustering and Service-request prediction model
to allocate the resources efficiently to all requests. To sub-
stantiate our model, we have used iFogSim, which is an
extension of the CloudSim simulator. The results clearly
show that when an optimized network is used the Quality
of Service parameters exhibit better efficiency and output.

Keywords: cloud computing; load balancing; resource allo-
cation; fog computing; cloudSim

1 Introduction
Cloud computing has emerged as an efficient alternative
to physical servers and provided benefits such as elastic-
ity and scalability to the end users. Virtualization has al-
lowed dynamic allocation and deallocation of resources
in cloud computing data centers and hence a very conve-
nient model based on a pay-as-you-go structure and opti-
mal resource utilization became immensely popular. The
growth of cloud popularity and the reliance of various ap-
plications on cloud was however unprecedented and no
one accurately predicted that a novel paradigm would so

*Corresponding Author: Awais Qasim: Department of Computer
Science, Government College University, Lahore, Pakistan; School
of Science, Engineering and Environment, University of Salford,
United Kingdom of Great Britain and Northern Ireland;
Email: A.qasim2@salford.ac.uk, Awais@gcu.edu.pk
Adnan Khalid, Qurat ul Ain: Department of Computer Science,
Government College University, Lahore, Pakistan
Zeeshan Aziz: School of Science, Engineering and Environment,
University of Salford, United Kingdom of Great Britain and Northern
Ireland

quickly become so heavily used. Areas like Body Area Net-
works, Intra-vehicular communication, smart cities and
smart buildings and smart traffic signaling etc. made cloud
computing so popular that it is now predicted that the num-
ber of end users of the cloud networks would be around
four times the Earth’s population by year 2050 by [1]. Cloud
computing has changed the management of resources and
servers for all users, from individuals to organizations. In
a cloud environment, we have three service models: IaaS,
PaaS, and SaaS, that are used to provide services to the
end user over the internet using three deployment mod-
els: public clouds, private clouds, and hybrid clouds. Load
distribution involves the provisioning of networks, process-
ing power, and resources etc. to complete the user’s task.
We need load optimization algorithms, which work using
machine migration. There are two types of optimization al-
gorithms: static and dynamic, and two machine migration
algorithms: sender-initiated and receiver-initiated. There
are a few things that must be taken into account while
designing an algorithm for optimized workload and alloca-
tion. The throughput that determines how many processes
have been completed in a single time- unit must be max-
imized. Response time must be low. Migration time must
be as slow as possible. It is the time taken during migra-
tion of task from one VM to another to lessen the load of
the overloaded Virtual Machine (VM). Performance must
be as efficient as possible to get good results. Scalability
must be high. Fault tolerance must be high enough so that
the algorithm can work efficiently even if there are some
errors. Overheads must be low for the algorithm to perform
effectively. Resources available must be utilized optimally.

While technology provides some benefits, there are
inevitably costs in its use. As cloud networks are spread-
ing widely and are connecting a large number of devices
to a large number of servers, there is a certain amount of
time it takes to transfer data between them. If that time
consumption, is high, it is not feasible in real-time appli-
cations. The separation between the storage of huge data
and the processing of sensitive data is the only way to deal
with the issue. User data that stays on the edge of cloud
is transferred to a fog layer, while security and analytical
computations are done on the cloud. This model provides a

https://doi.org/10.1515/comp-2020-0162


QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 263

structure containing both cloud and fog. Fog layer devices
have ephemeral storage and they are expensive, therefore
they cannot be used widely. Thus, we need an optimized
workload balancing between fog and cloud layer to achieve
high quality of service and increased efficiency.

The research questions that arise when we work to find
a solution to the problem at hand are as follows:

• Does our architecture effectively represent a dis-
tributed environment that is proposed in the paper?

• Howdoes the proposedmodel contribute towards the
efficient resource allocation for the coming requests?

• How does the proposed model contribute towards
the improvement of load optimization?

• What qualitative parameters are taken into consider-
ation?

In cloud computing, data centers are far away from the
end node, which means there is a possibility of latency,
high response time, and increased network usage for the
transmission of data. In real-time applications it is impera-
tive that we manage latency and response time to ensure
quality of service. In the advent of Internet of Things (IOT)
and the evident shortcomings of cloud networks, a new
layer of processing, computing and storage was introduced
by CISCO in 2014, namely the Fog Layer. The Fog Layer is
an extended part of the cloud that enables edge computing
and real time applications with the benefits of low latency,
mobility, and location accuracy. We find fog computing
reliable for real-time data time processing in IoT services
and cloud for bulk data analysis. The fog layer is not far
from the end node, it can reduce latency, response time and
other quality of service parameters like cost, energy, and
network usage. Another thing is the increase of nodes with
the passage of time.

Fog consists of six layers. Starting from the bottom
layer, at the physical layer the edge nodes that contain any
type of IoT devices, virtual nodes, sensors, and actuators
are distributed geographically and data is collected, nor-
malized, and accumulated from them. At the monitoring
layer, the data collected from edge nodes is monitored, as
to which type of devices is performing what type of tasks
and when and how resources are being used, which are
available, and howmany are inactive. Energy consumption
is also noted from the nodes scattered across the network.
At this layer, the collected data is then refined andmeaning-
ful information is taken out of it. That data is temporarily
stored locally on a temporary storage layer but as soon as it
moves to the cloud, it is removed from the storage layer. At
the security layer, security measures are taken to keep the
data in its form. The integrity of data is ensured by using
encryption and decryption techniques. After processing,

data is then transported to the cloud via the transport layer
and only the data that is required for bulk analysis at the
cloud is stored there to reduce storage utilization.

Figure 1: Layered architecture of fog computing

By adding a fog layer, different parameters causing
problems in cloud computation can be eliminated, allow-
ing for there can be progress towards more efficient per-
formance of the cloud network. This creates another com-
plication that to overcome, as we need to provide efficient
resource utilization and its availability at all times, accord-
ing to the user’s demand. Due to the rapid increase in data,
we need to boost load balancing techniques for distribution
of the fog and the cloud. For load balancing, we need to
evaluate hot data and cold data. Hot data, which is sen-
sitive data, is then transferred to the fog layer for a short
period of time and cold data is sent to the cloud for mass
storage for longer periods of time. In this paper we have
combined K-means clustering and Service-request predic-
tionModel (SRPM) to provide revamped resource allocation.
With the help of K-means clustering k clusters are created of
n number of virtual machines at the cloud and SRPM keeps
the inactive VMs in hibernation mode so as to save energy
consumption. The proposed model is concerned about the



264 | A. Khalid et al.

energy consumption at cloud and to keep the hot data on
fog layer that is required to perform real time applications
without any delay.

2 Related Work
There are many ways to allocate virtual machines in re-
sponse to different requests. [2] described CA-LP (Combi-
natorial Auction-Linear Programming) and CA-GREEDY,
which are resource allocationmechanisms. CA-LP performs
allocation by linear programming relaxation and random-
ized rounding. CA-GREEDY employs greedy mechanism
and single-minded bidders. There are three types of cus-
tomers that request resources: demanding customers, least
demanding customers, and customers that fall in between.
Further demands are also divided based on: the number of
requested VMs, valuation, the period of time for which a
bundle is requested and deadline. When both mechanisms
are compared based on the above divisions of customers
and demands, it has been observed that they perform well
with fixed pricing. [3] discussed ABRA and also resource
utilization is effective as penalty is imposed on unallocated
resources. [4] discussed that resource allocation is done by
grouping the resources that have the same functionality
together and those that have different functionalities are
categorized in another group. [5] and [6] compare static
and dynamic load balancing algorithms. [7] discussed how
to implement resource allocation methods effectively for
preemptive tasks but they did not discuss cost and time
optimality. [8] discussed how the maximum urgency first
algorithm is used to schedule the system, but a critical task
can fail in it. [9] proposed amodified round robin algorithm
that reduces the overhead by reducing the response time
and context switching. [10] also proposed anotherMRR that
provides an improved version of RR algorithm. [11] reflected
on dynamic time quantum that changes after every execu-
tion of a task. It shows that PBDRR is better than MRR as
there is less context switching, average waiting time and
average turnaround time.

[12] and [13] gave heuristic algorithms that schedule
the tasks on the basis of execution time and system load.
In case of dynamic framework, however, this algorithm
is unable to predict above mentioned values. [14] gave the
weighted round robin cell multiplexing for ATM switch card.
[15] discussed how to use deficit round robin for queuing
purposes. [16] gave an idea how cloud analytics can be
used to solve problems by searching the social networking
applications located on the cloud.

In cloud virtualization, a machine is divided into many
instances and used by different users at the same time for
different purposes. There are two types of virtualization
described below. In full virtualization, all the software of
one machine is also installed on the other machine. One
machine can be used bymultiple users. In partial virtualiza-
tion, different operating systems can be used on a machine
and not all services are available to be used; this has been
discussed in [17]. Opportunistic load balancing algorithm is
a static algorithm in which unexecuted tasks are assigned
to the nodes that are available randomly was discussed
in [18]. In this way, all the nodes stay busy but processes
are completed very slowly. In Min-Min algorithm, at first all
the jobs are arranged according to their completion and ex-
ecution time in a queue. Then the minimum one is selected
and assigned to the processors. The assigned task is re-
moved from the queue and it is updated and then again the
minimum one is selected as processor is assigned to it. This
continues until all the jobs are assigned the processors. In
this algorithm, tasks with minimum time will be executed
easily but the tasks having large execution time may lead
to starvation. In Max-Min algorithm, the jobs are arranged
according to their execution time and completion time in
queue. Maximum one is selected and processor is assigned
to it. In thisway, the long jobs donot have towait longer and
no starvation will occur. These steps are followed until the
minimum one is also provided the processor but the short
jobs have to wait more in this algorithm [19]. The two-phase
scheduling load balancing algorithm is the combination of
opportunistic load balancing and load balancing min-min.
It utilizes the resources effectively and keeps the nodes busy
in completing the tasks [20].

In this algorithm, average completion time of tasks is
calculated and the average maximum is then selected and
assigned to unassigned node with minimum completion
time. If all thenodes are assignedalready thenassigned and
unassigned are again evaluated.Minimum completion time
of assigned nodes is calculated by the sum the of minimum
completion time of all tasks assigned and current task. The
sum is thus theminimumcompletion time of assigned node
for current task. This algorithm has no fault tolerance but it
utilizes the resources effectively and keeps the nodes busy
in completing the tasks.

For cloud computing, heavy systems are required. The
big systems requiremore energy. Energy consumptionmust
be less as it directly affects the cost. AQoS-aware server tries
to decrease the energy cost to as low as possible. Service-
request prediction model (SRPM) proposed by [21] predicts
which VMs of a cluster are inactive. Those will be separated
into another cluster thus lowering the energy usage. This
model uses service demand data based on time and makes



QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 265

predictions on the future demand data. In k-means clus-
tering [22] cloudlets and VMs are clustered on the basis of
some values or properties. This algorithm gives the best
results among the other load balancing algorithms.

Dynamic load balancing takes the current situation
into account while distributing the load, i.e., there is a ta-
ble that keeps the info about the current status of node.
Workload is distributed on nodes on runtime dynamically.
There is master slave concept in it as there is master slave
that distributes the tasks among slave nodes. As soon as
the load balancer finds out that there is imbalance in the
system, it starts to balance the load on all the nodes. The
balancer consumes some cycles for monitoring the imbal-
ance situation so we need to handle this as well. In ACCLB
(ant colony and complex network theory), ant colony op-
timization technique is used that finds shortest path be-
tween food and ant colony. In dynamic load balancing it
is used to distribute the tasks among nodes. A head node
is chosen that initializes the work like it is chosen in ant
colony to start the movement in a direction. They record
the info about the nodes they visit and pheromones are
left for other ants to follow them. As soon as the task is
done pheromones are updated. The results from each ant
are collected to form a single result and if there are some
changes, they are made in single result rather than their
own results. It improves the system efficiency as the fault
tolerance is high but throughput is not high enough. In
Honeybee foraging algorithm, there is a group of servers
that makes a virtual server and that virtual server has its
own process queue. Each virtual server then performs pro-
cess from their respective queue and finds out its profit. It
will return to the forage in case of low profit otherwise stays.
This profit calculation may cause overhead, which must be
reduced. This technique efficiently balances the load on
heterogeneous virtual machines in cloud computing. The
current load of VM is calculated so that overloaded and
under loaded VMs can be balanced. When a task is being
removed from overloaded VM its priority is taken into con-
sideration while assigning it to less loaded VM. [23] argues
that using this technique reduces the waiting time of the
job and response time of VM.

In Biased Random Sampling load balancing algorithm,
the network is represented as a virtual graph. As in a graph,
there are vertices; this network has each server as vertex
of the node. Each node has an in-degree, which means
available resources. Jobs are assigned to the node that has
at least one in-degree. As soon as job is assigned, the in-
degree will be decremented, and when the job is completed
and the resource becomes free, then the in-degree is in-
cremented. Random sampling is used for the deletion and
addition of processes. Processes traveling from one node to

destination node is called walk length and the maximum
walk a process can do to reach its destination node is called
threshold value. The neighboring node is selected for traver-
sal. The load balancer selects a node randomly as soon as
request is received and compares current nodeswalk length
with the threshold value. If walk length is greater than or
and equal to the threshold value, then the process will be
executed on that node, otherwise another node is selected
randomly. The performance of the algorithmdecreaseswith
the increase in servers because of more overhead. In [24]
weighted round robin VMs are assigned weights and they
do not take jobsmore than their weights so that VMs are nei-
ther overloaded neither less loaded. In Throttled algorithm,
the best suitable VM is searched and then it is assigned that
task. In [25], efficient throttled algorithm hash map is used
for efficient searching of suitable virtual machine. DCBT
algorithm uses divide and conquer and throttled algorithm
for load optimization. In dynamic load management algo-
rithm, there is a table managing the VMs available or not
available. The available VMs are assigned tasks and busy
ones are added to a separate group and are added back to
available VMs group when task is completed.

In [26], genetic algorithm assigns binary values to pos-
sible solutions and then they are mutated to produce the
one. The disadvantage is that the selection of best pair is not
taken into account rather random pair is used [27]. In im-
proved genetic algorithm, tournament selection method is
used to find out the best pair to get the best solution out of it
[28]. In [29], novel honey bee inspired algorithm has param-
eters for checking the quality and then chooses the best op-
timal resource. Stochastic hill climbing algorithm assigns
jobs to VMs in a loop and increases value until the value is
highest in [30]. In [31], ant colony optimization algorithm
master slave architecture is used. Master node is provided
the task that sub divides it and distributes it among slave
nodes and then gather results from them when task is com-
pleted and combine the result. Particle swarm algorithm
transfers the VM instead of transferring the workload [32].
In [33], LB-BC algorithm clusters of hosts aremade upon tak-
ing into account the CPU resource, memory, and previous
probability. The tasks are assigned according to the cluster
capability. Cluster based load optimization makes clusters
of network. Each cluster has master and slave nodes. Mas-
ter slave distributes tasks among slave nodes in cluster. In
[34], Round robin algorithm is used for load distribution.

However, in none of the related work a technique for
optimal resource allocation and workload balancing for
fog enabled IoT has been presented. In light of the liter-
ature that we studied we reached the conclusion that in
order to achieve a solution to our problem statement, the
most appropriate way forward would be to employ K-mean



266 | A. Khalid et al.

clustering on the data center resources and combine the
VMs with similar characteristics and then using SRPM on
each cluster that hibernates the inactive VMs to reduce the
energy consumption. Our goal is to balance load between
cloud and fog environments by identifying hot and cold
data based on input/output per second and then optimize
resource allocation in cloud networks by making clusters
of virtual machines based on their characteristics and then
within those clusters to create and hibernate idle VMs to
reduce resource consumption. We will finally evaluate the
benefits of our work by seeing improvement in Quality of
service (QoS) parameters brought about by our research.
Many services that the cloud computing paradigm renders
have real time processing involved. As IoT becomes more
popular and cloud usage increases the cloud network is
bound to become congested. This can cause problems like
jitter and delay, which in many cases could be harmful
or even fatal to the end user. For instance, in health care
services or traffic signaling, delay of seconds can be catas-
trophic. The prevention of such delays is our main motiva-
tion for workload balancing optimization between fog and
cloud networks.

3 Proposed Methodology
In our proposed methodology we have two phases. The
first is to balance the load between fog networks and cloud
networks and the second is to perform resource allocation
among virtual machines in the cloud effectively. When a
user sends data to a cloud network, the effectiveness of the
processed results depends on the nature of the application
with exponential increase in IoT applications. The tradi-
tional cloud network is becoming congested and problems
like jitter and delay are bound to arise. These problems are
critical to real-time applications especially when real-time
results are time critical. It was therefore necessary to in-
troduce an intermediate layer between the user and cloud
network called the fog layer. Our first step is to balance
the load between the fog layer and the cloud layer based
on parameters such as type of data, data temperature and
migration deadline. The second phase deals with the op-
timization of cloud resource allocation for analytical and
bulk data. Here the intent is to make clusters of appropriate
VMs to save energy of virtualmachines that are not required
at that time and maximize the resource consumption by
optimally allocating VMs to active cluster of servers. The
complete process of the proposed methodology is shown
in Figure 2.

Figure 2: Proposed Model for Optimized Load Balancing and Re-
source Allocation in Fog enabled IoT

To benefit fully from the concept of Fog computing, we
have to devise a framework that would ensure a systematic
extension of a Cloud environment to an environment that
showcases a Cloud and a Fog layer. We have identified four
major parts of themigrationprocess: Data shift, Application
shift, Service shift, and Security measures. Data shift of the
migration process begins with the identification of different
end-node devices as Fog storage devices. Routers, sensors,
terminals, and other devices that interact with the cloud
can be used in a localized network to form a layer between
the end user and the cloud network. This layer is called the
fog layer. The process of shifting data from these fog devices
to the cloud network and vice versa requires differentiation
of data on the basis of its “hotness”. Data is considered hot
when it is required for real-time processing and requires
a substantial number of Inputs and Outputs per second
(IOPS). Application shift will take care of deploying dis-
tributed applications at the client and server ends with one
part of the application handling the real-time processing on
the Fog device and the other part handling bulk processing
and storage on the cloud device. Both these parts would
have to be integrated and synchronized to ensure both ac-



QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 267

curacy of real-time results and maintenance of integrity
of bulk data stored at the cloud end. It is imperative that
some sort of mechanism is devised that would determine
the workload sharing of the real-time and the bulk module
of the application. Service shift of the migration framework
would provide service architecture models for IaaS, PaaS,
and SaaS. A separate paper proposing these models for Fog
computing is in the publication process. One of these mod-
els is used later in this paper. Security measures have been
the most talked about area of research in cloud comput-
ing. The public cloud has faced severe criticism because
of its fragile security. Fog computing provides a solution
by providing some sort of control over the distribution and
proximity of critical data. It is, however, necessary to em-
ploy techniques like PKI and CA to actually make the Fog
networks a more secure alternative to cloud computing.

This paper discusses the first part of the migration
framework, which addresses datamigration between Cloud
and Fog. This data migration would include a determina-
tion of the kind of storage devices that would be available at
the Fog layer and their comparison with the Cloud storage
devices. An additional concern will be some sort of mech-
anism that can differentiate data on the basis of latency
sensitivity and data temperature. Finally, an Infrastructure-
as-a-service model for Fog computing would be used to
help demonstrate how movement of data would take place
between Clouds and Fog. In our work we are concerned
primarily with Data Migration as explained in the following
subsections.

3.1 Data Profiling

To migrate the right amount and kind of data from Cloud to
Fog and vice versa we need to differentiate data according
to some parameters. In case of Fog computing the main
concern with regards to access and processing of data is
latency. This means that one parameter that must be con-
sidered when deciding what data to move to the Fog layer
would be latency sensitivity. Another aspect of data that
needs consideration in this regard is its temperature.

3.2 Data Temperature

Data can be deemed “hot” or “cold” depending on its usage.
“Hot” data would typically be data that is to be processed
within a given time frame. As the time passes this “hot”
data becomes less critical and hence its temperature is said
to have cooled down resulting in the term “cold” data. At
a particular instance, the determination of “hot-spots” in

the stored data can be done by IO profiling whereby IOPS-
intensive data is shifted to the faster Fog layer. In this regard
a key challenge arises from the fact that hot-spots in data
continue to move over time, i.e., previously cold data that
is seldom accessed would suddenly or gradually become
hot due to it being frequently accessed or becoming perfor-
mance critical in response to a certain event. Such fluctua-
tions in the nature of data require us to devise an adaptive
mechanism that can assess the future needs of the system
and migrate appropriate chunks of data from Cloud to Fog
and vice versa. Deadline Data selection for migration re-
quires preemptive determination of hot or latency-sensitive
data. Such determination requires screening data for cer-
tain indications such as criticality and IOPS-sensitivity. One
major aspect of this screening is the determination of a
reasonable deadline within which the migration has to be
completed in order to meet the deadline of the workload to
which the “hot” data is associated.

Let “t” be the response time during time period [t1,t2].
The response time function for a multi-tiered Fog environ-
ment can then be denoted as,

f (t), t ∈ [t1, t2]

The conventional unit of response time is milliseconds. Fig-
ure 3 shows three phases of data migration between end
user, fog and cloud networks. In the first phase of the mi-
gration model, it continuously observes the I/O profile and
sorts the extent list by its temperature. If this phase takes x
time, then utility would be

Figure 3: Data Migration Model

U =
x∫︁

0

f (t) dt

The second phase deals with data migration. A very lim-
ited chunk of data is hot, so every chunk adds load thereby
reducing the response time. After certain chunks’ migra-
tion, further reduction in response time is not possible. This
point is called convergence and it calculates the average
response time.



268 | A. Khalid et al.

If y time is taken by the migration phase, then utility
cost would be

U =
x+y∫︁
x

f (t) dt

After the phase reaches the convergence point, the opti-
mization phase starts. In this phase response time is kept
average until the deadline. Thus, if optimization takes z
time the utility would be

U =
x+y+z∫︁
x+y

f (t) dt

The total workload cycle would be sum of time taken by all
the three phases

w = x + y + z

U =
w∫︁
0

f (t) dt

Onemigration of data from fog to cloud or vice versa would
be

U =
x∫︁

0

f (t) dt +
x+y∫︁
x

f (t) dt +
x+y+z∫︁
x+y

f (t) dt

When given peak response time (p) and saturation time (u),
the data migration response time function would be

f (t) =
[︂
(p − u) * t

2

]︂
− (u * x) ∈ [x, x + y]

In case of single data migration, the response time function
would be,

f (t) =
{︁
p, t ∈ [0, x][(p − u) * t/2]

− (u * x) ∈ [x, x + y]u, t ∈ [x + y, w]
}︁

Thus fromabove equations the utility cost for onemigration
would be

U =
x∫︁

0

f (t) dt = px +
[︁ y
2(p − u) − u * x

]︁
+ uw

For reduced utility cost and faster response time it is impor-
tant to calculate utility rise i.e.

Ur = p * w −
[︁
px +

[︁ y
2(p − u) − u * x

]︁
+ uw

]︁
At this point it is clear now that the utility cost differential
improves data migration between fog and cloud and to
implement it we need a framework.

3.3 Data Migration between Cloud and Fog

Fog computing in IaaS infrastructure provides distributed
framework that performs real-time processing and storage
for fog and bulk data processing and storage on cloud sep-
arately. This is represented in Figure 4.

Figure 4: IaaS for Fog

In IoT applications, two types of storage are required
to use the fog services. In Figure 4 there is a fog layer that
deals with the temporary storage and fast processing of
data, while the cloud layer provides a large amount of per-
manent storage of data that can help in creating analytical
reports. By combining ADAS [35] and the above proposed
infrastructure utility cost and response can be reduced that
leads to reduction in latency while migrating data between
cloud and fog.

3.4 Resource Allocation for Cloud Networks

Following are the steps involved in the resource allocation
for cloud networks in our proposed model.

Step 1: VMs are initially specified by their resource type,
capacities, and status. There are two types of vir-
tual machines discussed below. In system virtual
machine, a physical machine is divided into dif-
ferent VMs. Each VM act as a single computer
and not interlinked with any other VMs. Each
can therefore have a different operating system.
Process virtual machine is useful for a program-
mer to run his application on a VMwith installed
operating system of organization and its standers
of computers. A programmer can run its applica-
tion regardless of the platform. Following are the
various VM statuses.

• Provisioning
• Provisioning error
• Customizing
• Delete
• Waiting for agent



QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 269

• Startup
• Agent unreachable
• Configuration error
• Provisioned
• Available
• Checked out
• Connected
• Disconnected
• Unassigned user connected
• Unassigned user disconnected
• Unknown
• Maintenance mode and Error

Step 2: K clusters are created of n VMs. Clustering is done
by K-Means clustering depending on values like
client’s priority, cost of cloudlet, and instruction
width of cloudlet. In K Means Clustering, K is de-
fined earlier. VM that matches a particular cluster
is added into it. If undesirable result shows up, k
clustering is implemented again and it continues
until no VM is left behind.

Step 3: Each type of cluster acts as a server. K clusters cre-
ate k servers. Each server contains the VMs clos-
est to each other. So whichever request matches
the cluster, a VM from that cluster is assigned to
it.

Step 4: After certain time, the resource allocator checks
if there are VMs of a server that continued to
stay inactive If so, they will be grouped together
and will hibernate. This is done by using Service-
request prediction model. It predicts which VMs
of a cluster are inactive. Those will be separated
into another cluster thus lowering the energy us-
age. This model uses service demand data based
on time and makes predictions on the future de-
mand data.

Step 5: If that server needs more VMs later to complete
a request and not be overloaded,. Inactive VMs
can be added back depending on the number of
VMs required for the task.

Step 6: As soon as a new request reaches the cloud con-
troller, request is directed to the resource alloca-
tor.

Step 7: The resource allocator finds the best suited clus-
ter for the request and assigns VM from that clus-
ter to the request that is available.

Step 8: List is updated about available VMs in that clus-
ter.

Step 9: When request is done using VM, list is updated
again.

Step 10: For every new request go back to step 7.

After the use of K-mean clustering to identify suitable
VMs, Service request prediction model (SRPM) can help
to deal with the efficient management of VMs while con-
suming the energy optimally. In SRPM the VMs that are not
providing any services to any upcoming request and are
inactive for a long time are identified and put into sleeping
mode hence they hibernate until the VMs that are active
are overloaded. As soon as active VMs are overloaded and
there are VMs that are hibernating, they become active and
act as resources for the upcoming requests. Figure 5 shows
the above-mentioned resource allocation.

Figure 5: Resource allocation using K-mean clustering and SRPM

4 Application of the Proposed
Methodology

In this section we demonstrate the application of our pro-
posed methodology using real-time patients’ care for provi-
sion of first aid. There are four main modules in this case
study: Timer Module needs to inform checker module in
time about the severe condition of patient, Checker Mod-
ule checks which particular group of patients he belongs
to, Potency Calculator Module determines the dosage of
medicine required for such group of patients, and Selector
module selects single patient to inject the dosage by the
help of actuator injector. Interface module receives data
from timer module. In interface it is evaluated if some in-
formation is missing or any error occurred and then results
are generated after all these calculations to inform checker
module about the situation. Cloud storage is informed by
the actuator injector. This is helpful in keeping patient’s



270 | A. Khalid et al.

Figure 6: Application Model of Patient-Medicine Administration

reports and the analysis about the previous and current
situation of patient. It also provides the interface for the
physician to take a look at patient’s reports when required.
The complete process is shown in Figure 6.

The simulator that we have used for our case study is
ifogsim, which is an extension for cloudsim simulator. It
can model applications based on geographical proximity
by making geo coverage maps. Ifogsim also has the ability
to evaluate the quality of service parameters related to fog
and cloud simulations. These parameters include cost, en-
ergy consumption, efficiency etc. Following are the steps
involved in the execution of our simulation. Since ifogsim
is based on cloudsim it uses cloudsim as its primary en-
gine in order to perform many tasks such as data center
creation, which is the core part of isimualtion process. In
step 1 we initialize cloudsim by assigning certain parame-
ters. The number of users for the desired simulation is set
to 1. The calendar is initialized to keep the current instance
until the time when the simulation commences. Finally,
we initialize the trace-flag as false in order to hide the de-
tails log irrelevant to the current simulation. In step 2 a
fog broker is initialized based on the data-center broker.
The purpose of data-center broker is to create coordina-
tion between cloud-service-providers and end-users on the
basis of needs related to quality-of-service (QoS) require-
ments. A fog broker operates on the fog layer and assists
the end users in creating tuples. Tuples are taken from the
cloudlets class in cloudsim, which is used to present tasks
in cloudsim. In the same way tuples class models tasks for
fog environments in various modules in ifogsim. In step 3
cloud-data-centers and fog-data-centers are created with
the below mentioned properties. The properties for both
cloud-data-centers and fog-data-centers vary because of
the nature of the networks. Trying to emulate reality we set
the properties of our fog devices so that they are less pow-
erful than our cloud-processing-devices and their storage

Table 1: Cloud data Center Characteristics

Name of Device Cloud
Million instructions per second 44880

RAM 40G
Uploading Bandwidth 100 Mbits/sec

Downloading Bandwidth 10 Gbits/sec
Parent Level 0 (top of the topology)

Rate per processing usage 0.01
Busy Power 1648 W
Idle Power 1332 W

Table 2: Fog Data Center Characteristics

Name of Device Proxy Server
Million instructions per second 2800 mips

RAM 4 G
Uploading Bandwidth 10 Gbits/sec

Downloading Bandwidth 10 Gbits/sec
Parent Level 1 (Child of cloud)

Rate per processing usage 0.01
Busy Power 102 W
Idle Power 80 W

Latency between cloud and proxy
server

100 ms

capacities are smaller than the capacity of the cloud-data-
center. The properties of our appropriate cloud devices are
shown in Table 1. Table 2 shows the properties of our fog
devices, which are less powerful but much closer to the
source of data generation.

4.1 Gateway Devices

These devices generate a communication pathway between
fog and cloud devices. These devices are installed at the

Table 3: Gateway Device Characteristics

Million instructions per second 2800 mips
RAM 4 G

Uploading Bandwidth 10 Gbits/sec
Downloading Bandwidth 10 Gbits/sec

Level 2 (Below proxy server)
Busy Power 102 W
Idle Power 79 W

Latency between gateway and
proxy server

4 ms



QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 271

2nd last position in the model. Table 3 shows the properties
of gateway devices.

4.1.1 Observer Devices

There are some observer devices in our model that are end
nodes of the network. Table 4 shows the characteristics of
the observer devices.

Table 4: Observer Device Characteristics

Million instructions per second 1000 mips
RAM 1 Gb

Uploading Bandwidth 10 Gbits/sec
Downloading Bandwidth 270 Gbits/sec

Level 3 (Below gateways)
Busy Power 85 W

4.2 Sensors and Actuators

In above case study there are some sensors and actuators
to perform the tasks as a result of certain conditions for
IoT based devices. Sensor senses how and which individ-
ual needs to be taken care of in severe condition and how
actuators perform the tasks.

4.3 Module to Module Interaction

Communication is done within the devices via interaction
between modules. A set of instructions in the form of tuple
is sent and received to module to perform communication.
The instruction set in the formof tuples are sent to the cloud
or fog are called TuplesUp and the tuples sent betweenmod-
ules are known as TuplesDown. In ifogSim tuplemapping
is used to map tuples to modules.

4.4 Network Topology for Simulation in
ifogsim

Our topology consists of a traditional cloud network linked
tomultiple fog areas through a proxy server. Figure 7 shows
two areas, however we have generated results on three ar-
eas. Each area contains two Line protection units (LPUs)
which connect the fog to end user devices.

Figure 7: Network topology for ifogsim

5 Results
Results of the simulation discussed above are given below.

5.1 Latency

Average latency and energy consumption is calculated by
taking all values from one module to other. Table 5 shows
that there is a reduction in latency when fog architecture is
utilized.

Table 5: Latency in Cloud and Fog Architecture

Configuration Number
of Areas

Number
of LPU

Cloud Fog

1 1 2 225 16
2 2 4 227 20
3 3 6 2694 34

5.2 Execution Cost

Different parameters are taken into account to calculate the
operational cost. In this table latency and energy consump-
tion is higher if there is no fog and no hibernation of VMs.
As we can see in the table, fog with hibernation gives less
cost. Table 6 shows that there is a reduction in execution
cost when fog architecture is utilized.

Table 6: Execution Cost with cloud and fog architecture

Configuration Number
of Areas

Number
of LPU

Cloud Fog

1 1 2 293384 9456
2 2 4 3946184 25567
3 3 6 4197088 52419



272 | A. Khalid et al.

5.3 Network Usage

Network usage gives information about total utilization in
kilobytes. Results are shown below; more devices lead to
more network consumption. In fog with hibernation of vir-
tual machines it is evident that it uses less network than no
hibernating virtual machine in the absence of fog. Table 7
shows that network usage is reduced when fog architecture
is utilized.

Table 7: Network Usage with cloud and fog architecture

Configuration Number
of Areas

Number
of LPU

Cloud Fog

1 1 2 59530 7007
2 2 4 257710 31814
3 3 6 598010 87100

5.4 Energy Consumption

Below given table is showing the energy consumption be-
tween fog with hibernating virtual machines and no hi-
bernating virtual machine in the absence of fog. Table 8
shows that there is a persistent usage of energy when fog
architecture is utilized.

Table 8: Energy consumed with cloud and fog architecture

Configuration Number
of Areas

Number
of LPU

Cloud Fog

1 1 2 1.3 1.3
2 2 4 1.6 1.3
3 3 6 1.8 1.3

5.5 Execution Time

Execution time represents the total time it takes by edge
node devices to execute requests. It calculates the cumu-
lative time for transporting sensors, data and processing
and conveying results. We test fog and cloud with the same
amount of workload. There is a considerable reduction in
execution time for fog networks as compared to cloud net-
works. This is because fog nodes are placed nearer to the
users then cloud networks as shown in Table 9.

Table 9: Execution time with cloud and fog architecture

Configuration Number
of Areas

Number
of LPU

Cloud Fog

1 1 2 1097 800
2 2 4 4802 3126
3 3 6 9203 6632

6 Discussion and Conclusion
In light of the results presented in the previous section we
can safely determine that fog networks provide greater ef-
ficiency over traditional cloud networks especially when
efforts are made to distribute load in an appropriate man-
ner between the fog and cloud networks. We have also es-
tablished that optimized resource allocation within cloud
networks once coupled with workload balancing has im-
mense potential to improve quality of service parameters
such as latency, network delays, geographical distribution,
execution cost, and energy consumption etc. The model
presented in this paper is molded to accommodate a sys-
tem based on low latency and quick response in real time
situations. The workload balancing mechanism presented
in the dissertation segregates data into two parts based on
the number of instructions that access the data. One of the
issues related to cloud computing has been the mandatory
use of private clouds to ensure a less latent andmore secure
use of technology. This makes the use of fixed resources
and fixed costs compulsory and hence the true advantages
of cloud computing are reaped. In our presentedmodels the
complete hierarchy of the business process from creating
and storing to deploying applications is carried out simply
through rented resources provided by the highly distributed
fog environment. The close proximity of the real time pro-
cessing unit makes sure that the users have greater control
on data and data is highly secure. This leaves no reason
to use a private cloud; based on our work load balancing
technique the software developer will create two modules
of his application, one for the cloud network and the other
for the fog network. This can be done by using a platform-
as-a-service at the Fog node level using IOX, which is the
main development platform over Fog.

At the cloud level we have employed resource alloca-
tion by clustering and profiling of virtual machines and
that optimizes the use of VMs and makes the utilization of
resources most appropriate.

Overall the contribution of this paper goes a long way
in making the use of workload balancing and resource al-



QoS Based Optimal Resource Allocation and Workload Balancing for Fog Enabled IoT | 273

location for optimization of Quality of Service parameters
in IOT enabled Fog.

References
[1] Clohessy T., Acton T., Morgan L., Smart city as a service (SCaaS):

A future roadmap for e-government smart city cloud computing
initiatives, Proceedings of the 7th IEEE/ACM International Con-
ference on Utility and Cloud Computing, 2014, 836-841

[2] Zaman S., Grosu D., Combinatorial auction-based allocation of
virtual machine instances in clouds, Journal of Parallel and Dis-
tributed Computing, 2013, 73(4), 495-508

[3] Özer A. H., Özturan C., An auction based mathematical model
and heuristics for resource co-allocation problem in grids and
clouds, Proceedings of the Fifth IEEE International Conference
on Soft Computing, Computing with Words and Perceptions in
System Analysis, Decision and Control, 2009, 1-4.

[4] Zhang Y., Niyato D., Wang P., An auction mechanism for resource
allocation in mobile cloud computing systems, Proceedings of
International Conference on Wireless Algorithms, Systems, and
Applications, Springer, Berlin, Heidelberg, 2013, 76-87.

[5] Randles M., Lamb D., Taleb-Bendiab A., A comparative study
into distributed load balancing algorithms for cloud computing,
Proceedings of 24th IEEE International Conference on Advanced
Information Networking and Applications Workshops, 2010, 551-
556

[6] Alakeel A. M., A guide to dynamic load balancing in distributed
computer systems, International Journal of Computer Science
and Information Security, 2010, 10(6), 153-60

[7] Li J., Qiu M., Niu J. W., Chen Y., Ming Z., Adaptive resource alloca-
tion for preemptable jobs in cloud systems, Proceedings of 10th
IEEE International Conference on Intelligent Systems Design and
Applications, 2010, 31-36

[8] Stewart D. B., Khosla P. K., Real-time scheduling of dynamically
reconfigurable systems, Proceedings of IEEE International Con-
ference on Systems Engineering, 1991, 139-142

[9] Singh A., Goyal P., Batra S., An optimized round robin scheduling
algorithm for CPU scheduling, International Journal on Computer
Science and Engineering, 2010, 2(7), 2383-2385

[10] Yaashuwanth C., Ramesh R., Design of Real Time Scheduler Sim-
ulator and Development of Modified Round Robin Architecture
for Real Time System, International Journal of Computer and Elec-
trical Engineering, 2010, 10(3), 43-47

[11] Mohanty R., Behera H. S., Patwari K., Dash M., Prasanna M. L.,
Priority based dynamic round robin (PBDRR) algorithm with intel-
ligent time slice for soft real time systems, arXiv preprint, 2011,
arXiv:1105.1736

[12] CasanovaH., LegrandA., ZagorodnovD., Berman F., Heuristics for
scheduling parameter sweep applications in grid environments,
Proceedings of IEEE 9th Heterogeneous Computing Workshop
(HCW 2000), 2000, 349-363.

[13] Baraglia R., Ferrini R., Ritrovato P., A static mapping heuristics to
map parallel applications to heterogeneous computing systems,
Concurrency and Computation: Practice and Experience, 2005,
17(13), 1579-1605

[14] Katevenis M., Sidiropoulos S., Courcoubetis C., Weighted round-
robin cell multiplexing in a general-purpose ATM switch chip,

IEEE Journal on selected Areas in Communications, 1991, 9(8),
1265-1279

[15] Shreedhar M., Varghese G., Eflcient fair queuing using deficit
round-robin, IEEE/ACM Transactions on networking, 1996, 4(3),
375-385

[16] Wickremasinghe B., Calheiros R. N., Buyya R., Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing
environments and applications, Proceedings of 24th IEEE inter-
national conference on advanced information networking and
applications, 2010, 446-452

[17] Mishra R., Jaiswal A., Ant colony optimization: A solution of load
balancing in cloud, International Journal ofWeb&Semantic Tech-
nology, 2012, 3(2), 33

[18] Hung C. L., Wang H. H., Hu Y. C., Eflcient load balancing algo-
rithm for cloud computing network, Proceedings of International
Conference on Information Science and Technology, 2012, 28-30

[19] Kokilavani T., Amalarethinam D. G., Load balanced min-min al-
gorithm for static meta-task scheduling in grid computing, Inter-
national Journal of Computer Applications, 2011, 20(2), 43-49

[20] Kaur K., Narang A., Kaur K., Load balancing techniques of cloud
computing, International Journal of Mathematics and Computer
Research, 2013, 1(3), 103-110

[21] Mohan N. R., Raj E. B., Resource Allocation Techniques in Cloud
Computing–Research Challenges for Applications, Proceedings
of fourth international conference on computational intelligence
and communication networks, 2012, 556-560

[22] Adrian B., Heryawan L., Analysis of K-means algorithm for VM
allocation in cloud computing, Proceedings of International Con-
ference on Data and Software Engineering (ICoDSE), 2015, 48-53

[23] LD D. B., Krishna P. V., Honey bee behavior inspired load bal-
ancing of tasks in cloud computing environments, Applied soft
computing, 2013, 13(5), 2292-2303

[24] Megharaj G., Mohan K. G., A survey on load balancing techniques
in cloud computing, IOSR Journal of Computer Engineering (IOSR-
JCE), 2016, 18(2), 55-61

[25] Domanal S. G., Reddy G. R., Load balancing in cloud environ-
ment using a novel hybrid scheduling algorithm, Proceedings of
IEEE International Conference on Cloud Computing in Emerging
Markets (CCEM), 2015, 37-42

[26] Panwar R., Mallick B., Load balancing in cloud computing using
dynamic load management algorithm, Proceedings of Interna-
tional Conference on Green Computing and Internet of Things
(ICGCIoT), 2015, 773-778

[27] Dasgupta K., Mandal B., Dutta P., Mandal J. K., Dam S., A genetic
algorithm (ga) based load balancing strategy for cloud comput-
ing, Procedia Technology, 2013, 10, 340-347

[28] Patel R. R., Patel S. J., Patel D. S., Desai T. T., Improved GA using
population reduction for load balancing in cloud computing, Pro-
ceedings of International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2016, 2372-2374

[29] Korat C., Gohel P., A novel honey bee inspired algorithm for dy-
namic load balancing in cloud environment, International Journal
of Advanced Research in Electrical, Electronics and Instrumenta-
tion Engineering, 2015, 4.

[30] Mondal B., Dasgupta K., Dutta P., Load balancing in cloud com-
puting using stochastic hill climbing-a soft computing approach,
Procedia Technology, 2012, 4, 783-789

[31] Gao R., Wu J., Dynamic load balancing strategy for cloud com-
puting with ant colony optimization, Future Internet, 2015, 7(4),
465-483



274 | A. Khalid et al.

[32] Ramezani F., Lu J., Hussain F. K., Task-based system load bal-
ancing in cloud computing using particle swarm optimization,
International journal of parallel programming, 2014, 42(5), 739-
754

[33] Zhao J., YangK.,Wei X., Ding Y., Hu L., XuG., A heuristic clustering-
based task deployment approach for load balancing using Bayes
theorem in cloud environment, IEEE Transactions on Parallel and
Distributed Systems, 2015, 27(2), 305-316.

[34] Dhurandher S. K., Obaidat M. S., Woungang I., Agarwal P., Gupta
A., Gupta P., A cluster-based load balancing algorithm in cloud
computing, Proceedings of IEEE International Conference on
Communications (ICC), 2014, 2921-2925

[35] Khalid A., Shahbaz M., Adaptive Deadline-aware Scheme (ADAS)
for Data Migration between Cloud and Fog Layers, KSII Transac-
tions on Internet & Information Systems, 2018, 12(3), 1002-1015


	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Data Profiling
	3.2 Data Temperature
	3.3 Data Migration between Cloud and Fog
	3.4 Resource Allocation for Cloud Networks

	4 Application of the Proposed Methodology
	4.1 Gateway Devices
	4.1.1 Observer Devices

	4.2 Sensors and Actuators
	4.3 Module to Module Interaction
	4.4 Network Topology for Simulation in ifogsim

	5 Results
	5.1 Latency
	5.2 Execution Cost
	5.3 Network Usage
	5.4 Energy Consumption
	5.5 Execution Time

	6 Discussion and Conclusion

