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ABSTRACT 

When evaluating or optimising the accuracy of sound 
field synthesis, it is commonplace to only consider the 
error in the pressure field that is reproduced. While this is 
justifiable perceptually - pressure is what we hear - it 
neglects error in particle velocity. Acoustic energy 
density includes both these quantities, so is less sensitive 
to locations where one or other quantities is zero and has 
been shown to be outperform pressure in some adaptive 
noise control applications. 
 
Acoustic cross-energy density was suggested in 2014 as a 
measure of common energy between waves, generalising 
spatially the notion of cross-covariance between signals. 
It’s counterpart quantity, acoustic cross-intensity, is a 
measure of common energy flux. The two are connected 
by an energy flux relation, meaning similar information 
can be computed over a domain or a boundary. Cross-
intensity generalises several double-layer microphone 
array designs that have previously been limited to planar, 
cylindrical or spherical geometries. Applications of it 
since published includes a boundary integral equation that 
is based on wave reflection and satisfies reciprocity, and 
encoding of a sound field computed by boundary element 
method to allow auralisation. This paper will study a 
generalisation of the ordinary coherence function based 
on acoustic cross-energy, which is computed spatially for 
waves. It is shown to be a bounded metric that measures 
wave similarity, and hence can be used to quantity the 
physical accuracy of sound field synthesis systems. 

1. EXTENDED ABSTRACT 

1.1 Acoustic Cross-Energy Density  
The instantaneous acoustics energy density  for an 
acoustic wave  is given by [1]: 

 (1) 

Here  is pressure and  is particle velocity, which, like 
, will both with position and time.  and  are the 

equilibrium density of air and sound speed respectively. 
 
Consider now the presence of a second acoustic wave  
with pressure and particle velocity . The instantaneous 
acoustic energy density of the sum of these two waves is: 

 (2) 

 
 

Expanding out the individual terms gives: 

 (3) 

The first term is easily identified as  and the last as , 
the instantaneous acoustic energy density for wave  
alone. The two middle terms are responsible for 
interference between the waves, i.e. in-phase amplitude 
addition or out-of-phase cancellation, on top of the phase-
less energy addition given by the other two terms. The 
name proposed for the second term is ‘acoustic cross-
energy density’ [2], akin to the meaning of cross-
covariance in signal processing. It is defined: 

 (4) 

Appropriately, it is symmetric ( ) and reduces 
to the standard definition for acoustic energy density in 
Eq. 1 in the ‘auto’ case (i.e. ). Exploiting the 
subscript notation, Eq. 3 can be re-written as: 

. (5) 

Ref. [2] also defines a time-averaged version of acoustic 
energy density for time-harmonic waves. 
 

1.2 Acoustic Cross-Intensity 
Instantaneous acoustic intensity for wave  is given by: 

 (6) 

Consider now acoustic intensity when wave  is present 
in addition to . The intensity for the sum of both is: 

 (7) 

Expanding out the individual terms gives: 

 (8) 

The first of these is easily identified as  and the last as 
, the intensity for wave  alone. The two middle terms 

are again responsible for interference between the waves, 
i.e. in-phase amplitude addition or out-of-phase 
cancellation, on top of the phase-less power addition 
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given by the other two terms. The sum of these is two 
times the ‘acoustic cross-intensity’, defined in [2] as : 

 (9) 

Like , this definition is symmetric and reduces to the 
standard definition of acoustic intensity in the ‘auto’ case 
i.e. . Exploiting the subscript notation, Eq. 9 can 
be written as: 

 (10) 

1.3 Energy-Flux Relations 
Using only the property that  satisfies the wave 
equation, it is straightforward to show that  and  are 
related by the energy-flux relation , where 
the dot above  indicates a time-derivative.  The 
divergence theorem may be applied to this over a 
connected volume  bounded by a surface : 

 (11) 

Here  is a unit vector normal to surface  at point , 
pointing into the volume  enclosed by  (hence there is 
no minus sign). This statement is sometimes referred to 
as the “acoustic energy conservation law” (see section 
1.11 of [3], where this is in turn cited to Kirchhoff). It has 
the physical interpretation that within a lossless medium, 
energy is not created or destroyed and any change in 
total energy (versus time) is due to power flow through 
the surface bounding the volume under consideration. 
Note that if the medium includes sources these must be 
excluded from  for Eq. 5 to hold (as done when deriving 
the Kirchhoff-Helmholtz Boundary Integral Equation). 
 
The definitions of  and  satisfy their own energy 
flux relation . Applying the divergence 
theorem gives: 

 (12) 

This shows that the acoustic energy conservation law also 
applies to cross-energy, and Eq. 12 can be interpreted 
equivalently i.e. within a lossless medium cross-energy is 
not created or destroyed and any change in total cross-
energy (versus time) is due to cross-power flow through 
the surface bounding the volume under consideration. 

1.4 Time-Averaged Acoustic Cross-Intensity for 
Time-Harmonic Waves 
Ref. [2] defines time-averaged versions of both acoustic 
cross energy density and cross-intensity, and applies them 
to complex time-harmonic waves. But the variant that 
finds the most immediate application is time-averaged 
acoustic cross-intensity for time-harmonic waves. This is 
expressed therein using the complex spatial amplitude of 
velocity potential , i.e. , 

where  is velocity potential (so  and ). 
Following similar notation for wave  gives: 

 (13) 

Here a bar over  indicates temporal averaging and an 
asterisk indicates a complex conjugate. 
 
The time-averaged quantities obey the same divergence 
identities that the instantaneous quantities do, except that 
the time-averaged energy density, and cross-energy 
density, are time-invariant, so the left-hand sides of eqs. 
11 and 12 equal zero. Equation 12 becomes: 

 (14) 
 

Examining the form of  in Eq. 13, it can be shown 
that Eq. 14 is equivalent to Green’s second theorem 
applied to acoustic waves, once the fact that  and  
satisfy the Helmholtz equation has been used to eliminate 
the volume integral. The only key difference is that a 
conjugate has been applied to  in Eq. 13, but this only 
amounts to a minor change in the definition of ; 
conjugation corresponds to time reversal (under which 
the wave equation is still satisfied). This is immediately 
interesting since it gives a physical interpretation to an 
important mathematical identity. 
 
Green’s second theorem is also the origin of the 
Kirchhoff-Helmholtz Boundary Integral Equation 
(KHBIE), meaning that the idea of cross-energy and 
cross-intensity leads to that too. This, with the time 
reversal observation above, gives a new physical 
interpretation for the KHBIE. The standard interpretation 
is of monopole and dipole source distributions on the 
boundary , emanating into the volume V and 
reconstructing  at an observer position  (Fig. 1a). The 
new interpretation is of a double-layer microphone array 
designed to sense  between the measured wave  and 
a contracting spherical wave which coalesces at  (Fig. 
2b). This performs a spatial cross-correlation over , 

a)  b)  

Figure 1: Complimentary interpretations of the KHBIE.
a) the standard ‘Wave Field Synthesis’ interpretation of 
monopole and dipole boundary sources radiating waves which
sum to form the wave at an observer point .
b) the new ‘microphone array’ interpretation, computing the 
cross-intensity between the measured wave and a ‘testing wave’ 
(blue), being a contracting spherical wave which coalesces at . 
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collecting cross-intensity and mapping it across  such 
that the correct value of  at  is found (if  encloses ). 
This idea was extended in the ‘Wave Matching Boundary 
Integral Equation’ [4], a new mathematical formulation 
for linear acoustic modelling that uses eq. 14 both to 
compute a boundary to point mapping (as the KHBIE) 
and as a Galerkin testing integral. The result is an 
algorithm with some unique and interesting features e.g. 
it is a sesquilinear form that satisfies reciprocity. This 
will be presented in paper 1077 of this conference. 
 
Eq. 14 also generalizes several double-layer microphone 
array designs that have previously been limited to planar, 
cylindrical or spherical geometries. Whereas many 
technique are based on the orthogonality of spherical 
harmonic functions on a spherical surface, [5], [6] 
showed that spherical basis functions, being a spherical 
harmonic function multiplied by an appropriate radial 
function (spherical Bessel or Hankel), are orthogonal 
over any surface when the integral takes the form of Eq. 
14. Equivalent identities for 2D are included in [4]. 
 
Notably, schemes such as [7] and [8] already capture the 
necessary data, so this new mathematical framework 
frees them from requiring a microphone array that 
follows a spherical geometry. Alternatively, it allows the 
origin of the coordinate system to be changed post-
measurement as, for example, can be useful to best 
compress measured directivities [9]. Following a similar 
principle, it has been used to encode BEM simulations for 
auralisation, including spatial directivity [10]. 
 

1.5 Wave Coherance 
Again, taking the lead from auto and cross-power spectral 
densities, this paper proposes a coherance function based 
on acoustic energy density. This is defined: 

 (15) 

Here  indicates averaging over space and time. The 
additional average over space is required, compared to 
auto and cross-power spectral densities, because  and  
are waves and have spatial extent. Auto and cross-power 
spectral densities, in contrast, apply to signals, which lack 
a spatial argument. 
 
The two terms in the denominator are the total energy 
present in  and  respectively, whereas the numerator 
measures their similarity. Typically,  would be the wave 
we have measured and  would be a wave we are looking 
for.  then gives a figure of merit for the match, that is 
bounded between zero and one. It’s potential use as an 
optimization metric will be explored in the presentation. 
 

2. REFERENCES 

[1] A. D. Pierce, Acoustics: An Introduction to its 
Physical Principles and Applications. ASA, 
1989. 

[2] J. A. Hargreaves and Y. W. Lam, “Acoustic 
Cross - Energy Measures and Their 
Applications,” in The 22nd International 
Congress on Sound and Vibration, 2015, no. July, 
pp. 12–16. 

[3] P. Morse and K. Ingard, Theoretical Acoustics. 
McGraw-Hill, 1986. 

[4] J. A. Hargreaves and Y. W. Lam, “The Wave-
Matching Boundary Integral Equation — An 
energy approach to Galerkin BEM for acoustic 
wave propagation problems,” Wave Motion, vol. 
87, pp. 4–36, Jul. 2018, doi: 
10.1016/J.WAVEMOTI.2018.07.003. 

[5] J. A. Hargreaves and Y. W. Lam, “An Energy 
Interpretation of the Kirchhoff-Helmholtz 
Boundary Integral Equation and its Application 
to Sound Field Synthesis,” Acta Acust. united 
with Acust., vol. 100, no. 5, pp. 912–920, Sep. 
2014, doi: 10.3813/AAA.918770. 

[6] J. A. Hargreaves and Y. W. Lam, “Corrigendum 
to An energy interpretation of the Kirchhoff-
Helmholtz boundary integral equation and its 
application to sound field synthesis,” Acta Acust. 
united with Acust., vol. 104, no. 6, pp. 1134–
1134, Nov. 2018, doi: 10.3813/AAA.919278. 

[7] E. Hulsebos, D. de Vries, and E. Bourdillat, 
“Improved microphone array configurations for 
auralization of sound fields by Wave Field 
Synthesis.,” May 2001, Accessed: Apr. 22, 2014. 
[Online]. Available: http://www.aes.org/e-
lib/browse.cfm?elib=9981. 

[8] M. Melon, C. Langrenne, D. Rousseau, and P. 
Herzog, “Comparison of Four Subwoofer 
Measurement Techniques,” J. Audio Eng. Soc., 
vol. 55, no. 12, pp. 1077–1091, Dec. 2007, 
Accessed: Aug. 01, 2018. [Online]. Available: 
http://www.aes.org/e-lib/browse.cfm?elib=14183. 

[9] W. Klippel and C. Bellmann, “Holographic 
Nearfield Measurement of Loudspeaker 
Directivity,” Sep. 2016, [Online]. Available: 
http://www.aes.org/e-lib/browse.cfm?elib=18402. 

[10] J. A. Hargreaves, L. R. Rendell, and Y. W. Lam, 
“A framework for auralization of boundary 
element method simulations including source and 
receiver directivity,” J. Acoust. Soc. Am., vol. 
145, no. 4, pp. 2625–2637, Apr. 2019, doi: 
10.1121/1.5096171. 

 

10.48465/fa.2020.1079 3483 e-Forum Acusticum, December 7-11, 2020


